Algorithmic Decision Theory meets Logic

Jérôme Lang
LAMSADE, CNRS - Université Paris-Dauphine ADT-LPNMR 2015, Lexington, Kentucky

Thanks to the ADT-15 and LPNMR-15 organizers and chairs.

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Algorithmic Decision Theory

Design and study of languages and computational methods for expressing and solving decision making problems, such as
> sequential decision making multiattribute decision making coalition structure formation committee elections recommender systems

- Domains of solutions in algorithmic decision theory often have a combinatorial structure

$$
A=D_{1} \times \ldots \times D_{p}
$$

where $D_{i}=$ finite set of values associated with a variable X_{i}.

- Algorithmic decision theory is computationally hard.

Logic in Artificial Intelligence for algorithmic decision theorists

Two distinct roles:

- a declarative representation language
- rich expressivity of logics \rightarrow representing complex problems
- a generic problem solving tool
- SAT (satisfiability) solvers
- QBF (quantified Boolean formulas)
- the early stage: Prolog
- the modern stage: ASP (answer set programming)
- model checking
- (and more)

Combination of both: representation and resolution of complex problems.

Logic and Algorithmic Decision Theory

- How does logic help representing decision making problems in a more compact, more modular, more intuitive way?
- How does logic help solving complex decision making problems?

Logic and Algorithmic Decision Theory

- How does logic help representing decision making problems in a more compact, more modular, more intuitive way?
- How does logic help solving complex decision making problems?

We'll go back and forth between logic and typical ADT problems.

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Fair Division

- $N=\{1, \ldots, n\}$ set of agents
- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ indivisible objects
- allocation: maps each object to an agent
- Notation: $\left[\mathrm{O}_{1} \mathrm{O}_{2}\left|\mathrm{O}_{3}\right| \mathrm{O}_{4} \mathrm{O}_{5}\right.$] is the allocation where that agent 1 receives $\left\{o_{1} o_{2}\right\}, 2$ receives $\left\{o_{3}\right\}$ and 3 receives $\left\{o_{4}, o_{5}\right\}$.
"No externality" assumption: an agent's preferences depend only on the bundle she receives
- 1 is indifferent between $\left[\mathrm{O}_{1} \mathrm{O}_{2}\left|\mathrm{O}_{3}\right| \mathrm{O}_{4} \mathrm{O}_{5}\right.$] and [$\mathrm{O}_{1} \mathrm{O}_{2}\left|\mathrm{O}_{3} \mathrm{O}_{5}\right| \mathrm{O}_{4}$]
- 2 is indifferent between $\left[\mathrm{O}_{1} \mathrm{O}_{2}\left|\mathrm{O}_{3}\right| \mathrm{O}_{4} \mathrm{O}_{5}\right]$ and $\left[\varnothing\left|\mathrm{O}_{3}\right| \mathrm{o}_{1} \mathrm{O}_{2} \mathrm{O}_{4} \mathrm{O}_{5}\right.$]
- etc.

Therefore: it is sufficient to know each agent's preferences over bundles (as opposed to her preferences over all allocations).

Fair Division (here with dichotomous preferences)

- three goods: one cup of coffee, one glass of beer, one sugar cube
- three agents: J(udy), M(irek), T(orsten), with dichotomous preferences:
- Judy wants a beer, or else coffee with sugar.
- Mirek wants a beer.
- Torsten wants a beer or a coffee.
- can they all be satisfied?
- $b_{J} \vee\left(c_{J} \wedge s_{J}\right)$ where c_{J} means: the coffee is allocated to Judy
- b_{M}
- $b_{T} \vee c_{T}$
- constraints: $b_{J} \rightarrow \neg b_{M} \wedge \neg b_{T}$; etc. (an object is given to at most one agent)
- (and possibly): $b_{J} \vee b_{M} \vee b_{T}$ etc. (every object must be allocated)
- allocations satisfying a maximum number of agents via MAXSAT

$$
\begin{aligned}
& {[b|-| c] \quad+s \text { to anybody (or to nobody, if allowed) }} \\
& {[c s|b|-]} \\
& {[c s|-| b]}
\end{aligned}
$$

Dichotomous preferences for resource allocation

- $\mathcal{X}=\left\{o_{1}, \ldots, o_{m}\right\}$ set of items
- $A \subseteq \mathcal{X}$ set of acceptable bundles
- agent i partitions the set of bundles A into two sets: acceptable and unacceptable bundles
- $b_{J} \vee\left(c_{J} \wedge s_{J}\right)$: Judy is happy with $\{b\},\{c, s\},\{b, s\}$ and $\{b, c, s\}$, and unhappy with $\{c\},\{s\},\{b, s\}$ and \varnothing [mistake]
- each set of acceptable bundles A is representable by a propositional formula φ_{A}
- a set of acceptable bundles A is monotonic if for all $X \subseteq Y, X \in A$ implies $Y \in A$.
- Remark A is monotonic iff φ_{A} is a positive formula (can be written with only \wedge, \vee, but with no \neg)
- $b \wedge \neg c$ (agent allergic to the smell of coffee): nonmonotonic

