
Mobilis - Comprehensive Developer Support for
Building Pervasive Social Computing Applications

Daniel Schuster, Robert Lübke, Sven Bendel, Thomas Springer, Alexander Schill
Computer Networks Group

Technische Universität Dresden
Dresden, Germany

{firstname.lastname}@tu-dresden.de

Abstract—Pervasive Social Computing (PSC) is an ongoing
research trend of merging the two worlds of pervasive computing
and social computing. While there are already lots of promising
PSC applications, building such systems is still very sophisticated
and error-prone. The Mobilis framework provides developer
support for mobile social apps (native Android and HTML5),
a service environment for dynamic deployment of services, au-
thentication and robust communication over unreliable networks
as well as an emulation environment to be able to mimick user
behavior and to test applications in a lab environment before
field tests. The system is available as open source software on
Github.

I. INTRODUCTION

The tremendous success of mobile apps on smartphones
has changed the focus of research in pervasive computing.
As social features get more and more important, this creates
what is called Pervasive Social Computing (PSC) as a new
class of systems and applications as defined in [1] and [2].
Accordingly, the requirements to an infrastructure for PSC
applications are shifting to the support of social and envi-
ronmental awareness in combination with rich features for
collaboration and interaction between users, potentially in real-
time.

There are already some frameworks for pervasive computing
which address at least some of these issues. But none of them
significantly reduces the overwhelming complexity of building
such distributed applications. With our practical experiences in
the research field in mind, we expect a framework to:

• provide easy authentication and connectivity among all
entities

• provide support for building and deploying services used
by mobile apps

• provide easy APIs at a number of platforms including
Android and HTML5

• provide an emulation environment where to test complex
applications

With all these requirements in mind, we created the Mobilis
platform, an ongoing open source effort to ease and accelerate
development of PSC applications.

II. PERVASIVE SOCIAL COMPUTING BASED ON XMPP

The eXtensible Messaging and Presence Protocol (XMPP)
is a family of open, highly extensible communication protocols
designed for Internet-scale messaging and presence. It is

standardized by the IETF as a bunch of core protocols and a
large set of XMPP Extension Protocols (XEPs). All resources
are identified by an XMPP ID (e.g., alice@xmpp.org/iphone).
Using the XMPP ID all resources communicate based on
asynchronous messages (XMPP stanzas) represented in XML
and exchanged as XML-Streams via TCP.

We adopted XMPP as the heartbeat of our infrastructure
as can be seen in the example scenario in Figure 1. Standard
XMPP servers can be used as a black box. XMPP clients
can connect and authenticate to an XMPP server where
they are registered. Thereafter, XMPP clients can start to
exchange messages and to track presence. Extension protocols
add further features to XMPP servers. In our infrastructure
we especially consider: Session Discovery (XEP-0030) for
finding and exploring the Mobilis Server, Multi-User Chat
(XEP-0045) for session management and group messages,
Publish-Subscribe (XEP-0060) for context distribution, and
File Transfer (XEP-0096) for media sharing.

To create a pervasive service infrastructure, client-side apps
as well as server-side services are integrated as XMPP clients
and thus communicate via standard XMPP protocols requiring
no modification at the XMPP servers. This homogeneous setup
ensures interoperability across highly heterogeneous devices
and service platforms. Scalability is supported with the ability
to federate a set of XMPP servers which distributes the
effort for account management, message routing, etc. Basic
awareness functions are covered by the exchange of presence
information and pub/sub support.

III. THE MOBILIS FRAMEWORK

The main components of the Mobilis framework can be seen
in Figure 1. The Mobilis Server offers a hosting environment
for PSC services (called Mobilis services). Services are based
on a service description. We created the Mobilis Service
Description Language (MSDL) for this purpose. It offers
WSDL-like capabilities with some added features (especially
XMPP support). With MSDL it is possible to describe the
network protocol of the PSC application and to create stubs
for each node type which eases development of the apps and
services. Once a service is changed, it can easily be uploaded
to the service environment during runtime. Clients connected
to the old version keep running while new clients are redirected
to the new service version during service discovery.



Smartphone 
Android

HTTP 

(BOSH)

XMPP

Mobilis Server

XMPP

Android Client

XMPP Library

MXA

Mobilis App

Emulation Server

XMPP Library

MXJ

Emulation Control

Emulation Server

HTML5 Client

XMPP Library

MXJS

Web Application

Smartphone 
iOS

XMPP Server

XMPP Server

Mobilis Server

XMPP Library

Service Environment

Mobilis Services

MXJ

MSDL

XMPP

Fig. 1. Mobilis example scenario

We created Mobilis Libraries for each target platform to
provide an abstraction layer for all network communication.
These are called Mobilis XMPP for X, where X stands for
the specific platform. We currently provide implementations
for Android (MXA), pure Java (MXJ) and JavaScript/HTML5
(MXJS). They all include easy-to-use APIs based on MSDL
descriptions and handle all the XMPP-based messaging be-
tween the apps and services including reliability mechanisms.
Bidirectional-streams Over Synchronous HTTP (BOSH) are
used to encapsulate XMPP into HTTP for HTML5 applica-
tions. This will be replaced by WebSockets in a later release.

The third component is the Emulation Server, which
provides means to emulate the behavior of complex PSC ap-
plications. Clients register themselves at the Emulation Server
and receive scripting commands. Thus, a central script can be
created to describe a complex application scenario including
location changes and waiting conditions between users.

Furthermore, a number of Demo Applications is available
at our Github repository [3]. The most prominent application
is Mobilis XHunt [4], a location-based game where multiple
agents hunt a wanted criminal using public transport of a real
city. It is yet our most complex and demanding application
as participants dynamically form groups, exchange location
events in high frequency and experience certain variations in
network quality while they move through the city.

IV. DEMO

The intended demo will show an emulated game of XHunt
using different Android, iOS and Windows Phone devices as
shown in Figure 2. Real movement of players will be replaced
by explicit SetLocation() commands for demo purposes. An
additional notebook will be used on site to show the Emulation
Server output (scripting events) as well as the XMPP traffic
on the Mobilis Server. Besides the emulated demo, attendees
will optionally be able to create and play their own XHunt
games using their own smartphones.

Fig. 2. Different devices running the XHunt demo app

V. PLATFORM REQUIREMENTS AND LICENSING

All software components described here are available with
full source code under Apache license at our Github repository
[3]. The software is now in a mature state and has already been
used in a number of research projects. We counted more than
1,500 downloads of the software source code by now. It is
well documented in the Github wiki attached to the project.

ACKNOWLEDGMENT

The authors would like to thank the many student contrib-
utors of the Mobilis project, especially István Koren, Marc
Löchner, Danny Kiefner, Thomas Walther, Christian Magen-
heimer and Niko Jansen.

REFERENCES

[1] S. B. Mokhtar and L. Capra, “From pervasive to social computing:
algorithms and deployments,” in Proceedings of the 2009 international
conference on Pervasive services, ser. ICPS ’09, London, UK, 2009.

[2] J. Zhou, J. Sun, K. Athukorala, and D. Wijekoon, “Pervasive social
computing: Augmenting five facets of human intelligence,” in Proc.
UIC/ATC, 2010.

[3] TU Dresden, “Mobilis platform,” https://github.com/danielschuster/mobilis,
2012.

[4] D. Schuster, D. Kiefner, R. Lübke, T. Springer, P. Bihler, and H. Mügge,
“Step by step vs. catch me if you can - on the benefit of rounds in location-
based games,” in 3rd IEEE Workshop on Pervasive Collaboration and
Social Networking (PerCol), Lugano, Switzerland, 2012.


