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Abstract. We propose quantitative regular expressions (QREs) as a
high-level programming abstraction for specifying complex numerical
queries over data streams in a modular way. Our language allows the ar-
bitrary nesting of orthogonal sets of combinators: (a) generalized versions
of choice, concatenation, and Kleene-iteration from regular expressions,
(b) streaming (serial) composition, and (c) numerical operators such
as min, max, sum, difference, and averaging. Instead of requiring the
programmer to figure out the low-level details of what state needs to
be maintained and how to update it while processing each data item,
the regular constructs facilitate a global view of the entire data stream
splitting it into different cases and multiple chunks. The key technical
challenge in defining our language is the design of typing rules that can
be enforced efficiently and which strike a balance between expressiveness
and theoretical guarantees for well-typed programs. We describe how to
compile each QRE into an efficient streaming algorithm. The time and
space complexity is dependent on the complexity of the data structure
for representing terms over the basic numerical operators. In particular,
we show that when the set of numerical operations is sum, difference,
minimum, maximum, and average, the compiled algorithm uses constant
space and processes each symbol in the data stream in constant time
outputting the cost of the stream processed so far. Finally, we prove that
the expressiveness of QREs coincides with the streaming composition
of regular functions, that is, MSO-definable string-to-term transforma-
tions, leading to a potentially robust foundation for understanding their
expressiveness and the complexity of analysis problems.

1 Introduction

In a diverse range of applications such as financial tickers, data feeds from sensors,
network traffic monitoring, and click-streams of web usage, the core computational
problem is to map a stream of data items to a numerical value. Prior research on
stream processing has focused on designing space-efficient algorithms for specific
functions such as computing the average or the median of a sequence of values,
and integrating stream processing in traditional data management software such
as relational databases and spreadsheets. Our goal is orthogonal, namely, to
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provide high-level programming abstractions for the modular specification of
complex queries over data streams, with a mix of numerical operators such as
sum, difference, min, max, and average, supported by automatic compilation into
an efficient low-level stream processing implementation.

To motivate our work, suppose the input data stream consists of transactions
at a bank ATM, and consider how the following query f can be expressed in a
natural, modular, and high-level manner: “On average, how much money does
Alice deposit into her account during a month?” We can express this query
naturally as a composition of two queries: the query f1 that maps the input
stream to a stream consisting of only the transactions corresponding to the
deposits by Alice, and the query f2 that computes the average of the sum of
deposits during each month. This form of filtering, and cascaded composition of
stream processors, is common in many existing stream processing languages (such
as ActiveSheets [35]) and systems (such as Apache Storm), and our proposal
includes a streaming composition operator to express it: f1� f2.

Now let us turn our attention to expressing the numerical computation f2.
An intuitive decomposition for specifying f2 is to break up the input stream into
a sequence of substreams, each corresponding to the transactions during a single
month. We can a write a function f3 that maps a sequence of transactions during
a month to its cumulative sum. The desired function f2 then splits its input
stream into substreams, each matching the input pattern of f3, applies f3 to
each substream, and combines the results by averaging. In our proposed calculus,
f2 is written as iter-avg(f3). This is exactly the “quantitative” generalization
of the Kleene-* operation from regular expressions—a declarative language for
specifying patterns in strings that is widely used in practical applications and
has a strong theoretical foundation. However, we are not aware of any existing
language for specifying quantitative properties of sequences that allows such a
regular iteration over chunks of inputs.

As in regular expressions, iterators in our language can be nested, and one can
use different aggregation operators at different levels. For example, to specify the
modified query, “On an average, during a month, what is the maximum money
that Alice deposits during a single day?” in the program for the original query f ,
we can essentially replace the computation f3 for processing month-substreams
by iter-max(f4), where the function f4 maps a sequence of transactions during
a single day to its sum. Analogous to the iteration, the generalization of the
concatenation operation split-op(f, g), splits the input stream in two parts, applies
f to the first part, g to the second part, and combines the results using the
arithmetic combinator op. If we want to process streams in which no individual
withdrawal exceeds a threshold value in a special manner, our program can be
f else g, where the program f is written to process streams where all withdrawals
are below the threshold and g handles streams with some withdrawal above
the threshold. These core regular constructs, else, split, and iter , are natural as
they are the analogs of the fundamental programming constructs of conditionals,
sequential composition, and iteration, but also allow the programmer a global
view of the entire stream.
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We formalize this idea of regular programming by designing the language of
quantitative regular expressions for processing data streams (section 2). Each
quantitative regular expression (QRE) maps a (regular) subset of data streams
to cost values. The language constructs themselves are agnostic to the cost
types and combinators for combining cost values. The design of the language is
influenced by two competing goals: on one hand, we want as much expressiveness
as possible, and on the other hand, we want to ensure that every QRE can be
automatically compiled into a streaming algorithm with provably small space
and time complexity bounds. For the former, the same way as deterministic
finite automata and regular languages serve as the measuring yardstick for design
choices in formalizing regular expressions, the most suitable class of functions is
the recently introduced notion of regular functions [7]. Unlike the better known
and well-studied formalism of weighted automata, whose definition is inherently
limited to costs with two operations that form a commutative semiring [21], this
class is parametrized by an arbitrary set of cost types and operations. It has
both a machine-based characterization using streaming string-to-term transduc-
ers [7] and a logic-based characterization using MSO-definable string-to-term
transformations [16]. While this class is not closed under streaming composition,
in section 4, we show that QREs define exactly streaming compositions of regular
functions. This expressiveness result justifies the various design choices we made
in defining QREs.

In section 3, we show how to compile a QRE into an efficient streaming
algorithm. The implementation consists of a set of interacting machines, one for
each sub-expression. To process operators such as split and iter , the algorithm
needs to figure out how to split the input stream. Since the splitting cannot
be deterministically computed in a streaming manner, the algorithm needs to
keep track of all potential splits. The typing rules are used to ensure that the
number of splits under consideration are proportional to the size of the expression
rather than the length of the input stream. While the compilation procedure
is generic with respect to the set of cost types and operators, the exact time
and space complexity of the algorithm is parametrized by the complexity of the
data structure for representing cost terms. For example, every term that can
be constructed using numerical constants, a single variable x, and operations of
min and +, is equivalent to a term in the canonical form min(x+ a, b), and can
therefore be summarized by two numerical values allowing constant-time updates.
When we have both numerical values and sequences of such values, if we know
that the only aggregate operator over sequences is averaging, then the sequence
can be summarized by the sum of all values and the length (such a succinct
representation is not possible if, for instance, we allow mapping of a sequence of
values to its median). In particular, we show that when a QRE is constructed
using the operations of sum, difference, minimum, maximum, and average, the
compiled streaming algorithm has time complexity that is linear in the length of
the data stream (that is, constant time for processing each symbol) and constant
space complexity (in terms of the size of the QRE itself, both complexities are
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polynomial). This generalizes the class of queries for which efficient streaming
algorithms have been reported in the existing literature.

2 Quantitative Regular Expressions

f, g, . . . ::= ϕ ?λ Basic functions
| ε ?x

| op(f1, f2, . . . , fk) Cost operations
| f [x/g]

| f else g Regular operators
| split(f [x〉 g)
| split(f 〈x] g)
| iter [x〉(f [g1, g2, . . . , gk])
| iter〈x](f [g1, g2, . . . , gk])

| f� g Streaming composition

Fig. 2.1. List of expression combinators.

