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Abstract
We present a massively parallel vector graphics rendering pipeline
that is divided into two components. The preprocessing component
builds a novel adaptive acceleration data structure, the shortcut tree.
Tree construction is efficient and parallel at the segment level, en-
abling dynamic vector graphics. The tree allows efficient random
access to the color of individual samples, so the graphics can be
warped for special effects. The rendering component processes
all samples and pixels in parallel. It was optimized for wide an-
tialiasing filters and a large number of samples per pixel to generate
sharp, noise-free images. Our sample scheduler allows pixels with
overlapping antialiasing filters to share samples. It groups together
samples that can be computed with the same vector operations using
little memory or bandwidth. The pipeline is feature-rich, support-
ing multiple layers of filled paths, each defined by curved outlines
(with linear, rational quadratic, and integral cubic Bézier segments),
clipped against other paths, and painted with semi-transparent colors,
gradients, or textures. We demonstrate renderings of complex vector
graphics in state-of-the-art quality and performance. Finally, we
provide full source-code for our implementation as well as the input
data used in the paper.
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1 Introduction
Vector graphics are one of the most traditional, prevalent, and versa-
tile forms of visual information representation. They can specify, in
a resolution-independent fashion, a wide variety of content, such as
scalable fonts, pages of text and illustrations, maps, charts, diagrams,
user interfaces, games, and even photo-realistic drawings. Despite
recent developments in diffusion-based vector graphics [Orzan et al.
2008; Finch et al. 2011; Sun et al. 2012, 2014], the vast majority of
resolution-independent content in use today follows the framework
laid out in the seminal work of Warnock and Wyatt [1982].
A vector illustration is composed of multiple paths that define shapes
to be painted in a given order. The outline of a shape is specified
by a set of oriented closed contours. Each contour is a piecewise
polynomial curve, defined by control points that specify linear, ra-
tional quadratic, or integral cubic Bézier segments. The interior of
a shape is the set of points that satisfy the path’s fill rule (even-odd
or non-zero winding). Shapes with disconnected components, mul-
tiple holes, and self-intersections are allowed and frequently used

Figure 1: Our vector-graphics rendering pipeline is divided into a
preprocessing component that is parallel at the segment level, and a
rendering component that is parallel at the pixel and sample levels.

in practice. Boolean operations between paths are also supported,
in particular intersection between paths (i.e., general clipping). Fur-
thermore, the path outlines can be stroked to produce thick lines,
including dashing patterns, joins, and caps. (In our prototype im-
plementation, strokes are not handled by the pipeline: they are
converted to filled primitives in the CPU. Strings of text characters
receive the same treatment.) Paints include solid colors, linear and
radial gradients, and texture patterns. Semi-transparent paints cause
overlapping paths to be composited [Porter and Duff 1984].

Input vector content comes in many similar formats [PostScript 1999;
PDF 2006; SWF 2012; OpenXPS 2009; SVG 2011]. Regardless of
format, any vector content must be rendered (i.e., scan-converted
or rasterized) into an image at a chosen resolution before it can be
printed or displayed on screen. Many tools are available for this
purpose (e.g., Cairo, OpenVG, NV_path_rendering, Skia, Direct2D,
Silverlight, Flash, GhostScript, MuPDF). All rendering algorithms
must solve the same fundamental point-in-shape problem: identify
the set of points that belong to each shape so they can be painted
with appropriate colors [Haines 1994].

Although most algorithms exploit spatial coherence to reduce the
amount of computation needed for rendering, previous methods
involve serial components during processing. For example, shapes
may be sequentially added to an acceleration data structure prior to
rendering [Nehab and Hoppe 2008], or rasterized one after the other
into the output image [Kilgard and Bolz 2012]. To take advantage
of the processing power of modern GPUs, we designed our vector
graphics rendering pipeline to be massively parallel at every stage.
As shown in figure 1, it is divided into a preprocessing component
that is parallel at the input segment level, and a rendering component
that is parallel at output sample and pixel levels.

The preprocessing component creates the shortcut tree, a novel hier-
archical acceleration data structure (i.e., a quadtree) that allows the
color of each point in the illustration to be evaluated very efficiently.
The abstraction stage converts all input segments into implicit and
monotonic abstract segments. These can be intersected only once
by horizontal rays, and can be efficiently queried for the existence of
such intersections. The shortcut tree is created in breadth-first fash-
ion. At each subdivision level, all segments in all cells marked for
subdivision are processed in parallel and routed to the appropriate
child cells. As subdivision progresses, the pruning stage considers
all segments in parallel and eliminates those that have been clipped
or entirely occluded by other paths. Each leaf cell in the shortcut tree
contains a specialized representation of the illustration that includes
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only a small fraction of input segments: those that are needed to
solve the point-in-shape problem for the paths that contribute to the
color of any sample that falls within the area of the leaf cell.

The rendering component finds the leaf cell that contains each sam-
ple, loads the appropriate cell contents, and performs the required
computations to evaluate the sample colors. To enable efficient
support for user-defined warps, the samples are scheduled so that
those falling within the same leaf cell are grouped together. This
allows the sampler to evaluate these samples in parallel, without
control-flow divergence, while reusing the bandwidth required to
load cell contents. Moreover, samples falling under the overlapping
supports of antialiasing filters associated with neighboring pixels are
evaluated only once and shared between them. Integration of sample
colors happens in fast local memory, before pixels are written to
global memory. This setup enables antialiasing filters with wide sup-
port (e.g., 4× 4) and large sampling rates (e.g., 512 samples/pixel)
for sharp, noise-free renderings.

Since both preprocessing and rendering are efficient and fully paral-
lel, we can render complex illustrations surpassing state-of-the-art
quality and performance.

Our contributions include:

• The shortcut tree, a novel hierarchical acceleration data structure
that enables efficient random access to the color of each point in
the illustration;

• Fully parallel construction of the shortcut tree, including novel
subdivision and pruning algorithms;

• New segment abstraction that eliminates the need for all inter-
section computations throughout the pipeline. Conversion from
input segments during preprocessing requires only monotoniza-
tion, splitting at double and inflection points, and implicitization;

• The flat clipping algorithm that supports arbitrary nesting of
clip-paths without resorting to recursion or even a stack.

• The pipeline renders front-to-back and aborts computation when
full opacity is reached. This is done independently per sample;

• Support for user-defined warps, sharing samples under wide an-
tialiasing filters, using large sampling rates, minimizing control-
flow divergence as well as memory and bandwidth usage.

2 Related work and motivation

In order to render complex paths, Loop and Blinn [2005] start with
a constrained triangulation of the control polygons that define the
path. Internal triangles are rasterized normally. Boundary triangles
employ a fragment shader that tests the sign of an implicit function
to discard fragments that are outside of piecewise polynomial bound-
aries. Although we use the same implicitization method as Loop
and Blinn [2005] (see also Salmon [1852]), the similarity between
the two approaches ends there. Our pipeline manipulates segments
directly and uses implicit tests exclusively to detect intersections
with axis-aligned rays during preprocessing and rendering.

Kokojima et al. [2006] simplified the method of Loop and Blinn
[2005] and made it more practical by replacing the constrained trian-
gulations with line-edged triangle fans and the stencil buffer [Neider
et al. 1993]. This idea was then adopted by Kilgard and Bolz [2012]
for the NV_path_rendering [2011] pipeline. When there is potential
spatial overlap, different paths cannot be rasterized in parallel, lest
they interfere in the stencil buffer. Interestingly, in the original work
by Loop and Blinn [2005], all paths could be drawn in parallel, at
least in scenarios where the necessary constrained triangulations can
be precomputed (e.g., in text). Unfortunately, a parallel, efficient,
and general way to obtain such triangulations is not available.

The methods described so far fall into a category that exploits spatial
coherence by subdividing complex input shapes into primitives that
are easier to fill. Scanline-based algorithms follow the work of Wylie

et al. [1967] and break shapes into horizontal spans that cover interior
pixels. This is the approach followed by the Cairo and Skia renderers,
and their parallelization to GPU architectures has so far met with
little success. The trapezoidal decomposition used by Direct2D [Kerr
2009], the constrained triangulations used by Loop and Blinn [2005],
and the triangulation+stencil method adopted by Kilgard and Bolz
[2012] share the same underlying motivation. These methods tend
to amortize the rendering cost across entire paths. In contrast, one
of our goals was to support parallel access to the color of individual
samples, as in vector textures.

