
Compression of Synthesized Textures

F. Brayner
Centro de Informática-UFPE

Recife, Brazil
flb@cin.ufpe.br

M. Walter
Instituto de Informática-UFRGS

Porto Alegre, Brazil
marcelo.walter@inf.ufrgs.br

Abstract—In spite of graphics hardware advancements,
graphics memory is still a scarce resource for usual applica-
tions. Besides, for most raster-based applications, the available
bandwidth is one important limiting factor for increasing per-
formance in the system. Texture compression addresses both of
these problems. We introduce a new technique for compression
of textures synthesized from samples. The compressed texture
stores the sample plus encoded data, gathered during synthesis,
which enables real-time decompression of large textures. With
this scheme we are able to achieve high compression rates. Our
solution explores a spectrum of textures where general texture
compression schemes achieve less than optimal compression
rates. These are usually textures with repeating patterns,
regular or near-regular ones, and stochastic ones, the exactly
types of textures where texture synthesis algorithms perform
well. We also present analytical formulae for our compression
scheme that allows an exact computation of compression rates
achieved.

Keywords-texture compression; texture synthesis

I. INTRODUCTION

In countless applications, textures play an important role
for achieving realism. Applications demand many high res-
olution textures and therefore memory space for storing
all textures is a problem. Another related problem is the
transmission of textures from memory to GPU. Memory
bandwidth is generally the limiting factor for improving
performance [1]. With texture compression, a compressed
version of the texture – usually lossy – is stored and trans-
mitted when needed. Decompression is done in execution
time. Since compression is done offline and only once,
compression techniques afford non-real time algorithms.

In spite of similarities, texture compression differs from
image compression in some key points. When designing a
texture compression scheme, we are not just concerned about
storage and transmission. When it comes to rendering we
have to take into account other aspects such as decoding
speed and random access, for instance. These aspects are
well-defined in [2]. Decode speed becomes even more
important for real-time rendering applications. On the other
hand, there are no strong requirements under encoding speed
since it usually happens offline. Random access is mandatory
since we usually don’t know how the render system will
access the texture.

We show in this paper how to use texture synthesis from

Figure 1. Example of Patch-Based Texture Synthesis. Sample on the left
is 122× 128. Both results are 5122. The one in the middle used Liang’s
technique [4] and the one on the right used image quilting [5].

samples to achieve texture compression. Texture synthesis
from samples is a powerful idea. Pixels or patches from the
sample are copied into the final desired texture, illustrated
in Figure 1. Since all necessary information to build the
final texture already exists in the sample, we can think of
the synthesis process as finding the best patches to combine
in the final output. Although texture synthesis algorithms
are often too slow or complex for real time rendering
applications on graphics hardware, we show how to tackle
this issue by gathering information about the synthesis
process and encoding it together with the input sample.
Thus, our compressed texture stores not just the sample, but
also information on how to build the synthesized result. This
metadata is small and therefore a high level of compression
is possible. The decompression algorithm simply rebuilds
the result from the sample following the stored “recipe”,
allowing real-time decompression.

The potential of texture synthesis to achieve compression
was also used by Wei and colleagues in a technique called
Inverse Texture Synthesis [3]. The main difference is that in
that work, the idea was to find a compressed exemplar for a
collection of real-captured textures, including dynamic ones,
with time-varying data. Our work shares the same motivation
but with different goals.

II. RELATED WORK

We review in this section both texture compression tech-
niques and texture synthesis from samples, since our work
brings together these two areas.

A. Texture Compression

Texture compression is an old graphics research topic.
Already in 1979 Delp and Mitchell presented Block Trunca-
tion Coding (BTC), a simple lossy scheme for compressing
images [6]. BTC compressed gray scale images in blocks
of 4x4 pixels. For each block, two gray scale colors are
stored and each pixel is approximated by one of these
two values. Therefore they were able to achieve 2 bits
per pixel (bpp) compression rate. Their work was seminal
and influenced later compression algorithms such as Color
Cell Compression (CCC) [7] which allowed compression of
colored textures at 2 bpp compression rate, and others such
as [8], [9].