Dichotomous preferences for resource allocation

- $\mathcal{X}=\left\{o_{1}, \ldots, o_{m}\right\}$ set of items
- $A \subseteq \mathcal{X}$ set of acceptable bundles
- agent i partitions the set of bundles A into two sets: acceptable and unacceptable bundles
- $b_{J} \vee\left(c_{J} \wedge s_{J}\right)$: Judy is happy with $\{b\},\{c, s\},\{b, s\}$ and $\{b, c, s\}$, and unhappy with $\{c\},\{s\},\{b, s\}$ and \varnothing [mistake]
- each set of acceptable bundles A is representable by a propositional formula φ_{A}
- a set of acceptable bundles A is monotonic if for all $X \subseteq Y, X \in A$ implies $Y \in A$.
- Remark A is monotonic iff φ_{A} is a positive formula (can be written with only \wedge, \vee, but with no \neg)
- $b \wedge \neg c$ (agent allergic to the smell of coffee): nonmonotonic

Fair Division

- Judy wants a beer, or else coffee with sugar: $b_{J} \vee\left(c_{J} \wedge s_{J}\right)$
- Mirek wants a beer: b_{M}
- Torsten wants a beer or a coffee: $b_{T} \vee c_{T}$

An allocation π is envy-free if every agent is at least happy with her share than with any other agent's share

- $\pi_{1}=[b|-| c]$: Mirek is envious of Judy.
- $\pi_{2}=[c s|b|-]$: Torsten is envious of both Judy and Mirek.
- $\pi_{3}=[-|-| c]$: envy-free, but not Pareto-efficient: $[b|-| c]$ does at least as well as π_{3} for all agents and strictly better for one (Judy).

Here: no allocation is both envy-free and Pareto-efficient

Fair Division

Preferences slightly change: Judy does not like beer anymore.

- Judy wants a coffee with sugar: $c_{\jmath} \wedge s_{\jmath}$
- Mirek wants a beer: b_{M}
- Torsten wants a beer or a coffee: $b_{T} \vee c_{T}$
- $[-|b| c]$, and also $[s|b| c]$: envy-free and Pareto-efficient

Fair Division

- Judy wants a coffee with sugar: $c_{J} \wedge s_{J}$
- Mirek wants a beer: b_{M}
- Torsten wants a beer or a coffee: $b_{T} \vee c_{T}$
- $E F$:

$$
\begin{array}{lll}
& \left(c_{J} \wedge s_{J}\right) \vee\left(\neg\left(c_{M} \wedge s_{M}\right) \wedge \neg\left(c_{T} \wedge s_{T}\right)\right) & \text { Judy not envious } \\
\wedge & b_{M} \vee\left(\neg b_{J} \wedge \neg b_{T}\right) & \text { Mirek not envious } \\
\wedge & \left(b_{T} \vee c_{T}\right) \vee\left(\neg\left(b_{J} \vee c_{J}\right) \wedge \neg\left(b_{M} \vee c_{M}\right)\right) & \text { Torsten not envious }
\end{array}
$$

- Γ : an item cannot be given to more than one person

$$
c_{J} \rightarrow\left(\neg c_{M} \wedge \neg c_{T}\right) \wedge \ldots
$$

- Pareto efficiency: satisfy a maximal subset of

$$
\left\{c_{J} \wedge s_{J}, b_{M}, b_{T} \vee c_{T}\right\}
$$

- Finding EF-PE allocations via default logic (Bouveret and L, 08):

$$
\Delta=(\Gamma, D) \text { where } D=\left\{\frac{: c_{J} \wedge s_{J}}{c_{J} \wedge s_{J}}, \frac{: b_{M}}{b_{M}}, \frac{: b_{T} \vee c_{T}}{b_{T} \vee c_{T}}\right\}
$$

- EF-PE allocation \leftrightarrow extension of Δ consistent with $E F$

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Hedonic Games

ADT-LPNMR lunch.

- Participants: Judy, Nick, Mirek, Torsten
- Judy wants to sit at a table of at least three persons.

$$
(J N \wedge J T) \vee(J N \wedge J M) \vee(J T \wedge J M)
$$

- Nick wants to sit at a table of exactly three persons.

$$
(N J \wedge N T \wedge \neg N M) \vee(N J \wedge N M \wedge \neg N T) \vee(N M \wedge N T \wedge \neg N J)
$$

- Torsten wants to have lunch with Judy or Nick, but not with Mirek.

$$
(T J \vee T N) \wedge \neg T M
$$

- Mirek only wants to avoid having lunch with both Judy and Nick.

$$
\neg(M J \wedge M N)
$$

- Constraints: $A B \leftrightarrow B A, A B \wedge B C \rightarrow B C$ etc.
- What will happen?

Hedonic Games

ADT-LPNMR lunch.

- Participants: Judy, Nick, Mirek, Torsten
- Judy wants to sit at a table of at least three persons.

$$
(J N \wedge J T) \vee(J N \wedge J M) \vee(J T \wedge J M)
$$

- Nick wants to sit at a table of exactly three persons.

$$
(N J \wedge N T \wedge \neg N M) \vee(N J \wedge N M \wedge \neg N T) \vee(N M \wedge N T \wedge \neg N J)
$$

- Torsten wants to have lunch with Judy or Nick, but not with Mirek.

$$
(T J \vee T N) \wedge \neg T M
$$

- Mirek only wants to avoid having lunch with both Judy and Nick.

$$
\neg(M J \wedge M N)
$$

- Constraints: $A B \leftrightarrow B A, A B \wedge B C \rightarrow B C$ etc.
- What will happen?

Hedonic Games

Now: dinner.

- Judy wants to sit alone, or else with Nick and Mirek.
- Nick wants to sit at a table of exactly two persons.
- Torsten does not want to have dinner alone.
- Mirek wants to have dinner with Judy.
- It is not possible to satisfy the four of them: no perfect partition

	Judy	Nick	Torsten	Mirek]	\# happy
[Judy Nick Torsten Mirek]	+	-	+	+	3
[Judy Mirek \| Nick Torsten]	-	+	+	+	3
(...)					<3

Hedonic Games

Dinner.