Vector textures [Kilgard 1997; Frisken et al. 2000; Sen et al. 2003;
Sen 2004; Ramanarayanan et al. 2004; Ray et al. 2005; Lefebvre
and Hoppe 2006; Qin et al. 2006; Nehab and Hoppe 2008; Qin et al.
2008; Parilov and Zorin 2008; Rougier 2013] combine the resolution
independence of vector graphics with the random-access sampling
of images. This enables a range of new applications, such as direct
mapping of vector graphics onto 3D surfaces and creative warping
effects. Unfortunately, most of these methods restrict the complexity
of the input, which is not acceptable in a general-purpose rendering
scenario. More importantly, these methods build acceleration data
structures during expensive preprocessing stages that are sequential
in nature, and this precludes their use with dynamic content.

To accelerate rendering, we build the shortcut tree, a quadtree data
structure inspired by the seminal work of Warnock [1969]. Rather
than including references to entire paths in each cell, we follow
the approach of Nehab and Hoppe [2008] and include in each cell
only the segments needed to correctly compute winding numbers
when shooting horizontal rays. Since segment ordering becomes
irrelevant, we can consider all segments simultaneously. Our short-
cut tree improves on the work of Nehab and Hoppe in many ways.
First, it is a quadtree rather than a regular grid, so our pipeline auto-
matically adapts to the input. Second, it is created very efficiently,
in parallel, by novel algorithms. Third, by splitting segments into
monotonic components, we can use an implicit test to detect inter-
sections, rather than explicitly computing them. This eliminates the
need for repeatedly solving quadratic and cubic equations during
shortcut tree creation and during rendering. (Note that Qin et al.
[2008] also use monotonic segments, but to improve the accuracy of
approximate signed-distance computations.) Finally, instead of clip-
ping segments against cell boundaries, we include references to the
entire monotonic segments into each cell. This increases numerical
robustness and reduces the number of segments in the tree.

Our algorithms require the splitting of segments into monotonic
components. Since the monotonization of rational cubic segments
requires the solution of quartic equations, our pipeline does not
support such segments. As a consequence, there is no support for the
independent projective transformation of paths that contain integral
cubic segments. To obtain projective effects on an entire scene
(e.g., in navigation applications), we apply the inverse projective
transformation to the samples. The scheduler then groups samples
that fall into the same cell so they can be processed in parallel.
The results are precisely the same and the sample scheduler allows
more general used-defined warps. Native support for projective
path transformations would be preferable for modeling reasons, and
we leave it as future work. Although the work of Loop and Blinn
[2005] and its derivatives support such transformations, most other
renderers do not. Note that our pipeline does offer native support for
rational quadratic Béziers, which we use to represent elliptical arcs.

We have carefully considered adopting an analytic solution to the
antialiasing problem [Catmull 1978, 1984; Duff 1989; McCool 1995;
Guenter and Tumblin 1996; Lin et al. 2005; Manson and Schaefer
2011, 2013]. Unfortunately, under the general setting of a full-
fledged real-time vector graphics rendering pipeline, this is not pos-
sible from both practical and theoretical standpoints. The connection
between area integrals and their closed boundaries, given by Green’s



Figure 2: The segments in each path are classified and decomposed
into monotonic abstract segments. Abstract segments can be queried
for their bounding box, their orientation (NE,NW,SE,SW), and for the
side on which a sample lies.

theorem, is only applicable to vector graphics paths when they are
composed exclusively of non-overlapping simple shapes. Since it is
not acceptable to place such restrictions on the input, the decompo-
sition would have to be performed on the fly, by means of a general
polygon clipper [Vatti 1992], extended to support polynomial seg-
ments. Even if this were made practical, we would still be left with
an incomplete solution that does not support paths warped by non-
trivial functions, layered semi-transparent gradient-filled paths (or
even single-layer gradients with multiple stops in the color ramp),
or textured paths. Monte Carlo integration (i.e., supersampling)
is therefore the only viable alternative. In our approach, this is a
nonissue, since we use enough samples to make exact and numerical
integration visually indistinguishable.
Many real-time renderers rasterize shapes independently and blend
results into the output image. This policy of immediate-mode render-
ing is analogous to the z-buffering algorithm for 3D rendering. As an
optimization, many such systems approximate antialiasing by trans-
forming per-pixel coverage into transparency prior to blending. This
conflation leads to incorrect rendering of correlated layers [Porter
and Duff 1984]. Solving this problem within the immediate-mode
paradigm requires allocating memory for multiple samples per out-
put pixel, or perhaps going over the input multiple times [Kilgard
and Bolz 2012]. We keep the entire illustration in GPU memory, in
retained mode. All layers in the illustration are sampled in a sin-
gle pass without conflation, much like 3D rendering by ray tracing
accelerated with a space-partitioning data structure.
Unlike real-time multi-sampling implementations (which tend to
antialias with the box filter), our pipeline supports the wide antialias-
ing filters that are popular in production settings, such as the cubics
by Catmull and Rom [1974] and by Mitchell and Netravali [1988].
We were particularly interested in antialiasing with the exceptional
cardinal cubic B-spline filter, as proposed by McCool [1995]. The
process reduces to applying a digital recursive filter [Unser et al.
1991] as a post-process to an image that has been antialiased with the
standard cubic B-spline. The parallelization of the required recursive
filters has recently enabled their use in real-time applications [Nehab
et al. 2011]. Unfortunately, the noise due to supersampling is greatly
magnified by this post-processing unless samples are shared between
neighboring pixels with overlapping antialiasing filters [Nehab and
Hoppe 2014]. McCool [1995] did not face this problem because
analytic prefiltering does not generate noise. We use our sample
scheduler to compute the color of each sample only once, even when
the sample lies under the filters of multiple neighboring pixels, and
even in the presence of user-defined warps. This sample sharing not
only solves the noise issue, but also enables the efficient use of wide
antialiasing filters. Since sample accumulation happens in fast local
memory, increasing the number of samples to improve image quality
has little effect on bandwidth and no effect on memory requirements.

Figure 3: Monotonic segments can appear in one of four config-
urations. Intersections with horizontal rays can be ruled out or
confirmed trivially unless the sample and the segment are in the
same side of the dashed bounding box diagonal. In that case, an
implicit test is used. The intersection itself need not be computed.

Our choice of which features to include was guided by an attempt
to provide support for as much of SVG [2011] and PDF [2006] as
possible. Notable omissions are filter effects (e.g., Gaussian blur)
and mesh-based gradient fills, which we leave as future work. Our
APIs should be intuitive to those familiar with OpenVG [2008]
or NV_path_rendering [2011]. Our API in the Lua programming
language allows non-specialist users to write programs that render
vector graphics using our pipeline and provides a portable format for
illustrations and animations (see the supplemental materials). We
also provide a C++11 API geared towards the expert programmer.

3 Abstraction
The scene is stored as a stream that contains the path geometry, as
well as auxiliary information such as paint data and delimiters for
clipping operations. The structure of the stream is best described by
a context-free grammar, whose production rules are:

scene→ ( fill∗ ) (1)
fill→ F (2)

fill→ ( clip-path∗ | fill∗ ) (3)
clip-path→ C (4)

clip-path→ ( clip-path∗ | clip-path∗ ) (5)

Here, terminal production (2) stands for a filled path. Terminal
production (4) stands for a clip test. The geometry of filled paths
and clip tests is given by a list of segments that form the outlines of
the shape. Filled paths contain additional paint information enabling
the computation of sample colors, which can potentially vary based
on sample position (e.g., gradient and texture paints).
The remaining terminals ‘(’, ‘|’, and ‘)’ are short for push, activate,
and pop, respectively, and are used to delimit clipping operations.
The clip-path area starts empty with a push, and is given by the union
of an arbitrary number of clip tests appearing before its matching
activate. These clip-paths can themselves be clipped by other clip-
paths, so that nesting is equivalent to intersection. The clip-path is
active between the activate and its matching pop. The entire scene
is delimited by a dummy push–pop pair.
Contrary to the back-to-front way in which the API receives paths
from the user, the scene is represented internally so that the topmost
paths appear first. This allows us to blend front-to-back and abort the
computation as soon as the sample color becomes opaque. (Recall
blending is associative [Wallace 1981; Porter and Duff 1984].)
The color of a sample is computed by selectively blending the paints
of all paths for which the sample passes the inside-outside test, in
addition to the inside-outside test of all active clip-paths. The funda-
mental inside-outside test consists of applying the path’s fill rule to



Figure 4: Linear segments pose no problems. Implicit tests must
be restricted to triangle Q0B1Q2 in the case of quadratics, and to
triangle C0CC3 in the case of cubics.

