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Abstract

Classification rules with a reserve judgment option provide a way to satisfy constraints on the

misclassification probabilities when there is a high degree of overlap among the populations.

Constructing rules which maximize the probability of correct classification while satisfying

such constraints is a difficult optimization problem. This paper uses a result of Anderson

(1969) on the form of the optimal solution to develop a relatively simple and computationally

fast method for three populations which has a nonparametric quality in controlling the

misclassification probabilities. Simulations demonstrate that this procedure performs well.
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1 Introduction

The usual classification rules in discriminant analysis are forced rules; they classify an observation

into one of K populations (K ≥ 2) even if there is doubt about which population an observation

belongs to. If two or more of the populations overlap substantially then the probability of errors

can be quite high for even the best forced rules. Adding a reserve judgment option (also called a

“reject” or “in doubt” option) to the classification choices where no decision is made provides a

way to address this problem; individuals for which the classification is not clear can be put in this

category and are, by definition, neither correctly classified nor misclassified. Clearly, a correct

classification is preferred to no decision, so the goal is to minimize the use of the reserve judgment

option while satisfying one or more constraints on the misclassification probabilities. Rules with a

reserve judgment option which attempt to satisfy such constraints will be referred to as

constrained rules.

As an example, suppose it is possible to determine which of three types of a disease a patient has

based on an expensive and invasive procedure such as a biopsy. As a substitute for the biopsy, it
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is desired to classify patients based on easy-to-measure blood chemistry variables. However, the

disease types may not be well separated on these variables and even an optimal discriminant rule

may have a high misclassification rate. A possible strategy would be to classify those patients on

the basis of blood chemistry for which the classification is clear and put the remainder in the

reserve judgment category; those in the latter group are biopsied.

Constructing optimal or nearly optimal constrained rules is a difficult problem, particulary for

three or more populations. While there has been considerable research for the two-population

problem, there has been far less for K ≥ 3. In this paper we propose and examine a robust

procedure for the three-population problem based on a theoretical result about the form of the

optimal solution from Anderson (1969). It stems from the work of Gallagher, Lee & Patterson

(1997), but provides a simpler and more straightforward way to estimate a solution in the

three-population case.

The organization of the paper is as follows. Section 2 provides the background for the problem

and presents the form of the optimal solution for the K-population case. Section 3 discusses an

approach to estimating the optimal solution in the three-population case which is nonparametric

in controlling the misclassification probabilities. Sections 4 presents the design and Section 5 the

results of a simulation to evaluate the performance of the proposed approach. Section 6 is the

discussion and conclusions.

2 Background

Let H1, . . . ,HK denote the K populations. The goal is to construct a rule to classify an object

into one of these populations based on x, a p-variate vector of measurements obtained from the

object. The distribution of x in population Hi is given by probability density fi, assumed known

for now, and the prior probability that an object comes from Hi by πi (where
∑K

1 πi = 1). A

forced rule is characterized by a partition {R1, . . . , RK} of ℜp where x is classified as coming from

Hi if and only if x ∈ Ri, i = 1, . . . ,K. A classification rule with a reserve judgment option can be

characterized by a partition {R0, R1, . . . , RK} of ℜp where R0 is the reserve judgment region. Let

qij =

∫
Rj

fi(x)dx, i = 1, . . . ,K; j = 0, 1, . . . ,K (1)

be the probability that either type of rule classifies a random observation from Hi into Hj , letting

j = 0 represent the reserve judgment category. This is a misclassification probability for i ̸= j and

j ̸= 0. The probability of correct classification of a random observation is

K∑
i=1

πiqii. (2)
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The forced rule which maximizes (2) classifies x into the population Hk for which the posterior

probability pk(x) = πkfk(x)/
∑K

i=1 πifi(x) is a maximum.

