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ABSTRACT

We propose a graph cut based method to segment regions in

abdominal magnetic resonance (MR) images affected with

Crohn’s disease (CD). Intensity, texture, curvature and con-

text information are used with random forest (RF) classifiers

to calculate probability maps for graph cut segmentation.

The RF classifiers also provide semantic information used

to design a novel smoothness cost. Experimental results on

26 real patient data shows our method accurately segments

the diseased areas. Inclusion of semantic information signifi-

cantly improves segmentation accuracy and its importance is

reflected in quantitative measures and visual results.

Index Terms— Crohn Disease, graph cut, semantic infor-

mation, Random forests, context, MRI.

1. INTRODUCTION

Crohn’s disease (CD) is an autoimmune disease that can

affect any part of the gastrointestinal tract and leads to ab-

dominal pain, weight loss, diarrhea and vomiting. Current

diagnosis involves colonoscopy which is interventional and

painful. This has motivated efforts to explore computational

approaches for detecting and quantifying extent of CD [1, 2]

in magnetic resonance imaging (MRI) data. Building on our

work in [3], we propose a graph cut based segmentation ap-

proach that uses learned semantic information (from Random

forest (RF) classifiers) to automatically segment CD regions

in abdominal MRI.

Semantic segmentation assigns each image pixel to a ob-

ject class and has invoked interest in the medical imaging

community because of its suitability in detecting diseased

anatomical structures [4, 5]. Automatic voxel-wise labeling

of medical images is a major challenge because of the similar

intensity of different organs, varying resolutions and com-

plex anatomy. Therefore machine learning approaches have

gained significance in such problems. Iglesias et al. [4] use

active learning to choose samples that improve the classifier’s

accuracy and segment upto 9 anatomical structures from hu-

man computed tomography (CT) scans. Montillo et al. [5]

use decision forests for semantic segmentation of multiple

organs from CT images. A machine learning approach for

detecting colorectal cancer is taken in [6].

In this paper we propose to segment CD affected tissues

using graph cuts and RF classifiers. RF classifiers use image

features to calculate likelihood of each voxel being diseased,

normal or background tissue. They also provide semantic in-

formation for designing a novel smoothness cost. This paper

makes the following contributions: 1) in addition to the low

level features described in [3], we propose a novel context

feature; 2) novel smoothness measures (based on semantic in-

formation derived from RF classifiers) are used in a Markov

random field (MRF) cost function which is then optimized us-

ing graph cuts. We describe our method in Section 2, present

results in Section 3 and conclude with Section 4.

2. METHODS

Our method consists of identifying a smaller volume of inter-

est (VOI) from the original test volume, generating probabil-

ity maps for each voxel within the VOI and segmenting the

diseased tissues.

2.1. Identifying a volume of interest

First we identify those volume slices that contain part of the

bowel using a learned RF classifier. In the ‘bowel’ slices

small image patches are again classified for the presence of

bowel tissues, using a second RF classifier. In [3] we showed

the importance of higher order statistics of image features in

discriminating between tissues of different classes. We use

the same principle in identifying a VOI. Each volume slice

is divided into non-overlapping 30 × 30 image patches. For

each patch we calculate the mean, variance, skewness and

kurtosis of intensity, texture and curvature values. Texture

maps are obtained using oriented Gabor filters at angles of
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(a) (b) (c) (d)

Fig. 1. Localized ROIS and sample locations for context in-

formation. (a)-(c) show three slices with localized ROIs in

red and manual annotations in green; (d) sample locations for

deriving context information.

{0◦, 45◦, 90◦, 135◦} and scale of 1 and 0.5. The feature vec-

tors of each patch is concatenated into one big signature vec-

tor for the whole image, which is classified as either ‘bowel’

or ‘non-bowel’ slice.

For a ‘bowel’ slice each 30 × 30 patch is again classified

as ‘bowel’ or ‘non-bowel’ patch indicating the presence or ab-

sence of bowel tissues. A collection of these patches makes

up the region of interest (ROI) in a slice, and a collection of

ROIs over adjacent slices makes up the VOI. For training on

‘bowel’ slices we make use of the slices which have annota-

tions, while ‘non-bowel’ slices are visually identified. Sim-

ilarly, bowel and non-bowel patches can be identified from

the annotations. This preprocessing step is essential to reduce

the computation time. Figures 1 (a)-(c) show three consecu-

tive slices from a patient in which the ROI is shown in red,

and the manually annotated diseased regions shown in green.

This indicates that the VOI localizes the desired region with a

good degree of accuracy.

2.2. Probability maps using RF classifiers

A probabilistic classifier like RF [7] is used to obtain class

probability values for each voxel in the VOI. RFs are being

increasingly used in medical applications [8, 9] because of

their ability to handle large datasets, multi-class classification

and interpret learned knowledge. In this section we describe

different image features and our approach to extract semantic

information from the learned RF classifier.