2.1 Preliminaries

The data and cost types. We first fix a set T = {T1, T2, . . .} of types, each of
which is non-empty. Typical examples might include the sets R, Z and N of real
numbers, integers and natural numbers respectively, the set B = {true, false} of
boolean values, and the set M of multisets of real numbers.

Another example is Dbank = R ∪ {endd, endm}, indicating the transactions
of a customer with a bank. The symbol endd indicates the end of a working day,
endm indicates the passage of a calendar month, and each real number x ∈ R
indicates the deposit (withdrawal if negative) of x dollars into the account.

Data predicates. For each D ∈ T , let ΦD be a non-empty collection of predi-
cates over D. In the case of Dbank , an example choice is ΦDbank = {d = endd, d =
endm, d ∈ R, d ≥ 0, d < 0, . . .}. We require the following:

1. ΦD be closed under Boolean connectives: for each ϕ1, ϕ2 ∈ ΦD, ϕ1 ∨ϕ2, ϕ1 ∧
ϕ2,¬ϕ1 ∈ ΦD,

2. whether a data value d satisfies a predicate ϕ is decidable, and
3. there is a quantity timeϕ-sat such that the satisfiability of each predicate ϕ is

mechanically decidable in time ≤ timeϕ-sat . Satisfiability of predicates would
typically be determined by an SMT solver [20].

We refer to a set of predicates satisfying these properties as an effective boolean
algebra.
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Data streams, data languages, and symbolic regular expressions. For
each D ∈ T , a data stream is simply an element w ∈ D∗, and a data language L
is a subset of D∗.

Symbolic regular expressions provide a way to identify data languages L. Our
definitions here are mostly standard, except for the additional requirement of
unambiguous parseability, which is for uniformity with our later definitions of
function combinators. They are symbolic because the basic regular expressions
are predicates over D. Through the rest of this paper, the unqualified phrase
“regular expression” will refer to a “symbolic” regular expression.

Consider two non-empty languages L1, L2 ⊆ D∗. They are unambiguously
concatenable if for each stream w ∈ L1L2, there is a unique pair of streams
w1 ∈ L1 and w2 ∈ L2 such that w = w1w2. The language L is unambiguously
iterable if L is non-empty and for each stream w ∈ L∗, there is a unique sequence
of streams w1, w2, . . . , wk ∈ L such that w = w1w2 · · ·wk.

We write JrK ⊆ D∗ for the language defined by the symbolic regular expression
r. Symbolic unambiguous regular expressions are inductively defined as follows:

1. ε is a regular expression, and identifies the language JεK = {ε}.
2. For each predicate ϕ ∈ Φ, ϕ is a regular expression, and JϕK = {d ∈ D |
ϕ(d) holds}.

3. For each pair of regular expressions r1, r2, if Jr1K and Jr2K are disjoint, then
r1 + r2 is a regular expression and Jr1 + r2K = Jr1K ∪ Jr2K.

4. For each pair of regular expressions r1, r2, if Jr1K and Jr2K are unambiguously
concatenable, then r1r2 is a regular expression which identifies the language
Jr1r2K = Jr1KJr2K.

5. When r is a regular expression such that JrK is unambiguously iterable, then
r∗ is also a regular expression, and identifies the language Jr∗K = JrK∗.

Example 1. In the bank transaction example, the languages JR∗enddK and D∗bank
are unambiguously concatenable: the only way to split a string which matches
R∗endd ·D∗bank is immediately after the first occurrence of endd. On the other
hand, observe that R∗ and R∗endd are not unambiguously concatenable: the
string 2, endd ∈ JR∗K · JR∗enddK can be split as 2, endd = (ε)(2, endd), where
ε ∈ JR∗K and 2, endd ∈ JR∗enddK, and can also be split as 2, endd = (2)(endd),
where 2 ∈ JR∗K and endd ∈ JR∗enddK.

Similarly, the language JR∗enddK is unambiguously iterable: the only viable
split for any matching string is immediately after each occurrence of endd. The
language JRK is also unambiguously iterable, but observe that JR∗K is not.

Given a regular expression r1 and r2, let min-terms be the set of distinct
character classes formed by predicates from Φ [18]. The first three claims below
can be proved by straightforward extensions to the traditional regular expression-
to-NFA translation algorithm [12,13,33]. The final claim is proved in [34].

Theorem 1. Given unambiguous regular expressions r1 and r2, the following
problems can be decided in time poly(|r1|, |r2|, |min-terms|)timeϕ-sat:

1. Are Jr1K and Jr2K disjoint?
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2. Are Jr1K and Jr2K unambiguously concatenable?
3. Is Jr1K unambiguously iterable?
4. Are r1 and r2 equivalent, i.e. is Jr1K = Jr2K?

Example 2. Consider again the case of the customer and the bank. We picked
Dbank = R ∪ {endd, endm} and ΦDbank = {d = endd, d = endm, d ∈ R, d ≥
0, d < 0}. The transactions of a single day may then be described by the regular
expression rday = (d ∈ R)∗ · (d = endd), the transactions of a week, by the regular
expression rweek = r7

day. Months which involve only deposits are given by the
regular expression ((d ≥ 0) + (d = endd))∗ · (d = endm).

An important restriction for the predicates is that they are only allowed to
examine individual data values. The language w ∈ R∗ of monotonically increasing
sequences can therefore not be expressed by a symbolic regular expression.
Without this restriction, all problems listed in theorem 1 are undecidable [17].

Cost terms. Let G = {op1, op2, . . .} be a collection of operations over values of
various types. Each operation is a function of the form op : T1×T2×· · ·×Tk → T .

Example 3. Over the space of types Ts = {Z,B}, a simple choice of operators
is Gs = {+,min,max, x < 7} where +,min,max : Z × Z → Z, are the usual
operations of addition, minimum and maximum respectively, and the unary
operator x < 7 : Z→ B determines whether the input argument is less than 7.

Over the space of types Tm = {R,M} where M is the set of multisets of
real numbers, the chosen operations might be Gm = {ins, avg, mdn}, where
ins : M × R → M is insertion into sets, defined as ins(A, x) = A ∪ {x}, and
avg, mdn : M → R return the average and median of a multiset of numbers
respectively.

Let X = {x1, x2, . . .} be a sequence of parameters, and each parameter xi be
associated with a type Ti ∈ T . We use x : T when we want to emphasize that
the type of x is T . Parameters in X can be combined using cost operations from
G to construct cost terms:

τ ::= x | t ∈ T | op(τ1, τ2, . . . , τk)

We will only consider those terms τ that are well-typed and single-use, i.e. where
each parameter x occurs at most once in τ . For example, min(x, y) is a well-
typed single-use term when both parameters are of type R. On the other hand,
the term min(x, x + y) is not single-use. Each term is associated with the set
Param(τ) = {xt1, xt2, . . . , xtk} of parameters appearing in its description, and
naturally encodes a function JτK : T1 × T2 × · · · × Tk → T from parameter
valuations v to costs JτK(v), where Ti is the type of the parameter xi.

