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RECENT ADVANCES IN MOLECULAR BIOLOGY

Polypharmacology and supercomputer-based docking: opportunities and challenges
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(Received 20 December 2013; final version received 23 February 2014)

Polypharmacology, the ability of drugs to interact with multiple targets, is a fundamental concept of interest to the
pharmaceutical industry in its efforts to solve the current issues of the rise in the cost of drug development and decline in
productivity. Polypharmacology has the potential to greatly benefit drug repurposing, bringing existing pharmaceuticals on
the market to treat different ailments quicker and more affordably than developing new drugs, and may also facilitate the
development of new, potent pharmaceuticals with reduced negative off-target effects and adverse side effects. Present day
computational power, when combined with applications such as supercomputer-based virtual high-throughput screening
(docking) will enable these advances on a massive chemogenomic level, potentially transforming the pharmaceutical
industry. However, while the potential of supercomputing-based drug discovery is unequivocal, the technical and
fundamental challenges are considerable.
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1. Introduction

Most of today’s pharmaceuticals, or ‘drugs’, are small

organic molecules interacting with proteins in the patient’s

body. Hence, most drug discovery effort aims at identifying,

optimising and clinically validating small molecules that

have the needed chemical features to bind strongly and

specifically to a protein target relevant to a specific medical

condition. Polypharmacology is based on the concept that

pharmaceuticals may interact with more than one different

protein, and even with proteins without similar sequences

and/or structures.[1] To illustrate this concept, Yildirim et al.

have built a drug–target network (a bipartite graph) of

interactions for all known FDA-approved drugs and their

targets currently on themarket usingdata from theDrugBank

database.[2] Of the 890 approved drugs with known targets

used to develop the drug–target network, 89% are linked

with verified multiple protein targets. This indicates that the

polypharmacological nature of existing pharmaceuticals is

more of a rule than an exception and suggests that future

discovered molecules will most likely also possess

polypharmacological properties as well.

The polypharmacological, promiscuous nature of phar-

maceuticals can have both beneficial and detrimental

consequences. The former of which can be exploited to, for

example, improve drug efficacy and prevent drug resistance.

[3] In addition to the ability of chemical compounds to

interact with an array of protein targets, many diseases have

multiple genetic determinants, individual genetic determi-

nants may be involved in multiple diseases, and protein

function and expression are controlled by a regulatory

network of other proteins.[4] Understanding of the full

network of drug–target interactions and disease and

regulatory pathways will permit for repurposing of approved

drugs for new applications and, inversely, novel approaches

to repurposing already-studied drug targets for new diseases

and guidance in discovering new drugs that take advantage of

beneficial secondary target interactions while avoiding

adverse effects. The fundamental characterisation and

exploration of polypharmacological networks have the

potential to change the pharmaceutical industry and lead to

more drugs on the market that target new diseases, at a

reduced cost andwith a better understanding of their potential

side effects. Doing so will, however, present unique

challenges and will necessitate state-of-the art supercomput-

ing capacities to produce the needed data and analyse it

efficiently.

2. Beneficial consequences of polypharmacology

Functional genomic studies have shown that most single-

gene knockouts have little to no effect on phenotype.[5–7]

The robustness of phenotypes can be explained by the

existence of redundant protein functions and signalling

routes.[8] This suggests that a polypharmacological drug
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may be efficacious because it is modulating multiple

components of a disease pathway or multiple pathways

relevant to an undesirable phenotype. In addition, when a

pharmaceutical targets multiple points in a pathway, if one

point develops mutations that cause drug resistance, there

remain multiple mechanisms and pathways in which the

drug may still act. For instance, fluoroquinolones are

prescribed as broad-spectrum antibiotics at concentrations

at which its two main targets (bacterial gyrase and

topoisomerase IV) are inhibited, even though the

inhibition of only one of them is needed to stop bacterial

growth, thus preventing antibiotic resistance caused by

single mutations of one of the targets.[3] While there is

arguably a case for polypharmacological drug design, the

pharmaceutical industry still largely relies on a paradigm

in which one drug very selectively interacts with one target

because a multitarget approach would be much more

complex to design and implement. Hence, new drug

design methodologies are needed in order to fully take

advantage of the polypharmacological nature of drugs.