- Judy wants to sit alone, or else with Nick and Mirek.
- Nick wants to sit at a table of exactly two persons.
- Torsten does not want to have dinner alone.
- Mirek wants to have dinner with Judy.
- [Judy Nick Torsten Mirek]:
- a maximal number of players (all except Judy) are happy.
- but not individually rational: Judy prefers to leave her coalition and eat alone.
- same thing for [Judy Mirek | Nick Torsten]
- [Torsten | Nick Mirek Judy]:
- only two players (Judy and Mirek) are happy
- individually rational: noone would be happier leaving their coalition and eat alone.

Hedonic Games

Dinner.

- Judy wants to sit alone, or else with Nick and Mirek.
- Nick wants to sit at a table of exactly two persons.
- Torsten does not wants to have dinner alone.
- Mirek wants to have dinner with Judy.

[Torsten \| [whatever]]	\rightarrow Torsten wants to join any group	
[Judy Torsten \| Nick	Mirek]	\rightarrow Nick wants to join Mirek
[Judy \| Mirek Torsten	Nick]	\rightarrow Nick wants to join Judy
[Judy x \| y z]	\rightarrow Judy leaves and eats alone	
[Nick \| Judy Mirek Torsten]	\rightarrow Judy leaves and eats alone	
[Mirek \| Judy Nick Torsten]	\rightarrow Judy leaves and eats alone	
[Judy \| Nick Torsten	Mirek]	\rightarrow Mirek wants to join Judy
[Judy \| Nick Mirek Torsten]	\rightarrow Mirek leaves and joins Judy	
[Judy Nick Torsten Mirek]	\rightarrow Judy leaves and eats alone	

- no partition is Nash stable: in every partition someone prefers to leave the coalition he belongs to and join another existing coalition

Hedonic Games

Dinner.

- Judy wants to sit alone, or else with Nick and Mirek.
- Nick wants to sit at a table of exactly two persons.
- Torsten does not wants to have dinner alone.
- Mirek wants to have dinner with Judy.
[Torsten | Judy Mirek | Nick] \rightarrow Torsten wants to join Nick; Nick: yes!
[Judy Torsten | Nick | Mirek] \rightarrow Nick wants to join Mirek; Mirek: yes!
[Judy | Mirek Torsten | Nick] \rightarrow Nick wants to join Judy; Judy: sorry, no
\rightarrow Mirek wants to join Judy; Judy: sorry, no
\rightarrow noone else wants to deviate.
- [Judy | Mirek Torsten | Nick] is individually stable: noone prefers joining another coalition without making a member of this coalition less happy.
- Logical characterization of solution concepts in dichotomous hedonic games in (Aziz, Harrenstein, L and Wooldridge, 14)
- Related: group activity selection, cf. talk by Andreas Darmann on Monday

Preference structures

In the latter two examples, preferences are dichotomous. More generally:

Ordinal preferences

Preference relation on \mathcal{X} : reflexive and transitive relation \succeq

$$
\begin{array}{ll}
x \succeq y & \\
x \succ y \quad \Leftrightarrow \quad & x \succeq y \text { is at least as good as } y \\
& \\
x \text { is preferred to } y \succeq x \\
x \sim y \quad \Leftrightarrow \quad & x \succeq y \text { and } y \succeq x \\
& x \text { and } y \text { are equally preferencere) } \\
& \\
& x \text { (indifference) }
\end{array}
$$

\succeq is often assumed to be complete (no incomparabilities)

Cardinal preferences

- Utility function $u: \mathcal{X} \rightarrow \mathbb{R}$
- More generally $u: \mathcal{X} \rightarrow V$ ordered scale; example: $V=\{$ unacceptable, bad, medium, good, excellent $\}$

Preference structures

From cardinal preferences to ordinal preferences:

$$
x \succeq_{u} y \Leftrightarrow u(x) \geq u(y)
$$

Dichotomous preferences are back

- $A \subseteq \mathcal{X}$ set of acceptable bundles
- dichotomous preferences are cardinal preferences:

$$
V=\{0,1\} ; u(S)=1 \Leftrightarrow S \in A .
$$

- dichotomous preferences are also ordinal preferences:

$$
S \succeq S^{\prime} \Leftrightarrow(S \in A) \text { or }\left(S^{\prime} \notin A\right)
$$

One talk, two plans

- Common appetizer

ADT plan

- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- MAXSAT
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Weighted Goals

- $L_{P S}$ propositional language built up from usual connectives and set of propositional symbols $P S$.
- $G=$ a set of pairs $\left\langle\varphi_{i}, w_{i}\right\rangle$ where
- φ_{i} is a propositional formula;
- w_{i} is a real number
- for every truth assignment (interpretation) $x \in 2^{P S}$,

$$
u_{G}(x)=\sum\left\{w_{i} \mid\left\langle\varphi_{i}, w_{i}\right\rangle \in G \text { and } x \vDash \varphi_{i}\right\}
$$

Combinatorial Auctions

- $\mathcal{O}=\left\{o_{1}, \ldots, o_{m}\right\}$ set of objects
- for each agent $i, V_{i}: 2^{\mathcal{O}} \rightarrow \mathbb{N}$ where $V_{i}(X)$ is the maximum price that i is ready to pay for the set of objects X.
- V_{i} is additive if $V_{i}(X)=\sum_{o \in X} V_{i}(o)$ for all X.
- if V_{i} additive for all i : then sell each object to its highest bidder
- but V_{i} is generally non-additive :
- \{left shoe $\}: 10 € ;\{r i g h t ~ s h o e\}: 10 € ;\{$ left shoe, right shoe $\}: 50 €$
- \{lemonade\}: 2 €; \{beer\}: 3 €; \{lemonade, beer\}: $4 €$
- optimal allocation π^{*} : maximizes the seller's revenue

$$
\sum_{i=1}^{n} V_{i}(\pi(i))
$$

where $\pi(i)$ is the set of objects allocated to agent i

- How can bidders express their functions V_{i} ?
- How can the seller determine π^{*} ?