2.2 Quantitative regular expressions and function combinators

Informally, for some data and cost domains D,C ∈ T , QREs map data streams
w ∈ D∗ to terms f(w) over the cost domain C. Formally, given the data domain
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D ∈ T , cost domain C ∈ T , and the list of parameters X = 〈x1, x2, . . . , xk〉, each
QRE f identifies a function JfK : D∗ → (T1 × T2 × · · · × Tk → C)⊥.1 Observe
that whether JfK(w, v) is defined depends only on the data stream w, and not
on the parameter valuation v.2

In addition to the data domain D, cost domain C, and the parameters of
interest X = 〈x1, x2, . . .〉, each QRE f is therefore also associated with a regular
expression r, describing the subset of data streams over which it is defined:
JrK = {w ∈ D∗ | JfK(w) 6= ⊥}. We will represent this by saying that f is of the
form QRE(r,X,C), or even more succinctly as f : QRE(r,X,C).

We will now inductively define quantitative regular expressions. A summary
of the syntax can be found in table 2.1.

Basic functions. If ϕ ∈ ΦD is a predicate over data values d ∈ D, and
λ : D → C is an operation in G, then ϕ ?λ : QRE(ϕ, ∅, C) is defined as follows:

Jϕ ?λK(w, v) =
{
λ(w) if |w| = 1 and ϕ(w) is true, and
⊥ otherwise.

For each data domain D and parameter x of type C, ε ?x is a QRE(ε, {x}, C).
If the input stream w is empty, then it produces the output vx, where vx is the
assignment to x in the parameter valuation v:

Jε ?xK(w, v) =
{
vx if w = ε, and
⊥ otherwise.

Example 4. In the bank transaction example, if we wish to count the number of
transactions made by the customer in a month, we would be interested in the
functions d ∈ R ? 1 and d /∈ R ? 0, where 0 and 1 are the functions returning the
constant values 0 and 1 respectively.

Cost operations. Consider two competing banks, which given the transaction
history w of the customer, yield interest amounts of f1(w) and f2(w) respectively.
The customer wishes to maximize the interest received: given the binary operation
max : R× R→ R from G, we are therefore interested in the QRE max(f1, f2).

More generally, pick an operator op : T1 × T2 × · · · × Tk → C and expressions
f1 : QRE(r1, X1, T1), f2 : QRE(r2, X2, T2), . . . , fk : QRE(rk, Xk, Tk). If the
domains are equal, Jr1K = Jr2K = · · · = JrkK, and the parameter lists are pairwise-
disjoint, Xi ∩Xj = ∅, for all i 6= j, then op(f1, f2, . . . , fk) is an expression of the
form QRE(r1,

⋃
iXi, C).

1 Note our convention of describing partial functions f : A → B as total functions
f : A→ B⊥, where B⊥ = B ∪ {⊥} and ⊥ /∈ B is the undefined value. The domain
Dom(f) of f is given by Dom(f) = {a ∈ A | f(a) 6= ⊥}.

2 We will be flexible in our use of function application, and freely use both the uncurried
form JfK(w, v) and the partial application JfK(w) which maps parameter valuations
to costs.

7



Given an input stream w ∈ D∗, if JfiK(w) is defined for each i, then:

Jop(f1, f2, . . . , fk)K(w, v) = op(int1, int2, . . . , intk), where
for each i, inti = JfiK(w, v).

Otherwise, Jop(f1, f2, . . . , fk)K(w, v) = ⊥.

Substitution. Informally, the expression f [x/g] substitutes the result of applying
g to the input stream into the parameter x while evaluating f .

Example 5. In the bank transaction example, the bank may determine interest
rates by a complicated formula rate of the form QRE(D∗bank , ∅,R), which is
possibly a function of the entire transaction history of the customer. Given
the monthly interest rate p ∈ R, we can define a formula earning of the form
QRE(D∗bank , {p},R) which returns the total earnings of the customer’s account.
The QREs rate and earnings thus encode functions JrateK : D∗bank → R and
JearningsK : D∗bank × R → R respectively. The QRE earnings[p/rate] plugs the
result of the rate computation into the earning computation, and maps the
transaction history to the total interest earned.

Formally, let f and g be of the form QRE(rf , Xf , Tf ) and QRE(rg, Xg, Tg)
respectively and with equal domains Jrf K = JrgK, let x ∈ Xf be of type Tg, and
let (Xf \{x})∩Xg = ∅. Then, f [x/g] is of the form QRE(rf , (Xf \{x})∪Xg, Tf ).
If JfK(w) and JgK(w) are both defined, then:

Jf [x/g]K(w, v) = JfK(w, v[x/JgK(w, v)]).

where v[x/t] replaces the value of x in v with t. Otherwise, Jf [x/g]K(w, v) is
undefined.

Conditional choice. If f and g are QREs with disjoint domains then f else g
is a QRE defined as follows:

Jf else gK(w, v) =
{

intf if intf 6= ⊥, and
intg otherwise,

where intf = JfK(w, v) and intg = JgK(w, v) respectively.

Example 6. The expression isPositive = d ≥ 0 ? true else d < 0 ? false examines a
single customer transaction with the bank, and maps it to true if it was a deposit,
and false otherwise.

The bank rewards program may reserve a higher reward rate for each trans-
action made in a “deposit-only” month, and a lower reward rate for other
months. Say we have expressions hiReward and loReward which compute the
total customer rewards in qualifying and non-qualifying months respectively. The
expression reward = hiReward else loReward then maps the transactions of an
arbitrary month to the total reward earned.
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Observe that the choice of isPositive depends only on the next customer
transaction. On the other hand, the choice in reward depends on the entire list
of transactions made in that month, and resolving this choice requires a global
view of the data stream.

Concatenation. In the bank transaction example, say we have the transactions
of two consecutive months, w ∈ r2

month, and that the QRE count returns the
number of transactions made in a single month.

To express the minimum number of transactions for both months, a natu-
ral description is split-min(count, count), where the combinator split-min splits
the input string w into two parts w1 and w2, applies count to each part,
and combines the results using the min operator. Similarly, the expression
split-plus(count, count) would total the number of transactions made in both
months. One reasonable choice for function concatenation is therefore to have a
k-ary combinator split-op, for each k-ary operator op ∈ G.

We instead choose to have a pair of uniform binary, operator-agnostic combi-
nators split: split(f [x〉 g) and split(f 〈x] g). They split the given input stream
into two parts, applying f to the prefix and g to the suffix, and use parameter x
to pass the result from f to g in the case of [x〉 and vice-versa in the case of
〈x] (see figure 2.2). Therefore the sub-expressions f and g themselves determine
how the intermediate results are combined. The split-op combinators are just a
special case of this more general construct (see example 7). We now formalize
this intuition.

Let f : QRE(rf , Xf , Tf ) and g : QRE(rg, Xg, Tg) be a pair of QREs whose
domains Jrf K and JrgK are unambiguously concatenable. Let x : Tf be a parameter
in Xg and let Xf ∩ (Xg \ {x}) = ∅. Then split(f [x〉 g) is a QRE of the form
QRE(rf · rg, X, Tg) where X = Xf ∪ (Xg \ {x}). Given an input stream w, if
there exist sub-streams wf , wg such that w = wfwg and such that both JfK(wf )
and JgK(wg) are defined, then:

Jsplit(f [x〉 g)K(w, v) = JgK(wg, vg), where
vg = v[x/intf ], and

intf = JfK(wf , v).

Otherwise, Jsplit(f 〈x] g)K(w, v) = ⊥.

Example 7. We promised earlier that for each cost domain operator op, the
split-op combinator was a special case of the more general split combinator just
defined. We illustrate this in the bank transaction example by constructing a
QRE for split-min(count, count), where count is the expression counting the
number of transactions in a single month.

