
Analyzing Semantic Properties
of OCL Operations

by Uncovering Interoperational Relationships

Mirco Kuhlmann and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

{mk|gogolla}@informatik.uni-bremen.de

Abstract. The OCL (Object Constraint Language) as part of the UML
(Unified Modeling Language) is a rich language with different collection
kinds (sets, multi-sets, sequences) and a large variety of operations de-
fined thereon. Without negating the strong correlation between both
fields we can say that these operations have their origin partly in logic
(like the operations forAll and exists) and partly in computer science,
in particular database systems (like the operation select). Some of these
operations may be expressed in terms of other operations. This paper
presents a systematic study of relationships which hold between OCL
features like the mentioned operations. Apart from presenting the rela-
tionships between operations in a conceptual way, the relationships are
described by a formal metamodel allowing systematic and computer sup-
ported access to the operation relationships by querying an underlying
formal description.

1 Introduction

The aim of this paper is to compile and discuss the majority of relationships
which hold between OCL (Object Constraint Language) [WK03] operations on
collections in a single place. Partly, these relationships are mentioned in the
OCL standard, but there they are distributed over several sections. However,
some more interesting relationships do not show up in the OCL standard, but
are presented here.

The motivation for our work is to state and clarify the basic semantic relation-
ships between OCL operations on collections. Collections play a central role in
OCL, and, for example, the universal and existential quantifiers are understood
in OCL as collection operations. Therefore it seems neccessary to study whether
usual properties from logic hold in OCL as well and how the connection to other
OCL operations looks like.

Another reason for our study is that we plan to develop an OCL benchmark as a
quality check for an OCL evalutation engine. With the upcoming of MDA (Model

1

Driven Architecture) and MDD (Model Driven Development), OCL becomes
more and more popular, partly as a pure expression language, partly as a lan-
guage for expressing transformations, and more and more OCL engines show
up. The relationships discussed in this paper can be understood as a starting
point for such an OCL benchmark, because the relationships can be understood
as pairs of OCL expressions which have to deliver the same evaluation results.

Such a benchmark could be relevant for a variety of OCL tools for which a
comparison can be found in [TRF03]. Related work includes the Dresden OCL
compiler [HDF00] compiling OCL into Java code, the OCLE system having a
similar scope as the USE tool (see Sect. 3) but no automatic snapshot facil-
ity [Chi01], the Kent Modeling Framework KMF [AP05] allowing to use OCL
for own Java projects, the Octopus [Kla05] OCL 2.0 syntax checker, BoldSoft’s
tool ModelRun [Bol02], the KeY system [ABB+00] based on TogetherJ and al-
lowing interactive verification of OCL properties, a recent approach compiling
OCL to C# [Arn05], and work translating (a simplified version of) OCL into
the theorem prover PVS [KFdB+05]. Few commercial UML tools (e.g., Poseidon,
MagicDraw, MaxUML, Together, XMF-Mosaic) provide basic OCL support.

The rest of this paper is structured as follows. Section 2 introduces the relation-
ships in a conceptual way and presents the basic relationships in tabular form.
We distinguish between database related, logic and functional programming re-
lated collection operations. Section 3 introduces a metamodel for the relationship
implemented in our USE system. This so-called relationship warehouse can be
used to formally query the OCL collection operations and the relationships.
Section 4 finishes the paper with a short conclusion.

2 Relationships between OCL Collection Operations

In this section we consider the database related operations select and reject , the
logic operations exists, forAll and one as well as the operation collect which is
related to functional programming. All of them are collection operations defined
on all kinds of OCL collections, i.e., sets, bags and sequences, and require an
OCL expression for evaluation.

Table 1 presents a categorized list of relationships between the mentioned op-
erations. The left side shows an operation call with an OCL expression e on a
collection c. The right side shows an equivalent OCL expression. This implies
the interchangeability of both sides within an OCL expression. We neglect the
definition of iterators (like e in c->forAll(e|...)) in almost all operation calls,
because they do not play an explicit role except for the alternative expressions
of the operation one, in which two iterator declarations are required. The in-
dexing of an expression refers to the context of its evaluation (as, e.g., ex in
c->forAll(x,y|ex and ey implies x = y)).