Combinatorial Auctions through Weighted Goals

- adapted from (Boutilier and Hoos, 2001)
- items: 3 chopsticks c_{1}, c_{2}, c_{3}; one fork f, one knife k
- 2chopsticks $=\left(c_{1} \wedge c_{2}\right) \vee\left(c_{1} \wedge c_{3}\right) \vee\left(c_{2} \wedge c_{3}\right)$
- Judy:
$\{(2$ chopsticks \vee fork, 5), (fork \wedge knife, 1$),(2$ chopsticks, 3$)\}$
- Mirek:

$$
\{(2 \text { chopsticks, } 2),(\text { fork, } 4),(\text { fork } \wedge \text { knife }, 4), 1)\}
$$

- Torsten:

$$
\left\{(2 \text { chopsticks } \vee \text { fork, } 6),\left(\text { fork } \wedge\left(c_{1} \vee c_{2} \vee c_{3}\right), 1\right)\right\}
$$

- Who gets what?

	$2 c$	f	$f+k$	$f+c$
Judy	8	5	6	5
Mirek	2	4	8	4
Torsten	6	6	6	7

Combinatorial Auctions through Weighted Goals

- adapted from (Boutilier and Hoos, 2001)
- items: 3 chopsticks c_{1}, c_{2}, c_{3}; one fork f, one knife k
- 2chopsticks $=\left(c_{1} \wedge c_{2}\right) \vee\left(c_{1} \wedge c_{3}\right) \vee\left(c_{2} \wedge c_{3}\right)$
- Judy:

$$
\{(2 \text { chopsticks } \vee \text { fork, 5) },(\text { fork } \wedge \text { knife, } 1),(2 \text { chopsticks, } 3)\}
$$

- Mirek:

$$
\{(2 \text { chopsticks, } 2),(\text { fork, } 4),(\text { fork } \wedge \text { knife }, 4), 1)\}
$$

- Torsten:

$$
\left\{(2 \text { chopsticks } \vee \text { fork, } 6),\left(\text { fork } \wedge\left(c_{1} \vee c_{2} \vee c_{3}\right), 1\right)\right\}
$$

	$2 c$	f	$f+k$	$f+c$
Judy	8	5	6	5
Mirek	2	4	8	4
Torsten	6	6	6	7

Combinatorial Auctions through Weighted Goals

- adapted from (Boutilier and Hoos, 2001)
- items: 3 chopsticks c_{1}, c_{2}, c_{3}; one fork f, one knife k
- 2chopsticks $=\left(c_{1} \wedge c_{2}\right) \vee\left(c_{1} \wedge c_{3}\right) \vee\left(c_{2} \wedge c_{3}\right)$
- Judy:
$\{(2$ chopsticks \vee fork, 5), (fork \wedge knife, 1$),(2$ chopsticks, 3$)\}$
- Mirek:

$$
\{(2 \text { chopsticks, } 2),(\text { fork, } 4),(\text { fork } \wedge \text { knife }, 4), 1)\}
$$

- Torsten:

$$
\left\{(2 \text { chopsticks } \vee \text { fork, } 6),\left(\text { fork } \wedge\left(c_{1} \vee c_{2} \vee c_{3}\right), 1\right)\right\}
$$

- Who gets what in the optimal allocation?

	$2 c$	f	$f+k$	$f+c$
Judy	8	5	6	5
Mirek	2	4	8	4
Torsten	6	6	6	7

Combinatorial Auctions through Weighted Goals

- adapted from (Boutilier and Hoos, 2001)
- items: 3 chopsticks c_{1}, c_{2}, c_{3}; one fork f, one knife k
- 2chopsticks $=\left(c_{1} \wedge c_{2}\right) \vee\left(c_{1} \wedge c_{3}\right) \vee\left(c_{2} \wedge c_{3}\right)$
- Judy:
$\{(2$ chopsticks \vee fork, 5), (fork \wedge knife, 1$),(2$ chopsticks, 3$)\}$
- Mirek:

$$
\{(2 \text { chopsticks, } 2),(\text { fork, } 4),(\text { fork } \wedge \text { knife }, 4), 1)\}
$$

- Torsten:

$$
\left\{(2 \text { chopsticks } \vee \text { fork, } 6),\left(\text { fork } \wedge\left(c_{1} \vee c_{2} \vee c_{3}\right), 1\right)\right\}
$$

- Who gets what in the optimal allocation?