Figure 5: Within the implicit test region, the implicit function must
only change sign once along any horizontal rays, or the algorithm
would report incorrect intersection counts as in the examples.

the winding number of the path about the sample. The winding num-
ber is computed by counting the number of intersections between a
horizontal ray, shot from the sample to infinity in the +x direction,
and all segments in the path, incrementing or decrementing depend-
ing on whether segments are going up or down at each intersection.
Nehab and Hoppe [2008] compute winding numbers by solving for
the parameter values corresponding to the intersections between
each segment and the ray (by solving linear, quadratic, or cubic
equations), keeping those in the interval [0, 1], substituting into the
parametric equation of the segment to find the intersection point,
and accepting only the intersections to the right of the sample point.
We use abstract segments (using monotonization and implicitization)
to greatly simplify this process. Abstract segments can be queried
for a bounding box, for an orientation (NE, NW, SE, SW), and for the
side of the segment on which a given sample lies. Figure 2 illustrates
the decomposition of a contour into abstract segments.
Since abstract segments are monotonic, they can be intersected only
once by horizontal rays. As shown in figure 3, an intersection with
a horizontal ray can be ruled out if the sample is above or below
the segment’s bounding box, or if it is to its right. Otherwise, if
it is to the left of the bounding box, there is an intersection. Else,
if the sample and segment are on opposite sides of the diagonal
defined by the segment’s endpoints, there is an intersection if and
only if the sample is to the left of the diagonal. These cases are
very easy to identify and treat. When the sample and the segment
are on the same side of the diagonal, we use the implicitization. By
testing the sign of the implicit form of the parametric segment at
the sample position, we can determine the side of the segment on
which the sample lies. If it is on the left, there is an intersection,
otherwise there isn’t. The intersection itself need not be computed.
Similar reasoning applies to vertical rays, which are used during the
construction of the shortcut tree.

3.1 Monotonization

Each input segment is specified as a parametric curve γ : R→ R2

γ(t) =
(
x(t), y(t)

)
, t ∈ [0, 1]. (6)

We first compute parameter values tj

0 = t0 < t1 < · · · < tk−1 < tk = 1 (7)

that satisfy either of the equations

x′(tj) = 0 or y′(tj) = 0. (8)

These tj values break γ into k monotonic segments corresponding
to the intervals [tj−1, tj ], for j ∈ {1, . . . , k}. Where needed, we
use the multiaffine representation of Ramshaw [1988] to generate
the control points corresponding to each parameter interval.
Linear segments are monotonic on their own. Otherwise, finding
the tj leads to linear equations for integral quadratic segments, and
to quadratic equations for rational quadratic and integral cubic seg-
ments. We use an algorithm by Blinn [2005] to solve the quadratics
in a numerically robust way.

3.2 Implicitization

Linear segments Let vector s =
[
sx sy 1

]T hold the homo-
geneous coordinates of the sample. The equation for line L0 L1 in
figure 4 can be written in the form k s = 0, where k =

[
a b c

]
is an affine function (i.e., a row vector). It is easy to select k such
that k s > 0 for samples to the left of L0L1, so this implicit line
test can decide on which side of a linear segment each sample lies.
Loop and Blinn [2005] gave an elegant procedure for generalizing
this implicit test for quadratic and cubic Bézier segments. They use
a result by Salmon [1852] that ensures it is always possible to find
affine functions k, `, and m such that the tests become

integral quadratic: (k s)2 − l s > 0, (9)

rational quadratic: (k s)2 − (l s)(ms) > 0, (10)

integral cubic: (k s)3 − (l s)(ms) > 0. (11)

Each abstract segment stores the row vectors corresponding to the re-
quired affine functions, and we use them to quickly perform implicit
tests on the required samples.
There is one important caveat. Within the region where implicit tests
are used, we must ensure that the implicit function changes sign
only once along axis-aligned rays. This is to prevent the situations
depicted in figure 5, which would cause an incorrect number of
detected intersections and ultimately to incorrect rendering. Since
segments have been monotonized, it suffices to prove that the para-
metric curve is outside the test region for all parameters outside
of [0, 1]. The diagrams in figure 4 illustrate the proofs that follow.

Quadratic segments It is sufficient to restrict the test to trian-
gle Q0B1Q2. This requires one implicit test against segment Q0Q2

and two comparisons against bounding box coordinates.
Proof: The quadratic curve cannot cross segment Q0Q2 outside
of points Q0 and Q1 since it can intersect a straight line at most
twice. Similarly, it cannot cross segments Q0Q1 and Q1Q2. Indeed,
since the curve is tangent at both Q0 and Q2, these points count as
double intersections. Finally, note the quadratic cannot intersect seg-
ments Q0B1 and B1Q2 without first incurring forbidden additional
intersections with segment Q0Q1 or Q1Q2, respectively. �

Loop and Blinn [2005] use the GPU rasterizer to generate fragments
only inside triangle Q0Q1Q2. Using their solution would require us
to perform three implicit line tests.

Cubic segments Cubics are more demanding. To prevent the
curve from looping back and intersecting segment C0C3 (and the
curve itself), Loop and Blinn [2005] split cubics at a double point
whenever one is found for a parameter td with 0 < td < 1. This
requires solving a quadratic equation, and we do the same. We go
one step further and split the cubics at an inflection point whenever
one is found for ti with 0 < ti < 1. This requires solving another
quadratic, but ensures the intersection of lines C0C1 and C2C3

happens at a point C inside the bounding box. Then, it is sufficient
to restrict the implicit test to the triangle C0CC3. Note that these
quadratics must be solved during the implicitization process anyway.



Figure 6: Contours on the left column are equivalent to contours
in the central and right columns. The intuitive representation in
the center requires knowledge about segments that can be far apart
in the input. The equivalent representation on the right can be
generated locally by inspecting segments independently.

Proof: We again use root-counting arguments. First, we show that
the curve cannot intersect segment C0C3. If it did, it would ei-
ther have to exit triangle C0CC3 again through segment C0C3

(but it cannot have four intersections with line C0C3), or it would
have to self-intersect (but by assumption it has no double point for
t ∈ (0, 1)). The arguments for why the curve cannot intersect seg-
ment C0C and CC3 are analogous, so consider segment C0C. We
start from the part of the curve that exits triangle C0CC3 at C0. If it
is below C0C, then C0 is an inflection and exhausts all three possi-
ble intersections with line C0C. If it is above C0C, then C0 is only
a tangent. Now recall the curve cannot intersect C0C3. Therefore,
in order to intersect C0C a third time, it would have to either go
up around triangle C0CC3, thereby intersecting CC3 four times
(twice at the tangent C3 and twice before it can reach C0C), or go
down back into C0C (wasting the third and last intersection with
line C0C at a point outside of segment C0C). Now consider the part
of the curve exiting at C3. If it exits to the right of CC3, then C3 is
an inflection and precludes the fourth intersection with line CC3,
needed to reach segmentC0C. If it exits to the left, it would intersect
line C0C the third time outside of segment C0C, since it cannot
intersect segment C0C3. �

Loop and Blinn [2005] use the GPU rasterizer to generate fragments
only inside the two triangles that form the convex hull of the cubic
control polygon. Adopting this approach would require us to perform
at least four implicit line tests and maintain some bookkeeping.