For rules with a reserve judgment option, the goal is to maximize (2) subject to constraints on the

misclassification probabilities or some function of them. One possible constraint is simply on the

overall (unconditional) probability of misclassification,

K∑
i=1

πi

K∑
j=1
j ̸=i

qij ≤ α (3)

where 0 < α < 1. Chow (1957) showed that the rule which maximizes (2) subject to (3) is defined

by

Rj = {x : pj(x) = max
i=1,...,K

pi(x) and pj(x) ≥ β}, j = 1, . . . ,K,

R0 = {x : max
i=1,...,K

pi(x) < β}
(4)

for some 0 < β < 1. The constant β represents a threshold which the maximum posterior

probability must meet in order for an observation to be classified. The determination of β is not

easy except in very simple cases as it involves the. evaluation of p-dimensional integrals like (1).

In this paper, we consider constraints on each of the K(K − 1) conditional probabilities of

misclassification since one may wish to exercise greater control over some misclassifications than

others. The constraints are

qij ≤ αij , i, j = 1, . . . ,K; i ̸= j (5)

where the αij are constants between 0 and 1. Anderson (1969) showed that, under very general

regularity conditions, the rule which maximizes the probability of correct classification (2) subject

to (5) has the following form:

Rj = {x : Lj(x) = max
i=0,1,...,K

Li(x)}, j = 0, 1, . . . ,K (6)

where

Lj(x) = πjfj(x)−
K∑
i=1
i ̸=j

λijπifi(x), j = 1, . . . ,K,

and L0(x) = 0,

(7)

and where the λij are unique (except on a set of measure 0) non-negative constants. This

formulation of the Lj ’s is slightly different from, but equivalent to, that given by Anderson (he

did not include πi in the summation of the second term on the right hand side of Lj ; it was, in

effect, folded into λij). The formulation in (7), however, is more convenient for the analysis here.
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The rule is unchanged if the Lj(x)’s are divided by
∑K

i=1 πifi(x). This yields the following

definition of the Lj ’s for the optimal rule as a function of the posterior probabilities:

Lj(x) = pj(x)−
K∑
i=1
i ̸=j

λijpi(x), j = 1, . . . ,K,

and L0(x) = 0.

(8)

Setting all the λij ’s equal to 0 gives the optimal forced rule. Anderson showed that if the optimal

forced rule satisfies the constraints in (5), then it is also the optimal constrained rule. The

optimal rule in (4) (which maximizes the probability of correct classification subject to a single

constraint on the unconditional probability of misclassification) can also be expressed in the form

of (6) by setting all the λij equal to β/(1− β).

Anderson’s result provides only the form of the optimal rule; it does not provide a way to

determine the values of the optimal λij ’s, a very difficult optimization problem involving

K(K − 1) parameters.

Rules with a reserve judgment option, like forced rules, can be approached from a decision

theoretic viewpoint in which the goal is to find a rule which minimizes the expected cost of

classification. Let cij be the cost of classifying an observation from Hi into Hj , with a correct

classification assumed to have zero cost (that is, cii = 0). Let ci0 represent the cost of not

classifying an object from Hi, reflecting, perhaps, the additional cost of obtaining further

information on the object in order to make a definite classification (e.g., the cost of the biopsy in

the disease example). Commonly, the ci0, i = 1, . . . ,K, would all be equal (and would be less than

the costs of misclassification). The expected cost of using the rule {R0, R1, . . . , RK} is

K∑
i=1

πi

K∑
j=0

cijqij . (9)

The rule which minimizes (9) is

Rk =

{
x :

K∑
i=1

cikpi(x) = min
j=0,1,...,K

K∑
i=1

cijpi(x)

}
, k = 0, 1, . . . ,K. (10)

While the decision theoretic approach yields an explicit minimum expected cost rule with reserve

judgment option, it may be the case that costs are difficult to specify and an approach based on

constraints on the misclassification probabilities is preferred, just as in forced discrimination.

That is the approach taken in this paper. However, there is a connection between the two

approaches that is given in the following proposition, which is easily proved with a little algebra:

Proposition 1. The minimum expected cost (Bayes) rule with reserve judgment option in (10) is

equivalent to the optimal constrained rule with reserve judgment option in (6) and (8) when
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ci0 = 1, cii = 0 and cij = 1 + λij, i ̸= j.

Thus the optimal constrained rule is a Bayes rule. The quantity λij can be viewed as representing

the additional cost of misclassifying an observation from Hi into Hj above the cost of not

classifying the observation.