	$2 c$	f	$f+k$	$f+c$
Judy	8	5	6	5
Mirek	2	4	8	4
Torsten	6	6	6	7

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Prioritized goals

- starts with (Brewka, 89)
- $G=\left\langle G_{1}, \ldots, G_{q}\right\rangle$
- G_{i} set of goals φ_{i}^{j} of priority i - each being a propositional formula
- $G_{1}=$ set of highest priority goals, then G_{2} etc.
- maximize the number (or the set) of goals satisfied, starting from the most important priority levels
- particular case: conditionally lexicographic preferences (cf. talk by Xudong Liu on Monday)
- two semantics (coinciding if each G_{i} is a singleton):
- leximin $x \succ y$ if there is a $k \leq q$ such that
- $\left|\left\{\varphi \in G_{i}, x \vDash \varphi\right\}\right|=\left|\left\{\varphi \in G_{i}, y \vDash \varphi\right\}\right| ;$
- for each $i<k:\left|\left\{\varphi \in G_{i}, x \vDash \varphi\right\}\right|=\left|\left\{\varphi \in G_{i}, y \vDash \varphi\right\}\right|$.
- discrimin $x \succ y$ if there is a $k \leq q$ such that
- $\left\{\varphi \in G_{i}, x \vDash \varphi\right\} \supset\left\{\varphi \in G_{i}, y \vDash \varphi\right\}$;
- for each $i<k$: $\left\{\varphi \in G_{i}, x \vDash \varphi\right\}=\{\varphi \in \varphi, y \vDash \varphi\}$.

Multiple Referenda

Lexingtonians called to urns:

- should we build a new university campus or not? (c or $\neg c$)
- should we build a tram or not? (t or $\neg t$)
- should we build a new horse race field or not? (h or $\neg h$)
- Judy's prioritized goals: $G_{1}=\{\neg(c \wedge t \wedge h)\}, G_{2}=\{c\}, G_{3}=\{t\}$
- Judy's induced preference relation:

Multiple Referenda

- Judy: $G_{1}=\{\neg(c \wedge t \wedge h)\}, G_{2}=\{c\}, G_{3}=\{t\}$

$$
c t \bar{h} \succ \ldots
$$

- Mirek: $G_{1}=\{\neg(c \wedge t \wedge h)\}, G_{2}=\{t\}, G_{3}=\{h\}$

$$
\bar{c} t h \succ \ldots
$$

- Nick: $G_{1}=\{\neg(c \wedge t \wedge h)\}, G_{2}=\{h\}, G_{3}=\{c\}$

$$
c \bar{t} h \succ \ldots
$$

If we vote separately on each issue, the following outcome may occur:

- Judy and Nick vote for c, Mirek against;
- Judy and Mirek vote for t, Nick against;
- Mirek and Nick vote for h, Judy against
- Outcome: cth - is it good?

Multiple Referenda

- Judy: $G_{1}=\{\neg(c \wedge t \wedge h)\}, G_{2}=\{c\}, G_{3}=\{t\}$

$$
c t \bar{h} \succ \ldots
$$

- Mirek: $G_{1}=\{\neg(c \wedge t \wedge h)\}, G_{2}=\{t\}, G_{3}=\{h\}$

$$
\bar{c} t h \succ \ldots
$$

- Nick: $G_{1}=\{\neg(c \wedge t \wedge h)\}, G_{2}=\{h\}, G_{3}=\{c\}$

$$
c \bar{t} h \succ \ldots
$$

If we vote separately on each issue, the following outcome may occur:

- Judy and Nick vote for c, Mirek against;
- Judy and Mirek vote for t, Nick against;
- Mirek and Nick vote for h, Judy against
- Outcome: cth - is it good?

Need for more sophisticated methods!

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Enes Preference logics

A I prefer to go to Chicago tomorrow by bus than by plane

Preference logics

A I prefer to go to Chicago tomorrow by bus than by plane
Can we infer from A the following?
B I prefer to go to Chicago tomorrow by bus and have a beer tonight than by plane and have a beer tonight.

Preference logics

A I prefer to go to Chicago tomorrow by bus than by plane
Can we infer from A the following?
B I prefer to go to Chicago tomorrow by bus and have a beer tonight than by plane and have a beer tonight.

C I prefer to go to Chicago tomorrow by bus with a strong toothache than by plane after seeing a good dentist.

Preference logics

A I prefer to go to Chicago tomorrow by bus than by plane
Can we infer from A the following?
B I prefer to go to Chicago tomorrow by bus and have a beer tonight than by plane and have a beer tonight.

C I prefer to go to Chicago tomorrow by bus with a strong toothache than by plane after seeing a good dentist.

D I prefer to go to Chicago tomorrow by bus (7 hours) with a strong toothache than by plane with a strong toothache.

Preference logics

Classic preference logic (von Wright, 1963)

- formulas built up from preference statements $\alpha \triangleright \beta$
- $\alpha \wedge \neg \beta$-worlds preferred to $\beta \wedge \neg \alpha$-worlds, ceteris paribus
- here ceteris paribus means that all variables not appearing in α or β must be interpreted identically
- bus \triangleright plane:
- implies (bus, beer, \neg toothache) \succ (plane, beer, \neg toothache)
- (bus, beer, toothache) and (plane, beer, \neg toothache) incomparable
- (bus, beer, toothache) and (bus, \neg beer, \neg toothache) incomparable
- toothache \wedge plane \triangleright toothache \wedge bus [shorthand toothache : plane \triangleright bus]
- (bus, beer, \neg toothache) \succ (plane, beer, \neg toothache $)$
- (bus, beer, toothache) and (plane, beer, \neg toothache) still incomparable
- (bus, beer, toothache) and (bus, \neg beer, \neg toothache) still incomparable