4 The shortcut tree

Assume that we have partitioned the illustration area into a union of
small cells. The key strategy for speeding up the inside-outside test
within each cell is to reduce the number of segments that must be
tested for intersection during the computation of winding numbers.
We will specialize the representation of the illustration within each
cell while maintaining the following invariant: the winding number
of any path about any sample in a cell, computed by shooting a
horizontal ray from the sample to infinity in the +x direction, is the
same as in the original illustration. It is clear that we can eliminate
a segment whenever its bounding box is completely above, below,
or to the left of the cell. The difficulty is what to do otherwise.
The breakthrough in the lattice clipping algorithm of Nehab and
Hoppe [2008] is to include in each cell only the parts of segments
that overlap with them, with the addition of winding increments
and shortcut segments that restore the invariant. We describe an
improved version of the idea that does not clip segments to the
interior of cells and thus eliminates all intersection computations.

Figure 7: Example subdivision of a shortcut tree cell. Segments are
included in a child cell if and only if they intersect its area. Marked
intersections generate shortcut segments and winding increments
that restore the invariant within each child cell.

The examples in figure 6 show how a contour’s behavior to the
right of a cell boundary can be summarized with shortcut segments.
Since all input contours are closed, any contour that leaves a cell by
crossing its right boundary must later return to the cell. If the contour
does not return to the cell via the right boundary, it must return from
a different side. In order to do that, the contour must first leave the
row of cells, and this must happen in the region to the right of the
cell. Therefore, there are only three possibilities: (1) the contour
comes back inside by crossing the right boundary again; (2) it exits
to the row above; or (3) it exits to the row below. In case 1, we can
represent all omitted segments by a shortcut connecting the end of
the exiting segment and the beginning of the entering segment. In
case 2, we can add a shortcut going up from the end of the segment
that intersects the right boundary. Finally, in case 3, we can add
a shortcut going down from the end of the segment that intersects
the right boundary. The reasoning is similar for contours entering
the cell from the right boundary. In figure 6, note how the winding
numbers obtained from the input contours in the left column are the
same as those obtained with the compressed representation in the
central column, no matter where the sample lies inside the cell area.

Unfortunately, no local procedure can distinguish between these
cases by inspecting one segment at a time. Nehab and Hoppe solve
this problem by always assuming case 2 and including winding in-
crements when needed. A classification error can be detected locally
for each input segment that crosses a bottom cell boundary. The
invariant can be restored by modifying the initial winding number of
all cells to the left of the violating intersection. In the right column
of figure 6, note how case 1 generates two shortcuts, one for each
intersection with the right cell boundary. These effectively cancel
each other when vertically overlapping. Also note how in case 3 the
winding increment effectively flips the orientation of the incorrect
shortcut segment, and that these winding increments accumulate
(independently per path). Naturally, case 2 requires no modification.

The result of the original lattice clipping algorithm is a regular grid
of cells. We now proceed to the description of the shortcut tree,
our hierarchical data structure based on the same ideas and, more
importantly, how to build it efficiently and in parallel.



Figure 8: During subdivision, segments are classified based on their
endpoints, and on intersections with the marked boundaries.

4.1 Subdivision

The key operation when building the shortcut tree is cell subdivision.
Assuming that a parent cell respects the invariant, our task is to find
subdivision rules that produce child cells that also respect it. Then,
by induction, the resulting tree will satisfy the invariant everywhere.

Figure 7 shows an example of cell subdivision. A child cell includes
a segment (in its original form, including the parts outside the cell)
if and only if the segment intersects its area. The intersections with
the TL / TR and the BL / BR boundaries respectively generate shortcut
segments in child cells TL and BL. The intersection with the TR / BR

boundary generates a winding increment in child cell TL that corrects
the misclassification of child cell TL from case 2 to case 3.

In general, for each segment in the parent cell, we must decide in
which child cells to include it, and whether it generates shortcut
segments and winding increments. The inclusion test is particularly
simple: a segment is included in a cell if one of its endpoints is
inside the cell or if it intersects one of the cell’s boundaries. Figure 8
illustrates the procedure used to identify shortcut segments and wind-
ing increments. During tree creation, the root of the shortcut tree
is generated first. Shortcut segments are generated for all segments
crossing boundary A. Winding increments are generated for all seg-
ments crossing the half-line boundary B (which extends to infinity).
Cell subdivision is performed in a similar way. Shortcut segments
are generated in child cells TL and BL for all segments intersecting
boundaries C and D, respectively. Segments intersecting boundary E

generate winding increments in child cell TL. Segments intersecting
the half-line boundary F generate winding increments in both child
cells TL and TR. We can detect intersections by testing whether cell
boundary vertices lie on different sides of the abstract segment. To
distinguish between intersections with C and D, or with E and F, we
test the side of their shared vertex.

Stopping criteria We stop cell subdivision when: (1) the amount
of memory taken by the shortcut tree reaches a maximum threshold;
(2) the number of segments in a cell is smaller than a minimum
threshold. Criterion 1 allows users to limit memory consumption;
criterion 2 prevents futile subdivisions. More sophisticated criteria
will be investigated as future work.

4.2 Parallel subdivision

The shortcut tree is generated in parallel, in breadth-first order, with
each step subdividing all cells at progressively deeper tree levels.
The cells to be subdivided are laid out contiguously in memory. Each
cell contains a specialized description of the scene that is correct
within the cell’s boundaries. The contents of each path in the spe-
cialized scene are also laid out contiguously. Paths are represented
as sequences of lightweight segment entries. Each segment entry
uses a few bits to distinguish between clipping control terminals,
abstract segments, shortcut segments, and winding increments. (The

Figure 9: Parallel shortcut tree subdivision. Entries for each seg-
ment are shaded with its hue. Abstract segments, shortcut segments,
and winding increments are respectively marked with a, s, and ±1.

initial winding number for a path is the sum of all its winding in-
crements.) There is also room for references to the corresponding
abstract segment, the originating path, and the originating cell.

Each round of subdivision independently processes every entry, of
every path, of every cell at the current subdivision level. According
to the subdivision rules, each parent entry may generate, in each of
the four child cells: a reference to an abstract segment, a shortcut
segment, and a winding increment. In other words, the number of
outputs varies by input entry. This requires us to compute an output
offset before we can write the child cells, which in turn forces us to
split the process into four computational kernels. Figure 9 shows an
example in which two cells are subdivided in parallel. For simplicity,
each cell contains a single path and only a few entries.

The first kernel is the most important. It computes an array of splits,
with one slot for each parent entry in each of the four child cells.
Each thread inspects a single parent entry and generates one split for
that entry in each child cell. These splits specify whether to include
a parent abstract segment in the child cell and whether to add a
shortcut segment. The kernel also computes two additional values
per entry: a winding increment, if any, and an offset that counts the
number of output entries generated by the parent split entry. For
layout reasons in figure 9, these are shown as two independent arrays.
In reality, we represent them as an array of pairs.

The purpose of the second kernel is to consolidate the winding
increments into a single entry per path, per cell. Consolidation is
necessary because the first kernel can produce multiple winding
increments within each path in a child cell, and we need to prevent
their uncontrolled proliferation. Consolidation is achieved with an
inclusive segmented scan on the winding increment array. This scan
adds together the winding increments that belong to the same path,
leaving the result as the last entry for that path in the windings array.

The role of the third kernel is to compute the global offset for the
output of each parent entry into each child cell. This is accomplished
with exclusive scan on the windings/offset array. (Recall they are
stored as pairs in a single array.) Besides adding the values in the
offset entry, the operator used for the scan checks the corresponding
value in the windings entry. If the entry is the last in a path, and
if the windings entry is non-zero (as consolidated by the second
kernel), the scan operator adds an extra 1 to the value to make room
for a single winding increment for the path.



