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Abstract—Automated optimization of real-time architectures
with respect to cost, performance, robustness and safety has
received considerable attention in the last decade. In this paper,
we present an automated Design Space Exploration (DSE)
method based on both a multi-objective genetic algorithm and a
heuristic particle-swarm-optimization technique. The optimiza-
tion process is guided to desired solutions by weight coefficients
that are assigned to the system objectives. The proposed method
automatically generates architecture alternatives by changing
hardware topology and mapping the tasks on different nodes,
CPUs and by modifying their execution priority. Based on
multiple quality objectives, the optimization method concludes
to the Pareto-optimal solution set of the architecture alterna-
tives. Moreover, in this paper we present an addition to the
pre-existing optimization heuristics, targeting the reduction of
the exploration time and maintaining a high-quality Pareto-
optimal solution set. Finally, we compare the NSGA-II algorithm
against the OMOPSO and their “Rule-Based Initial Population
versions”, for the convergence speed and the quality of their
solutions, by comparing the hypervolume and the epsilon quality
indicators. The proposed DSE approach has been applied to
an autonomously navigating robot system consisting of several
processing nodes (real-time distributed system) and resulting into
better optimized and balanced solutions when compared to the
proposed system architecture by an architect specialist.

I. INTRODUCTION

The development of component-based real-time systems has
become a common practice, enabling rapid system prototyp-
ing by the system composition from existing HW and SW
components. The system should comply with specific real-
time requirements such as throughput and latency. In order
to find the optimal system architecture, an automated Design
Space Exploration (DSE) method needs to be deployed. Due
to the enormous design space (multiple factors of freedom),
this DSE approach is required to rapidly converge to a set of
optimal solutions. Moreover, the DSE should be supplied with
accurate performance prediction metrics, due to the critical
factors characterizing (hard) real-time systems. An incorrect
performance prediction may lead to the implementation of an
inefficient system architecture leading to system re-design or
re-implementation.

In our previous work, we have presented an accurate and
rapid performance analysis technique [1] [2] [3], based on
cycle-accurate performance models. This performance analysis
method is consisting of three individual phases and supports
profiling and modeling of the SW components, system com-
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position and performance analysis. The performance analysis
method supports both schedulability and simulation-based
analysis techniques for both processing and communication
resources. In this paper, we focus on the integration of heuristic
optimization algorithms, as the fourth phase of the proposed
ProMARTES performance analysis method, for (a) automated
generation of architecture alternatives, (b) evaluation of these
alternatives on specific system quality objectives, (c) obtain of
a Pareto-optimal solution set of system architectures. Finally,
the architect selects the best solution for implementation from
the Pareto-optimal solution set.

Multiple quality objectives are relevant for determining a
real-time system, which increases the design space and the
number of architecture alternatives that need to be generated
and analyzed. Therefore, an advanced heuristic approach is
needed to enable fast convergence to the Pareto-optimal solu-
tion set, while maintaining the quality of the solution set. The
convergence speed can be improved by following some design
rules that apply to real-time distributed systems, avoiding the
exhaustive random generation of architecture alternatives. In
order to increase the quality of the obtained solutions, the
optimization can be guided by individual weighting of the
quality objectives. For example, the robustness of a system
may be more important than the cost, so that the Pareto-
optimal solution set includes primarily robust solutions.

The optimal architecture of a Component Based-Real Time
Distributed System (CB-RTDS) is based on the classification
of the system solutions, by comparing the quality objective
values. A CB-RTDS normally integrates multiple scenarios
with end-to-end delays. These delays can be correlated to
hard, firm, or soft deadlines. Moreover, the robustness of the
system depends on the resource utilization and on the distance
from the predicted end-to-end delays to the hard deadlines.
Depending on the system requirements, corresponding system
functions for quality objectives are defined. These quality-
objective functions take into account the performance predic-
tions (schedulability/simulation analysis) and combine them
such that they reflect the performance of the system on the
“end-to-end delays”, the “robustness” and the “cost” metrics.
An emerging research question is then the definition of the best
quality-objective functions for the DSE in CB-RTDS domain.