Preference logics

- Modern preference logics: Hansson (2001), van Benthem, Roy and Girard. (2009), Bienvenu, L and Wilson (2010), etc.
- PL formulas are Boolean combinations of preference statements of the form

$$
\alpha \triangleright \beta \| F
$$

α, β propositional formulas, F a set of propositional formulas

- α preferred to β when F is held constant; other formulas can vary
- formally: \succ satisfies $(\alpha \triangleright \beta \| F)$ if $\omega \succ \omega^{\prime}$ holds for all ω, ω^{\prime} such that
- $\omega \vDash \alpha$
- $\omega^{\prime} \vDash \beta$
- forall $\varphi \in F: \omega \vDash \varphi$ if and only if $\omega^{\prime} \vDash \varphi$.
- \neg toothache \triangleright toothache || \varnothing :
- (bus, \neg beer,\neg toothache $) \succ$ (plane, beer, toothache $)$
- beer $\triangleright \neg$ beer $|\mid\{$ bus, plane, toothache $\}$ shorthand: beer $\triangleright \neg$ beer $\| C P$, where $C P=$ ceteris paribus

Preference logics

Many existing formalisms can be seen as fragments of PL:

- von Wright's preference logic
- conditional preference (CP) networks (Boutilier et al., 2003)
- extensions of CP-nets (TCP-nets, etc.)
- conditional importance networks (Bouveret, Endriss and L, 2009)
- prioritized goal bases (Brewka, 89)

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Multiattribute decision making

Toby travels (except when he cannot). He is considering buying

- an outgoing flight (o),
- a return flight (r),
- a hotel night (h),
- a book (b).

His preferences:

- better both tickets than none, and better none than just one; preferences about tickets override everything else

$$
(o \wedge r) \triangleright(\neg 0 \wedge \neg r) \triangleright(o \leftrightarrow \neg r) \| \varnothing
$$

- he wants a hotel night if and only if he buys a return flight ticket

$$
\begin{gathered}
o \wedge r: h \triangleright \neg h \|\{o \leftrightarrow r\} \\
\neg(o \wedge r): \neg h \triangleright h \|\{o \leftrightarrow r\}
\end{gathered}
$$

- he wants to buy the book, ceteris paribus

$$
b \triangleright \neg b \|\{o, r, h\}
$$

Multiattribute decision making

- $(o \wedge r) \triangleright(\neg o \wedge \neg r) \triangleright(o \leftrightarrow \neg r) \| \varnothing$
- or $\times \times \succ \overline{\text { or }} \times \times$
- $\overline{o r} \times \times \succ o \bar{r} \times \times$
- $\overline{o r} \times \times \succ \bar{o} r \times \times$
- $o \wedge r: h \triangleright \neg h \|\{o \leftrightarrow r\}$
- orh $\times \succ$ or $\bar{h} \times$
- $\neg(o \wedge r): \neg h \triangleright h \|\{o \leftrightarrow r\}$
- $\bar{o} r \bar{h} \times \succ \bar{o} r h \times$
- $\bar{o} r \bar{h} \times \succ o \bar{r} h \times$
- $o \bar{r} \bar{h} \times \succ$ or $h \times$
- $\bar{\gamma} \bar{h} \bar{x} \times \bar{o} r h \times$
- $b \triangleright \neg b \|\{o, r, h\}$
- orhb \succ orh \bar{b}
- or $\bar{h} b \succ$ or $\overline{h b}$ etc.

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Committee Elections

- two seats to fill for the department managing committee
- candidates: A, B, C, D, E

	woman	man
group 1	A, E	B
group 2	C	D

- preferences of voter 1 :
- $1 \mathrm{M}+1 \mathrm{~W} \triangleright 2 \mathrm{M} \sim 2 \mathrm{~W} \| \varnothing$ where: $1 \mathrm{M}+1 \mathrm{~W}=(A \wedge B \wedge \neg C \wedge \neg D \wedge \neg E) \vee(E \wedge B \wedge \neg A \wedge \neg C \wedge \neg D) \vee(\ldots)$ gender equilibrium more important than everything else
- 1G1+1G2 $\triangleright 2 \mathrm{G} 2 \triangleright 2 \mathrm{G} 1|\mid\{1 \mathrm{M} 1 \mathrm{~W}, 2 \mathrm{M}, 2 \mathrm{~W}\}$ group equilibrium most important thing after gender equilibrium
- $A \triangleright B \triangleright C \triangleright D \triangleright E \|\{1 \mathrm{M} 1 \mathrm{~W}, 2 \mathrm{M}, 2 \mathrm{~W}, 1 \mathrm{G} 1+1 \mathrm{G} 2,2 \mathrm{G} 1,2 \mathrm{G} 2\}$ (ceteris paribus)

Committee Elections

	woman	man
group 1	A, E	B
group 2	C	D

- $1 \mathrm{M}+1 \mathrm{~W} \triangleright 2 \mathrm{M} \sim 2 \mathrm{~W} \| \varnothing$
- 1G1+1G2 $\triangleright 2 \mathrm{G} 2 \triangleright 2 \mathrm{G} 1 \|\{1 \mathrm{M} 1 \mathrm{~W}, 2 \mathrm{M}, 2 \mathrm{~W}\}$
- $A \triangleright B \triangleright C \triangleright D \triangleright E \|\{1 \mathrm{M} 1 \mathrm{~W}, 2 \mathrm{M}, 2 \mathrm{~W}, 1 \mathrm{G} 1+1 \mathrm{G} 2,2 \mathrm{G} 1,2 \mathrm{G} 2\}$

Induced preference relation for voter 1:

Voter 1's preferred committee is $A D$ or $B C$ - we don't have enough information to know which one.