Every operation shown on the left side of Tab. 1 features an equivalent iterate
expression. Table 2 lists all equivalences related to the operation iterate. The

2

Kind Left Right

DB c->reject(...|e) c->select(...|not e)
related c->select(...|e) c->reject(...|not e)

Logic c->exists(...|e) not c->forAll(...|not e)
c->forAll(...|e) not c->exists(...|not e)

Set c->one(...|e) c->exists(...|e) and

c->forAll(x,y|ex and ey implies x = y)

Set c->one(...|e) c->exists(x|ex and c->forAll(y|ey implies x = y))

Inter- c->exists(...|e) c->reject(...|e)->size() < c->size()
disci- c->exists(...|e) c->select(...|e)->notEmpty()
plinary c->forAll(...|e) c->reject(...|e)->isEmpty()

c->forAll(...|e) c->select(...|e) = c
c->one(...|e) c->reject(...|e)->size() = c->size() - 1

c->one(...|e) c->select(...|e)->size() = 1

Collect c->exists(...|e) c->collect(...|e)->includes(true)
c->exists(...|e) c->collect(...|e)->asSet()->one(e|e)
c->forAll(...|e) c->collect(...|e)->excludes(false)
c->forAll(...|e) let s = c->collect(...|e)->asSet() in

c->notEmpty() implies s->one(true) and s->one(e|e)

c->one(...|e) c->collect(...|e)->count(true) = 1

Table 1. Relationships between the considered collection operations

Operation Iterate Expression

collect c->collect(...|e)
Set,Bag c->iterate(...;r:Bag(et) = oclEmpty(Bag(et))| r->including(e))
Sequence c->iterate(...;r:Sequence(et) = oclEmpty(Sequence(et))|

r->append(e))
Sequence c->iterate(...;r:Sequence(et) = oclEmpty(Sequence(et))|

Sequence{r,Sequence{e}}->flatten())

exists c->exists(...|e)
Collection c->iterate(...;r:Boolean = false|r or e)

forAll c->forAll(...|e)
Collection c->iterate(...;r:Boolean = true|r and e)

one c->one(...|e)
Collection c->iterate(...;r:Sequence(Boolean) = Sequence{false,false}|

if res->first() then Sequence{true,false}

else Sequence{res->last() and e,
res->last() or e} endif)->last()

reject c->reject(...|e)
Collection c->iterate(elem;r:ct = oclEmpty(ct)|

if e then res else res->including(elem) endif)

select c->select(...|e)
Collection c->iterate(elem;r:ct = oclEmpty(ct)|

if e then res->including(elem) else res endif)

Table 2. Translation of the considered operations to iterate expressions

3

column ‘Operation’ presents the considered collection operations and the collec-
tions (set, bag and sequence) for which the equivalence holds. The general name
Collection indicates that the alternative expression can be applied to all three
collection types. The variables et resp. ct represent the type of expression e resp.
collection c (et for element type, ct for collection type).

The order of the relationship kinds in Tab. 1 reflects the structure of the follow-
ing sections. At first we examine the relationships between the database related
and the logic operations separately. Then we analyze the interdisciplinary equiv-
alences proceeding with the operation collect and its particular properties.

2.1 Database Related Operations

Both database related operations (select and reject) are strongly connected. The
first operation selects all elements of a source collection which fulfill a boolean
expression, the other rejects them. This fact implies the following relationship.

col ->reject(elem: elemtype | exprelem) ≡
col ->select(elem: elemtype | not(exprelem))

On the left side all elements fulfilling the expression exprelem are removed from
the original source collection. The same result is provided by the selection of all
objects not fulfilling the boolean expression. The opposite direction considering
select as source for translation is defined analogously (see Tab. 1).