In this paper we use two state-of-the-art heuristics, which
we compare for their convergence speed to optimal solution



sets. In addition, we examine the quality of the solution set, by
collating the obtained hypervolume-quality-indicator metrics.

The sequel of this paper is structured as follows. Section II
presents related work. Section III describes the Design Space
Exploration framework. Section IV poses the Architecture Op-
timization problem for CB-RTDS. Section V illustrates a case
study used for the validation of the architecture optimization
framework, while Section VI presents the obtained results
from that case study. Finally, Section VII concludes the paper
and gives the findings of the work.

II. RELATED WORK

Most of the conventional modeling and analysis [4] [5] [6]
techniques support performance analysis of RTDS, but do not
enable automated DSE. The system architect has to define
architecture alternatives manually. This makes identification of
balanced and optimal architecture alternatives impossible, due
to the abundance of different SW/HW mapping, HW topology,
priority, and protocol variations. However, some performance-
analysis approaches enable automated DSE by integrating
different types of heuristics including annealing techniques,
genetic algorithms, etc.

Pimentel et al. [7] [8] have presented the Sesame frame-
work, which integrates an automated DSE method based on
the SPEA genetic algorithm. The authors propose a method
that prunes the design space by checking valid architecture
alternatives prior to performance analysis of those alternatives.
The analysis is performed by an Instruction Set Simulator
bounds the design space with a decelerated procuedure. The
initial random population, crossover and mutation operators do
not guarantee convergence to the Pareto-optimal set, moreover
the optimization is not guided to specific objectives.

ArcheOpterix [9] is designed for DSE of embedded systems
that are modeled in AADL modeling language. Two quality
objectives are supported focusing on reliability attributes only.
The optimization heuristics are based on evolutionary algo-
rithms, while the analysis method is formal.

Martens et al. have proposed PerOpteryx [10], a DSE
framework for the well-known Palladio Component Models
(PCM). The performance evaluation of the system is based
either on simulation (SimuCom), or on a formal-based analysis
(LQN solver) which speeds-up the analysis. The LQN solvers
provide only mean values compared to the simulation-based
analysis. The case study is based on a distributed system
and three different objectives are formulated for the system
architecture optimization (cost, performance and reliability).
The system architecture optimization is based on genetic
algorithm heuristics (opt4j optimization framework [11]), so
that a global Pareto-optimal solution set cannot be guaranteed.

Zaccaria V. et al. have designed the Multicube explorer [12],
which is an open source framework for DSE of chip multi-
processors. The Multicube performs DSE by supporting multi-
objective particle-swarm optimization, genetic algorithms and
simulated annealing optimizers, thus enabling selection of the
appropriate heuristics depending on the problem to be solved.

Performance-analysis simulation techniques are used, provid-
ing performance metrics in XML format to the Multicube
explorer. The obtained metrics are examined for their Pareto
optimality. Ykman-Couvreur C. et al. [13] use the Multicube
explorer together with platform simulators for DSE of an
MPEG-4 video encoder. Based on the DSE results, the authors
conclude to a Pareto-optimal solution set of configuration
alternatives in terms of power consumption and performance
trade-offs.

The CARAT toolkit [14] supports synthesis of SW/HW
component models, composition of system models by defining
execution scenarios and simulation of these scenarios, while
providing worst, average and best cases of CPU load, latency
and throughput. CARAT supports EDR, RMA, and DMA
scheduling algorithms, but it does not support accurate net-
work modeling. Moreover, it does not provide cycle-accurate
performance models, leading to less precise performance anal-
ysis. Based on this work, Li R. et al. have initiated the AQOSA
framework which integrates the optimization module opt4j
[11], supporting evolutionary algorithms, simulated annealing
techniques and Particle-swarm optimization.