Committee Elections

- Voter 1's preferred committee: $A D$ or $B C$
- Voter 2's preferred committee: $A E$ or $B E$
- Voter 3's preferred committee: $B D$

Standard rule for multiwinner approval voting (also called 'minisum'):

- each voter votes for her preferred committee
- the (here: two) candidates that appear most often on the votes are elected
- tie-breaking priority $=$ age: $D>E>A>B>C$

	$1: A D$	$1: B C$
$2: A E$	$12021 \mapsto B D$	$03111 \mapsto B D$
$2: B E$	$21021 \mapsto A D$	$12111 \mapsto B D$

- D is a necessary winner
- A and B (and of course D) are possible winners

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Nonmonotonic Preferences

Should we have a department meeting on Monday?

- yes, I prefer to have the department meeting this Monday
- if there's a train strike, l'd prefer to cancel the department meeting
- if Barack Obama intends to visit the department on Monday, then yes, I'd prefer to have the meeting in any case (even if there is a strike)
\diamond normal situation: no strike, no Obama
\diamond exceptional situation: strike, no Obama
\diamond even more exceptional situation: Obama

Nonmonotonic Preferences

preference order		normality order
$m \bar{s} O$	most preferred	
\downarrow		
$m s o$		$\times \overline{s O}$
\downarrow		normal
$m \overline{s O}$		
\downarrow		$\times s \bar{O}$
exceptional		
$\bar{m} \times \times$		
\downarrow		
$m s \bar{O}$	least preferred	

Nonmonotonic Preferences

preference order
normality order

$\overline{m s o}, \overline{m s o}, \overline{m s} \bar{o}, \overline{m s o}$
\downarrow
$m s \bar{o}$
least preferred
$\varphi: m \succ_{P} \neg m$ if typical $\varphi \wedge m$-worlds preferred to typical $\varphi \wedge \neg m$-worlds

$$
\begin{array}{cc}
\text { most normal } m \text {-world } & m \overline{s o} \\
\text { most normal } \neg m \text {-world } & \frac{\downarrow P}{m s o}
\end{array}
$$

Nonmonotonic Preferences

preference order
normality order

$\overline{m s o}, \overline{m s o}, \overline{m s} \bar{o}, \overline{m s o}$
most preferred
$m \bar{s} o \quad m o s t$ preferred
mso
$m \overline{s o}$
\downarrow
\downarrow
$m s \bar{o}$
least preferred
$\varphi: m \succ_{P} \neg m$ if typical $\varphi \wedge m$-worlds preferred to typical $\varphi \wedge \neg m$-worlds most normal $s \wedge m$-world

$$
\begin{aligned}
& m s \bar{o} \\
& \uparrow_{P} \quad s: \neg m \succ_{P} m
\end{aligned}
$$

$$
\text { most normal } s \wedge \neg m \text {-world } \bar{m} s \bar{o}
$$

Nonmonotonic Preferences

preference order
normality order

$\overline{m s o}, \overline{m s o}, \overline{m s} \bar{o}, \overline{m s o}$
\downarrow
$m s \bar{o}$

```
most preferred
m\overline{s}o most preferred
mso
m\overline{SO}
    \downarrow
```


Nonmonotonic Preferences

Another example:

- I don't want to have the meeting on Monday
- but if we do have it on Monday, then I want to have my lecture on Monday afternoon.
(cf. contrary-to-duties obligations in deontic logics)

Nonmonotonic Preferences

Yet another example: Lexingtonian are called to urns again

- should we build a new university campus? u or \bar{u}
- should we build a tram? t or \bar{t}
- should we build a new horse race field? h or \bar{h}

Judy's preferences:

- $u \succ \bar{u}$
- $t \succ \bar{t}$
- $h \succ \bar{h}$
- but $u \wedge t: \bar{h} \succ h$
- Judy believes that $u \wedge t$ is very unlikely.
- Therefore she intends to vote for yes for u, for t and for h
- But now, the Lexington Post publishes a poll: it's likely that u an t will get a slight majority of yes!
- Judy now votes yes for u, yes for t and no for h

Defeasible Beliefs vs. Defeasible Prefer-

- W set of worlds
- \succeq_{N} normality ordering (complete weak order on W)
- \succeq_{P} : preference ordering (complete weak order on W)
normality $\quad N(\beta \mid \alpha)$: if α then normally, β
- $N(\beta \mid \alpha)$ is satisfied if the most normal α-worlds satisfy β
- formally: if $\operatorname{Max}\left(\succeq_{N}, \operatorname{Mod}(\alpha)\right) \subseteq \operatorname{Mod}(\beta)$
preference things are less obvious, for two reasons:
(1) there is no standard way of lifting preferences from worlds to sets of worlds.
(2) in the presence of uncertainty or normality, preferences can hardly be interpreted from \succeq_{P} alone (\succeq_{N} counts!).