The iterate expression given below represents an alternative expression for a call
of reject . The accumulator of type coltype, i.e., the type of the collection col , is
initialized with an empty collection1. During the iteration, the accumulator is
not changed if an element fulfills the expression exprelem . Otherwise the current
element is included. Analogously the select expression is translated by reversing
the including condition.

col ->reject(elem: elemtype | exprelem) ≡
col ->iterate(elem: elemtype ; res: coltype = oclEmpty(coltype) |
if exprelem then res else res->including(elem) endif)

2.2 Logical Theorems formulated in OCL

The logical relationships between the existential and universal quantification are
well-known. In OCL the domain of discourse is represented by the collection on
which the operation forAll resp. exists is invoked on. Based on the same domain
of discourse (col) we can state the following equivalence.

col ->exists(elem: elemtype | exprelem) ≡
not col ->forAll(elem: elemtype | not(exprelem))

1 The collection expression oclEmpty(T) is defined in USE to create an empty collec-
tion of type T .

4

There is at least one element fulfilling the expression exprelem if and only if not
all elements falsify the expression. The opposite direction is also valid, because
all elements fulfill the boolean expression if and only if there is no element which
does not fulfill it (see Tab. 1).

Both operations can be expressed with an iterate expression. The translation of
exists is shown below. We need a boolean accumulator initialized with the value
false. The update function represents a disjunction of the former accumulator
value and the evaluation result of expression exprelem . Once this expression is
evaluated to true, the accumulator remains true during the iteration.

col ->exists(elem: elemtype | exprelem) ≡
col ->iterate(elem: elemtype ; res:Boolean = false |

res or exprelem)

In the case of operation forAll the accumulator is initialized with true and the
update function changes to a conjunction. Once exprelem is false, the accumula-
tor becomes and stays false.

The operation one tightens the existence condition. It returns true if the boolean
expression evaluates to true in context of exactly one element. This fact is re-
flected in the following relationship, which is only valid for set-valued source
collections, because bags and sequences may include equal elements. Beside the
existence of at least one element fulfilling exprelem the equality of all fulfilling
elements is required.

col ->one(elem: elemtype | exprelem) ≡
col ->exists(elem: elemtype | exprelem) and
col ->forAll(elem1,elem2: elemtype |

exprelem1
and exprelem2

implies elem1 = elem2)

The translation of one to iterate is more complex than the previous definitions,
because the accumulator should initially be false, become true if there is one
element fulfilling exprelem and become false again if there is another fulfilling
element. For this reason we initialize the accumulator with a sequence of two
boolean values. Its last value indicates the finding of an element fulfilling the
boolean expression (res->last() or exprelem). The first value turns true if
another element fulfills it, i.e., the last value of the accumulator is already true
(res->last() and exprelem). Finally the last value of the accumulator is true if
and only if exactly one element fulfills the expression. We access this value by
appending the sequence operation last at the end.

col ->one(elem: elemtype | exprelem) ≡
col ->iterate(elem: elemtype ;

res:Sequence(Boolean) = Sequence{false,false} |
if res->first() then Sequence{true,false}
else
Sequence{res->last() and exprelem ,res->last() or exprelem }

endif)->last()

5

An alternative for the presented solution with two boolean variables would be to
use an iterate which counts the number of positive elements and finally check
whether this counting yields one.

2.3 Interdisciplinary Relationships

In OCL we can join the database related and logic operations. In general, it is
possible to translate forAll , exists and one to select and reject , but not vice
versa, because the logic operations do not result in a collection. We can derive
a boolean value from a collection, but it is infeasible to construct a collection
based on a single boolean value. In the following we will clarify the available
equivalences.

col ->exists(elem: elemtype | exprelem) ≡
col ->reject(elem: elemtype | exprelem)->size() < col ->size() ≡
col ->select(elem: elemtype | exprelem)->notEmpty()

If all elements fulfilling the boolean expression exprelem are rejected and the size
of the resulting collection is smaller than the unfiltered collection, the existence
of a particular element is guaranteed. We achieve the same result by checking
whether the collection which results from selecting all elements fulfilling exprelem

is not empty.

col ->forAll(elem: elemtype | exprelem) ≡
col ->reject(elem: elemtype | exprelem)->isEmpty() ≡
col ->select(elem: elemtype | exprelem) = col

All elements of a given collection induce the truth of expression exprelem if and
only if all elements are rejected, i.e., the result is empty, or selected, i.e., the
result equals the original collection.