An important compression technique, that can be seen as
a further adaptation of BTC/CCC methods, is the S3 Texture
Compression (S3TC) [9], used in DirectX, where its known
as DXTn depending on how it handles the alpha channel
(DXT1, DXT3, and DXT5 are the most commonly used). In
S3TC the textures are compressed by coding each 4x4 pixel
tile into a 64 bit data chunk. Two base colors in RGB565
format are stored in the first block’s half. In the second
block’s half, a two-bit index is stored for each pixel. This
index points to a local color set that consists of the two
base colors and two additional colors in-between the base
colors. The quality of S3TC is generally higher than that
given by CCC but the gains are achieved at a 4 bpp cost.
One disadvantage of this method is that only four colors can
be used per block. Ivanov and Kuzmin [10] tried to solve
this problem by using colors from neighboring blocks but
the memory bandwidth increase became a drawback. Nev-
ertheless, S3TC has become a leading texture compression
method.

Used in many areas such as audio and image compression,
Vector Quantization (VQ) also influenced several texture
compression schemes. VQ tries to find a small number of
vectors to approximate a given vector distribution keeping
the error small. Beers et al. [2] use vector quantization
for texture compression to reach high compression. The
presented scheme allowed fast texture decoding achieving
rates of 1-2 bpp. A simplified derivation of this research
was also co-developed and implemented in Sega Dreamcast
games console hardware. Others VQ based schemes were
proposed [11] and [12]. However, the major drawbacks
with these VQ based schemes are indirect data access and
codebook handling. To retrieve a single texture element, two
memory accesses are needed and the codebook size can be
too expensive for implementation in hardware.

Fenney [14] presented a departure from BTC or VQ based
schemes. His scheme relied on the fact that lowpass filtered
signals are often good approximations of original signals.
Each pixel can take its color from one of two bilinearly
upscaled images or from two blended values between these
two images. These two images are derived from the original

texture and stored. The bilinear magnification happens at
decompression time. His scheme is presented in two varia-
tions that can lead to 2bpp or 4bpp. This technique is being
used under the name of PVR-TC in the PowerVR MBX
technology.

In 2005 iPACKMAN/Ericsson Texture Compression
(ETC) was presented at Graphics Hardware [15]. The
iPackmann technique still uses the block-based ideas from
BTC and works by building a fixed codebook and separates
the luminance information from chrominance. For each 4x4
block, two 2x4 or 4x2 sub-blocks are considered, each
with one base color. The luminance values are refined
with modifiers in a modifier table pointed by the per-texel
indices. The algorithm has a 4bpp compression rate. The
major problem with this scheme is the limitation of having
only one chrominance per sub-block giving rise to block
artifacts for some textures. More recently ETC2 [16] was
presented to reduce the block artifacts in the previously ETC
compression scheme. The paper shows how some invalid
bit combinations can be useful to improve the ETC scheme.
In general, the paper works on some specific encoded bit
sequences (just discarded in the original work) to enable
new modes of the algorithm, and these new modes try
to improve where ETC performs poorly, such as blocks
with two distinctly chrominances. The authors claim that
the additional complexity added to the algorithm worth the
quality improvement of 0.82dB.

Our proposal is a departure from the usual compression
techniques, since it uses texture synthesis as the basic tool
to compute a compressed texture.

B. Texture Synthesis from examples

The idea of using a real texture sample to drive results in
texture synthesis has a long tradition in Computer Graphics
and Image Processing. Early work on this topic is presented
in [17], [18], [19], [20]. In 1993, Popat and Picard [21]
presented a probabilistic model for texture synthesis and
also suggested that their work could be used for texture
compression.

Texture synthesis from samples is an excellent solution
for building textures that are not only visually similar to
the given sample but also can be built at user-defined
resolutions. The advances in this area grew from pixel-
based techniques [22], [23], to more recent patch-based
techniques [4], [5], [24], [25], [26], where the final texture is
formed by joining together pieces or blocks of the original
sample, with a RGB metric for selecting the best matches.
There has been a lot of activity in this area in the last few
years and a good review of the work so far in this area is
given in the Siggraph 2007 course presented by Kwatra and
colleagues [27].