In practice, one can only approximate the optimal forced or constrained classification rules since

the fi are not known. A training sample of objects whose classification is known is therefore

necessary. Many classification methods rely on estimating the population densities and/or

posterior probabilities from the training sample, either parametrically (e.g., linear discriminant

analysis) or nonparametrically (e.g., neural networks, nonparametric density estimates). Ripley

(1996) discusses many of these methods.

Estimating the parameters of the optimal constrained rule is difficult. The two-population case is

relatively straightforward and has been extensively studied, both when the fi are known and

unknown. Habbema, Hermans & Van Der Brugt (1974) discuss parametric solutions. Broffitt,

Randles & Hogg (1976) give a rank procedure which is distribution-free in controlling the

misclassification probabilities. A large number of recent papers in the machine learning and

statistics literature (e.g., Herbei & Wegkamp, 2006; Bartlett & Wegkamp, 2008; Bounsair,

Beauseroy & Grall-Maës, 2008) have examined various properties of two-population classifiers

with a reserve judgment option. Jeske, Liu, Bent & Borneman (2007) and Choi, Yeo, Kwon &

Kim (2011) discuss applications in gene expression data.

Research on rules with a reserve judgment option for three or more populations is much sparser.

Grall-Maës & Beasuseroy (2009) present a very general theoretical framework for such problems,

but practical procedures are limited. Huberty (1994) discusses a general K-population procedure

implemented in PROC DISCRIM in the SAS software (SAS Institute, Inc., 2008). It allows a user

to specify a threshold value between 1/K and 1 such that an observation is classified only if its

maximum estimated posterior probability p̂(K)(x) = max(p̂1(x), . . . , p̂K(x)) is greater than the

threshold value and is placed in the in-doubt category, otherwise. This follows the form of the rule

(4) which maximizes the probability of correct classification subject to a constraint on the overall

probability of misclassification. Huberty suggests trying different threshold values and observing

the resulting misclassification and no-classification rates in the training sample. We call this the

pmax procedure. Yu, Jeske, Ruegger & Borneman (2010) suggest a procedure based instead on the

value of the difference between the maximum estimated posterior probability and the second

highest, p̂(K)(x)− p̂(K−1)(x). The larger the difference, the more certain one is of the classification

so, again, one chooses a threshold value and classifies an observation into the population with

highest posterior probability provided that p̂(K)(x)− p̂(K−1)(x) exceeds the threshold. They

choose the threshold to minimize the expected cost of a decision, but one could also follow the

strategy of Huberty and base the threshold on observed correct classification and misclassification

rates for the training sample. We call this the p
dif

procedure when used in this latter fashion.

5



Gallagher et al. (1997) and Lee, Gallagher & Patterson (2003) are apparently the only authors

who have attempted to estimate Anderson’s optimal solution for K ≥ 3 for a given set of

constraints as in (5). Their approach has two steps. The first step is to use the training samples

to compute estimates f̂i of the population densities fi and to compute f̂i for all the points in the

training sample. The second is to find the set of λij ’s which maximizes the proportion of training

sample points correctly classified subject to constraints on the proportions of training sample

points misclassified. That is, replace fi by f̂i in equations (6) and (7) and find λij ’s to maximize

K∑
i=1

πi

[
1

ni
(# of training sample observations from Hi in Ri)

]
(11)

subject to

1

ni
(# of training sample observations fromHi in Rj) ≤ αij , i, j = 1, . . . ,K; i ̸= j. (12)

There are two advantages to using the empirical distribution of the training sample points in

order to estimate the optimal λij ’s. First, it avoids potentially difficult numerical integrations in

(1). Second, it has a nonparametric quality in controlling the misclassification rates. Even if the

estimates of the population densities are based on incorrect assumptions about the population

distributions (for example, using linear discriminant analysis for non-normal populations), this

approach ensures that the constraints on the misclassification probabilities will be satisfied for the

sample and, therefore, approximately satisfied for the population, at least for large samples. This

procedure may not provide good estimates of the optimal λij ’s if the fi are poorly estimated, but

it will tend to control the misclassification rates regardless.