For the translation of operation one more specific statements are necessary.
Exactly one element has to be rejected, i.e., the size of the corresponding result
must equal the size of the original collection subtracted by 1. Analogously the
operation select has to result in a collection including exactly one element.

col ->one(elem: elemtype | exprelem) ≡
col ->reject(elem: elemtype | exprelem)->size() = col ->size() - 1 ≡
col ->select(elem: elemtype | exprelem)->size() = 1

2.4 Features of Collect

Finally we examine the operation collect which is related to functional program-
ming. This operation is different from the operations discussed above, because
the type of its body expression is not predefined. Any desired ‘function’ may be
used to map the elements of the source operation and to collect them in a bag
resp. sequence.

At first we consider the translation of collect to iterate. No other translation of
this direction is possible, because select and reject can only result in collections

6

of the same type as the source collection. In contrast to that collect may result
in bags resp. sequences including elements of any type. Invoking collect on a set
or bag results in a bag. Otherwise we get a sequence. This implies a distinction
within the alternative iterate expression. Below we show the equivalence which
holds for sets and bags. The accumulator is initialized with an empty bag und
updated by including the evaluation result of exprelem .

col ->collect(elem: elemtype | exprelem) ≡
col ->iterate(elem: elemtype ;

res:Bag(exprtype) = oclEmpty(Bag(exprtype)) |
res->including(exprelem))

In case of a sequence the accumulator type changes to a sequence and the op-
eration including to append . The corresponding expression is accessible in the
collect part of Tab. 2. There are two alternative expressions for the operation
collect which are based on sequence-valued source collections. The lower entry
refers to another possibility. Instead of appending values, we can construct a
sequence as well. Thus we replace the whole body of iterate by the equivalent
expression Sequence{res,Sequence{ exprelem }}->flatten().

A call of collect always results in a collection of the same size as the source
collection. The database related operations normally result in smaller collec-
tions, because they are used as filters. Therefore we cannot state a reasonable
translation from select or reject to collect . On the other hand we can state an
equivalence by constraining the source collection to defined values. In this par-
ticular case it is possible to map all values which should not be selected resp.
be rejected to the undefined value. Finally we exclude the undefined value and
retrieve the same result as a corresponding select resp. reject expression.

The definition of equivalences relating collect and the logic operations is unprob-
lematic, because we can reuse their body, i.e., the boolean expression, as function
mapping every element to a boolean value. The truth values correspond to the
evaluation results of the boolean expression in context of the considered ele-
ments. Hence the collect expression results in a bag resp. sequence of boolean
values.
col ->exists(elem: elemtype | exprelem) ≡
col ->collect(elem: elemtype | exprelem)->includes(true)

At least one element fulfilling exprelem exists if and only if the bag (resp. se-
quence) resulting from the call of collect includes the value true. In case of forAll
the value false must not be an element of the collection (->excludes(false)).
The operation count counts the occurrences of a particular element in a collec-
tion. With the aid of this operation it is possible to check whether the value true
occurs exactly one time (->count(true) = 1) what corresponds to a call of one.
The complete definitions are listed in the Collect part of Tab. 1.

The expressiveness of collect opens up the possibility to define additional rela-
tionships between the logic operations.

7

col ->exists(elem: elemtype | exprelem) ≡
col ->collect(elem: elemtype |

exprelem)->asSet()->one(elem | elem)

Converting a bag (resp. sequence) of truth values to a set, limits the size to two
elements (Set{true}, Set{false} or Set{true, false}). The operation one, invoked
on the resulting set, returns true if one element represents the value true. In this
case one element of the original collection col fulfills the boolean expression
exprelem .

col ->forAll(elem: elemtype | exprelem) ≡
let s = col ->collect(elem: elemtype | exprelem)->asSet() in

col->notEmpty() implies s->one(true) and s->one(elem | elem)

The alternative expression for the operation forAll is more complex. As afore-
mentioned s->one(elem|elem) checks whether the value true is an element of
the resulting set s. Beside this requirement we have to assure that no element
of col does not fulfill exprelem , i.e., the value false must not be included in s.
This implies that s is a singleton set. The expression s->one(true) is true if and
only if s possesses this property, because every element in s fulfills the expression
true, even if the element represents the value false. The call of forAll always
results in true when the source collection is empty. For this reason we have to
define an implication. An empty source collection results in a false premise.

