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Evolution of entanglement

Entanglement of formation Eρ between 2 subsystems A & B

in a mixed state ρ: by definition, Eρ is an infimum over all

convex decompositions ρ =
∑

k pk|ψk〉〈ψk| (with pk ≥ 0),

Eρ = inf
∑

k

pkEψk
, Eψk

= Svon Neuman

(

tr
A
|ψk〉〈ψk|

)

[Bennett et al. PRA 54 (’96)].

If ρ evolves with time, so does the optimal decomposition

{pk, |ψk〉} realizing the minimum.
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→֒ Eρ typically decreases (entanglement loss between A & B).

Quantum Optics V, Cozumel, Mexico 16/11/2010 – p. 3



Evolution of entanglement

Entanglement of formation Eρ between 2 subsystems A & B

in a mixed state ρ: by definition, Eρ is an infimum over all

convex decompositions ρ =
∑

k pk|ψk〉〈ψk| (with pk ≥ 0),

Eρ = inf
∑

k

pkEψk
, Eψk

= Svon Neuman

(

tr
A
|ψk〉〈ψk|

)

[Bennett et al. PRA 54 (’96)].

If ρ evolves with time, so does the optimal decomposition

{pk, |ψk〉} realizing the minimum.

When the 2 subsystems interact with their environment, the

entanglement gets shared between A, B, and the environment
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Evolution of entanglement

Entanglement of formation Eρ between 2 subsystems A & B

in a mixed state ρ: by definition, Eρ is an infimum over all

convex decompositions ρ =
∑

k pk|ψk〉〈ψk| (with pk ≥ 0),

Eρ = inf
∑

k

pkEψk
, Eψk

= Svon Neuman

(

tr
A
|ψk〉〈ψk|

)

[Bennett et al. PRA 54 (’96)].

If ρ evolves with time, so does the optimal decomposition

{pk, |ψk〉} realizing the minimum.

When the 2 subsystems interact with their environment, the

entanglement gets shared between A, B, and the environment

→֒ Eρ typically decreases (entanglement loss between A & B).

Q1: Can the A-B entanglement disappear completely?

Q2: Can one extract information from the environment (by mea-

suring it) in order to “know” the optimal decomposition?
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Entanglement sudden death

ENTANGLEMENT TYPICALLY DISAPPEARS BEFORE COHERENCES ARE LOST!

ρ

ρ0

S
T=0

T>0

ρ

common
bath

It can disappear after a finite time

• always the case if the qubits relax to a

Gibbs state ρ∞ at positive temperature

• otherwise depends on the initial state.

[Diosi ’03], [Dodd & Halliwell PRA 69 (’04)], [Yu et Eberly PRL 93 (’04)]
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• always the case if the qubits relax to a

Gibbs state ρ∞ at positive temperature

• otherwise depends on the initial state.

[Diosi ’03], [Dodd & Halliwell PRA 69 (’04)], [Yu et Eberly PRL 93 (’04)]

If the two qubits are coupled to a

common bath, entanglement can

also suddently reappear

 due to effective (bath-mediated) qubit

interaction creating entanglement

[Ficek & Tanás PRA 74 (’06)], [Hernandez &

Orszag PRA 78 (’08)], [Mazzola et al. PRA (’09)]

t

1

C(t)

t
ESDESD

t
sudden birth
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Quantum trajectories

As a result of continuous measurements on the environment, the

bipartite system remains in a pure state |ψ(t)〉 at all times t > 0

t ∈ R+ 7→ |ψ(t)〉 quantum trajectory

Reason: each measurement disentangle the system and the

environment (by wavepacket reduction).
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bipartite system remains in a pure state |ψ(t)〉 at all times t > 0

t ∈ R+ 7→ |ψ(t)〉 quantum trajectory

Reason: each measurement disentangle the system and the

environment (by wavepacket reduction).

Averaging over the measurements, one gets the density matrix:

ρ(t) = |ψ(t)〉〈ψ(t)| =

∫

dp[ψ] |ψ(t)〉〈ψ(t)| .

In general this decomposition is NOT THE OPTIMAL one,

Eψ(t) ≥ Eρ(t) [Nha & Carmichael PRL 98 (’04)].

But for specific models, one can find measurement schemes with

Cψ(t) = Cρ(t) ∀ t ≥ 0 with C = Wootters concurrence for 2 qubits

[Carvalho et al. PRL 98 (’07), Viviescas et al. (’10)].
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Outlines

• Evolution of entangled in the presence of couplings

with an environment

• Average concurrence for quantum trajectories
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Photon counting
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Qubit A

Qubit B

int,A

int,B

clic!