Image Features: For every voxel features are extracted

over a 30×30 neighborhood. The mean and variance of inten-

sity, texture and 3D mean-curvature values are used. Texture

maps are obtained using oriented Gaussian filters at angles

of {0◦, 45◦, 90◦, 135◦} and two scales (1, 0.5). These set of

values give a 20 dimensional feature vector - 2 each from in-

tensity and curvature, and 2 each from the 8 texture maps (2
scales and 4 orientations).

Relative Context: Since the relative arrangement of or-

gans is constant (except for missing organs) one organ can

provide contextual information about many others through

relative distance and orientation. Thus context is particularly

(a) (b) (c) (d)

Fig. 2. Probability maps for ROI voxels. (a) Cropped show-

ing ROI (red) and diseased annotations (green). Probability

maps for (b) background; (c) normal; and (d) diseased (with

colormap).

important for medical images and has been used for medical

image segmentation [10, 11, 12]. Referring to Figs. 1 (a)-(c)

we observe that apart from the bowel other organs like the

liver are also visible. Similarly in other slices, kidneys, spine

and spleen are also present to provide context information.

We aim to exploit this relationship for higher segmentation

accuracy.

Since contextual information depends on relative orienta-

tion and distance we sample regions at fixed positions from

a pixel. Figure 1 (d) shows an illustration of the sampling

scheme where the circle center is the pixel in question and

the sampled points are identified by a red ‘X’. At each point

corresponding to a ‘X’ we extract a 3× 3× 3 region and cal-

culate the mean intensity, texture and curvature values. The

texture values were derived from the texture maps obtained at

90◦ orientation and scale 1. The ‘X’s are located at distances

of 3, 8, 15, 22 pixels from the center, and the angle between

consecutive rays is 45◦. The values from the 32 regions are

concatenated into a 96 dimensional feature vector. The final

feature vector has 116 values.

Equal number of samples from all classes in the training

images are used to train a RF classifier. The trained classi-

fier outputs probability maps for every voxel within the VOI

of the test image. Each voxel has 3 values corresponding to

the respective probabilities of belonging to 3 classes, namely,

diseased, normal and background. Figure 2 (a) shows the

cropped ROI corresponding to the image in Fig. 1 (b). Fig-

ures 2 (b)-(d) show the probability maps, respectively, for

background, normal bowel and diseased bowel. The diseased

area in Fig 2 (a) shows a corresponding high probability value

in Fig 2 (d).

2.3. Graph Cut Segmentation

The segmentation is obtained by optimizing a second order

MRF energy function which is written as

E(L) =
∑
s∈P

D(Ls) + λ
∑
s∈P

∑
t∈Ns

V (Ls, Lt), (1)

where P denotes the set of pixels; Ls is the label of pixel s
and Ns is the neighborhood of s. The cost function is opti-
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mized using graph cuts [13]. λ is a weight that determines the

relative contribution of penalty cost (D) and smoothness cost

(V ). D(Ls) is given by

D(Ls) = − log (Pr(Ls) + ε) , (2)

where Pr is the likelihood (or probabilities) previously ob-

tained using RF classifiers and ε = 0.00001 is a very small

value to ensure that the cost is a real number.

2.3.1. Semantic Information for Smoothness Cost

V ensures a spatially smooth solution by penalizing disconti-

nuities. We formulate the smoothness cost by using semantic

information from the trained RF classifier. The RF classi-

fier returns a measure of the importance of each dimension

in the feature vector to the classification task. Inspite of the

multiple dimensional feature vector, the features are of three

types - intensity, texture and curvature (context information is

a combination of the three). By aggregating the importance

values of each feature type and normalizing them we obtain

their relative importance in the classification task. This pro-

vides the necessary semantic information for voxel classifi-

cation. Let the normalized weight of the different features

be wI (intensity), wT (texture) and wC (curvature), where

wI + wT + wC = 1. The smoothness cost V is given by

V (Ls, Lt) =

{
wIVI + wTVT + wCVC , Ls �= Lt,
0 Ls = Lt.

}

(3)

where VI , VT , VC are the individual contributions to the

smoothness by intensity, texture and curvature. VI is defined

as

VI(Ls, Lt) = e−
(Is−It)

2

2σ2 · 1

‖s− t‖ , (4)

I is the intensity and σ is the intensity variance over Ns (i.e.,

the 8 neighbors). VT and VC are similarly defined using tex-

ture and curvature instead of intensity. After training wI =
0.23, wT = 0.33, wC = 0.44. To choose the value of λ we

adopt the following steps. We choose a small subset of the

training data consisting of 10 patient volumes, and perform

segmentation using our method but with λ varying from 0 to

1 in steps of 0.001. The maximum average segmentation ac-

curacy using Dice Metric (DM) was obtained for λ = 0.02
and we set λ = 0.02.