3 Relationship Warehouse

We have implemented a relationship warehouse with the UML-based Specifica-
tion Environment (USE) [RG01,GBR05]. A USE specification defines a UML
class diagram modeling the warehouse, and an object diagram provides the in-
formation about OCL standard operations (including the ones considered in
Sect. 2) and their relationships. The warehouse was modeled in such a way that
precise queries can be defined on it. The purpose of this implementation is to
get desired information about relationships and the involved operations quickly
and in a comfortable way.

3.1 Overview of the UML Model: The Class Diagram

Figure 1 shows the UML class diagram illustrating the concept of the relationship
warehouse. The information about the OCL operations and their relationships
is synthesized by instantiating that model (see Sect. 3.2).

The class Version referring to an OCL specification, e.g., ‘OCL 2.0 (06-05-
01)’ [Obj06] or ‘Mark Richters (USE)’ [Ric02] is the starting point for the rela-
tionship warehouse. Every OCL specification defines a number of types contain-
ing all possible OCL expressions. The association Hierarchy is defined to realize
subtyping, e.g., Real is a subtype of OclAny . Hereby, several type hierarchy trees
can be created.

8

Fig. 1. Class Diagram of the Relationship Warehouse

The roots in the type hierarchy are connected to exactly one version. OCL
collections are considered as parameterized types.

A type comprises a set of OCL standard operations characterized by their sym-
bol, their domain (the parameter types) and range (the return type), and their
notation. The attribute domainAndRange collects the formal parameters and
the return type in a sequence. The last element in the sequence always refers to
the return type.

When there is an alternative expression resulting in the same value as a specific
operation call, this alternative can be added as a Relationship object linked to
the operation. A Relationship object stores an equivalence like the ones presented
in Tab. 1 and Tab. 2 and is connected to all Operations involved in it. We can
navigate from a source operation to all of its alternative expressions towards the
participating operations. This makes powerful queries on the warehouse possible.

The attribute relationship is defined as set of strings, because different equiv-
alences with the same set of participating operations may exist for a source
operation (e.g., x + y == x - (-y) and x + y == y - (-x) for the addition
of integer values additionally involving the subtraction and the operation for
changing the sign). The object diagram in the next section will show another,
more involved example.

9

The class Queries defines queries in order to retrieve information about opera-
tions and relationships with specific properties.

3.2 Storing the Relationships: The Object Diagram

The relationship warehouse is implemented by a large object diagram. Due to
the size of the object diagram (we have about 150 operations), it does not make
much sense to look at the entire object diagram. Nevertheless we can inspect a
part of the object diagram to clarify the possibilities of this realization. Figure 2
presents a small part of the warehouse consisting of a single relationship.

Fig. 2. Part of the Relationship Warehouse

The focus of Fig. 2 is the operation one indicated by the symbol one. It is de-
fined for the type Collection in context of the OCL version Mark Richters
(USE) [Ric02]. The first element of the sequence available in attribute do-
mainAndRange reflects the fact that one has to be invoked on a collection (Set,
Bag or Seq(uence)). Beside the collection, a boolean expression is required for

10

calling the operation (second element). The attribute notation specifies the con-
crete syntax for the operation one. A successful call results in a boolean value,
which is declared by the last element of the mentioned sequence.

A single relationship, i.e., an alternative expression, is stored for the source
operation one. It represents an equivalence listed in the interdisciplinary part
of Tab. 1. Three operations are involved in the alternative expression, i.e., the
right side of the equivalence: the two collection operations size and select and
the equality defined on integer values. Mark Richters (as well as Standard OCL)
specifies a subtype relation between Integer an Real .

The original object diagram includes all relationships presented in Tab. 1 resp.
Tab. 2. Altogether the current warehouse comprises 148 OCL standard opera-
tions and 108 equivalences. It can be enriched as needed.