Using texture synthesis from samples in compression
tasks is mentioned in [22] and also in [23]. This last work
already used vector quantization to speed-up their solution,

Figure 2. For the classes of textures in the above spectrum, synthesis algorithms can offer higher compression rates than most general texture compression
techniques. These samples (r - regular, nr - near-regular, i - irregular and s - stochastic) were chosen as a texture set for comparison with other compression
schemes in Table II. Figure adapted from [13].

a technique familiar in image/texture compression. In [28]
there is mention in future work of using fractal techniques
[29] combined with Image Analogies for compressing tex-
tures.

Li-Yi Wei explored the idea of trying to keep a small
texture data to generate a larger virtual texture on [30].
His scheme first stores a set of texture tiles instead of a
large texture, and then generates an arbitrarily large and
non-periodic virtual texture map from the relatively small
set of stored texture tiles. Our work follows a similar idea
in the sense of keeping a small texture data to generate a
larger texture. In our case, we focused on other sample-
based texture synthesis than the tile-based ones. We do not
need to store a set of tiles, just the texture sample used in the
synthesis process, plus data that is minimum when compared
with the sample texture data. We overcome the main issues
of using texture synthesis as a texture compression scheme
(as most texture synthesis techniques are often too slow or
too complex for graphics hardware) by saving data about
the synthesis process such that re-synthesizing is possible in
real time.

We explored two alternative Patch-Based Texture Synthe-
sis (PBTS) techniques to build the textures that we will
compress later. We implemented the approach by Liang
[4], and Image Quilting [5]. However, our solution works
potentially with many PBTS techniques, since they all share
the same basic principle of searching patches from the
sample and combining them in a consistent way. A potential
drawback of our solution could be the set of textures which
we can correctly synthesize using synthesis from samples.
Fortunately, a large number of textures, either natural or
man-made, are already well handled by current solutions.
We will show in the results section how our compression
scheme works for the full spectrum of textures illustrated in
Figure 2.

III. OUR APPROACH

In general terms, our technique is very simple. While
the texture is being built, using a synthesis from example
algorithm, we capture and store the data needed to rebuild
the result on graphics hardware. For the synthesis part we
used a small variant of the work presented in [4] and [5].
Below we detail the process.

A. Synthesis Process

Our work uses the approach from [4] and [5] for PBTS.
Both techniques share many similarities, and differ mainly
on how the patches are blended. In basic PBTS, patches of
the original sample are combined to form the final texture.
The algorithm starts by randomly picking a patch B0 to start
the process. This patch is positioned at the bottom left corner
of the output texture (Figure 3 (left)). The size wB of the
patches is user-defined and intuitively it should be the size of
the main structures present in the sample. For most textures,
using a patch of size between half and a quarter of the
size of the original sample works well. For simplicity they
are also restricted to square patches. The synthesis process
follows by adding patches side-by-side and once a full row
is completed the process continues for the row above and
so on – Figure 3 (middle and right).

Figure 3. Illustration of Patch-Based Texture Synthesis adapted from [4].
Starting point (first configuration), second configuration for patch matching,
and third configuration (L-shaped matching). Green areas represent texture
already synthesized.

For each patch, there is a boundary zone with a user-
defined width wE . There are three possible configurations
for boundary zone matching, as illustrated in the same figure:
vertical, horizontal, and L-shaped. The optimal size of wE

depends on the texture being generated. If it is too small,
it will not capture enough details. If it is too large it will
negatively impact the algorithm’s performance. As a balance
wE is typically set as 1

6 of wB . The values set for wB

and wE are very important, since they ultimately define the
initial conditions for the synthesis process. Later extensions
on texture synthesis from patches have touched on this issue,
using different patch sizes computed adaptively [24][25].