III. DESIGN SPACE EXPLORATION FRAMEWORK

The optimization presented in this paper finalizes the per-
formance analysis pipeline for Component-Based Real-Time
Distributed Systems (CB-RTDS) [14] [15] [3] [16]. The pro-
posed DSE framework consists of four phases Fig. 1. The
first three phases are integrated in the CB-RTDS performance-
analysis framework, ProMARTES [1], while the last phase
is the contribution of this paper. ProMARTES is the core of
the DSE exploration framework, enabling rapid and accurate
performance prediction of real-time distributed systems. The
following paragraphs describe the four pipeline phases: (1)
Profiling and Modeling, (2) Architecture Composition, (3)
Performance Analysis, (4) Automated Architecture Generation
and Optimization (see Fig. 1).

Profiling and Modeling. A component developer profiles the
SW components at cycle-accurate instruction level, generating
a performance model for each individual component by using
our ProMo tool [3]. The ProMo tool provides all the profiling
and modeling primitives for this phase. A component perfor-
mance model addresses various HW resource-usage aspects
(CPU, BUS, RAM, Network, etc.) and can be specified for
multiple platforms. The generated performance models are
loaded into the repository for Phase (3).

Architecture Composition. The system architect selects re-
quired components and, based on functional requirements,
composes an architecture alternative with the ProMARTES
graphical aids. The system composition can be repeated mul-
tiple times, generating a number of individual architecture al-
ternatives. Each alternative specifies component instantiations
and connections, HW nodes/network topology and mapping of
SW components onto the HW platform. The system delivers
services that combine a few operations, while these services
may have real-time requirements and triggering events or
periods. The service is defined by instantiating the required
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Fig. 1. Overview of the DSE approach in four phases.

operations from the SW components, defining the triggering
periods/events and the possible real-time deadlines, consists of
a system scenario. The functionality of a system is the defi-
nition of all execution scenarios such that the system delivers
the required services. A system model is a combination of
the execution scenarios and the architecture alternative. The
system models are based on the MARTE modeling profile.

Performance Analysis. The generated system models are
applied to two types of ProMARTES performance analysis:
(a) schedulability and (b) simulation. Both analysis types
support various HW platforms, multiple scheduling policies
and different network protocols. Results yield accurate pre-
diction of performance properties such as latency, hardware
usage, robustness and throughput. The schedulability analysis
enables early system performance prediction, while providing
guaranteed worst-case execution time. The simulation-based
analysis provides average-case execution times and detailed
behavior time-line data. However, the simulation-based anal-
ysis requires substantial execution time in order to obtain
converging results. Therefore, ProMARTES analysis firstly
applies schedulability analysis to the generated system models,
filtering out alternatives that do not satisfy the requirements,
and secondly, simulates the survived alternatives providing
accurate performance metrics and giving detailed data (WCET,
ACET, bottlenecks) for each architecture alternative.

Architecture Optimization. The Composition and the Eval-
uation phases are connected through an optimization loop,
enabling iterative architecture improvement. In this phase, new
architecture alternatives are automatically generated using two
different optimization techniques: the multi-objective Genetic
Algorithm (GA) NSGA-II [17] and the multi-objective Particle
Swarm Optimization (OMOPSO) [18]. Each newly generated
alternative is applied to the performance analysis. The obtained
performance metrics are translated to the quality objectives.
Based on the objective values of the alternative, the solution
is examined whether it dominates any of the existing Pareto-

optimal solutions. When the optimization criteria of the opti-
mization loop are satisfied, the architect obtains a final Pareto-
optimal solution set (of alternatives). The automated architec-
ture optimization phase is further detailed in the following
section.

IV. ARCHITECTURE OPTIMIZATION

RTDS performance optimization typically results in opti-
mally mapping of SW components onto the available HW
nodes/platforms. The architecture optimization then explores
the joint variation of key factors (best task-to-node mapping,
its priority, which CPU platform). The triggered variation of
the key factors leads to generation of different architecture
alternatives. The quality objectives (cost, end-to-end delays,
robustness, etc.), obtained from the performance analysis
characterize each alternative. Moreover, the objectives may
have different importance levels (can be weighted with higher
or lower coefficient), thereby guiding the optimization to
specific design space area. We have integrated the open-source
multi-objective optimization framework jMetal [19] into the
ProMARTES analysis framework, thereby enabling the appli-
cability of many state-of-the art multi-objective optimization
heuristics. The optimization module and its internal structure
are depicted in Fig. 2.