Detector A

Detector B

E ,B

E ,B

H

H
H

H
A

B

Two 2-level atoms (qubits) initially

in state |ψ〉 =
∑

s,s′=0,1

css′|s〉|s′〉

are coupled to independent

modes of the electromagnetic

field initially in the vacuum.

Two perfect photon counters make a click when a photon is

emitted by the atom i (i = A,B)
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css′|s〉|s′〉

are coupled to independent

modes of the electromagnetic

field initially in the vacuum.

Two perfect photon counters make a click when a photon is

emitted by the atom i (i = A,B)

• If Di detects a photon between t and t+ dt, the qubits suffer

a quantum jump [occurs with proba. γi‖σi−|ψ(t)〉‖2dt]

|ψ(t)〉 −→ σi−|ψ(t)〉 = |0〉i ⊗ |φ(t)〉  separable.
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modes of the electromagnetic

field initially in the vacuum.

Two perfect photon counters make a click when a photon is

emitted by the atom i (i = A,B)

• If Di detects a photon between t and t+ dt, the qubits suffer

a quantum jump [occurs with proba. γi‖σi−|ψ(t)〉‖2dt]

|ψ(t)〉 −→ σi−|ψ(t)〉 = |0〉i ⊗ |φ(t)〉  separable.

• If no click occurs between t0 and t [proba. ‖e−itHeff |ψ(t0)〉‖2]

|ψ(t)〉 =
e−i(t−t0)Heff |ψ(t0)〉
‖e−itHeff |ψ(t0)〉‖

, Heff = H0 −
i

2

∑

i=A,B

γi σ
i
+σ

i
−.
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Photon counting (2)

Concurrence: [Wootters PRL80 (’98)].

Cψ(t) = |〈ψ(t)|σy ⊗ σyT |ψ(t)〉|
T = complex conjugation op.

σy = Pauli matrix

→֒ Eψ(t) = f(Cψ(t)), f convex ր
������������������

����������������
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• Trajectories with 1 or more jumps between 0 and t have

a concurrence Cψ(t) = 0 (since |ψ(t)〉 separable after 1 jump).

• If no jump occurs between 0 and t, one finds for H0 = 0:

Cno jump(t) = N−2
t C0 e

−(γA+γB)t with Nt = ‖e−itHeff |ψ〉‖.
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• Trajectories with 1 or more jumps between 0 and t have

a concurrence Cψ(t) = 0 (since |ψ(t)〉 separable after 1 jump).

• If no jump occurs between 0 and t, one finds for H0 = 0:

Cno jump(t) = N−2
t C0 e

−(γA+γB)t with Nt = ‖e−itHeff |ψ〉‖.
Average concurrence over all trajectories:

Cψ(t) = proba (no jump in [0, t]) × Cno jump(t)
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Photon counting (2)
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• Trajectories with 1 or more jumps between 0 and t have

a concurrence Cψ(t) = 0 (since |ψ(t)〉 separable after 1 jump).

• If no jump occurs between 0 and t, one finds for H0 = 0:

Cno jump(t) = N−2
t C0 e

−(γA+γB)t with Nt = ‖e−itHeff |ψ〉‖.
Average concurrence over all trajectories:

Cψ(t) = proba (no jump in [0, t]) × Cno jump(t) = C0 e
−(γA+γB)t .

→֒ Cψ(t) vanishes asymptotically ⇒ sudden death of entan-

glement never occurs for quantum trajectories!
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General quantum jump dynamics

Consider 2 noninteracting qubits coupled to independent baths

monitored by means of local measurements

⇒ the jump operators J = JA ⊗ 1 or 1A ⊗ JB are local.

• The no-jump trajectories have a non-vanishing

concurrence Cnj(t) > 0 at all finite times (if C0 > 0).

Proof: assume the contrary, i.e. |ψnj(t)〉 separable, then

|ψ(0)〉 ∝ eitHeff |ψnj(t)〉 would be separable since eitHeff is a

tensor product of two local operators acting on each qubits.
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monitored by means of local measurements

⇒ the jump operators J = JA ⊗ 1 or 1A ⊗ JB are local.

• The no-jump trajectories have a non-vanishing

concurrence Cnj(t) > 0 at all finite times (if C0 > 0).

Proof: assume the contrary, i.e. |ψnj(t)〉 separable, then

|ψ(0)〉 ∝ eitHeff |ψnj(t)〉 would be separable since eitHeff is a

tensor product of two local operators acting on each qubits.

• The average concurrence over all trajectories is

Cψ(t) = C0 e
−κt

where κ ≥ 0 depends on the measurement scheme

only (but not on the initial state).