The desired function may be expressed by the QRE split(count [p〉 minCount),
where the QRE minCount(p) = min(p, count).3 The split combinator splits the
3 Note that this QRE is pedantically ill-formed, because the first argument to the min
operator is a parameter p, and the second argument is a QRE count. The parameter
p on the left should be read as the QRE rmonth ? p, where rmonth = Dom(count).
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wf ∈ D∗ wg ∈ D∗

JfK JgK Outputx

Fig. 2.2. The split combinator, split(f [x〉 g), divides the input data string w into two
parts, w = wfwg, applies f to wf and g to wg, and substitutes the result of f into the
parameter x of the term generated by g. The expression split(f 〈x] g) is similar except
for the direction of the f -g data flow.

input data string into a prefix and a suffix, and propagates the output of count
on the prefix into the parameter p of the QRE minCount on the suffix.

In general, given appropriate QREs f and g, and a binary operator op,
the expression split-op(f, g) can be expressed as split(f [p〉 g′), where g′ =
op(Dom(f) ? p, g) and p is a new temporary parameter.

The definition of the left version of the split combinator, split(f 〈x] g) is
similar to the definition of split(f [x〉 g), with just the direction of the f -g
information flow reversed, and is given in the appendix.

Iteration. Our next combinator is iteration, the analog of Kleene-* from regular
expressions. The definition of the combinator is similar to that of split, to permit
more general forms of iteration than just those offered a hypothetical iter-op
operator.

Consider an expression f : QRE(r, {x}, T ), such that JrK is unambiguously
iterable, and x : T . Then iter [x〉(f) is an expression of the form QRE(r∗, {x}, T ).
The expression iter [x〉(f) divides the input stream w into a sequence of sub-
streams, w1, w2, . . . , wk, such that JfK(wi) is defined for each i. Jiter [x〉(f)K(w) is
defined if this split exists and is unique. In that case, for each i ∈ {0, 1, 2, . . . , k},
define inti as follows:

1. int0 = vx, and
2. for each i ≥ 1, inti = JfK(wi, {x 7→ inti−1}).

Finally, Jiter [x〉(f)K(w, v) = intk.

Example 8. In the bank transaction example, consider the query currBal which
maps the transaction history w of the customer to her current account balance. We
can write currBal = iter-plus(tx), where the expression tx = (d ∈ R ? d) else (d /∈
R ? 0) records the change in account balance as a result of a single transaction.

To desugar currBal to use the parametrized version of the iteration combinator,
we adopt a similar approach as in example 7. We first write the expression
tx ′ = plus(p, tx). Observe that tx ′ is a QRE dependent on a single parameter p,
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the previous account balance, and returns the new balance. Then, we can write:
currBal = iter-plus(tx) = iter [p〉(tx ′).

A similar approach works to desugar iter-op(f), for any associative cost
operator op with the identity element 0. We first write f ′ = op(rf ? p, f), for some
new parameter p of type Tf . Then, observe that iter-op(f) = (iter [p〉(f ′))[p/0].

Remark 1. We have presented here a simplified version of the iteration combina-
tor, which is sufficient for most examples. The full combinator, used in the proof
of expressive completeness, allows f to depend on multiple parameters (instead
of just a single parameter as above), and multiple values are computed in each
substream wi. This full combinator and the symmetric left-iteration combinator
are defined in the full paper.

Streaming composition. In the bank transaction example, suppose we wish
to compute the minimum balance over the entire account history. Recall that the
stream w is a sequence of transactions, each data value indicating the deposit
/ withdrawal of some money from the account. The expression currBal from
example 8 maps the transaction history of the customer to her current balance.
It is also simple to express the function minValue = iter-min(d ∈ R ? d) which
returns the minimum of a stream of real numbers. We can then express the
minimum account balance query using the streaming composition operator:
minBal = currBal�minValue.

Informally, the streaming composition currBal�minValue applies the expres-
sion currBal to each prefix w1, w2, . . . , wi of the input data stream w = w1, w2, . . .,
thus producing the account balance after each transaction. It then produces
an intermediate data stream w′ by concatenating the results of currBal. This
intermediate stream w′ is supplied to the function minValue, which then produces
the historical minimum account balance.

Formally, let f and g be of the form QRE(r, ∅, Tf ) and QRE(T ∗f , X, Tg)
respectively. Note that f produces results independent of any parameter, and
that g is defined over all intermediate data streams w′ ∈ T ∗f . Then f� g :
QRE(D∗, X, Tg). Given the input stream w = w1, w2, . . . , wk and parameter
valuation v, for each i such that 1 ≤ i ≤ k, define inti as follows:

1. If JfK(w1, w2, . . . , wi, v∅) 6= ⊥, then inti = JfK(w1, w2, . . . , wi, v∅), where v∅
is the empty parameter valuation.

2. Otherwise, inti = ε.

Then Jf� gK(w, v) is given by:

Jf� gK(w, v) = JgK(int1, int2, . . . , intk, v).

2.3 Examples

Analyzing a regional rail system. Consider the rail network of a small city.
There are two lines, the airport line, al, between the city and the airport, and
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the suburban line, sl, between the city and the suburbs. The managers of the
network want to determine the average time for a traveler in the suburbs to get
to the airport.

The data is a sequence of event tuples (line, station, time), where line ∈ {al, sl}
indicates the railway line on which the event occurs, station ∈ {air , city, suburb}
indicates the station at which the train is stopped, and time ∈ R indicates the
event time.

We first write the expression tsc which calculates the time needed to travel
from the suburbs to the city. Let ϕss(d) = (d.line = sl ∧ d.station = suburb) and
ϕsc(d) = (d.line = sl ∧ d.station = city) be the predicates indicating that the
suburban line train is at the suburban station and at the city station respectively.
Consider the expression:

tsc-drop = split-plus(¬ϕ∗ss · ϕss · ¬ϕ∗sc ? 0, ϕsc ? time)

that maps event streams of the form ¬ϕ∗ss · ϕss · ¬ϕ∗sc · ϕsc to the time at which
the train stops at the city station. The expression tsc-pickup that maps event
streams to the pickup time from the suburban station can be similarly expressed:

tsc-pickup = split-plus(¬ϕ∗ss ? 0, ϕss ? time,¬ϕ∗sc · ϕsc ? 0).

Our goal is to express the commute time from the suburbs to the city. This is
done by the expression: tsc = minus(tsc-drop, tsc-pickup).

The QRE tca that expresses the commute time from the city to the airport
can be similarly constructed. We want to talk about the total travel time from
the suburbs to the airport: tsa = split-plus(tsc, tca). Our ultimate goal is the
average travel time from the suburbs to the airport. The following QRE solves
our problem: tavg = iter-avg(tsa).

Rolling data telephone plans. Now consider a simple telephone plan, where
the customer pays 50 dollars each month for a 5 GB monthly download limit.
If the customer uses more than this amount, she pays 30 dollars extra, but
otherwise, the unused quota is added to her next month’s limit, up to a maximum
of 20 GB.

The data domain Dtel = R ∪ {endm}, where d ∈ R indicates a download of
d gigabytes and endm indicates the end of the billing cycle and payment of the
telephone bill. Given the entire browsing history of the customer, we wish to
compute the download limit for the current month.

First, the QRE totalDown = iter-plus(d ∈ R ? d) takes a sequence of down-
loads and returns the total data downloaded. The browsing history of a sin-
gle month is given by the regular expression rm = R∗ · endm, and the QRE
monthDown = split-plus(totalDown, endm ? 0) maps data streams w ∈ JrmK to
the total quantity of data downloaded.