In the following subsections, we describe the input model
for the phase of alternatives generation and the optimization
model with the correspondent objectives. Finally, we present
the heuristc optimization algorithms that are deployed in the
ProMARTES framework.

A. Input model for optimization loop

Prior to the first optimization loop, the original architecture
alternatives are analyzed and form an optimization model
structure. The optimization model structure define entities
that can be and should not be changed during optimiza-
tion. Permanent entities include tasks, components and sce-
narios that should be always executed to meet functional
requirements. Variable entities define the above key factors
of freedom which can be changed during optimization loops.
The factors of freedom that often define a real-time dis-
tributed system are the HW platform (CPU, number of nodes),
topology and the mapping of the SW components onto the
HW nodes/CPUs. The HW platform is modeled by defining
processing nodes, their topology, communication protocols,
etc. For each task/operation of the SW components involved in
the system, the execution node, the specific core of the CPU,
the execution priority and the scheduling policy are defined.
By varying the previous key factors, a number of individual
architecture alternatives can be generated.

Identification of an optimal solution set for a real-time dis-
tributed system largely depends on the optimal task mapping.
The Fig. 3 depicts the mapping of a tasky on a specific
node ny, CPU cpy, core ¢, with specific execution priority
px. Taskr can be any task of a system that an architect
has defined in the original architecture. Variable nj and CPU
cpy, define the node and the CPU type which the task is
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Fig. 3. Task mapping involving various system parameters.

mapped on respectively. The lowest value for the cpy is 1
(we should have at least 1 CPU in the repository) and the
highest is equal to the number of CPUs, numC PU's, included
into the HW component repository. Value c; defines the CPU
core on which the task is going to be executed. This value
is dependent on the selected CPU cpy, since each CPU may
have several number of cores. Finally, the execution priority
pi of the task tasky, has a value in the range minPrio and
maxPrio, where minPrio is the minimum and maxPrio is
the maximum priorities that the system can handle. This is
specified in Eq. (1) below

tasky = {ng, cpk, ck, pr}, nk € [1, numNodes],

epr € [1,numCPUs], ¢, € [1,numCores], (1)

pr € [minPrio,maxPriol, k € [1, numTasks].

For each task, two boundary vectors are created, the [ Limit
and the uLimait, as in Eq. (2) below

[Limit = [1,1,1, minPrio],

uLimit = [numN odes, numC PU s, numCores, max Prio).

2

These two vectors are used to generate random task mapping
in the value range of these two vectors. In order to create
architecture alternatives in an automated way, heuristics are
used to generate the mapping of each task task; (Eq. (1)).
The heuristics generate random values with respect to the
boundary vectors, thereby defining different architecture alter-

natives. The following sections describe the heuristics pipeline
deployed in our analysis.

B. NSGA-II algorithm

The Nondominated Sorting Genetic Algorithm II (NSGA-
IT) [17] is a Multi-Objective Evolutionary Algorithm (MOEA)
based on a non-dominated sorting approach. The NSGA-II
starts with a randomly generated population. Using evolution
operators (crossover and mutation) it explores the design
space. Each individual generation is evaluated by fitness values
and if it assessed as Pareto optimal then it is included in
the solution set. Due to the random initial population and to
the random generations, this optimization algorithm requires
substantial time-span to converge to a set of optimal solutions.

C. OMOPSO
The Mutli-Objective  Particle Swarm  Optimization
(MOPSO) [20], extends the heuristic Particle Swarm

Optimization (PSO) [21]. The OMOPSO heuristic presented
in [20] is based on Pareto dominance and uses a crowding
factor to filter the list of available leaders. Moreover, it
incorporates the e-dominance factor concept correcting the
final solution-set generated by the heuristic. The OMOPSO,
similarly to the NSGA-II, uses a random generated initial
population, while the solution set approaches gradually the
Pareto-optimal curve.