3. Detrimental consequences of polypharmacology

Interactions between a drug and multiple proteins also

result in undesirable side effects and toxicity. Many

adverse drug reactions result from drugs interacting with

non-therapeutic antitargets.[3] For example, fenfluramine,

an anorexigen, was withdrawn from the market because it

led to pulmonary hypertension and heart valve damage due

to the unwanted activation of serotonin 5-HT2B.[9–11] It

has been demonstrated that animal studies during pre-

clinical trial may not yield significant indications of these

adverse interactions in humans [12], and such adverse

effects are generally not discovered until a drug has

reached clinical trial or is already on the market. With the

number of different proteins in humans and the genetic

variations observable in the population, a full under-

standing of all possible interactions through experiments

and clinical testing alone is infeasible, making compu-

tational investigations particularly useful and relevant.

4. Repurposing

One way to make use of some of the resources that have

been lost to failed drugs is to find ways to utilise previous

investments in research for new discoveries. Drug

repurposing (also called repositioning or therapeutic

switching) allows for drugs that have already been tested

and approved as safe to be marketed and used to treat

diseases that the drug was not initially developed to treat.

This is possible if the intended drug targets are pleiotropic

and involved in multiple disease pathologies or if the

drug’s off-target interactions are relevant in an alternative

disease pathway. Drug repurposing is time and cost

effective since a great deal of effort has already gone into

developing and testing a drug that has subsequently

already gone through the approval process. Repurposing

may also be a mechanism to obtain pharmaceuticals that

treat neglected diseases that would not otherwise create a

profitable market for pharmaceutical companies, such as,

for instance, in the case of Eflornithine (originally

developed as an anti-cancer drug) that was repositioned

and successfully used to treat human African trypanoso-

miasis, a tropical disease.[13] Here again, computational

tools that explore the complete polypharmacological space

of existing drugs can greatly accelerate the repurposing of

approved drugs.

Drug targets can also be repositioned since many drug

targets are pleiotropic. This is similar to, and has overlap

with, drug repositioning, but can be unique when a drug

target for the disease being investigated has not yet been

discovered but was previously studied as a relevant target

for an alternative disease. As clinical target validation

rates are low,[14] computational tools to predict and

identify proteins that are involved in a disease pathway,

as well as candidate drug targets, are also useful for

improving the efficiency of drug discovery.

5. Towards a systems biology (network-based)

approach to drug discovery

Network-based approaches have been developed to

identify drug targets, both novel and for repositioning. In

[14], genes expressed differentially for a disease of interest

are overlaid on a molecular interaction network and

network analysis methods used to identify drug targets

associated with a disease of interest. Since drug targets

may highly influence a disease-specific expression

response, the combination of (experimental) expression

data and knowledge-based data such as molecular

interaction networks can give new insights into drug

targets. Identified targets can then be used to develop novel

drugs for a specific disease. Alternatively, if the identified

target is already used in the treatment of another disease,

it can be evaluated for target repositioning. In this context,

a computational framework, drugCIPHER, has been

developed for predicting drug–target interactions and

side effects on a genome-wide scale.[14–16] This

framework uses both pharmacological space (i.e. drug

therapeutic and chemical similarities) and genomic space

(i.e. protein–protein interaction networks) to predict new

interactions on a large scale. The power of the method,

however, is limited by the quality and incompleteness of

current protein–protein interaction data needed as inputs

for this approach.