Gallagher et al. (1997) used mixed integer programming to calculate λij ’s using this framework,

but the procedure was very slow and didn’t always converge because of the numerical difficulties

involved, even for three populations with small sample sizes. Lee et al. (2003) then used linear

programming to estimate the optimal λij ’s which was much faster but involved approximating the

problem and did not guarantee that the solution found satisfied the constraints for the training

sample. We propose a simple alternative procedure for estimating the optimal λij ’s for the

three-population problem that satisfies the constraints for the training sample. It depends on a

geometric representation of the estimated posterior probabilities for the training sample.
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3 Three-population problem

To examine the form of the optimal solution for K = 3, consider the Li’s of (8) where they are

written as functions of the posterior probabilities:

L1(x) = p1(x)− λ21p2(x)− λ31p3(x)

L2(x) = p2(x)− λ12p1(x)− λ32p3(x)

L3(x) = p3(x)− λ13p1(x)− λ23p2(x)

L0(x) = 0.

(13)

The regions R0, . . . , R3 in (6) can be conveniently displayed with a ternary plot which displays

any point p(x) = (p1(x), p2(x), p3(x)) as a point on the interior of an equilateral triangle using the

Cartesian coordinates (p1/
√
3 + 2p3/

√
3, p1). The vertices of the triangle represent the points

(1,0,0), (0,1,0) and (0,0,1) and are numbered 1, 2, and 3, respectively. For any point on the

interior of the triangle, the value of pi(·) is the distance from that point to the side opposite

vertex i.

Consider any rule defined by (13) and (6) with non-negative λij ’s. The regions R0, . . . , R3 are

defined by the line segments Li = 0, i = 1, 2, 3, and the line segments Li = Lj , i ̸= j. Li = 0 is a

line segment from the i− j side (at the point where pi = λji/(1+ λji) and pj = 1− pi) to the i− k

side (at the point where pi = λki/(1 + λki) and pk = 1− pi). The regions are 3-, 4-, or 5-sided

polygons depending on which pairs of the line segments Li = 0, i = 1, 2, 3, intersect each other.

Figure 1 illustrates one possible rule in which there are two of the possible three intersections.

[Figure 1 here]

For comparison, ternary plots of the pmax and p
dif

procedures discussed earlier are illustrated in

Figure 2. The pmax procedure classifies an observation into the population with the highest

posterior probability as long as that maximum probability exceeds a threshold. This procedure is

equivalent to Anderson’s optimal procedure with all λij ’s equal. The p
dif

procedure classifies an

observation into the population with the highest posterior probability as long as the difference

between the highest probability and the second highest exceeds a threshold. This procedure does

not have an equivalence to the optimal procedure.

[Figure 2 here]

While the ternary plot provides a convenient geometric representation of the form of the optimal

solution, it doesn’t necessarily make the optimization problem any easier. Expressing the optimal

rule in terms of the posterior probabilities rather than the population densities changes the

p-dimensional integrals in (1) to two-dimensional integrals but the joint distribution of the

posterior probabilities (p1(x), p2(x), p3(x)) must be derived for each population. Therefore,

following the approach of Gallagher et al. (1997) and Lee et al. (2003), we use the empirical
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distribution of the training sample points on the ternary plot to estimate the optimal solution.

That is, estimate the unknown population densities, either parametrically or nonparametrically,

from the training samples, and use the estimated densities to estimate the posterior probability

function (p̂1(x), p̂2(x), p̂3(x)) = [1/
∑3

1 f̂j(x)](f̂1(x), f̂2(x), f̂3(x)). Plot each training sample point

on the ternary triangle based on its estimated posterior probabilities, using different plotting

symbols to distinguish between the three populations. If the populations are well separated, then

the training sample points from H1 should be clustered near vertex 1, and those from H2 and H3

should be clustered near vertices 2 and 3, respectively. Second, use the empirical joint

distribution of the posterior probabilities for the training sample to estimate the optimal λij ’s;

that is, maximize the proportion of training sample points correctly classified (equation 11)

subject to the constraints on the proportions of training sample points misclassified (equation 12).