3. EXPERIMENTAL RESULTS

3D T1-weighted spoiled gradient echo sequence (SPGE) im-

ages were acquired from 26 patients (including the 10 used

to calculate λ) in supine position using a 3-T MR imaging

unit (Intera, Philips Healthcare). The spatial resolution of the

images was 1.02 mm × 1.02 mm× 2 mm, and the acquired

volume dimension was 400 × 400 × 100 voxels. We adopt a

leave-one-out approach where our classifier is trained on 25

Our OurnC OurnV OurnVTC

DM 85.8 81.2 83.9 79.4

HD 3.2 7.2 4.3 10.2

OurnVI
OurnVT

OurnVC

DM 84.6 83.4 83.1

HD 3.9 5.0 5.4

Table 1. Quantitative measures for segmentation accuracy.

DM- Dice Metric in % and HD is Hausdorff distance mm

patients and the 26th patient is used for evaluating our seg-

mentation algorithm. Thus we report performance on the av-

erage of 26 runs.

As part of evaluation of we present segmentation results

of the following methods: 1) Our - our proposed method;

2) OurnC - Our without context information from images

to train the RF classifier; 3) OurnV - Our without semantic

context in V ; wI = wT = wC = 0.33; 4) OurnVI - Our
with wI = 0; 5) OurnVT

- Our with wT = 0; 6) OurnVC
-

Our with wC = 0; 7) OurnVTC - Our with wI = 1, wT =
0, wC = 0 which is a conventional smoothness cost based

on intensity features. For 4, 5, 6 above the weights are nor-

malized by the sum of the two values. We are unable to re-

port comparisons with other methods because there dont exist

methods specific to CD segmentation. Quantitative evaluation

of segmentation performance is given in terms of Dice Metric

(DM) and Hausdorff distance (HD) measures.

Table 1 summarizes the performance of all the above

methods. Our performs the best among all methods followed

by OurnVI
and OurnV . OurnVTC

gives the worst per-

formance because it imposes smoothness constraints using

only intensity information. Note that if we totally eliminate

smoothness we get isolated clusters of different labels which

is undesirable. From the results in Table 1 we draw the fol-

lowing conclusions. First, comparing the results of Our and

OurnC we observe that context features are integral to our

method’s and their exclusion leads to maximum degradation

in performance.

Second, semantic information is also important. p <
0.025 from t-tests between Our and OurnV supports this

observation. OurnV weights intensity, texture and curvature

equally in the smoothness cost, thereby neglecting the se-

mantic information learned from the trained classifier. This

lowers the DM and increases the HD compared to Our, al-

though the magnitude is less than OurnC . Particularly for

the bowel it is difficult to distinguish different tissues from

only the intensity values in MR images. Learned semantic

information helps to distinguish between neighboring voxels

from different categories.

Comparing between OurnVI
, OurnVT

and OurnVC
high-

lights the relative importance of different features. Curva-

ture and texture features are deemed most important in the

classification, although intensity also plays a significant role.

t−tests between the results gives p < 0.035 for all cases in-
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(a) (b) (c) (d)
Fig. 3. Segmentation results for two patients: (a)-(b) Pa-

tient 16; (c)-(d) Patient 26. The manual annotations are

shown in green with other colours showing the following

annotations: red-Our,blue-OurnV ,yellow-OurnC ,magenta-

OurnVI
,cyan-OurnVT

,white-OurnVC
.

dicating that none of the features can be discarded without

a drop in performance, and their combination gives the best

performance.

Figure 3 shows segmentation results on Patient 16 and

Patient 26 with the diseased regions cropped for clarity. We

show results for Our(red),OurnV (blue), OurnC(yellow),

OurnVC
(magenta), OurnVT

(cyan), OurnVC
(white). These

two cases were particularly challenging because of multiple

diseased regions. Using our method we are able to achieve

an accurate segmentation (DM= 0.88 and HD = 3.5 mm).

Although only a single slice is shown the measures are for the

whole volume. OurnVC
shows the maximum over segmenta-

tion, i.e., many healthy tissues are labeled as diseased because

of the absence of context information. The segmentation of

the different methods is consistent with the values observed

in Table 1. The average segmentation time for a volume was

155 seconds on a system running MATLAB on a Core2 quad

core 2.66 GHz CPU having 4 GB RAM.

4. CONCLUSION

We have presented a novel way to segment regions affected

by Crohn’s disease in abdominal MR volumes. We develop a

novel context feature that incorporates relative context infor-

mation between different tissues. Intensity, texture, curvature

and context are used to generate probability maps whose neg-

ative log-likelihood are the penalty costs in a graph cut seg-

mentation framework. Semantic information about the con-

tribution of each feature is obtained by training random forest

classifiers annotated images, and this is used to design a novel

smoothness cost. Experimental results on 26 patient datasets

show that inclusion of semantic information and context fea-

tures plays a very important role in accurate segmentation of

the diseased region.
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