These above-mentioned examples show instances in

which computational tools have been used to orient and

facilitate drug discovery and the characterisation of
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medically relevant pathways by combining biomedical

data, polypharmacological properties of drugs and the

recognition that disease phenotypes are the result of an

underlying network of interactions. Computational

approaches are based on the mining and understanding

of the many-to-many relationship between the set of

existing (and possible) pharmaceuticals and the set of

proteins defining the druggable genome.

In the future, the above-mentioned information will be

able to be exploited for purposes beyond the drug

discovery and design process, and directly used for patient

care in a clinical setting. As described in Ref. [4], an ideal

therapeutic strategy would involve an individual screen for

each patient that includes their mutations and genomic

signature to identify misregulated elements in the

underlying network that will be the target of a specialised

treatment plan. This would, however, require a full

understanding of the polypharmacological profiles of

available drugs.

6. Computational docking to study polypharmacology

The previous sections illustrate how the ever-growing

wealth of experimental and clinically obtained biological

and medical data can be used for knowledge discovery in

drug research. In drug discovery, as in most contemporary

biology (and indeed as in most contemporary science),

another source of data utilised originates from numerical

experiments, such as molecular simulations. There are

many in silico techniques that can be used to study the

interaction between a drug candidate and target protein,

including extremely computationally intensive approaches

of simulating the behaviour of every atom in the protein–

ligand complex in solution, and extracting from these

simulations thermodynamic quantities, such as protein:

ligand binding free energies. For instance, in a recent

major computational achievement, the cancer drug

dasatinib was simulated to bind in its experimentally

determined binding pocket during an unguided molecular

dynamics simulation [17] that sampled all possible

protein:ligand interactions and described the binding

pathway of a pharmaceutical in its protein target at an

atomistic level of detail. These techniques are very

insightful in determining how a small molecule interacts

with its target, but they are too time- and computationally

intensive to be used in a high-throughput manner

comparable to that used experimentally to identify new

hits in libraries of chemicals. Cost-effective methods are

needed that can virtually screen a large number of drug–

protein complexes quickly. Such a method is virtual

docking, an efficient computational process that aims at

predicting the bound conformation of a protein–ligand

complex and how well it binds through a scoring

algorithm.[18,19] Autodock4 [20] and Autodock Vina

[21] are two open source and freely available docking tools

commonly used in academic pharmaceutical research. Our

laboratories developed high-throughput tools utilising

these docking engines and the Message Passing Interface

(MPI) libraries to efficiently distribute a massive number

of docking calculations to supercomputers, namely

Autodock4.lga.MPI [22] and VinaMPI,[23] respectively.

Docking applications and scoring functions have been

compared in reviews.[24–26] The scoring functions

commonly used in docking applications use approxi-

mations to rapidly estimate protein:ligand binding

affinities and the resulting computational efficiency

makes these applications useful for virtual high-through-

put screens (vHTS) in which millions of drug–protein

complexes can be tested quickly (in a matter of days or

hours) on sufficiently powerful supercomputers.

In addition to being used for hit discovery (or lead

optimisation), vHTS, because of its potential to produce

and analyse large amounts of molecular and biological

data, can be used to address many of the challenges and

opportunities of polypharmacology introduced earlier. For

instance, a recent study used docking scores to relate

complex drug–protein interaction profiles from DrugBank

[2] with effect profiles.[15] The information was

combined using correlation and classification methods to

generate an effect probability matrix or drug profile, and

gives a probability that each drug has any given effect.

While powerful, this method is limited by the need to

know a priori the effects of the drugs. A tool is needed that

can make predictions about possible side effects of novel

drugs during the early stages of drug discovery.

Polypharmacology is rationalised in [27] as a result of

protein domains serving as drug targets. It is assumed that

there are a limited number of domain types that can be

combined to form different proteins of different function.