Note: Eψ(t) ≥ f(Cψ(t)) by convexity of f .
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Quantum state diffusion
• The result Cψ(t) = C0 e

−κt is not only true for quantum jump

dynamics but also for quantum state diffusion, e.g. for

trajectories given by the stochastic Schrödinger equation

|dψ〉 =
[

(−iH0 −K)dt+
∑

J local

γJ

(

ℜ〈J〉ψ J − 1

2
(ℜ〈J〉ψ)2

)

dt

+
∑√

γJ
(

J −ℜ〈J〉ψ
)

dw
]

|ψ〉
which describes homodyne detection.

• The disentanglement rates κ are different for photon-

counting, homodyne, and heterodyne detections:

κQJ =
1

2

∑

J

γJ

(

tr(J†J) − 2|det(J)|
)

κho =
1

2

∑

J

γJ

(

tr(J†J) − 2ℜdet(J) − (ℑ tr(J))2
)

κhet =
1

2

∑

J

γJ

(

tr(J†J) − 1

2
| tr(J)|

)

.

Adjusting the laser phases J → e−iθJ yields κho ≤ κQJ, κhet.
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Discussion

It is not possible to have Cψ(t) = Cρ(t) if one measures locally

the independent environments of the qubits (since Cρ(t) may

vanish at a finite time tESD, whereas Cψ(t) > 0 ∀ t).
→֒ To prepare the separable pure states in the decomp. of

ρ(t) at time tESD, one must necessarily perform

nonlocal (joint) measurements on the 2 environments!

Quantum Optics V, Cozumel, Mexico 16/11/2010 – p. 11



Discussion

It is not possible to have Cψ(t) = Cρ(t) if one measures locally

the independent environments of the qubits (since Cρ(t) may

vanish at a finite time tESD, whereas Cψ(t) > 0 ∀ t).
→֒ To prepare the separable pure states in the decomp. of

ρ(t) at time tESD, one must necessarily perform

nonlocal (joint) measurements on the 2 environments!

∗ This raises the question: is ESD observable?

[Almeida et al., Science 316 (’07)]. −→ simulation of master eq.

[Viviescas et al., arXiv:1006.1452]. −→ YES with some nonlocal

measurements ⇒ require additional quantum channels...

∗ For A-B entanglement, “ignoring” the environment state is

not the same as measuring it without reading the results.

[Mascararenhas et al., arXiv:1006.1233].
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Entanglement protection

One may use the continuous monitoring by the measurements to

protect the qubits against disentanglement.

• For ex., for pure phase dephasing (J i = ui · σi, i = A,B),

κQJ = κho = κhet = 0 so that Cψ(t) = C0 = const.

Bell initial state

|ψ〉 = 1√
2
(| ↑↑〉 + e−iϕ| ↓↓〉)

C0 = 1 ⇒ Cψ(t) = 1 for all

quantum trajectories and all

times

→֒ perfect entanglement

protection!
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Entanglement protection

One may use the continuous monitoring by the measurements to

protect the qubits against disentanglement.

•• For ex., for pure phase dephasing (J i = ui · σi, i = A,B),

κQJ = κho = κhet = 0 so that Cψ(t) = C0 = const.

• For two baths at temperatures Ti > 0, the smallest rate is

κQJ =
∑

i=A,B

γi+(e
ω0

2kTi − 1)2 (jump op. J ∝
√

γi−σ
i
− +

√

γi+σ
i
+)

Bell initial state

|ψ〉 = 1√
2
(| ↑↑〉 − i| ↓↓〉)

Cψ(t) = e−κt

→֒ perfect entanglement

protection only possible

at infinite temperature!
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Qubits coupled to a common bath
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Qubit A

Qubit B

clic!

E ,B

int,A

int,B

Detector 

H

H

A

B

H

H

Two 2-level atoms (qubits) initially

in state |ψ〉 =
∑

s,s′=0,1 css′ |s〉|s′〉
are coupled to the same modes

of the electromagnetic field

initially in the vacuum.

Cψ(t) =
1

2

∣

∣c2−− c2+e
−2γt+ 4c11c00 e

−γt∣
∣ + 2|c11|2γt e−2γt

with c± = c11 ± c00.

• If c11 = 0 then

Cψ(t) = Cρ(t).

• If c11 > 0 then Cψ(t)

increases at small times.
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Conclusions & Perspectives

• The mean concurrence C(t) of two qubits coupled to

independent baths monitored by continuous local

measurements decays exponentially with a rate

depending on the measurement scheme only.

→֒ in order that C(t) coincides at all times with Cρ(t) for the

density matrix having an entanglement sudden death,

one has to measure joint observables of the two baths.

• Measuring the baths helps to protect entanglement,

sometimes perfectly!

• For two qubits coupled to a common bath, the time

behavior of the mean concurrence depends strongly on the

initial state. One may have C(t) = Cρ(t).

Open problems: non-Markov unravelings, multipartite systems,...
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