The critical part of the algorithm is the selection of
the next patch Bk to be pasted onto the texture being
constructed. As with many texture from sample techniques
before [22][23], a list of candidate patches which satisfy an

error criterion is built. The error is measured using an L2
norm on the RGB channels. From this list a random patch
is selected. To build this list, the input sample is searched
for all possible patches. If there is no patch satisfying the
condition, the algorithm picks the patch with the smallest
distance. Usually, all possible patches in the sample are
searched, but building a list with a fixed number of patches
randomly chosen also works.

More formally, given two texture patches I1 and I2 of the
same size and shape, they match if

d(I1, I2) < δ = τ

 1
A

A∑
j=1

(
pj

Ei

)2

1/2

where A is the number of pixels in the boundary zone, pj
Ei

represent the values of the jth pixel in the Ei boundary zone,
d() represents the distance between the two patches, and τ is
a defined constant (default value is τ = 0.2). This distance
is computed only for the boundary zone E of patches as
follows:

d(Ei, Ei+1) =

 1
A

A∑
j=1

(
pj

Ei
− pj

Ei+1

)2

1/2

Once the patches are selected, there is a blending step to
provide smooth transition among adjacent patches. This is a
crucial difference between the two techniques. In the work
by Liang [4] the smoothing is performed with feathering,
or simply linear interpolation in the overlapping area, as
proposed by Szeliski and Shum [31]. In the image quilting
approach, the transition is performed with a minimum error
boundary cut technique. Basically, in a given row of the
overlapping area, the mincut searches for the pixel in the
next row that minimizes the error, restricted to three possible
cases, illustrated in Figure 4.

Figure 4. Mincut cases and a complete cut example

The main adaptation when using the above algorithm for
texture compression is that we have to keep track of which
patches are being selected to build the final texture. Since
the final result is a collection of patches from the sample,
properly combined, we need to store three types of infor-
mation: fixed-sized information about the synthesis process,
that is, the sizes of wE and wB ; the coordinates which define
where the selected patches start, plus information on how to

blend the patches. These last two are variable-sized, since
the amount of information in bits will vary depending upon
the desired result, and on the type of blending used.

We store, for each patch of the output, a pair (x, y) of
coordinates which define the upper-left corner of the patch
in the space of the sample. We will call the set of all pairs
of coordinates ψ. If we know offhand these coordinates,
for all patches that make up the whole result, we are able
to rebuild the texture instantaneously. This is the basis of
our compression algorithm. Since almost all samples used
in typical synthesis algorithms are small, under 256 pixels
in each dimension, storing the coordinates will take at most
two bytes for each patch. We have to store the values of wB

and wE as well, since they are needed to completely define
the patch. If we are rebuilding the texture with the Liang’s
technique this is all information needed; on the other hand,
if we are using image quilting, we also have to store the
pixels coordinates, which define the mincut boundary.

IV. REALTIME DECOMPRESSION ON GPU
Our compression scheme allows real-time decompression.

It can be done on the GPU or simply in software. This
is possible since we have all selected patches coordinates
encoded in the compressed file, allowing us to jump the most
expensive step in the texture re-synthesis (decompression).
For decompression we have as input information the original
sample plus a set ψ of pairs of coordinates, which define
where each patch starts. We also have wE and wB as
explained above, and for image quilting we also have the
coordinates of the mincut, for each pair of neighboring
patches.

Through the normalized texture coordinates and the se-
lected patches coordinates, with simple calculations we get
the right offsets and, finally, the final pixel color. With the
texture coordinates and the final texture resolution we can
easily find out the pixel location in the “virtually” decom-
pressed texture. Note that the random access requirement is
easily achieved since for any random texture coordinates we
get the right offsets and reach the final pixel color.

The metadata containing all the selected patches coor-
dinates is accessed in the pixel shader through a lookup
table. In fact, we have coded these coordinates as RGBA
data, that is, a 4 byte word RGBA encodes information for
two patches. The RGBA format is convenient because it
reduces the number of texture fetches. For instance, in a
decompression process with four patches (Fig. 5) in the final
texture we would have the following coordinates data/texture
data:

• Coordinates for 4 patches:
(xb0,yb0) (xb1,yb1) (xb2,yb2) (xb3,yb3)

• Equivalent one-dimensional texture data:
(R, G, B, A, R, G, B, A)

We also store the mincut coordinates in RGBA words, as
follows. For each row of pixels in the mincut region, we

store the number of pixels there are from the left border to
the cut. For instance, for the 6 rows of pixels in Figure 4,
we would have the following stored:

((1)R, (1)G, (1)B, (0)A, (1)R, (2)G, B, A)

If wB is not multiple of 4 we waste the few remaining bytes
from the last word, as in the above example, where the bytes
B and A would have no data stored.