The following expression gives the unused allowance available at the end
of the month, in terms of initLim, the download limit at the beginning of
the month: unused(initLim) = (rm ? initLim) − monthDown, and the QRE
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rollover(initLim) = min(max(unused(initLim), 0), 20) gives the amount to be
added to the next month’s limit.

The QRE nextQuota(initLim) = rollover(initLim) + 5 provides the download
limit for the next month in terms of initLim and the current month’s browsing
history. Finally, the QRE quota = iter [initLim〉(nextQuota)[initLim/5] maps
the entire browsing history of the customer to the download limit of the current
month.

Aggregating weather reports. Our final example deals with a stream of
weather reports. Let the data domain Dwth = R∪{autEqx, sprEqx,newYear , . . .},
where the symbols autEqx and sprEqx represent the autumn and spring equinoxes.
Here a number d ∈ R indicates a temperature reading of d ◦C. We wish to compute
the average winter-time temperature reading. For this query, let winter be defined
as the time between an autumn equinox and the subsequent spring equinox.

The regular expression rsumm = R∗ · autEqx captures a sequence of temper-
ature readings made before the start of winter, and the expression summer =
rsumm ? ∅ maps the summer readings to the empty set. The QRE collect =
iter-union(d ∈ R ? {d}) collects a sequence of temperature readings into a set
and so we can write QRE winter = split-union(collect, (sprEqx ? ∅)).

The QRE year = split-union(summer ,winter) constructs the set of winter-
time temperatures seen in a data stream. The average winter-time temperature
over all years is then given by: avgWinter = avg(iter-union(year)).

3 Compiling QREs into Streaming Evaluation Algorithms

In this section, we show how to compile a QRE f into a streaming algorithm
Mf that computes JfK(w, v). Recall that the partial application JfK(w) : T1 ×
T2 × · · · × Tk → T is a term which maps parameter valuations v to cost values c.
Therefore, the complexity of expression evaluation depends on the complexity
of performing operations on terms. This in turn depends on the choice of cost
types T , cost operations G, and on the number of parameters appearing in f .
Let timeϕ-eval(f) be the maximum time needed to evaluate predicates appearing
in f on data values, and let timeτ (resp. memτ ) be the maximum time (resp.
memory) needed to perform an operation op ∈ G on terms τ1, τ2, . . . , τk. Then
we have:

Theorem 2. Every QRE f can be compiled into a streaming algorithm Mf

which processes each data item in time poly(|f |)timeτ timeϕ-eval(f) and which
consumes poly(|f |)memτ memory.

Since the size of all intermediate terms produced, |τ |, is bounded by |w|poly(|f |),
this is also an upper bound on timeτ and memτ . However, depending on the
cost types T and the cost operators G, they might be smaller. For instance,
in the case of real-valued terms over G = {∗,+,min,max, ins, avg}, the term
simplification procedure of subsection 3.2 guarantees that timeτ = poly(|f |) and
memτ = O(|f |).
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Theorem 3. 1. For every choice of cost types T , and cost operations, G,
timeτ = |w|poly(|f |) and memτ = |w|poly(|f |).

2. If T = {R,M}, where M is the set of multisets of real numbers, and G =
{∗,+,min,max, ins, avg}, then timeτ = poly(|f |) and memτ = poly(|f |),
independent of the length of the data stream |w|.

3.1 Overview

We construct, by structural induction on the QRE f , an evaluator Mf that
computes the function JfK. Let us first assume that each element wi ∈ d of the
data stream is annotated with its index i, so the input to the streaming evaluator
is a sequence of pairs (i, wi). Now consider the evaluator Msplit(f [x〉 g) when
processing the stream w, as shown in figure 3.1. Msplit(f [x〉 g) forwards each
element of the stream to both sub-evaluators Mf and Mg. After reading the
prefix wpre, Mf reports that JfK(wpre) is defined, and returns the term produced.
We are therefore now interested in evaluating g over the suffix beginning at the
current position of the stream. Each evaluator therefore also accepts input signals
of the form (start, i), which indicates positions of the input stream from which
to start processing the function. While evaluating split(f [x〉 g), there may be
multiple prefixes, such as wpre and w′pre, for which JfK is defined. Mg gets a start
signal after each of these prefixes is read, and may therefore be simultaneously
evaluating g over multiple suffixes of the data stream. We refer to the suffix
beginning at each start signal as a thread of evaluation.

After reading the data stream, Mg may report a result, i.e. that JgK is defined
on some thread. Recall the semantics of the split operator: split(f [x〉 g) is now
defined on the entire data stream, and the result is τf [x/τg], where τf and τg are
respectively the results of evaluating JfK and JgK on the appropriate substrings.
The compound evaluator therefore needs to “remember” the result τf reported
by Mf after processing wpre—a key part of the complexity analysis involves
bounding the amount of auxiliary state that needs to be maintained. Next, since
Mg may be processing threads simultaneously, it needs to uniquely identify the
thread which is currently returning a result. Result signals are therefore triples
of the form (result, i, τ), indicating that the thread beginning at index i is
currently returning the result τ . On receiving the result τg from Mg at the end
of the input stream, the compound evaluator reconciles this with the result τf
earlier obtained from Tf , and itself emits the result τf [x/τg]. The response time
of each evaluator therefore depends on the time timeτ required to perform basic
operations over terms.

Finally, let us consider the auxiliary state thatMsplit(f [x〉 g) needs to maintain
during processing. It maintains a table of results Thg reported by Mf (the
subscript g indicates that the thread is currently being processed by Mg). Each
time Mf reports a result (result, i, τf ), it adds the triple (i, j, τf ) to Thg: this
indicates that the thread of Msplit(f [x〉 g) beginning at index i received the result
τf from Mf at index j. Msplit(f [x〉 g) then sends a start signal to Mg. If left
unoptimized, the number of entries in Thg is therefore the number of start signals
sent to Mg, which is, in the worst case, O(|w|).
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The evaluator Mg therefore emits kill signals of the form (kill, i), indicating
that the thread beginning at index i will not be producing any more results,
and that parent evaluators may recycle auxiliary state as necessary. Note that
a kill signal (kill, i) is a strong prediction about the fate of a thread: it is
the assertion that for all future inputs, JgK is undefined for the suffix of the
data stream beginning at index i. Because of the unambiguity requirements on
QREs, it follows that each function evaluator Mf will always have at most O(|f |)
active threads. Such claims can be immediately lifted to upper bounds on the
response times and memory consumption of the evaluator, poly(|f |)timeτ and
poly(|f |)memτ .

In summary, the evaluator accepts two types of signals: start signals of the
form (start, i) and data signals of the form (symbol, i, d). It emits two types
of signals as output: result signals of the form (result, i, τ) and kill signals of
the form (kill, i). The input fed to the evaluator satisfies the guarantee that no
two threads ever simultaneously produce a result (input validity). In return, the
evaluator is guaranteed to report results correctly, and eagerly kill threads.

1 i j n

JfK is defined JgK is defined

JfK is defined

Fig. 3.1. Processing split(f [x〉 g) over an input data stream w. There are two prefixes
wpre = w1w2 · · ·wi and w′pre = w1w2 · · ·wj of w for which JfK is defined. JgK is defined
for the suffix wsuff = wi+1wi+2 · · ·wn.