D. Rule-based Initial Population for RTDS

The DSE of a real-time distributed system is a time-
consuming procedure, due to the broad range of possible ar-
chitecture alternatives (combination of factors of freedom) and
the substantial analysis time that each individual alternative
requires. Aiming at faster convergence to the optimal solution
set, while not decreasing its quality, we have proposed several
extensions to the current heuristics. These extensions are based
on the properties of a common real-time distributed system.

In our previous work [1], for performance analysis, we
have identified a set of guidelines for the mapping of the SW
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components onto HW nodes. According to our findings, heavy
tasks should be mapped on separate CPU cores. In practice,
this reduces latencies and increases robustness of each task.
Moreover, tasks that are data- and execution-dependent and
especially the low-latency tasks, should be mapped on the
same node/CPU to reduce the communication delays, which
in most cases are disproportionally high, compared to the
execution time delay on the CPU cores.

As we have mentioned above, the existing heuristics gen-
erate an initial population randomly and then, by tuning the
factors of freedom, they generate new alternatives which are
examined for their Pareto optimality. Based on the above map-
ping guidelines, we have proposed rule-based optimization
(RBO). Instead of a random initial population, RBO generates
a population that complies to the following rules: (a) the
data-dependent real-time tasks are mapped on the same node,
thereby reducing communication delays, (b) the computation-
ally expensive tasks are mapped on different cores, if possible,
(c) a task is assigned a specific priority, depending on the type
(hard, firm, soft) of the end-to-end deadline of the scenario in
which the task is involved. Nevertheless, the initial population
is still generated randomly, but within the specific constraints
which are set by the above-mentioned rules.

Formally defined, we create a d set which contains the data-
dependent tasks, specified by

d = {{task;,tasky,}, ..., {task,, task; } }. 3)

Following, we associate the tasks with the type of the
deadlines by checking the scenarios they are involved in. By
this, we define 3 individual sets sd, fd and hd, that contain
tasks with soft-, firm- and hard-deadlines, respectively, by

sd = {task;, tasky, ..., task, },
fd = {task;,tasky, ..., task;}, 4)
hd = {task,, task,, ...,taskq}.

The performance models [3] of the involved individual com-
ponents contain the execution cycles ¢; that each operation op;
in task requires to be executed. In order to distinguish which
tasks are more resource demanding, we have implemented the
factor f;. This factor is the rate of the cycles ¢; divided by
the amount of cycles c,,, ¢; is the number of the cycles of the
most resource-demanding operation [ and ¢, is the number of
the cycles of the least resource-demanding operation m, out of
all the operations that are involved in the system model. As a
result, each operation op; becomes associated with the metric
fi» representing the operation processing load, given by

fi = ai/em, c = max{cyclesy, cycless, ..., cycles, },

em = min{cyclesy, cycless, ..., cycles, }, cycles; € op;.

®)
E. Guided optimization

The quality attributes and objective functions of a system
depend on the system application domain. Hard real-time
system architects focus on real-time execution validation,
while soft-real time system architects are more interested in
graceful degradation capabilities. For some systems, platform
cost is more important than its robustness, and vice versa. To
support this, we have adopted a weighted approach for the
quality objectives, where a system architect can define weight
coefficients for each objective, penalizing solutions that do not
meet the system constraints, thereby guiding the optimization
process to solutions that comply with the system’s application
domain and requirements.

In order to facilitate the definition of weight coefficients, we
have developed a GUI (see Fig. 4), where the architect can
drag the vertices of the polygon and thus define the weight
coefficient of each objective.

V. CASE STUDY: 3 NAVIGATING ROBOTS

We have studied the optimal architecture for a sensing
system, incorporating three autonomously navigating robots.
The target quality objectives are latency in the control loops,
robustness and hardware costs. This case study is a more
advanced setup than the one presented in [1], where only
one robot navigates through the space and composes a 2D
environment map. Three robots generate three individual 2D
maps which are combined to create a global reference map.