In both compression variants we are using in this paper, a
given texel will be found in one of three possibilities in the
“virtually” decompressed texture. In Figure 5 we illustrate
these cases: green area, where the final color can be obtained
directly from the sample; yellow area, where two patches
are involved in the pixel synthesis and red area, where four
patches are involved in the pixel synthesis. After obtaining
the coordinates of the patches involved in synthesizing a
given texel from the lookup table, the next step depends
on the texture synthesis approach selected to compress the
texture. In the next subsections we have more specific details
of each approach.

Figure 5. A four patches synthesized texture. In the decompression process
texels can fall in one of three cases, represented by the 3 colors.

A. Liang based decompression

In Liang based decompression, when the texel falls out-
side the overlapping area (green area in Figure 5), we can get
the final color directly from the sample without performing
any operation over it. This access in the sample is done
through its respective selected patches coordinates.

In the second case, when the texel falls inside an over-
lapping area (yellow and red areas in Figure 5), we get the
coordinates of all patches involved in the overlapping and
calculate the interpolations, a single linear interpolation for
the yellow area and three linear interpolations in the red area.
For instance, if it is a simple vertical/horizontal overlapping
(as shown in Figure 3 left), we get the coordinates of the two
patches adjacent to the desired texel and use them to generate
the correct final texel color with a single interpolation. This
final texel will have exactly the same color when it was first
synthesized (compressed).

For the L-shaped overlapping, most pixels are solved as
described above. A special case occurs where the vertical
and horizontal overlapping regions meet (red area). In this
case we need the coordinates of the four patches that
generated the color of the pixels in this region. With this

four patches coordinates we get the final color with three
linear interpolations.

B. Image Quilting Based Decompression

As in the Liang scheme, the texels will fall inside or
outside the overlapping area, the difference here is that texels
inside the overlapping area are computed with mincut. After
obtaining the patches involved in the synthesis process, we
need to decide from which patch it came from. This selection
is easily done once we have the mincuts encoded in the
compressed format.

For a simple vertical overlap we just need to know
whether the pixel is left or right of the cut. This is done
with a single access to the encoded data lookup table. The
horizontal overlap is analogue to the vertical one. For the
L-shaped overlapping three cuts are considered, so we know
the pixel location with a minimum of one and a maximum
of three accesses to the lookup table.

As we can see in Fig. 5, the area where the decompression
is more expensive is relatively small (red area) compared to
the total size of the texture. The relative red area is even
smaller for outputs with higher resolutions. This is the key
to maintain the frame rate even with some extra lookup table
access.

V. RESULTS

We want to assess how much compression is possible
with our scheme. The efficiency of texture compression
algorithms can be measured using the number of bits per
pixel (bpp) needed to store the compressed texture. In Table I
we define the variables we use. For simplicity, we will
consider square output textures with k patches in either
dimension; k2 is the total number of patches needed to
synthesize the final output texture and at least k = 2. In
this case mout = nout.

Table I
NAMES AND MEANINGS OF VARIABLES.

Name Meaning
m x-resolution of sample
n y-resolution of sample
mout x-resolution of the result
nout y-resolution of the result
k2 total number of patches
we overlap region among patches (in # of pixels)
wb patch width (in # of pixels)

The resolution of the final texture is defined as a function
of number of patches k, and sizes wB , and wE as follows:

(kwB − (k − 1)wE)2

We will derive the compression rate for each one of the
texture synthesis algorithms we tested: Liang [32] and Image
Quilting [5].