The input-output requirements of function evaluators are formally stated in
the full paper. The construction is similar to the streaming evaluation algorithm
for DReX [6]. The major differences are the following:
1. QREs map data streams to terms, while DReX maps input strings to output

strings. Even if the top-level QRE is parameter-free, sub-expressions might
still involve terms, and intermediate results involve storing terms. We thus
pay attention to the computational costs of manipulating terms: this includes
the time timeτ to perform basic operations on them, and the memory memτ

needed to store terms.
2. The iter combinator, as defined in this paper, is conceptually different from

both the iteration and the chained sum combinators of DReX.

3.2 Succinct representation of terms

Recall that the evaluation time is parametrized by memτ and timeτ , the max-
imum memory and time required to perform operations on terms. It is there-
fore important to be able to succinctly represent terms. To prove the second
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part of theorem 3, we now present a simplification procedure for terms over
G = {∗,+,min,max, ins, avg} so that memτ and timeτ are both bounded by
poly(|f |), independent of the length of the input stream. The representation we
develop must support the following operations:

1. Construct the term op(τ1, τ2, . . . , τk), for each operator op ∈ G, and appro-
priately typed terms τ1, τ2, . . . , τk,

2. given terms τ1 and τ2, and an appropriately typed x ∈ Param(τ1), construct
the term τ1[x/τ2], and

3. given a term τ and a parameter valuation v, compute JτK(v).

Intuitively, the simplification procedure simpl compiles an arbitrary copyless
input term τ into an equivalent term simpl(τ) of bounded size. Consider, for
example, a “large” term such as τ(x) = min(min(x, 3)+2, 9). By routine algebraic
laws such as distributivity, we have τ(x) = min(min(x+ 2, 3 + 2), 9) = min(x+
2, 5, 9) = min(x+ 2, 5).

Proposition 4. For each input τ , simpl runs in time O(|τ |2) and returns an
equivalent term of bounded size: simpl(τ) is equivalent to τ , and |simpl(τ)| =
O(|Param(τ)|).

We apply simpl to every intermediate term produced by the streaming algo-
rithm. It follows that memτ = O(|Xf |) = O(|f |), where Xf is the set of parame-
ters appearing in the description of f , and timeτ = O(poly(|Xf |)) = O(poly(|f |)),
and this establishes theorem 3.

A first attempt at designing simpl might be to repeatedly apply algebraic laws
until terms reach a normal form. For example, the term min(x+2, 5)+min(y+8, 7)
could be mechanically simplified into the equivalent term min(12, x+9, y+13, x+
y + 10). Notice however, that this simplification potentially involves a constant
for each subset of parameters, thus producing terms of size O(2|f |) (but still
independent of the stream length |w|).

The simplification routine instead only propagates constants and does not
attempt to completely reduce the term to a normal form. The term min(x +
2, 5) + min(y + 8, 7) would therefore be left unchanged.

Consider the set of elements A = {3, 4, x, y + 3}. The only operation over
multisets is insertion and average. A is therefore represented by the pair (x+ y +
10, 4), indicating the sum of the elements in A and the number of elements in A
respectively. The average avg(A) would be represented by the term (x+y+10)/4 =
x/4 + y/4 + 2.5. The simplified term may therefore also contain division terms of
the form x/n and is drawn from the following grammar:

τR ::= c (for c ∈ R) | x | x/n (for n ∈ N)
| τ1 ∗ τ2 | τ1 + τ2 | τ1 − τ2
| min(τ1, τ2) | max(τ1, τ2)

τM ::= (τR, n)

The procedure simpl(τ) works as follows:
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1. If τ is a constant c or a parameter x, then return τ .
2. Otherwise, if τ = op(τ1, τ2), then compute τ ′1 = simpl(τ1) and τ ′2 = simpl(τ2).

Output prop-const(op(τ ′1, τ ′2)).

The procedure prop-const(τ) performs constant propagation, and is essentially
a large case-analysis with various pre-applied algebraic simplification laws. For
example,

if τ = τ1 + τ2,

τ1 = c1, for some constant c1, and
τ2 = min(τ ′2, τ ′′2 ),

then prop-const(τ) = min(simpl(c1 + τ ′2, c1 + τ ′′2 )).

The full case-analysis is described in the full paper.
The key observation is that such constant propagation is sufficient to guarantee

small terms: if all non-trivial sub-terms contain at least one parameter, and each
parameter appears at most once in each term, then there are at most a bounded
number of constants in the simplified term, and thus a bounded number of leaves
in the term-tree, and the term is therefore itself of a bounded size. Proposition 4
follows.

3.3 Why the unambiguity and single-use restrictions?

We first consider the unambiguity rules we used while defining QREs. While
defining op(f1, f2), we require the sub-expressions to have equal domains. Other-
wise, the compound expression is only defined for data streams in the intersection
of Dom(f1) and Dom(f2). Efficiently determining whether strings match regular
expressions with intersection is an open problem (see [32] for the state of the
art).

Now consider split(f [x〉 g) without the unambiguous concatenability require-
ment. For a stream w with two splits w = w1w2 = w′1w

′
2, such that all of JfK(w1),

JfK(w′1), JgK(w2) and JgK(w′2) are defined. Since we are defining functions and
not relations, the natural choice is to leave split(f [x〉 g) undefined for w. In the
compound evaluator, we can no longer assume input validity, as two threads of
Tg will report a result after reading w. Furthermore, the compound evaluator has
to perform non-trivial bookkeeping and not report any result after reading w.
Requiring unambiguous concatenability is a convenient way to avoid these issues.

We conjecture that non-regular functions are expressible if the single-use
restrictions are relaxed. Furthermore, lifting the single-use restrictions makes
the term simplification procedure of subsection 3.2 more complicated. Consider
the “copyful” term τ = min((x+ y), (x+ y) + z). Observe that terms are now
best represented as DAGs, and consider applying constant propagation to the
expression τ + 3: this results in the term min(x+ (y + 3), (x+ y) + z + 3), thus
causing the shared node x+ y of the term DAG to be split. It is not clear that
the constant propagation procedure prop-const does not cause a large blow-up
in the size of the term being represented, because of reduced sharing.

17



4 The Expressiveness of Quantitative Regular
Expressions

We now study the expressive power of QREs. The recently introduced formalism
of regular functions [7] is parametrized by an arbitrary set of cost types and
operations over cost values. Regular functions can be equivalently expressed both
by the operational model of streaming string-to-term transducers (SSTTs), and
as logical formulas mapping strings to terms in monadic second-order (MSO)
logic. In this section, we show that QREs are expressively equivalent to the
streaming composition of regular functions. This mirrors similar results from
classical language theory, where regular languages can be alternately expressed
by finite automata, by regular expressions and as formulas in MSO.

q0start q1

d ≥ 0/bal := bal + d

d = endm/bal := bal + 10

d < 0/bal := bal + d
d ∈ R/bal := bal + d

d = endm

Fig. 4.1. The bank gives the customer a $10 reward for each month in which no
withdrawal is made. The current account balance is computed by the SSTT Sbal . The
machine maintains a single register bal, the state q0 indicates that no withdrawal has
been made in the current month, and the machine moves to q1 if at least one withdrawal
has been made.

See figure 4.1 for an example of an SSTT. Informally, an SSTT maintains
a finite state control, and a finite set of typed registers. Each register holds a
term τ of the appropriate type, and register contents are updated during each
transition. The main restrictions are: (a) transitions depend only on the current
state, and not on the contents of the registers, (b) register updates are copyless:
the update x := x+ y is allowed, but not the update x := y + y, and (c) at each
point, the term held by each register is itself single-use.