[28] This concept implies that drugs bind to multiple

proteins because they target a common domain shared

between proteins that may otherwise be lacking overall

structural and sequence homology. This idea has been used

in [29] to identify potential secondary protein targets by

looking for binding site similarities. In this work, a

workflow which involves molecular docking into a filtered

subset of the Protein Data Bank (PDB) [30] was developed

to detect polypharmacological targets. The workflow

includes (1) sequence homology clustering of all protein

chains in the PDB, (2) selection of one representative

structure from each cluster to create a subset of the PDB in

which each structure is at least somewhat dissimilar, (3)

assessment of binding site similarity between potential

binding sites in each of the structures in the PDB subset

and the known target and (4) docking of the drug candidate

into the structures containing similar active sites. This

approach has led to the identification of secondary targets

for an inhibitor of TbREL1 from Trypanosoma brucei, the

causative agent of African sleeping sickness. This should
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be implemented early in the drug discovery pipeline,

before lead optimisation, in order to identify potential

undesirable secondary targets and optimise the specificity

of the lead molecule. The challenges of this approach are

(1) the very high number of docking calculations needed

to be performed, (2) the introduction of false-positives due

to shortcomings in the docking and scoring algorithms, (3)

the dependence on sequence-homology clustering to

reduce the number of protein structures to be processed

because of computational limitations and (4) the ability to

scale this solution to a library of compounds, and not just

one candidate compound. To overcome these limitations,

vHTS/docking tools are needed that can dock libraries of

drug candidates into large numbers of protein structures

with reasonable accuracies.

7. Chemogenomic level understanding of

polypharmacology

Chemogenomics is the systemic study of the effects of

large libraries of drug compounds against a wide variety of

macromolecular targets.[31–33] Cerep, a biotechnology

company, developed BioPrint, a suite of proprietary data

and analysis tools to assist in drug discovery.[34] They

provide pharmacological activity data between their

library of in-house chemical compounds and a number

of protein targets. This binding affinity data can be

clustered to identify classes of proteins that interact with

similar compounds. This clustering by pharmacological

activity is used to identify ‘hotspots’ of therapeutic and

off-target effects of different compounds. The ability to

produce such data on a chemogenomic scale would not

only be invaluable to the pharmaceutical industry but it

would also lead to a better understanding of polypharma-

cology, and in combination with systems biology, a better

understanding of disease pathology and biological

mechanisms of diseases.

There are over 21 million commercially available

molecules that can be used in screening for drug

candidates in the ZINC database.[35] Considering also

the chemistry yet to be synthesised, an estimated

novemdecillion (1060) small molecules are theorised to

exist in the chemical universe.[36] In addition, there are

about 1500 human drug targets, representing the intersec-

tion of the druggable genome and disease-altering genes

[37] and as many as 10,000 ligand-binding domains [38] –

without including bacterial or viral protein targets. This

creates a super-massive drug discovery space that cannot

be explored and validated using experimental screening

approaches. Only contemporary supercomputing power

has the potential to serve as an exploratory vessel.

8. Limitations of computational docking for

chemogenomic level polypharmacology

The power of vHTS/docking to be successfully used for hit

discovery has been demonstrated in many studies

involving relatively small-scale projects (low number of

targets, relatively low number of drug candidates).

[15,29,32,39–41] With today’s computational power and

docking technologies such as developed in our labora-

tories,[23] several millions of compounds can be virtually

screened in a single day. Figure 1 shows the evolution of

docking capabilities achieved by our laboratories to date.

Our docking technology Autodock4.lga.MPI, based on

Autodock4 was able to perform 300,000 dockings in a 24 h

period while utilising 8 k processing cores.[22] By

increasing the core count to 65 k, the performance per

core is reduced but this method successfully screened 1

million compounds in a 24- h period.[26,42] Our more

recently developed VinaMPI approach focused on the

ability to scale the docking program Autodock Vina at

larger core counts. In benchmarks, this code ran on 3/4th of

the Kraken supercomputer (i.e., on 85 k cores) with a

continued decrease in time-to-completion of the job.[23]

Recent improvements on the task-to-worker ratio mean

that we estimate that nearly 40 million compounds can be

screened on the Department of Energy’s Titan Super-

computer, presently the most powerful supercomputer in

the USA, using 180 k cores in a 24 -h period.