A. Liang

The amount of compression is given by:

bpp =
8 · 3 ·mn+ c

m2
out

where 24mn is the cost of storing the sample and c is a
function to measure the extra cost of storing the information
to rebuild the texture. For each ki patch we have 2 bytes for
storage of the pair of coordinates plus 8 more bytes fixed
for storing header information, that is, the sizes of wE and
wB . Therefore c = 8(2k2 + 8) and the equation becomes:

bpp =
24mn+ 16k2 + 64

m2
out

Since the output resolution is given indirectly by the number
of patches and their size, we have mout = kwB−(k−1)wE .

B. Image Quilting

The amount of compression is given by the same equation
as in the Liang case, except that here we have the extra cost
of storing, for each overlapping area, the cuts offsets. For
each cut we need wB entries. The number of bits needed
for each entry is a function of wE , since we need dlog2 wEe
bits for storing this information.

For example, in Fig. 4, the complete path should be stored
as (1, 1, 1, 0, 1, 2), so the maximum offset would be wE .
For the L-shaped overlapping area, we consider the ’L’ cut
as two separated cuts, a vertical one and an horizontal one.

bpp =
24mn + 16k2 + 64 + 2k(k − 1)wBdlog2 wEe

m2
out

C. Numerical Examples

A numerical example might help understand these formu-
lae. Let us say we have k = 11, wB = 36, wE = 14,m =
n = 64. In this case mout = 256, and the final bpp for each
synthesis algorithm is:

• Liang

bpp =
24 · 64 · 64 + 16 · 121 + 64

2562
=

100304
65536

= 1.53

• Image Quilting

bpp =
24 · 64 · 64 + 16 · 121 + 64 + 2 · 11 · 10 · 36 · 4

2562

bpp =
100304 + 31680

65536
= 2.0

In other words, a 2562 texture, synthesized from a 642

sample, can be stored using our scheme with at most 2.0
bpp. Larger output textures will have an even better rate of
compression since the fixed cost is amortized by a larger
output. For instance, if we make k = 20, the output texture

resolution is 4542 and we have, for the worse case (image
quilting):

bpp =
24 · 64 · 64 + 16 · 400 + 64 + 2 · 20 · 19 · 36 · 4

4542

bpp =
214224
206116

= 1.0

In Figure 6 we plot how the rate of compression in bits
per pixel behaves with the increase in the number of patches
k, for image quilting, keeping all other parameters fixed.
Higher k results in better compression rates.

In Table II we have some compression results for all
textures in Figure 2. Note that most compression rates are
hardly reached by general texture compression algorithms.
The In/Out column refers to sample resolution/final texture
resolution. Another aspect that we should mention is that
our texture compression scheme is lossless as far as texture
synthesis itself is lossless, that is, our solution does not
introduce further degradation. Figure 7 shows how other
texture compression schemes degrade the visual quality of
the texture against our scheme.

Table II
COMPRESSION RESULTS.

Texture In/Out Liang bpp Quil. bpp
r1 74x75/2562 2,04 2,55
r1 74x75/5122 0,52 1,10
r2 64x64/2562 1,52 1,83
r2 64x64/5122 0,40 0,97
nr1 64x64/2562 1,53 2,01
nr1 64x64/5122 0,40 0,97
nr2 64x64/2562 1,52 1,83
nr2 64x64/5122 0,40 0,97
i1 90x90/2562 2,98 3,30
i1 90x90/5122 0,76 1,34
i2 80x80/2562 2,37 2,86
i2 80x80/5122 0,61 1,18
s1 60x60/2562 1,35 1,83
s1 60x60/5122 0,35 0,93
s2 60x60/2562 1,35 1,83
s2 60x60/5122 0,35 0,93

VI. CONCLUSIONS AND FUTURE WORK

We presented a texture compression algorithm which
uses texture synthesis from samples as the main tool for
compression. Our solution is lossless in the sense that it does
not introduce artifacts, except the ones inherent to texture
synthesis. During the synthesis step, we gather information
on which patches from the sample are being used to form
the final output texture. The compressed texture is the
sample plus the data gathered during the synthesis step.
This information is efficiently encoded on a 1D texture. The
whole solution was implemented on GPU.