We first describe the translation from QREs to the streaming composition of
SSTTs. The construction proceeds in two steps: we first rewrite the given QRE as
a streaming composition of composition-free QREs (subsection 4.1), and then we
translate each composition-free QRE into an equivalent SSTT (subsection 4.2).
In subsection 4.3, we describe the proof of expressive completeness: each SSTT
can also be expressed by an equivalent QRE. For SSTTs with multiple registers,
data may flow between the registers in complicated ways. The main part of
the SSTT-to-QRE translation procedure is analysis of these data flows, and the
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imposition of a partial order among data flows so that an inductive construction
may be performed. Definitions and omitted proofs may be found in the full paper.

4.1 A normal form for QREs

Our main goal is to convert each QRE into the streaming composition of SSTTs.
We first rewrite the given QRE as the streaming composition of several QREs,
each of which is itself composition-free (theorem 5). We use the term QRE6� to
highlight that the QRE does not include occurrences of the streaming composition
operator. In subsection 4.2 we translate each of these intermediate QRE 6�-s into
a single SSTT.

Theorem 5. For each QRE e, there exists a k and QRE6�-s f1, f2, . . . , fk, such
that e is equivalent to f1�f2�· · ·�fk.

The proof is by induction on the structure of e. The claim clearly holds if e is
a basic expression or itself of the form f� g. We now handle each of the other
cases in turn.

Consider the expression e = op(f� g, h). The idea is to produce, after reading
each element wi of the input stream w, the pair inti = (JfK(w1, w2, . . . , wi), wi).
We can now apply g to the first element and h to the second element of each
pair in the stream of intermediate values int = int1, int2, . . ., and use the cost
operator op to produce the final result.

We are therefore interested in the operator tuple, which produces the output
(t1, t2) ∈ T1 × T2 for each pair of input values t1 ∈ T2 and t2 ∈ T2. Observe
that g cannot be directly applied to elements of the intermediate data stream,
because they are pairs, and only the first element of this pair is of interest to g.
Instead, we write the expression project1(g), which is identical to g except that
each data predicate ϕ(d) is replaced with ϕ(d.first), and each atomic function
λ(d) is replaced with λ(d.first). Similarly, project2(h) is identical to h except that
it looks at the second element in each input data pair.

Now, observe that the original expression e = op(f� g, h) is equivalent to the
expression tuple(f,last)� op(project1(g), project2(h)), where the expression last
simply outputs the last element of the input stream: last = split(D∗ [x〉 (true ? d)).
The remaining cases are presented in the full paper.

4.2 From QREs to SSTTs

Theorem 6. Let f be a QRE6� over a data domain D. There exists an SSTT
Sf such that JfK = JSf K.

The proof proceeds by structural induction on f . The challenging cases are
those of split and iter . Consider the case f = split(g [x〉 h). Just as in figure 3.1,
it is not possible to determine, before seeing the entire stream w, where to
split the stream into w = wprewsuff such that both JgK(wpre) and JgK(wsuff ) are
defined. However, it is known that SSTTs are closed under regular lookahead,
a powerful primitive operation by which the automaton can make a transition
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not just based on the next input symbol, but based on a regular property of the
entire (as yet unseen) suffix. The detailed proof of theorem 6, including a formal
definition of regular lookahead, may be found in the full paper.

4.3 From SSTTs to QREs

Theorem 7. Let S be an SSTT. There exists a QRE 6� f such that JSK = JfK.

Proof outline. The proof follows the idea in [33] for constructing a regular
expression from a given DFA. Suppose the DFA has n states {q1, q2, . . . , qn}. Let
Rki,j denote the set of input strings w that take the DFA from state qi to state
qj without going through any intermediate state numbered higher than k (the
origin and target states i and j can be of index greater than k).

The regular expressions corresponding to the sets Rki,j can be defined in-
ductively. The base case when k = 0 corresponds to a single transition. For
the inductive definition we have Rki,j = Rk−1

i,k (Rk−1
k,k )∗Rk−1

k,j ∪ R
k−1
i,j . Given the

accepting states are F = {f1, f2, . . . , f`} and the initial state is 1 then the regular
expression Rn1,f1

+Rn1,f2
+ . . .+Rn1,f`

recognizes the same language as the given
DFA.

We note that this construction works with unambiguous regular expressions.
That is, whenever R and R′ above are combined using ∪ their domain is disjoint,
when they are concatenated they are unambiguously concatenable, and when R
is iterated it is unambiguously iterable.

Generalizing the idea to SSTTs. Let R be the set of regular expressions used
in the construction above. To extend this idea to SSTTs we would like to create
for every R ∈ R and every variable x of a given SSTT S a quantitative regular
expression f[x,R] such that for w ∈ R the value of variable x when processing of w
by S terminates is given by f[x,R](w). If the SSTT hasm variables {x1, . . . , xm} we
can work with vectors of QREs VR = (f[1,R], . . . , f[m,R]) where f[i,R] abbreviates
f[xi,R]. In order to use the same inductive steps for building these vectors of
QREs, given VR and VR′ we need to be able to calculate VR·R′ , VR∗ and VR∪R′

whenever R and R′ are combined in a respective manner in the construction
above. The major difficulty is calculating VR∗ . This is since variables may flow to
one another in complicated forms. For instance, on a transition where variable x
is updated to max(x, y) and variable y is updated to z+ 1, the QRE for iterating
this transition, zero, one or two times looks very different. Fortunately, there is a
finite number of such variations, i.e. we can define terms that should capture each
variation so that repeating the loop more than m times will yield a previously
encountered term. The situation, though, is more complicated since there may
be several loops on the same state, and in each such loop the variables flow may
be different, and we will need to account for all loops consisting of arbitrary long
concatenations of these paths. Thus, we will consider regular expressions of the
form R[i, j, k, θ] where θ describes the flow of variables as defined below, and we
will need to find some partial order on such regular expressions so that we can
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always compute VR′′ using previously computed VR and VR′ , and whenever
these are combined they do not violate the unambiguity requirements.

Variable flows. The variable-flow (in short flow) of a stream w ∈ Rki,j is a
function θ : [1..m]→ [1..m] such that θ(i) = j if xj depends on xi. By the
copyless restriction there is at most one variable xj which may depend on xi
and we assume without loss of generality that every variable flows into some
other variable. We use Θ to denote the set of all flows. For θ1, θ2 ∈ Θ we use
θ1 · θ2 (or simply θ1θ2) to denote the flow function θ(i) = θ2(θ1(i)). Note that
if w = w1w2 and w1, w2 have flows θ1, θ2 respectively, then w has flow θ1θ2. We
use θ0 to denote the identity flow, θ1 to denote θ and for k > 1 we use θk to
denote θ · θk−1. We say that a flow θ is idempotent if θk = θ for every k ∈ N. We
use ΘI to denote the set of all idempotent flows. We say that a flow θ is normal
if θ(i) = j implies i ≥ j (i.e. the variables flow only upwards). Given an SSTT S
with set of states Q we can transform it to an SSTT SN where all updates on
the edges are normal by letting the states of SN be Q× Pn where Pn are all the
permutations of [1..n]. The SSTT SN remembers in the state the permutation
needed to convert the flow to that of the original S. Let ΘN be the set of normal
flows. It can be shown that concatenations of normal flows is a normal flow. Thus,
we consider henceforth only normal flows.