Component models, system composition, scenarios and per-
formance analysis results have already been presented for the
one-robot system in [16] and for three-robots case study in
[2]. In this section we will focus on the optimization phase,
where we use the factors of freedom in order to rapidly obtain
a high-quality Pareto-optimal set of architecture alternatives.

A. Profiling and Modeling

The SW components have been profiled on specific HW
platforms (15-2520, 15-750 etc.). During the profiling
phase, the ProMo tool automatically generates the performance
model of each individual SW component. These performance
models contain cycle accurate performance metrics [3].



B. Architecture Composition

In this phase, we have manually defined 5 architecture
alternatives defining HW topology, task mapping, priorities
and network protocols. The execution behavior of the three
autonomously navigating robot systems is described by 30+ 1
execution scenarios. The 30 execution scenarios represent the
navigation and the composition of the three 2D-maps, while
1 scenario provides merging of the three individual maps into
one global map. Each scenario delivers a specific functionality
and it is characterized by a trigger period and a deadline. The
trigger periods and the deadlines are depicted in Table I; a
more detailed description is available in [2].

Scenario Name P (ms) D (ms) ML (bytes)
GM:Odom Scenario 37 100 165
GM:Laser Scenario 79 100 1209
MB:Odom Scenario 37 100 165
MB:Laser Scenario 79 100 1209
GM:Frame Scenario 50 100 1999
GM:Conversion Scenario 50 100 159
MB:NewGoal Scenario 500 500 171
MB:Frame Scenario 50 100 1999
GM:Map Scenario 1000 1000 16777216
MB:Nav Scenario 50 100 144
GM:Map Stitch 60000 60000 16777216
TABLE I

PERIODS (P), DEADLINES (D) AND MESSAGES LENGTH (ML) FOR THE
RT SCENARIOS

C. Factors of Freedom

For this case study we have selected the following factors-
of-freedom: (a) number of processing nodes, (b) type of the
CPUs, (c) target core for each task, (d) execution priority
of each task, (e) network protocol and transmission-rate.
These factors-of-freedom are tuned by using the two different
heuristics NSGA-II and OMOSPO.

D. Performance Analysis

Performance analysis for each architecture alternative is
being performed by the schedulability analysis tool MAST
[22]. The schedulability analysis yields guaranteed worst-case
end-to-end delays in a short analysis time. Finally, when
the optimization heuristic is terminated and a Pareto-optimal
solution set is generated, a simulation-based analysis is applied
to the found optimal architecture alternatives, thereby provid-
ing the values of the additional performance metrics: ACET,
bottlenecks and timeline. The simulation-based analysis is
performed by the JSImMAST analysis tool [23].

E. Quality Objectives

For the evaluation of the robot system architecture alterna-
tives the following quality objectives are defined: (a) meeting
all the real-time deadlines, (b) timeliness quality on the end-
to-end delays, (c) robustness, (d) resource utilization and (e)
platform cost.

The robot system features a number of scenarios with hard
real-time end-to-end deadlines. Ideally, for each individual
scenario an individual objective should be defined. However,

this would substantially increase the complexity of the op-
timization process. Therefore, we have defined the hard-real
time requirement objective dd as the sum of the scenarios that
fail meeting the hard-real time deadlines (see Eq. (6)), giving

- . . 1, delay; >=d;
dd = R =
i:Zl F(@), £) {O, delay; < d;, (6)

f(i)e Sh s ={sp sh .. St}

Here f(i) is equal to 1, when the hard deadline of a scenario
S is not met and 0 when the deadline is met, S!* is the union
of the scenarios with hard deadlines. The aim is to design a
system where the dd quality objective equals 0.

Even when all the real-time requirements are met (dd = 0),
it is important to have another objective that denotes timeliness
quality of an alternative. To this end, we introduce objective
qo that computes how close the actual delays to their required
deadlines are. With this objective we analyze the end-to-end
delays of all the system scenarios, trying to find an alternative
that for all the end-to-end delays has the maximum time
distance from the scenarios deadlines. Quality objective go
is the sum of the ratios between the end-to-end delays and
their corresponding deadlines, multiplied with specific weights
(dependent on deadline type: soft, firm, hard), specified by

n

qo = Z(delayi/di)td * W (td),

=1

1, tde S (N
Wi(td)=<{2, tdeS!.