Texture synthesis was considered to be prohibitive for
being used as the core of a texture compression scheme.
We showed how to overcome the main issues and presented

Figure 7. One advantage of our texture compression scheme is that it does not further degrade the results. Here we show the quality of several texture
compression schemes on the literature. Images were generated by PVRTexTool, a tool that comes with PowerVR SDK.

Figure 6. Rate of compression (bpp) against k (number of patches) for
Image Quilting based texture compression. When k increases so does the
output resolution and better compression rates are achieved. Other values
as wB = 44, wE = 18, m = n = 64.

a solution which uses texture synthesis as a simple texture
compression scheme running in real-time. Our solution leads
to compression rates, in several cases, never reached by
other compression schemes. In Table II we showed several
compression cases. We demonstrated our technique with
two popular PBTS techniques, the one due to Liang and
colleagues [32] and Image Quilting [5].

One possible limitation of our solution is that we can
only compress textures which can be built with PBTS
techniques. This is in fact not a serious limitation since
PBTS techniques are capable of handling a large number
of textures, as exemplified in the set of textures presented
in Figure 2. These textures are not optimally compressed by
the general texture compression schemes in the literature, as

noted in [30].
We are currently investigating how our approach could be

used to achieve even better compression rates. Similar to the
work presented in Inverse Texture Synthesis [3], we realized
that only a fraction of the sample is needed for the synthesis
process. In other words, we do not need to store the whole
sample to rebuild the texture, but only the needed pixels. As
a first step towards this goal we investigated, for a few cases,
how much of the sample is being used during the synthesis
process. Figure 8 illustrates the idea. The better case was for
the texture shown, where only 71% of the original sample
was needed to build the result. We are currently pursuing
further investigations to better explore this possibility.

Figure 8. Illustration of how we can optimize storage of the sample. The
gray area was not used during synthesis and therefore does not need to
be stored. Sample on the middle is 1262 and result is 1902. Amount of
sample used = 71%.

ACKNOWLEDGMENT

Work partially supported by FACEPE through grant APQ-
0203-1.03/06 and CNPq through grant 483356/2007.

REFERENCES

[1] T. Aila, V. Miettinen, and P. Nordlund, “Delay streams for
graphics hardware,” ACM Transactions on Graphics, vol. 22,
pp. 792–800, 2003.

[2] A. C. Beers, M. Agrawala, and N. Chaddha, “Rendering from
compressed textures,” in SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1996, pp. 373–378.

[3] L.-Y. Wei, J. Han, K. Zhou, H. Bao, B. Guo, and H.-Y. Shum,
“Inverse texture synthesis,” ACM Transactions on Graphics,
vol. 27, no. 3, pp. 52:1–52:9, Aug. 2008.

[4] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum,
“Real-time texture synthesis by patch-based sampling,” ACM
Transactions on Graphics, vol. 20, no. 3, pp. 127–150, July
2001.

[5] A. Efros and W. Freeman, “Image quilting for texture syn-
thesis and transfer,” Proceedings of SIGGRAPH 2001, pp.
341–346, August 2001, iSBN 1-58113-292-1.

[6] M. O. Delp E., “Image compression using block truncation
coding,” IEEE Transactions on Communications, pp. 1335–
1342, 1979.

[7] G. Campbell, T. A. DeFanti, J. Frederiksen, S. A. Joyce, and
L. A. Leske, “Two bit/pixel full color encoding,” SIGGRAPH
Comput. Graph., vol. 20, no. 4, pp. 215–223, 1986.

[8] G. Knittel, A. G. Schilling, A. Kugler, and W. Straßer,
“Hardware for superior texture performance,” Computers &
Graphics, vol. 20, no. 4, pp. 475–481, Jul. 1996.

[9] O. Konstantine, N. Krishna, and H. Zhou, “System and
method for fixed-rate block-based image compression with
inferred pixel values,” 1999.

[10] D. V. Ivanov and Y. Kuzmin, “Color distribution - a new
approach to texture compression,” Comput. Graph. Forum,
vol. 19, no. 3, 2000.