The fourth and final kernel inspects all split entries in parallel. Each
thread loads the corresponding offset and writes the appropriate
segments to their final positions in the child cell. If an entry is
the last in a path, the kernel also inspects the windings array, and
generates the appropriate winding increment if needed. The offsets
are such that the order in which the paths appear in the child cells is
the same as their order in the parent cell. In fact, even the order of
entries within each path is preserved. Note that all kernels involved
in the subdivision process are parallel at the segment level.

4.3 Pruning

After every subdivision step, the total number of entries in the child
cells is likely to be greater than the original number of segments in
the parent cell. After all, segments that cross the subdivision bound-
aries are replicated and may generate additional shortcut segments.
Certain optimizations can be performed locally per segment and help
attenuate this growth. For example, shortcut segments that cannot
be intersected by any ray emanating from a cell need not even be
generated. Conversely, shortcut segments that are intersected by all
rays can be converted to the equivalent winding increment.

The most powerful strategies for keeping this growth in check, how-
ever, involve path interactions at the cell level. For example, when
a path is opaque and covers the entire cell, all paths underneath it
can be pruned. Clip-paths complicate the pruning algorithm, but
also provide us with additional opportunities for optimization. For
example, if a clip-path is empty when restricted to a cell, it can be
pruned along with all paths under its influence.

Pruning is easiest to understand by means of stream rewriting rules.
Each rewrite rule simplifies the stream while maintaining the fol-
lowing invariant: within the cell, the output stream is valid and
equivalent to the input stream. Pruning is performed by the repeated
application of rewrite rules, until no rule can be applied.

We introduce new terminals F0 and C0 to represent filled paths and
clip tests, respectively, that fail all inside-outside tests for samples
in the cell area. Conversely, F1 and C1 refer to paths that pass the
inside-outside test for all samples in the cell area, and in addition
the paint associated to F1 is fully opaque. Since our shortcut tree is
tight, such paths are easy to identify: simply apply the inside-outside
test to the initial winding number of paths that contain no segments.
Finally, non-terminals A, B, and C represent well-formed streams,
while ε represents the empty stream. Given these definitions, the
stream rewrite rules are as follows:

F0 → ε (12)
C0 → ε (13)

( A | B F1 C ) → ( A | B F1 ) (14)
( | A ) → ε (15)
( A | ) → ε (16)

( A C1 B | C ) → C (17)
( A | B C1 C ) → ( A | C1 ) (18)

Two key properties have guided the selection of rewrite rules: (1)
there is no reordering, only elimination of elements, and (2) the rules
can be applied in parallel since they do not interfere with each other.

Rules (12) and (13) state that empty paths can be summarily elim-
inated from the stream. Rule (14) states that a fully opaque path
covering the entire cell occludes all content that comes behind it at
the same clipping nesting depth. Rule (15) states that a clip-path
that always fails can be eliminated along with all content under
its influence. Rule (16) states that a clip-path that has no content
under its influence can also be eliminated. Rule (17) short-circuits
the evaluation of a clip-path that always succeeds within the cell,
leaving behind only the content that was under its influence.

Figure 10: Parallel pruning example. The first pruning round en-
gages three different rules. The segment entries that trigger action
in each rule are colored. The second and final round engages only
two rules. Elements selected for elimination are marked in gray.

Rule (18) is more subtle. It implements short-circuiting in the evalu-
ation of a nested clip-path. When rules are evaluated one at a time,
we could prune more aggressively:

( A | B C1 C ) → A (19)

However, in the next section we will parallelize the pruning and
rule (17) will be applied simultaneously in a single step. The aggres-
sive rule (19) combines with (17) to produce incorrect results:

( A C1 B | C C1 D ) 17, 19−→ ε 6= C1 (20)

Rule (18) does not interact with rule (17), and results are correct:

( A C1 B | C C1 D ) 17, 18−→ C1 (21)

4.4 Parallel pruning

Pruning is a challenging operation to perform efficiently and in
parallel. The key is to split the computation into simple massively
parallel tasks, and to ensure our invariant is preserved at each step.
We proceed with multiple iterations of mark-and-sweep. During
each iteration, we mark the elements in the stream that each rewrite
rule wants to eliminate. We then sweep the marked elements away
by compacting the stream. The mark-and-sweep process is repeated
until no element can be eliminated. Naturally, the difficult part is
marking the correct elements for elimination.
Other than rules (12) and (13), all rules require the matching of
delimiters ( , | , and ) . We start by cross-linking them so we can
freely move from one to the other in constant time. To do so, we first
obtain the clip nesting depth of each element. This is a simple matter
of initializing to 0 a linear array with one element per segment entry.
Values associated to ( are then set to +1, and values immediately
to the right of ) are set to −1. An inclusive-scan of this array
produces the required result. For a maximum nesting depth n, we
then perform n segmented scans. Each segmented scan produces
the links from all elements at depth d to their matching ( . To do
so, the initialization sets all entries to 1, and marks as boundaries
all ( elements at depth d. The segmented scan results in spans that
start at 1 and progressively increase, but that restart for every ( at
depth d. In other words, all elements at depth d are associated to their
distance to the matching ( , which we convert to absolute pointers.
To complete the process, we use this information to cross-link the
matching ( , | , and ) at depth d between them. Recall we already
could reach ( from the matching | and ) . After n segmented scans,
all matching delimiters are properly cross-linked.
Given this information, we can finally describe the procedure that
marks segment entries for elimination. Marking starts with the
allocation of an elimination array with one element associated to



Figure 11: Integration with sample sharing for 2× 2 antialiasing
filters. Samples in each unit area are evaluated only once. Unit
area E sends appropriately weighted sums to pixels p, q, r, and s.
Pixel p receives contributions from unit areas A, B, D, and E.

each segment entry, all initially set to 0. Then, all segment entries are
inspected in parallel, and each rule is given a chance to conditionally
modify the elimination array by atomic increments or decrements
to appropriates elements. When all rules have been executed, the
elimination array is subjected to an inclusive scan. The segment
entries to be eliminated are the ones associated to a positive element
in the elimination array. Figure 10 shows an example that includes
two rounds of pruning with the execution of multiple simultaneous
rules. We describe rules (16) and (17). Other rules are analogous.

Rule (16) only requires action when inspecting a | segment entry. In
that case, it checks the segment entry to its right, in search of a match-
ing ) . If it finds one, it atomically adds +1 to the element associated
to its matching ( in the elimination array, and atomically adds −1
to the element to the right of that associated to the matching ) .
After the scan, the effect is to add +1 to all elements between (
and ) (including the terminals themselves), thereby marking them
for elimination as the rule dictates.

Rule (17) is a bit more involved. It acts unconditionally when in-
specting a C1 segment entry. It atomically adds +1 to the elimination
array element associated to the ( that is reachable from C1. From
the ( , the matching | is also accessible. The rule atomically adds−1
to the elimination array element immediately past it. The rule can
also reach ) . There, it atomically adds +1, and adds −1 to element
immediately past it. After the scan, only the region matched by the C
is preserved. Note that this works even in the presence of multiple
elements C1 between the | and ) . The only side effect is that certain
elements that are marked for elimination may end up associated to
numbers larger than 1 after the scan.

5 Rendering

In antialiased rendering, the color c(p) of each pixel p is given by
the convolution between the illustration and an antialiasing filter:

c(p) =

∫
Ω

f(p− u)ψ(u) du. (22)

Here, f represents the vector graphics illustration, so that f(v) is the
color of the sample at v. The antialiasing filter ψ vanishes outside of
a compact support Ω containing the origin. As discussed before, the
analytic evaluation of (22) is impossible for the general illustrations
we want to render. The integral is thus expressed as an expectation
and estimated by the Monte Carlo method (i.e., by supersampling):

c(p) = AΩ EUΩ

[
f(p− UΩ)ψ(UΩ)

]
(23)

≈
AΩψ

m

m∑
i=1

f(p− ui)ψ(ui). (24)

Here, AΩ is the area of support Ω and UΩ is a random variable
uniformly distributed over Ω; the estimator simply computes the
average value of the integrand over m variates ui drawn from UΩ.
One of the reasons for the popularity of the box filter is that its
support has unit area in terms of the inter-pixel spacing. In that
case, the integral can be computed independently for each pixel. In
contrast, higher-quality filters can have support larger than 4× 4 unit
areas, where at least 16 filters overlap each sample in the illustration.
Since computing sample colors dominates the cost of rendering, we
cannot afford to recompute them so many times.