3, tde Sh

Here delay; is the end-to-end delay of the scenario 4, d; is the
deadline of this scenario ¢, td represents the deadline type, S;,
Slf , Slh are the scenarios with soft, firm and hard deadlines
respectively. The larger the sum, the better the timeliness
quality of the architecture alternative. When the objective go
has a negative value the alternative is considered as an outlier.

Robustness of a system under overload conditions is also
an important design objective. When a system meets all the
real-time requirements, it can be considered as a promising
candidate. However, in case a system fails to meet one or
more hard real-time deadline(s) under overload conditions, the
system might be considered as under-provisioned, depending
on the requirements. Taking this into account, we introduce
the ro robustness objective value. In contrast to the qo quality
objective where we analyze all the end-to-end deadlines, in
the ro quality objective we are interested only for the scenario
delay that is closest to its hard deadline, specified by

ro = m%ﬁ(delayi/di)h, (8)

where h denotes the hard end-to-end scenarios. The smaller
the value of ro, the better the overall robustness performance
of a system under overload conditions.

Another crucial system objective is utilization of processing
resources, where lower processing utilization values show the
stability of a system. The resource utilization objective ru



Objective max / min | weight

dd (hard deadline) min 2.0

qo (timeliness objective) max 1.0

ro (robustness objective) min 1.0

ru (resource utilization) min 1.0

co (cost objective) min 2.0
TABLE I1

MAXIMIZATION OR MINIMIZATION OF THE OBJECTIVE IN THE CB-RTDS

PROBLEM.

is equal to the highest utilization factor of all the system
processing resources, which is defined by

ru = m%x coreUtil;, 9

i=1

where coreUtil; is the core utilization factor of core;.

The platform cost objective co plays a definitive role for
the selection of the optimal system architecture in most of the
cases. Low cost and, at the same time, high performance, are
the two main characteristics of an optimal architecture. The
platform cost is computed by

n
COZZCOSQ’,,Z’ e {HW}, (10)
i=1
where 7 is a processing node of the system and a member of
the existing set of HW components.

The optimization heuristics identify the optimal solution set
according to the above-mentioned objectives, by maximizing
or minimizing the values of these objectives (see Table II).

F. Guided Optimization

In this case study we prioritize the objectives by giving dif-
ferent weight coefficients, thereby guiding the DSE to specific
solution areas. More specifically, we are mostly interested in
a system that: (a) meets all the hard real-time requirements,
(b) features low platform cost. Simultaneously, we pay less
attention to the robustness and the timeliness balance of the
solutions. The weights used for the guided optimization are
presented in Table II.

VI. EXPERIMENTS AND RESULTS

We have applied both the NSGA-II and the OMOPSO
optimization algorithms ! , as well as our rule-based extension
to the DSE of the autonomously navigating robot case study
and concludes on the optimal architecture solution set.

From the set provided by the OMOPSO-RB heuristic, we
choose the best architecture alternative, M, and compare this
with another 3-node alternative, Architecture C, which was
composed by the system architect in [2]. The alternative M that
we choose is composed of 3 processing nodes (see Fig. 5) with
quality objectives: dd=0, go=-12, r0=0.511, ru=59.5, co=757.

The population parameter for the NSGA-II algorithm was set to 50, the
evaluations to 5,000, the crossover was set to 0.9, the crossover distribution
index to 20.0, the mutation probability is set to 1.0/IV, (the number of tasks
N=33) and the mutation distribution index is set to 20.0. Regarding the
OMOPSO heuristic, we have set the swarm and the archive size equal to 50,
the maximum iterations to 100 and the mutation probability 1.0/N, N=33 in
the case study of the autonomously navigating robot. Both heuristics evaluate
1,020 architecture alternatives.

Compared to the Architecture C, despite the fact that they are
both based on 3 processing nodes, the alternative M has better
performance in the cost objective (10 % lower cost) while it
does not miss any deadline. Therefore, we consider alternative
M as more suitable than alternative C.