3.3 Querying the Warehouse

The entire object diagram is too large to be visually inspected. Thus,we have to
query the relationship warehouse using OCL operations, especially navigation
expressions. In the following we exemplify the access of desired information.

Every available Operation is identified by its symbol, the name of its version and
its type. We defined the OCL query operation getOperationBySymbol to obtain
the corresponding Operation object. Strictly speaking, there are operations with
the same symbol, version and type, but with different formal parameters, e.g.,
there are two operations with symbol - defined on type Integer namely −(i :
Integer) : Integer and −(r : Real) : Real . In this case we can select the relevant
operation by filtering their domain resp. range.

To obtain the Operation object, e.g., one which was discussed in Sect. 3.2, we
need the mentioned arguments:

queries.getOperationBySymbol(
’one’, ’Mark Richters (USE)’, ’Collection’)

USE evaluates the OCL expression and displays the resulting value and its type:

Set{@markRichtersCollectionOne} : Set(Operation)

Starting from this operation we can navigate to the alternative expressions and
collect all equivalences:

queries.getOperationBySymbol(’one’, ’Mark Richters (USE)’,
’Collection’).alternatives.relationship

The resulting bag includes all available equivalences (cp. Tab. 1):

11

Bag{’X->one(elem : ElemType | Expr) ==
X->collect(elem : ElemType | Expr)->count(true) = 1’,

’X->one(elem : ElemType | Expr) ==
X->exists(elem : ElemType | Expr) and
X->forAll(elem1, elem2 : ElemType |
Expr_elem1 and Expr_elem2 implies elem1 = elem2)’,

’X->one(elem : ElemType | Expr) ==
X->exists(elem1 : ElemType | Expr_elem1 and
X->forAll(elem2 : ElemType |
Expr_elem2 implies elem1 = elem2))’,

’X->one(elem : ElemType | Expr) ==
X->iterate(elem : ElemType;

res : Sequence(Boolean) = Sequence{false,false} |
if res->first() then Sequence{true,false}
else Sequence{res->last() and Expr,

res->last() or Expr} endif)->last()’,

’X->one(elem : ElemType | Expr) ==
X->reject(elem : ElemType | Expr)->size() = X->size() - 1’,

’X->one(elem : ElemType | Expr) ==
X->select(elem : ElemType | Expr)->size() = 1’} : Bag(String)

Alternatively we can use the query operation getRelationshipBySymbol , which
returns all relationships for an operation in context of a type and version:

queries.getRelationshipBySymbol(
’one’, ’Mark Richters (USE)’, ’Collection’)

For getting a more specific result it is possible to formulate more restrictive
queries. We can select the equivalences depending on the participating opera-
tions. The following expression picks out the alternative expression defined for
the source operation one in which the operation select is involved.

queries.getOperationBySymbol(
’one’, ’Mark Richters (USE)’, ’Collection’).alternatives->select(
participatingOperations.symbol->includes(’select’)).relationship

The result of the following expression represents the relationship considered in
Fig. 2:

Bag{’X->one(elem : ElemType | Expr) ==
X->select(elem : ElemType | Expr)->size() = 1’} : Bag(String)

12

The corresponding query operation getRelationshipBySymbolAndParticipating
simplifies the selecting expression. Its last argument must be a set of operations,
which should be involved in the equivalences.

queries.getRelationshipBySymbolAndParticipating(
’one’, ’Mark Richters (USE)’, ’Collection’, Set{’select’})

All expressions explained above need a source operation as starting point. How-
ever there are also meaningful queries which do not need any symbols of source
operations. For example the available query operation getRelationshipByPartici -
pating works backwards. Given a set of operation symbols the query operation
returns all relationships in which all stated operations are involved:

queries.getRelationshipByParticipating(
’Mark Richters (USE)’, Set{’one’})

The operation call results in two relationships. The left side of the equivalences
show that one is involved in alternative expressions for exists and forAll :

Set{
’X->exists(elem : ElemType | Expr) ==
X->collect(elem : ElemType | Expr)->asSet()->one(elem | elem)’,

’X->forAll(elem : ElemType | Expr) ==
let s = X->collect(elem : ElemType | Expr)->asSet() in
X->notEmpty() implies
s->one(true) and s->one(elem | elem)’} : Set(String)

There are many other possibilities to filter the results, e.g., by considering the
formal parameters and return types or the number of operations participating
in an alternative expression.