Unfortunately, Gallagher et al. (1997) found this optimization problem extremely difficult, so we

propose the following simplified procedure: find the lines L1 = 0, L2 = 0 and L3 = 0 which would

individually be optimal if they did not intersect each other. That is, find λ21 and λ31 to maximize

1

n1
(# of points from H1 in the region L1 > 0) (14)

subject to the constraints

1

n2
(# of points from H2 in the region L1 > 0) ≤ α21

and
1

n3
(# of points from H3 in the region L1 > 0) ≤ α31

(15)

Proceed analogously in positioning L2 = 0 and L3 = 0, thus obtaining a set of λij ’s. Consider the

classification rule {R0, R1, R2, R3} as determined by these λij ’s from (13). Since

Ri ⊆ {x : Li(x) > 0}, i = 1, 2, 3, the constraints are satisfied by this solution, although it may not

maximize (11) among all constrained rules of this form.

The actual process of positioning the line L1 = 0 to maximize (14) subject to the constraints in

(15) can be easily accomplished using the “Pivot Algorithm” which is described in the Appendix.

This algorithm has been implemented in R (R Development Core Team, 2013) and runs quickly

even for large examples. Because the empirical distribution of the points on the ternary triangle is

discrete, there are an infinite number of maximizing lines L1 = 0. Hence, only lines which go

through two training sample points or a training sample point and a vertex are considered. There

may be several maximizing lines for each vertex; the combination of solutions across the three

vertices which maximizes the total empirical correct classification rate is used. If there is more

than one, we use the one that minimizes the area of the reserve judgment region on the ternary

plot. This process will be referred to as the pivot procedure.

To illustrate the approach, consider Data Set 36 on “Chemical and Overt Diabetes” in Andrews

& Herzberg (1985). The data set consists of several variables measured on 145 patients who had

8



been clinically classified into one of three groups: 1: overt diabetic (n1 = 33), 2: chemical diabetic

(n2 = 36), 3: normal (n3 = 76). Only two explanatory variables are used, insulin resistance (IR)

and relative weight (RW), since use of all the variables gives almost perfect discrimination among

the groups. A scatterplot (Figure 3(a)) shows considerable overlap among the three groups and

forced classification by linear discriminant analysis (with prior probabilities proportional to the

sample sizes) shows high misclassification rates (Table 1a). A constrained rule based on the

posterior probabilities from LDA was estimated by the pivoting algorithm with all constraints

(αij ’s) equal to 0.1. The classification matrix (Table 1b) shows that the constraints are satisfied

for the training sample (as they must be by construction) and that the number of correctly

classified observations drops by 20 from the LDA forced rule, but the number of misclassified

observations drops by 34. Both the forced and constrained rule are displayed on a ternary plot in

Figure 3(b). The misclassification rates of both the forced and constrained rules when applied to

the training sample will tend, of course, to be optimistically biased as estimates of the

misclassification rates for new cases.

[Figure 3 here]

[Table 1 here]

4 Monte Carlo Simulation

A Monte Carlo study was carried out to examine the performance of the pivot procedure. Two

types of population distributions were used: bivariate normal and 10% contaminated bivariate

normal. Eight different sets of mean positions were used, five with equal and three with unequal

covariance matrices. In the equal covariance case, the common covariance matrix was I2, the

2× 2 identity matrix. In the unequal covariance case, the first group’s covariance matrix was

diagonal (1, 0.25) and the second and third’s were diagonal (0.25, 1). The configurations are

reported in Tables 2 and 3 along with the distance between each pair of means. For the equal

covariance case, the distance is the Mahalanobis distance,
[
(µi − µj)

′Σ−1(µi − µj)
]1/2

where µi

and µj are the group means and Σ the common covariance matrix (I2 in this case). For the

unequal covariance case, Σ was replaced by the average of the two population covariance matrices

in the Mahalanobis distance formula. The population configurations are illustrated in Figure 4.