2enicia Defeasible Beliefs vs. Defeasible Prefer-

Step 1: lifting preferences from worlds to sets of worlds

- \succeq_{P} complete weak orders on W
- we want to lift \succeq_{P} from W to 2^{W}
- W_{1}, W_{2} nonempty sets of worlds
- $W_{1} \gg W_{2}$ if ...
strong lifting every world in W_{1} is preferred to every world in W_{2}. optimistic lifting the 'best' (most preferred) worlds in W_{1} are preferred to the best worlds in W_{2}.
pessimistic lifting the worst worlds in W_{1} are preferred to the worst worlds in W_{2}.
ceteris paribus lifting the worlds in W_{1} are preferred to the worlds in W_{2}, ceteris paribus

```
(etc.)
```


2minca Defeasible Beliefs vs. Defeasible Prefer-

ences

Step 2: interpreting preference in the presence of normality

- When an agent states a preference for φ he not only expresses preferences between worlds but also to implicit uncertainty/normality.
- At least two meaningful definitions:

Boutilier, 94 among the most normal α-worlds, the β-worlds are preferred to the $\neg \beta$-worlds
L , van der Torre and Weydert, 03 the most normal $\alpha \wedge \beta$-worlds are preferred to the most normal $\alpha \wedge \neg \beta$-worlds

Nonmonotonic Doodle

- str: train strike; sc: seminar cancelled; h: hurricane
- $N(s c \mid h)$: normally, seminar cancelled when hurricane.
- train strikes and hurricanes known the day before
- seminar cancellations known two days before, except when hurricane

	Monday	Tuesday	Wednesday
Judy	Y str: N	N sc: Y	N
Mirek	Y	N sc: $\mathrm{Y} ; \mathrm{h}: \mathrm{N}$	Y
Nick	N	Y	Y
Toby	Y	Y	Y
Torsten	Y		
str: N	$\mathrm{Y}: \mathrm{N}$	N	
best date	$?$	$?$	$?$

Other

Because of lack of time I did not talk about

- Description logics for multi-attribute decision making (cf. talk by Erman Acar on Monday)
- Judgment aggregation (cf. talk by Ann-Kathrin Selker this morning)
- Boolean games
- (and yet other things)

One talk, two plans

- Common appetizer
ADT plan
- Fair division
- Coalition structure formation
- Combinatorial auctions
- Multiple referenda
- Committee elections
- Multiattribute decision making
- Voting under uncertainty

LPNMR plan

- Propositional Logic
- maxsat
- Default Logic
- Weighted Goals
- Prioritized Goals
- Preference Logics
- Nonmonotonic Preferences
- Common dessert: ASP and ADT, a love match

Logic programming for ADT

The ADT family

planning multiple referenda cooperative games hedonic games resource allocation committee elections multiattribute decision making noncooperative games (...)

- need a modular, compact and declarative representation of the problem
- high complexity (often above NP)

The ASP family

AnsProlog ASPeRIX ASSAT Clasp clingo Cmodels coala DLV DLV-Complex GnT gringo iclingo libdlvhexbase6-dev lparse $\mathrm{NoMoRe}++$ Platypus Pbmodels Potassco relsat runlim Smodels Smodels-cc Sup-lp (...)

- declarative problem representation
- generic resolution tool for hard combinatorial problems
- built-in preference handling - e.g., Asprin

ASP for ADT

[Warning: plagiarizing]

problem
ADT
modelling $\downarrow \mathrm{KR}$
'logic object' SAT/LP/... solver \longrightarrow model(s) \leftarrow solving \rightarrow

Logic programming for ADT

Generic use of LPNMR for ADT: topic of three talks at ADT-LPNMR 15

- Andreas Pfandler, Democratix, A Declarative Approach to Winner Determination, on Tuesday
- Torsten Schaub, Implementing Preferences with asprin, on Tuesday
- myself, Algorithmic Decision Theory Meets Logic, right now (warning: this is an auto-referential talk)

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence
- Choquet integral via Non-Monotonic Reasoning in Distributed Heterogeneous Environments

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence
- Choquet integral via Non-Monotonic Reasoning in Distributed Heterogeneous Environments
- ADT LPNMR OWA MOPIC ROS OOASP

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence
- Choquet integral via Non-Monotonic Reasoning in Distributed Heterogeneous Environments
- ADT LPNMR OWA MOPIC ROS OOASP
- Interactive debugging of decision makers in ASP

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence
- Choquet integral via Non-Monotonic Reasoning in Distributed Heterogeneous Environments
- ADT LPNMR OWA MOPIC ROS OOASP
- Interactive debugging of decision makers in ASP
- NoMoRe Manipulation, Lobbying and Bribery in Potsdam

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence
- Choquet integral via Non-Monotonic Reasoning in Distributed Heterogeneous Environments
- ADT LPNMR OWA MOPIC ROS OOASP
- Interactive debugging of decision makers in ASP
- NoMoRe Manipulation, Lobbying and Bribery in Potsdam
- generalized ASP for the Group Activity Selection Problem: GASP-GASP

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence
- Choquet integral via Non-Monotonic Reasoning in Distributed Heterogeneous Environments
- ADT LPNMR OWA MOPIC ROS OOASP
- Interactive debugging of decision makers in ASP
- NoMoRe Manipulation, Lobbying and Bribery in Potsdam
- generalized ASP for the Group Activity Selection Problem: GASP-GASP
- how to read

Complexity of Bayesian Sequential Manipulation and Control in OWA-Based Extensions of Uniform Weighted Incomplete Resource Allocation: Approximation and Super-strong Equilibria

Science-fiction: ADT-LPNMR 2017

Program:

- Winner Determination and Manipulation in Minimax Committee Elections via Infinitary Equilibrium Logic and Strong Equivalence
- Choquet integral via Non-Monotonic Reasoning in Distributed Heterogeneous Environments
- ADT LPNMR OWA MOPIC ROS OOASP
- Interactive debugging of decision makers in ASP
- NoMoRe Manipulation, Lobbying and Bribery in Potsdam
- generalized ASP for the Group Activity Selection Problem: GASP-GASP
- how to read

Complexity of Bayesian Sequential Manipulation and Control in OWA-Based Extensions of Uniform Weighted Incomplete Resource Allocation: Approximation and Super-strong Equilibria
with asprin