4 Conclusion

We have discussed basic semantic properties of OCL operations on collections.
These OCL collection operations play a central role and their relationships
should be clearly expressed, which includes the handling of the undefined value.
Thereby it is possible to minimize the scope of interpretation caused by informal
definitions in the OCL standard. We plan to extend this work and to develop an
OCL benchmark which could be used to check the quality of an OCL evaluation
engine. With the upcoming of more and more OCL evaluators in the context of
MDA and MDD, such a quality assurance mechanisms seems neccessary to us.

The relationship warehouse presented in the second part of this paper can be ex-
tended in different ways. When other OCL versions are added, a slightly modified

13

specification allows for comparing operations in context of different versions. On
the other hand we can multiply the possibilities of inspecting the relationships
by substituting the strings representing the equivalences for more sophisticated
constructs, i.e., instances of the OCL metamodel.

References

[ABB+00] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle,
W. Menzel, and P. H. Schmitt. The KeY approach: Integrating object ori-
ented design and formal verification. In M. Ojeda-Aciego, I.P. de Guzmán,
G. Brewka, and L. M. Pereira, editors, Proc. 8th European Workshop Logics
in AI (JELIA’2000), LNCS 1919, pages 21–36. Springer, 2000.

[AP05] Dave Akehurst and Octavian Patrascoiu. The Kent Modeling Frame-
work (KMF). http://www.cs.kent.ac.uk/projects/ocl, University of
Kent, 2005.

[Arn05] Dave Arnold. OCL/C# Compiler. www.ewebsimplex.net/csocl/, eweb-
simplex, 2005.

[Bol02] Boldsoft. Boldsoft OCL Tool Model Run. www.boldsoft.com, Boldsoft,
Stockholm, 2002.

[Chi01] D. Chiorean. Using OCL Beyond Specifications. In A. Evans, R. France,
A. Moreira, and B. Rumpe, editors, Proc. UML’2001 Workshop Rigorous
Development, pages 57–68. LNI, GI, Bonn, 2001.

[GBR05] Martin Gogolla, Jörn Bohling, and Mark Richters. Validating UML and
OCL Models in USE by Automatic Snapshot Generation. Journal on Soft-
ware and System Modeling, 4(4):386–398, 2005.

[HDF00] Heinrich Hussmann, Birgit Demuth, and Frank Finger. Modular architec-
ture for a toolset supporting OCL. In Andy Evans, Stuart Kent, and Bran
Selic, editors, Proc. 3rd Int. Conf. Unified Modeling Language (UML’2000),
pages 278–293. Springer, LNCS 1939, 2000.

[KFdB+05] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag,
T. Arons, and H. Kugler. Formalizing UML models and OCL constraints
in PVS. Electr. Notes Theor. Comput. Sci., 115:39–47, 2005.

[Kla05] KlasseObjecten. The Klasse Objecten OCL Checker Octopus.
www.klasse.nl/english/research/octopus-intro.html, Klasse Ob-
jecten, 2005.

[Obj06] Object Management Group, Inc. Object Constraint Language - OMG
Available Specification, Version 2.0, Mai 2006. http://www.omg.org/cgi-
bin/doc?ptc/06-05-01.

[RG01] Mark Richters and Martin Gogolla. OCL - Syntax, Semantics and Tools.
In Tony Clark and Jos Warmer, editors, Advances in Object Modelling with
the OCL, pages 43–69. Springer, Berlin, LNCS 2263, 2001.

[Ric02] Mark Richters. A Precise Approach to Validating UML Models and OCL
Constraints, volume 14 of BISS Monographs. Logos, Berlin, 2002.

[TRF03] A. Toval, V. Requena, and J.L. Fernandez. Emerging OCL Tools. Software
and Systems Modeling, 2(4):248–261, 2003.

[WK03] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 2003. 2nd Edition.

14