5.1 Integration

We break integral (22) into a sum of n integrals over the unit areasAj

that tile the filter domain Ω:

c(p) =

n∑
j=1

∫
Aj

f(p− u)ψ(u) du (25)

=

n∑
j=1

EVj

[
f(p− Vj + aj)ψ(Vj − aj)

]
(26)

≈ 1

m

n∑
j=1

m∑
i=1

f(p− vji + aj)ψ(vji − aj). (27)

Here, Vj is a random variable distributed over the unit area centered
at the origin, and aj is the center of unit area Aj in the tiling of Ω.
From the expression, we see that if p+ aj = p′ + a′k, then

f(p− vji + aj) = f(p′ − vji + a′k), (28)

and therefore unit area A′k of pixel p′ can reuse sample colors of
unit area Aj of pixel p with appropriately changed filter weights.
Figure 11 illustrates the method. Without loss of generality, assume
a 2× 2 filter (e.g., the hat filter). In this case, every unit area is
covered by exactly 2× 2 neighboring filters: unit area E is covered
by filters centered at pixels p, q, r, and s. Independent computation
of these pixels would unnecessarily evaluate four times each sample
in unit area E. Instead, we structure our computation around the
unit areas themselves. Samples in unit area E are evaluated and ac-
cumulated into four appropriately weighted sums, which are in turn
atomically added to pixels p, q, r, and s. Pixel p is complete after
receiving independent contributions from unit areas A, B, D, E.
The process is parallel at the sample and pixel levels.
A key property of this method is that it uses a fixed amount of mem-
ory per pixel, regardless of the number of samples per unit area.
Our pipeline supports a variety of different filters and sample distri-
butions. The default high-quality setting uses a blue-noise pattern
generated with the method of Balzer et al. [2009] with 32 samples
per unit area, weighted by the 4× 4 cubic B-spline. The combination
is equivalent to 32× 16 = 512 samples per pixel. The B-spline filters
are then reshaped to cardinal cubic B-splines with a post-processing
parallel recursive-filter [Nehab et al. 2011]. This explains the high
quality of our results.

5.2 Sampling

Absent clip-paths, the sampling algorithm would be straightforward.
Preprocessing the input to eliminate clip-paths, however, requires
a fully general polygon clipping algorithm such as that proposed
by Vatti [1992]. To the best of our knowledge, Vatti’s algorithm has
not been mapped to GPUs. Its robust implementation is notoriously
difficult and its extension to curved segments requires the numerical
computation of intersections between them. Understandably, most
implementations rasterize clip-paths to a stencil buffer, and use it
to mask out the samples that fail the clip test. Instead, we add



clip-paths to the shortcut tree like any other path geometry, and
maintain in each shortcut tree cell a stream that matches the scene
grammar described in section 3. Clipping operations are performed
per sample and with object precision.
When evaluating the color of each sample, the decision of whether
or not to blend the paint of a filled path is based on a Boolean
expression that involves the results of the inside-outside tests for the
path and all currently active clip-paths. Since this expression can be
arbitrarily nested, its evaluation seems to require one independent
stack per sample (or recursion). This is undesirable in code that
runs on GPUs. Fortunately, as discussed in section 4.3, certain
conditions (see the pruning rules) allow us to skip the evaluation of
large parts of the scene. These conditions are closely related to the
short-circuit evaluation of Boolean expressions. Once we include
these optimizations, it becomes apparent that the value at the top
of the stack is never referenced. The successive simplifications that
come from this key observation lead to the flat clipping algorithm,
which does not require a stack (or recursion).

Flat clipping The intuition is that, during a union operation, the
first inside-outside test that succeeds allows the algorithm to skip all
remaining tests at that nesting level. The same happens during an
intersection when the first failed inside-outside test is found. Values
on the stack can therefore be replaced by knowledge of whether or
not we are currently skipping the tests, and where to stop skipping.
The required context can be maintained with a finite-state machine.
The machine has three states: processing (P ), skipping (S), and skip-
ping by activate (SA). Inside-outside tests and color computations
are only performed when the machine is in state P . The S and SA
states are used to skip over entire swaths of elements in the stream.
In addition to the machine state, the algorithm maintains the sample
color currently under computation and three state variables that
control the short-circuit evaluation. The first two state variables keep
track of the current clipping nesting depth d and the number u of
nested clip-paths that have not yet been activated. These variables
are updated when the machine comes across terminals ( , | , and ):

( ⇒ d← d+ 1, u← u+ 1 (29)
| ⇒ u← u− 1 (30)
) ⇒ d← d− 1 (31)

Skipping is interrupted when one of terminals | or ) is found at
a depth at least as shallow as the current stopping depth s. The
stopping depth is set right before any transition to a skipping state,
and is the third and last state variable needed by the algorithm.
Figure 12 shows the state transition diagram. Each transition is
marked by an annotated arrow. Arrow annotations can have one
or two rows. The first row specifies the conditions that trigger the
transition. The first condition is the triggering terminal. Besides
the clipping operators | and ) , terminals f1 and c1 can also trigger
transitions. These terminals denote, respectively, a filled path and a
clip test for which the current sample has passed the inside-outside
test. (This is in contrast to terminals F1 and C1 from section 4.3,
which denoted paths that pass inside-outside tests for all samples
in the cell area.) After the triggering terminal, additional required
conditions can be specified. The second row in arrow annotations is
optionally used to update the stopping depth d.
The machine starts in P with d ← 0, u ← 0. Consider the tran-
sitions between P and S. In the transition triggered by f1, the
additional condition α = 1 tests if the sample color is now opaque.
In that case, since we render primitives front-to-back, there is no
point in continuing. The machine transitions to S, and sets s to 0.
Condition c1 means a clip test has succeeded. The remaining clip
tests in the clip-path can therefore be skipped by short-circuit. The
machine transitions to S and sets the stop depth to d. There are

Figure 12: State transition diagram for the finite-state machine of
the flat-clipping algorithm.

two transitions away from S. The first transition happens when
an activate operation is found. Looking at the scene grammar, we
see that this can only happen if the machine arrived at S due to
a c1 transition from P . In other words, an entire clip-path test has
succeeded, and therefore we transition unconditionally back to P .
The second transition happens when a matching ) is found. The
condition u = 0 means the machine is not inside a nested clip-path
test, so it simply transitions back to P . If the machine is skipping
inside a nested clip-path test, one of the inner clip tests must have
passed, and therefore the outer test can be short-circuited as well.
The machine simply resets the stop depth to the outer level and
continues in state S.
The remaining transitions are between P and SA. If the machine
finds a | while in state P , it must have been performing a clip-path
test that failed. Otherwise, it would have been in state S. Since the
test failed, it can skip until the matching ) . This is what motivates
the name skipping by activate.

5.3 Scheduling

The pipeline allows a user to specify a 3× 3 projective transforma-
tion to be applied to the sample coordinates. Experienced users can
design arbitrary warping functions in CUDA.1 Since the pipeline
remaps individual samples, and not the rendered image, results are
exactly the same as if the illustration had been warped in object
space by the inverse of the warp function, and only then rendered.
With the integration and sampling algorithms in place, we can com-
plete the rendering algorithm. The sample positions from each unit
area must be warped by the user-supplied function and pushed down
the shortcut tree until the appropriate leaf cell is found. With the
cell contents and warped sample positions, the sampling algorithm
computes their colors. These colors are weighted, added together,
and routed to all the appropriate pixels by the integration algorithm.
The scheduler plays two key roles: it minimizes the global memory
bandwidth requirements by allowing cell contents to be loaded once
and reused by multiple unit areas, and it minimizes control-flow
divergence by grouping together samples that fall in the same cell.
To do so, we use three computational kernels.
The first kernel goes over each unit area and identifies the set of leaf
cells that contain at least one of the warped sample positions. This
information is obtained by descending with each warped sample
position down the shortcut tree until a leaf cell is found. The resulting
list of cell ids is compressed within shared memory to eliminate
repetitions. A list with pairs containing the originating unit area ID
and the required cell ID is stored into global memory.
The role of the second kernel is to transpose the results of the first
kernel, which come naturally sorted by unit area ID, so that they
are instead sorted by cell ID. This is accomplished with a simple
parallel sort.
The third and last kernel performs the actual rendering. Each com-
putational block is responsible for a batch of U unit areas from the

1This feature currently requires recompiling the scheduler. Changing the
API to support warps defined at runtime is a simple if tedious task.