[11] Y. su Kwon, I. cheol Park, and C. min Kyung, “Pyramid
texture compression and decompression using interpolative
vector quantization,” in In ICIP, 2000, pp. 89–106.

[12] Y. Tang, H. Zhang, Q. Wang, and H. Bao, “Importance-driven
texture encoding based on samples,” cgi, vol. 0, pp. 169–176,
2005.

[13] W.-C. Lin, J. H. Hays, C. Wu, V. Kwatra, and Y. Liu, “A
comparison study of four texture synthesis algorithms on reg-
ular and near-regular textures,” Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-
04-01, January 2004.

[14] S. Fenney, “Texture compression using low-frequency sig-
nal modulation,” in HWWS ’03: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2003, pp. 84–91.

[15] J. Ström and T. Akenine-Möller, “ipackman: high-
quality, low-complexity texture compression for mobile
phones,” in HWWS ’05: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. New York, NY, USA: ACM Press, 2005, pp.
63–70.

[16] J. Ström and M. Pettersson, “Etc2: texture compression using
invalid combinations,” in GH ’07: Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware. Aire-la-Ville, Switzerland, Switzerland: Euro-
graphics Association, 2007, pp. 49–54.

[17] K. S. Fu and S. Y. Lu, “Computer generation of texture using
a syntactic approach,” Computer Graphics (SIGGRAPH ’78
Proceedings), vol. 12, no. 3, pp. 147–152, Aug. 1978.

[18] J. Monne, F. Schmitt, and D. Massaloux, “Bidimensional
texture synthesis by markov chains,” Computer Graphics and
Image Processing, vol. 17, no. 1, pp. 1–23, Sep. 1981.

[19] G. Cross and A. K. Jain, “Markov random field texture
models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 5, no. 1, pp. 25–39, Jan. 1983.

[20] A. Gagalowicz and S. Ma, “Model driven synthesis of natural
textures for 3-D scenes,” in Eurographics ’85, 1985, pp. 91–
108.

[21] K. Popat and R. W. Picard, “Novel cluster-based probability
model for texture synthesis, classification, and compression,”
in Proceedings SPIE visual Communications and Image Pro-
cessing ’93, Boston, 1993, pp. 756–768.

[22] A. Efros and T. Leung, “Texture synthesis by non-parametric
sampling,” in International Conference on Computer Vision,
vol. 2, 1999, pp. 1033–1038.

[23] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-
structured vector quantization,” Proceedings of SIGGRAPH
2000, pp. 479–488, July 2000, iSBN 1-58113-208-5.

[24] A. Nealen and M. Alexa, “Hybrid texture synthesis,” in
Eurographics Symposium on Rendering: 14th Eurographics
Workshop on Rendering, Jun. 2003, pp. 97–105.

[25] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick,
“Graphcut textures: Image and video synthesis using graph
cuts,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
277–286, Jul. 2003.

[26] Q. Wu and Y. Yu, “Feature matching and deformation for
texture synthesis,” ACM Transactions on Graphics, vol. 23,
no. 3, pp. 364–367, Aug. 2004.

[27] V. Kwatra, S. Lefebvre, G. Turk, and L. Wei, “Example-
based texture synthesis.” [Online]. Available: http://www.cs.
unc.edu/∼kwatra/SIG07 TextureSynthesis/coursenotes.htm

[28] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.
Salesin, “Image analogies,” in SIGGRAPH ’01. New York,
NY, USA: ACM Press, 2001, pp. 327–340.

[29] M. F. Barnsley and L. P. Hurd, “Fractal modelling of real
world images,” in Fractal Image Compression, 1993, pp. 219–
239.

[30] L.-Y. Wei, “Tile-based texture mapping on graphics hard-
ware,” in Graphics Hardware 2004, Aug. 2004, pp. 55–64.

[31] R. Szeliski and H.-Y. Shum, “Creating full view panoramic
image mosaics and environment maps,” in Siggraph’97, 1997,
pp. 251–258.

[32] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-
time texture synthesis by patch-based sampling,” ACM Trans.
Graph., vol. 20, no. 3, pp. 127–150, 2001.