Regarding the results of the optimization heuristics, the
original NSGA-II optimization includes only 2-node imple-
mentations in the solution set. In the solution set of the
rule-based NSGA-II heuristic, 2-node and 3-node architecture
alternatives are present. The 3-node alternatives are optimal,
regarding the go, ru and ro quality objective functions. On
the other hand, the 2-node architectures feature low cost for
the co objective function, while meeting all the hard real-
time deadlines. The OMOPSO heuristic includes only five
architectures in the resulting Pareto-optimal solution set. The
proposed solutions are based on 3 nodes providing better
performance in the go, ru and ro quality objectives, while
increasing the cost only by 10%, due to the deployment of
inexpensive CPUs. The OMOPSO Pareto-optimal solutions
are a subset of the OMOPSO-RB. The latter heuristic results
in 13 different Pareto-optimal architecture alternatives. These
alternatives are based either on 2 or 3 nodes. The systems
that are based on 2 nodes have better evaluation regarding the
cost quality objective, while the systems based on 3 nodes,
feature better overall performance, except for the increased
cost quality-objective co.

Fig. 6 depicts the optimization of the design space explo-
ration of the four heuristics. In the three-dimensional space
of the diagrams, we visualize the cost vs. the robustness vs.
timeliness quality objective of the solution. To represent the
fourth dimension, we use color showing the number of hard
deadlines that each alternative does not meet. Since our robot
case study is a hard real-time system, the optimal solutions
for our requirements are colored in dark blue (no missed
deadlines). It is visible by this diagram that the rule-based
extensions yield a better performance, proposing close to
Pareto-optimal solution sets. Moreover, the optimal solutions
provided by the OMOPSO-RB dominate the optimal solutions
generated by the NSGA-II-RB, since from the figure it is
visible that for the same dd=0, the solutions provided by the
OMOPSO-RB have a lower cost, are more robust and their
timeliness is more consistent.

Findings. By comparing the two different Pareto-optimal
solution sets (OMOPSO-RB vs. NSGA-II-RB), we conclude
that the OMOPSO heuristic tends to concentrate on solutions
that are close/local in the design space area (flock of birds),
while the NSGA-II searches in broader space, providing more
but not fundamentally better solutions. On the other hand,
for the exploration of 1,000 alternatives, the OMOPSO-RB
is running for 34 minutes compared to the 27 minutes that
the NSGA-II-RB requires, while the hypervolume indicators
of the solutions are 0.645 and 0.626, respectively. It is evident
from Fig. 6 that the rule-based extension for the NSGA-
IT increases its performance significantly, since the NSGA-II
heuristic includes a very limited number of solutions that meet
the hard deadlines (dark blue color).
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Fig. 5. Configuration of the optimal architecture alternative M, which is obtained after applying the OMOPSO-RB heuristic.
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Fig. 6. The performance of the architecture alternatives explored by the four different optimization heuristics.

VII. CONCLUSIONS solutions when a limited number of generation iterations is
applied. Moreover, the rule-based initial population in both
In this paper we have presented a Design Space Exploration  algorithms boosts the convergence speed, while maintaining
method for Component-Based Real-Time Distributed Systems.  the quality of the solutions. Especially, the NSGA-II is not
We have defined five different quality objective functions able to find enough optimal solutions, while the NSGA-II-RB
that represent defined requirements of an RTDS (end-to-end results into 20 solutions fulfilling the real-time requirements.
deadlines, robustness, timeliness quality, resource utilization Last but not least, the ProMARTES framework is an open-
and cost). We have experimented with two different heuristics, source project and available at [24]. In the near future, we
the NSGA-II (GA) and the OMOPSO. In addition, we have are planning to apply the rule-based alternative generation
proposed a rule-based initial population for both heuristics. during the whole optimization process, thereby increasing
The extended OMOPSO-RB heuristic tends to find better



the

convergence speed. This is a challenging task, since

the optimization process should still maintain generation of
alternatives avoiding halts in local optimal space regions.
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