Figure 13: (Left) Artifacts appear when polygons that share an edge
are independently resolved to pixels before blending. (Right) Our
renderer blends colors independently per sample and resolve later.

Figure 14: (Left) Integration in gamma space incorrectly widens
dark regions and produces heavier text. (Right) Our renderer inte-
grates in linear space to produce text with the intended weight.

list produced by the second kernel. The different unit areas in each
batch send at least one warped sample position to the same given
cell. There is enough shared memory to load I input segments. The
context for the S samples that will be evaluated simultaneously is
stored in the registers of independent threads. While there are unit
areas to be processed, the algorithm warps their samples and elimi-
nates those that fall outside the cell. This process is repeated until S
samples are found (potentially originating from distinct unit areas).
Then, it loops over the cell stream, loading chunks of I segments to
shared memory. For each chunk, it advances the sampling algorithm
in parallel for the S samples over these I input segments. When the
entire cell contents have been processed, the algorithm computes
independent weighted sums for the samples originating from each
unit area, and atomically adds them to the appropriate pixels. It then
goes back for more unit areas in the batch until they have all been
processed. We use S = 128, I = 32, and U = 32 in all our tests.
With this setup, we are able to process 4 unit areas in the same cell,
with 32 samples each, without reloading the input.
A specialized version of the scheduler handles the common case
when there is no user-defined warp. We align the shortcut tree cell
boundaries with the unit areas, so that all samples originating from
a given unit area fall within the same cell. This greatly simplifies
the generation of the list of unit areas per cell: it suffices to descend
on the shortcut tree with the unit area center. It also simplifies the
integration step: there is no need to keep track of which samples
belong to each unit area since no sample is ever eliminated.

6 Results and discussion

We ran a variety of different tests to evaluate the performance and
quality of our rendering pipeline. All tests were run on an NVIDIA
GeForce GTX Titan (2688 CUDA cores, 6GB of global memory)
hosted by an Intel Core i7 980 at 3.33GHz with 24GB of system
memory. For fairness when comparing against competing algo-
rithms, we used the original published implementation and demo
programs, running on the same hardware.

Conflation Figure 13 shows renderings of a contour plot (exported
to SVG by the Mathematica software), in which areas of constant

NH 1D

1×8 / NVPR single-pass 8×MS

1×32 / NVPR 4-pass 8×MS

NVPR single-pass 32× (8×MS, 24×CS)

4×4×32

Figure 15: An aliasing-prone resolution chart rendered by NH’s 1D
mode is free of noise but shows aliasing and conflation. Mode 1×8
shows both noise and aliasing. As expected, mode 1×32 reduces
noise, but aliasing persists. NVPR’s single pass mode 32× (8×MS,
24×CS) is too crude an approximation. The sharper antialiasing
filter we use in mode 4×4×32 is made possible by sample sharing.

color are unions of precisely abutting triangles. When independently
rendered triangles are blended together, as many renderers do (e.g.,
Cairo, Adobe Reader, Apple’s Quartz, etc.), the correlated mattes
lead to incorrect results and the underlying mesh appears. Our
pipeline renders these areas as intended.

Integration in linear RGB Another common problem is with ren-
derers that evaluate the antialiasing integral (22) in gamma space.
This leads to dark regions that look wider than intended. Our ren-
derer can transform colors to linear space before integration and
reapply gamma in the end. The difference is obvious on the right of
figure 14, which renders text with the correct weight. Unfortunately,
many users have grown accustomed to incorrect rendering. As a
compromise, we support both alternatives.

Antialiasing quality Figure 15 shows an aliasing-prone resolu-
tion chart rendered with different antialiasing strategies. Nehab and
Hoppe [2008] (NH) employ a very efficient 1D prefiltering approx-
imation. Although results are very good in certain areas, aliasing
and conflation artifacts are clearly visible in others. Modes 1×8
and 1×32 are box-filtered with respectively 8 and 32 samples per
unit area. As shown in figure 15, mode 1×8 shows significant
amounts of noise. It is included in our tests simply because it is
the limit of what Kilgard and Bolz [2012] (NVPR) can accom-
plish in a single pass using multisampling in current hardware
(8×MS). Although the hardware supports a hybrid single-pass mode
32× (8×MS, 24×CS), it is too crude an approximation for 1×32.
NVPR’s demo offers a much better approximation by accumulating
4 passes with 8×MS. The amount of aliasing is a property of the
box filter and remains the same regardless of the number of samples.
Our 4×4×32 mode uses a cardinal cubic B-spline with 512 sam-
ples under the 4×4 support of each pixel’s filter, sharing samples
across overlapping filters. The results are visibly reduced aliasing in
challenging areas, and renderings that are virtually free of noise.



Figure 16: Different levels of detail can be obtained for the same
region using OpenStreetMaps. (Left) Paris 50k. (Right) Paris 70k.

Test cases Table 1 shows statistics for some of the illustrations
we used in our tests. These illustrations are available in the sup-
plemental materials. Drops, Car, and Embrace make heavy use of
semitransparent gradient fills, but are otherwise simple illustrations.
Reschart is the alias-prone resolution chart that contains the pattern
of figure 15. Contour appears in figure 13, and is a dense triangu-
lation with flat-colored triangles. Tiger is the standard PostScript
sample and contains many opaque overlapping paths that simulate
gradients. Paper 1 and Paper 2 are SIGGRAPH paper pages using
Type 1 and TrueType fonts, respectively (i.e., cubics vs. quadratics).
Boston, Paris, and Hawaii are maps. Hawaii appears in figure 17 and
includes many overlapping semi-transparent layers. We tested maps
of Paris at different scales (from OpenStreetMaps), spanning a large
variation in complexity. These maps include finely dashed strokes
with decorations that significantly increase the rendering complexity
beyond the number of input segments. See figure 16.

Performance Table 1 also shows a performance comparison be-
tween our work and those of Kilgard and Bolz [2012] (NVPR) and
of Nehab and Hoppe [2008] (NH)2. Rendering times do not include
preprocessing time, although we also provide preprocessing times
and memory consumption for our method.
Let us focus on the 1×32 rendering mode. For each input, the times
for the fastest method are shown in blue, and the others in red. The
key comparison is between our method and NVPR. This is because
NH was optimized for the 1D mode, where it excels. In 1×32 mode,
it performs its own supersampling instead of taking advantage of
hardware-accelerated multisampling.
Results show that, once input complexities are sufficiently high, our
pipeline has the advantage. We believe that the main reason for
this behavior is that NVPR renders each individual path one after
the other. Even though the hardware rasterizer can process paths
much faster than our pipeline, as the number of paths increases,
this sequential processing becomes a bottleneck. Our performance
advantage can already be noticed while rendering a typical page
of text, with subpixel positioning of characters, at 32 samples per
pixel and 100 pixels per inch. Grouping shapes with the same paint
into a single path would significantly improve NVPR’s performance.
Unfortunately, this could result in incorrect rendering where such
shapes overlap spatially. An optimization along these lines could be
implemented at the application level, at least for simple and common
cases such as pages of text, where it would be very effective.
Our improvements are even more pronounced for inputs of higher
complexity. In fact, due to sample sharing, we can render both faster
and at a higher quality level. Such results are marked in bold in
table 1. We would like to stress that this is not the result of extensive
optimization. It is the result of new algorithms that map better to
massively-parallel hardware.

2Nehab and Hoppe [2008] only include a subset of the inputs we tested.

Figure 17: Examples of user-defined object-space warps.