However, in silico vHTS still has significant draw-

backs. The scoring algorithms do not always generate

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

dockings/sec dockings/hour/cpu
dockings/day

Figure 1. (Colour online) Docking capabilities achieved to date.
The y-axis is number of dockings per different units (blue line:
seconds; red line: hours/cpu; green line: day). The x-axis represents
different docking technologies and job set-ups. alm(8 k) and alm
(65 k) representAutodock4.lga.MPI ([22]), using the corresponding
core counts. VinaMPI(low ratio) represents VinaMPI on 85 k
supercomputer cores with a low task-to-worker ratio and VinaMPI
(high ratio) represents VinaMPI on 180 k supercomputer cores with
a high task-to-worker ratio (See Ref. [1]).
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scores that correlate well enough with experimentally

measured binding affinities.[43] When millions of

compounds are being processed, the number of false-

positives can be in the thousands. In addition, to reduce the

computational complexity of the problem, protein

structures are usually kept rigid, or mostly rigid, which

essentially limits these numerical experiments to the

investigation of – at best – an ‘induced fit’ binding

mechanism or – at worst – a ‘lock-and-key’ over-

simplification of protein:ligand binding mechanisms.

Approaches that sample efficiently the dynamic flexibility

of many protein targets are needed to investigate

‘conformational selection’ binding mechanisms in which

drug candidates bind in a ‘selected’ protein conformation

otherwise accessible at room temperature.

Areas for potential improvement in scoring functions

include more advanced potential energy models and better

incorporation of solvent effects and configuration entropy.

Another approach is to perform more computationally

rigorous free energy methods on top scoring vHTS docked

compounds to generate more accurate scores and weed out

false-positives. Reviews that address these directions

include Refs [43–46].

The dynamics of protein targets, controlling many

biological processes such as molecular recognition and

catalytic activity, may be obtained from molecular

dynamics simulations. While all atom simulations of

large proteins are very computationally expensive, the

ability to efficiently model active-site flexibility can

greatly improve virtual docking and indeed allow for a

‘conformational selection’ binding mechanism to be

included in the virtual screening process. This has been

conceptualised in [47] and has led to successful

applications in which potential drug candidates were

identified that would not have been found through

traditional virtual screenings using only a static,

experimentally solved structure of the protein, as

demonstrated in [48]. These alternative conformations

can also be used to find novel binding sites not existing in

the crystal structure.[49] When dealing with large

chemical databases of potential drug candidates, our

laboratories have also observed that the use of selected

snapshots from a molecular dynamics simulation of a

protein target leads to significantly improved database

enrichment over that obtained using only a static (crystal)

structure [see Figure 2 for an example using human

tyrosine-protein kinase c-src (PDB ID 2SRC) and its set of

ligands and decoys from the Directory of Useful Decoys

[50]]. However, the derivation of a method for extracting

snapshots that represent conformational states relevant to

drug binding is still an active area of research.

9. Conclusions

The promiscuous (polypharmacological) nature of drugs

can be exploited to both repurpose existing drugs and

design better, more effective drugs. However, the search

space of all drug possibilities and protein targets is too

large to thoroughly explore experimentally. Efficient and

accurate computational methods for exploring this space

could revolutionise the pharmaceutical industry. In this

regard, virtual docking holds great promise as a lynchpin

of the future drug-repurposing pipeline. As advances are

made in docking and scoring methods, the combination of

the massive amount of interaction information that can

be generated via simulation and extreme computational

power available with supercomputers with ever-growing

sources of genomic, disease and drug profile data will pave

the way for a new generation of pharmaceutical discovery

and personalised medicines.[51]
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