In the 10% contaminated normal distributions, 10% of the population came from a bivariate

normal with the same mean but a covariance matrix 100 times as large. Two training sample

sizes were used: 40 from each population (120 total) and 100 (300 total). In each case, the

simulation was repeated 2000 times. In each of the simulations, a training sample was generated,

linear discriminant analysis (with equal priors) was used to estimate the posterior probabilities for

the training sample, and the pivot procedure was used to estimate a set of λij ’s for a constrained

solution with two different sets of constraints: all the αij ’s equal to 0.05 and all equal to 0.10.
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The pmax and p
dif

procedures were also computed for comparison. The threshold for each rule was

the smallest value such that the constraints on the misclassification probabilities were satisfied for

the training sample. All the resulting rules were used to classify 15000 new random observations

from each population in each simulation. The linear discriminant analysis forced classification was

also computed for each new observation. All simulations were programmed in R (R Development

Core Team, 2013); function lda in package MASS (Venables & Ripley, 2002) was used for linear

discriminant analysis computations.

Tables 2 and 3 here]

[Figure 4 here]

Linear discriminant analysis was used to estimate the posterior probabilities in all simulations

even for the unequal covariance matrix and contaminated normal situations (for which it is not

optimal) in order to assess the performance of the procedures in these situations.

In configurations E1 and E2, it was possible to calculate Anderson’s optimal constrained rule

based on the true population densities. This is because these configurations are symmetric and,

since the optimal solution is unique, it follows that the optimal λij ’s are all equal. Monte Carlo

integration was used to calculate the optimal common λ and the optimal correct classification

rate based on two million randomly generated observations from each population. The optimal

classification probabilities are included in the results for E1 and E2 in the next section.

5 Simulation Results

The considerations in assessing the performance of a constrained rule are threefold: first, the rule

should achieve the desired constraints, at least on average. Second, it should not be too

conservative; the average misclassification rates shouldn’t all be significantly less than their

bounds. Third, the correct classification rate should seem reasonable when compared to the

forced rule (and compared to the optimal solution for E1 and E2).

Only the results for training sample size 100 from each population and constraints all equal to 0.1

are reported here because the results from sample size 40 and from constraints all equal to 0.05

show the same overall patterns. Figure 5 shows the results for the normal population case. The

pmax and p
dif

procedures had almost the same mean classification rates for all configurations so

only the results for pmax are displayed. The similarity is likely due to the fact that with three

populations, the maximum estimated posterior probability and the difference between the

maximum and second highest posterior probabilities are highly correlated. The pivot procedure

consistently achieved the desired misclassification rates on average without being too conservative;

the only exceptions were average misclassification rates of about 0.11 in a few cases. The pmax

and p
dif

procedures, on the other hand, tended to be more conservative with misclassification
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rates more often below the target of 0.1 than the pivot method. The standard deviations of the

estimated misclassification rates were similar for the pivot, pmax and p
dif

procedures and didn’t

exceed 0.04 except for position U3, where they were as high as 0.053. Most of the variation is due

to the variation in the true misclassification rates of the 2000 estimated rules as the variation due

to estimation based on 15000 new observations is small (standard deviation√
.1× .9/15000 = 0.0025). The constraints on the misclassification probabilities are goals that

can never be guaranteed to be achieved (except by a solution which puts all observations in R0).

[Figure 5 here]

The mean correct classification rates for the pivot method were always higher than for pmax and

p
dif
, sometimes substantially so, particulary in the unequal covariance cases. They closely

matched the forced LDA rates for populations which were well separated from the others and

closely matched the optimal rates for E1 and E2. An interesting phenomenon in configuration E3

is that the pmax and p
dif

procedures rarely classified observations into population 1. This is

because population 1 is between and close to populations 2 and 3. Therefore, the true posterior

probability p1(x) is never very high for any x; this will also generally be true of the estimated

posterior probability p̂1(x) which makes it difficult to meet the threshold for classification.

In the contaminated normal case, there were substantial differences between the pmax and p
dif

procedures in some of the configurations so both are included in the plots of results (Figure 6).

All three constrained procedures consistently achieved the target misclassification rate, on

average, but the pivot procedure had consistently higher correct classification rates than the pmax

and p
dif

procedures. The pivot procedure’s average correct classification rates were significantly

below the optimal rates in E1 and E2; this is not surprising since LDA was used to compute the

estimated posterior probabilities in this non-normal situation. The p
dif

procedure had noticeably

higher correct classification rates than the pmax procedure in several cases, but it’s not clear why.