User-defined warps Figure 17 shows three user-defined warps:
a twisting warp on the Tiger, a zoom-lens effect on Paper 1, and
a projective transformation on a map of Hawaii. The pipeline ren-
ders these effects as if the illustration had been warped in object
space. The scheduler ensures samples are shared between all pixels
with overlapping antialiasing filters while minimizing control-flow
divergence as well as memory and bandwidth requirements.

Relative costs of main algorithmic steps Figure 18 shows the
relative cost of the main steps in our rendering pipeline, using the
output resolutions of table 1. The first two plots show the steps
involved in subdivision and pruning (The abstraction process is
very fast.) The only detail of note is the pruning of Paper 2, which
includes clipping and is therefore more demanding. The third plot
shows the steps used in rendering. As expected, most of the time is
spent in sampling and integration. The last three examples (those
marked with ‘w’) include a user-defined warp as in figure 17, which
stresses the scheduler. Otherwise, scheduling time is negligible.

User-defined warps, scheduling, and integration In the pres-
ence of user-defined warps, we must use a more general scheduler
and integrator. The scheduler must find the cells where each sam-
ple falls, and the integrator must keep track of the unit area they
belong to. To measure the overhead of this process, we compare it
with the specialized scheduler that we use when no warp is supplied.
For the inputs in table 1, this overhead ranges from 35% to 310%,
and is more marked for shortcut trees that are densely subdivided.

Scalability to output resolution Figure 19 shows the behavior
of our rendering stage as the number of output pixels is increased
progressively from 256×256 to 2048×2048. For each sample,
image dimensions were selected to maintain the original aspect ratio
while matching the specified number of output pixels. Results show
that the rendering algorithm scales close to linearly with image
resolution. Small deviations are due to the different shortcut tree
structures that result for different target resolutions.

Pruning and clipping Although typical illustrations do not in-
clude deeply nested clip-paths, the pipeline supports them as speci-
fied by the standards. Figure 20 shows one of our test cases. Clipping
(or equivalently, occlusion) is the main justification for the pruning



Table 1: Description of tests and performance comparison. Except for the Paris dataset, images were rendered with 1024 width and
proportional height. Number of filled and stroked paths are given, with segments broken into each type. All times are expressed in milliseconds
(smaller are better). “Pre.” denotes the preprocessing time, “Mem.” is memory usage in MiB (i.e., mebibyte, or 220 bytes). All rendering
modes (1×8, 1×32 etc.) are explained in the “antialiasing quality” discussion.

Filled
paths

Fill segments Stroked
paths

Stroke segments Total
segments

Our method NVPR NH
Input Resolution

L Q C L Q C Pre. Mem. 1×8 1×32 4×4×32 1×8 1×32 1D 1×32

Car 1024×682 361 701 165 3187 59 32 12 183 4280 28.45 8.68 12.86 14.73 28.85 3.42 10.56
Drops 1024×1143 204 45 1359 1404 21.77 2.83 14.28 18.59 46.03 2.63 5.11 0.91 33.61
Embrace 1024×1096 225 25 4621 4646 24.06 4.14 15.50 19.38 48.07 2.78 5.08 0.88 31.18
Reschart 1024×625 723 7823 96 24 140 8059 24.96 3.10 8.51 11.14 32.34 2.88 10.84 0.58 19.33
Tiger 1024×1055 236 177 1988 66 16 346 2527 31.04 4.12 12.89 17.24 52.70 2.66 5.50 0.82 34.15
Boston 1024×917 122 1818 13669 1800 137 12470 28094 128.02 46.92 37.22 41.81 71.14 8.28 31.02 2.45 66.77
Hawaii 1024×844 1008 6312 6 43208 131 8 6 2129 51669 115.29 42.15 26.16 29.48 50.50 3.68 14.70
Paper 1 1024×1325 5099 39573 59708 9 23 99304 53.17 13.22 19.28 23.71 67.65 20.80 78.64
Paper 2 1024×1325 5621 42620 85216 26096 68 111 39 154082 72.51 13.86 10.80 17.50 35.09 24.95 95.72
Contour 1024×1024 53241 188340 188340 77.58 41.29 30.07 30.36 63.21 203.93 1025.11
Paris 70k 470×453 32454 2983 1999 13136 987 1487 7456 101.85 45.96 22.39 21.00 28.45 151.67 796.34
Paris 50k 657×635 32639 2443 4149 13157 759 1679 9030 110.12 51.03 26.82 25.22 34.96 155.88 737.20
Paris 30k 1096×1060 34751 7186 22155 15939 5437 18109 52887 192.94 94.72 49.51 48.81 78.59 176.54 904.17

of the shortcut tree. Enabling pruning in the scene shown in the
figure leads to a 25% reduction in memory consumption and 45%
improvement in rasterization time. The total time reduction for
preprocessing and rasterization is 10%.

Front-to-back rendering Many vector graphics renderers draw
shapes back-to-front. This is inefficient when there is substantial
overdraw. We address this problem in two ways. First, we proceed
front-to-back when rendering. As soon as a sample becomes opaque,
the remaining scene content can be safely ignored. In scenes with
high depth complexity, this optimization can significantly improve
rendering performance (e.g., by 33% in the Paris 30k input). Second,
the shortcut tree pruning algorithm eliminates from the stream all
paths that would have been completely occluded by an opaque path
within a cell. Pruning does not take into account the possibility
of multiple semi-transparent paths combining into an opaque layer
and obscuring the paths underneath. This would be difficult to
accomplish, especially in the presence of gradient fills and textures.

Subpixel positioning of text Our renderer treats character glyphs
as regular paths, in object precision. Many renderers pre-render
glyphs in image precision. This is especially noticeable when
scrolling or resizing text, which causes pre-rendered glyphs to move
horizontally or vertically relative to one another. See the animations
of Paper 1 available in the supplemental materials.

Shortcut tree behavior Table 2 shows the behavior of shortcut
trees for increasing levels of subdivision. The examples were se-
lected to span the range of behaviors observed in practice. Most
content in Paper 1 consists of relatively small characters. Once sub-
division is deep enough to isolate them, it stops. The high density of
detail in Paris 30k, which also includes significant overdraw, forces
tree subdivision to proceed further. In general, we do not observe an
explosion in the number of segments shared by different cells.

7 Conclusions and future work
The task of rendering vector graphics has traditionally been per-
formed by CPUs. The large increase in computational power of
GPUs over the past decade has attracted a significant amount of
interest in parallel algorithms for vector graphics rendering, with
each innovation requiring less CPU involvement. Although there are
certain benefits to a tight integration with the standard 3D rendering
pipeline, our work shows the advantages of breaking with legacy in
favor of a complete massively parallel redesign of vector graphics
rendering. Our work opens the door for a variety of interesting
follow-up research and engineering problems:

• Find an auto-tuning method to decide when to stop subdividing
shortcut tree cells for best rendering performance;

• Use a separate algorithm to bootstrap the shortcut tree subdivi-
sion with a coarse regular grid. This would cut down the number
of subdivision passes and could speed up preprocessing;

• Find an efficient and robust solution for the monotonization of
rational cubic Béziers, making the entire pipeline closed under
projective transformations;

• Parallelize the conversion of stroked paths to filled primitives,
including dashes, caps, and joins, and move it to the GPU;

• Add support for filter effects on groups of paths. In particular,
perform these operations in parallel whenever multiple groups
can be filtered independently;

• Add support for subpixel rendering (e.g., [Betrisey et al. 2000]);
• Add support for transparency groups;
• Add support for alternative color models (e.g., CMYK);
• Add support for mesh-based gradient paints;
• Dynamically compile and load user-defined warping functions;
• Invest significantly more effort optimizing the GPU code;
• Implement the pipeline on the CPU.

We are particularly interested in investigating the implementation of
our pipeline on the CPU. On the one hand, it would seem overkill to
maintain the preprocessing stage parallel at the segment level and
the rendering parallel at the sample and pixel levels. A more coarse
division of work between fewer threads should be more appropriate.
On the other hand, most of the effort we have invested in minimizing
control-flow divergence on the GPU should also be effective when
used with the vectorized instructions available in modern CPUs.
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