For θ ∈ ΘN and i, j, k ∈ [1..n], let R[i, j, k, θ] denote the set of all streams
w such that when S processes w starting in state i, it reaches state j without
passing through any state indexed greater than k and the overall flow is θ. We use
RΘ to denote the set of all such regular expressions. We are now ready to define
the vectors VR corresponding to R ∈ RΘ for R’s that appear in the inductive
construction.

5 Related Work

Data Management Systems. Traditional database management systems fo-
cus on efficient processing of queries over static data. When data is updated
frequently, and queries need to be answered incrementally with each update,
ideally without reprocessing the entire data set (due to its large size), the resulting
data management problem of continuous queries has been studied in the database
literature (see [9] for a survey, [1] for an example system, and [8] for CQL, an
extension of the standard relational query language SQL for continuous queries).
The literature on continuous queries assumes a more general data model com-
pared to ours: there can be multiple data streams that encode relational data and
queries involve, in addition to aggregation statistics, classical relational operators
such as join. Solutions involve maintaining a window of the stream in memory
and answer queries only approximately. A recent project on continuous queries is
ActiveSheets [35] that integrates stream processing in spreadsheets and provides
many high-level features aimed at helping end-users. In recent years, there is also
increased focus on evaluating queries over data streams in a distributed manner,
and systems such as Apache Storm (see http://storm.apache.org) and Twitter
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Heron [27] facilitate the design of distributed algorithms for query evaluation.
There is also extensive literature on querying XML data using languages such as
XPath and XQuery and their extensions [15,26,28].

Many of these query languages support filtering operation that maps an input
data stream to an output stream that can be fed as an input to another query.
The streaming composition operation in QREs is inspired by this. The novelty
in our work lies in the regular constructs for modular specification of numerical
queries by exploiting the structure in the sequence.

Streaming Algorithms. Designing efficient streaming algorithms has been an
active area of research in theoretical computer science (see [29,2] for illustrative
results and [30] for a comprehensive survey). Such algorithms are designed for
specific computational problems (for example, finding the k-median) using tools
such as approximation and randomization. While we have considered only simple
aggregation operators such as sum and averaging which have obvious streaming
algorithms for exact computation, the complexity in QRE queries is due to the
nesting of regular constructs and aggregation operations. Since our evaluation
algorithm is oblivious to the set of cost combinators and the data structure used
to summarize terms to be able to compute desired aggregates, our results are
orthogonal and complementary to the literature on streaming algorithms.

String Transformations. Domain-specific languages for string manipulation
such as sed, AWK, and Perl are widely used to query and reformat text files.
However, these languages are Turing complete and thus do not support any
algorithmic analysis. In recent years, motivated by applications to verification
of string sanitizers and string encoders, there is a renewed interest in designing
languages based on automata and transducers [3,24,17,19]. While such languages
limit expressiveness, they have appealing theoretical properties such as closure
under composition and decidable test for functional equivalence, that have been
shown to be useful in practical applications. Symbolic automata and transducers
introduced the idea of using unary predicates from a decidable theory, supported
by modern SMT solvers [20], to process strings over unbounded or large alpha-
bets [36], and we use the same idea for defining symbolic regular expressions.
Furthermore, checking typing rules regarding the domains of QREs relies on the
constructions on symbolic automata.

The work most relevant to this paper is the design of the language DReX,
a declarative language that can express all regular string-to-string transforma-
tions [6,7]. In DReX, the only cost type is strings and the only operation is string
concatenation, and thus, quantitative regular expressions can be viewed as a
generalization of DReX. In the design of QREs, the key new insights are: (a) the
introduction of parameters to pass values across chunks during iteration, (b) the
clear separation between the regular constructs and cost combinators, and (c) the
inclusion of the streaming composition operation. The compilation of QREs into
a single-pass streaming algorithm generalizes the evaluation algorithm for DReX,
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and its analysis now needs to be parametrized by the design of efficient data
structures for representing terms for different choices of cost combinators.

The single-use restriction is common in theory of transducers to ensure that
the output grows only linearly with the input [23,22]. Parameters in QREs
are conceptually similar to attribute grammars in which attributes are used to
pass information across non-terminals during parsing of programs [31]. Our goal
is quite different, namely, specification of space-efficient streaming algorithms
resulting in different design choices: rules are regular (and not context-free), there
are no tests on attributes, and even though the splitting of the stream using split
and iter imparts a hierarchical structure to the input stream as parse-trees do, in
the QRE op(f, g), the computation of f and g can impart different hierarchical
structures to the same input stream.

Quantitative Analysis. The notion of regularity for mapping strings to cost
values is introduced in [5] using the model of cost register automata and shown
to coincide with MSO-definable graph transformations [16] using the theory of
tree transducers [22,4]. Section 4 shows that the expressiveness of QREs without
the streaming composition operator coincides with this class using the model of
streaming string-to-tree transducers. Note that in this model, the control-flow
does not involve any tests on the registers, but cost values can be combined by
arbitrary operations. In contrast, models such as register machines and data
automata allow tests, but analyzability typically limits the set of arithmetic
operations allowed on data values (for example, in data languages, only equality
over data values is allowed) [25,10,11].

There is a growing literature in formal methods on extending algorithms
for verification and synthesis of finite-state systems from temporal correctness
requirements to quantitative properties [14,21]. Typically, the system is modeled
as a state-transition graph with costs associated with transitions, the cost of
an execution is an aggregation of costs of transitions it contains (for example,
maximum or limit-average for an infinite execution), and the analysis problem
corresponds to checking that the minimum or maximum of the costs of all execu-
tions does not exceed a threshold. In contrast, we are analyzing a single execution,
but QREs are significantly more expressive than the properties considered in
quantitative verification literature.

6 Conclusion

Contributions. In summary, we have argued that suitably generalized versions
of the classical regular operators, in conjunction with arithmetic operators for
combining costs, and the streaming composition operation, provide an appealing
foundation for specifying quantitative properties of data streams in a modular
fashion. This paper makes the following contributions:

1. The idea of regular programming allows the programmer to specify the
processing of a data stream in a modular way by considering different cases
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and breaking up the stream into substreams using the constructs of else,
split, and iter .

2. The language of quantitative regular expressions integrates regular con-
structs and the streaming composition operation, with cost types and combi-
nators in a generic manner, and with a set of typing rules designed to achieve
a trade-off between expressiveness and efficiency of evaluation and analysis.

3. The compilation of quantitative regular expressions into an efficient stream-
ing implementation, and in particular, an incremental, constant-space,
linear-time, single pass streaming algorithm for QREs with the nu-
merical operators of sum, difference, minimum, maximum, and averaging.

4. Expressiveness results establishing the relationship between QREs and
the class of regular functions defined using the machine model of cost register
automata and MSO-definable string-to-tree transformations.

Future Work. We are currently working on an implementation of the proposed
language for specifying flow-based routing policies in network switches. We also
want to explore applications to the quantitative monitoring of executions of cyber-
physical systems, and in particular, for analyzing simulations of hybrid systems
models for robustness measures [37]. In terms of design of space-efficient data
structures, in this paper we have considered only the operations of sum, difference,
minimum, maximum, and averaging, for which each term can be summarized in
constant space. In future work, we want to consider more challenging aggregate
operators such as medians and frequency moments, for which sub-linear-space
streaming algorithms are possible only if answers can be approximate.
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