The standard deviations of the misclassification rates for the constrained procedures were similar

to those in the normal case with a maximum of 0.055.

[Figure 6 here]

For training sample size 40, the mean classification rates were almost identical to those for sample

size 100, but the standard deviations were about 50% larger, on average. The general pattern and

conclusions for misclassification bound of 0.05 were very similar to those for 0.10.

6 Discussion and Conclusions

The pivot procedure provides a straightforward algorithm for computing a constrained solution

for three populations which satisfied the desired constraints on average across different population

configurations and distributions without being too conservative. It also matched the optimal
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solution where it could be computed. These results suggest that optimizing each population

separately, as the pivot method does, does not make the procedure too conservative nor to incur

much of a penalty relative to the optimal solution, at least in the symmetric configurations. The

pmax and p
dif

procedures also achieved the desired constraints on average, but had lower correct

classification rates.

The fact that the pmax and p
dif

procedures were generally inferior to the pivot procedure is not

too surprising given that they each depend on a single parameter while the pivot procedure has

six. The pmax and p
dif

procedures can also be easily applied to any number of populations, but

would likely become increasingly inferior to an optimal solution. Anderson’s optimal solution, on

the other hand, has K(K − 1) parameters for K populations and presents increasing difficulties as

K increases. The pivot method does not generalize easily to even four populations; the analog to

the ternary plot would be a tetrahedron for K = 4. The strategy of optimizing each population

separately could still be employed and would involve estimating K − 1 parameters for each

population, which could feasibly be accomplished with a numerical optimization routine, at least

for moderate values of K.

It is also likely that for more than three populations, a user would not be interested in controlling

all K(K − 1) individual misclassification probabilities. Chow’s (1957) rule in (4) maximizes the

probability of correct classification subject to a single constraint on the unconditional overall

probability of misclassification. The pmax procedure can be easily adapted to estimate this rule by

letting the threshold be the smallest value such that the sum of the proportions of misclassified

points (weighted by the prior probabilities) is less than or equal to the constraint.

These scenarios represent two extremes, however: all K(K − 1) constraints or a single constraint.

Anderson (1969) provides related results which cover a wide variety of intermediate cases. For

example, he shows that the optimal rule subject to a subset of the constraints in (5) has the same

form as in (7) but with the λij ’s corresponding to any missing constraints set equal to 0. He also

provided the form of the optimal solution with constraints on sums of the misclassification

probabilities (e.g., q21 + q31 ≤ α); essentially, there is a single λ for each constraint. This would

simplify estimation of the optimal solution.

Finally, the connection between Anderson’s (1969) optimal solution and the Bayes minimum

expected cost rule established in Proposition 1 makes a hybrid approach possible. Recall that λij

in (8) can be viewed as representing the additional cost of misclassifying an observation from Hi

into Hj above the cost of not classifying an observation. One might be willing to specify the

relative size of these additional costs (for example, by specifying that λ21 is twice λ12) without

specifying the actual values. In addition, one could specify a constraint on the maximum of the

misclassification probabilities, that is qij ≤ α for all i ̸= j. This might be appealing to a user who

is willing to specify the relative costs but wants to ensure that none of the misclassification

probabilities are too big. The nonparametric approach could be easily adapted to find the

12



maximum probability of correct classification subject to such a specification.
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Appendix: The Pivot Algorithm

The pivot algorithm finds the line segments across a corner of the ternary plot triangle which

maximize the number of points from the target population while satisfying constraints on the

number of points from the other two populations. Figure 7 illustrates the situation. The goal is to

find the line segment across corner 1 (that is, from a point on the 1-2 side to a point on the 1-3

side) which maximizes the number of points from H1 (denoted by numerals) in the region R1

while satisfying two constraints: the number of points from H2 (lowercase letters) cannot exceed

l2 = [α21n2] and the number of points from H3 (uppercase letters) cannot exceed l3 = [α31n3] ([ ]

denotes the greatest integer function). Because of the discreteness of the problem, there are an

infinite number of possible solutions so we restrict the candidates to line segments which go

through a data point and a vertex or which go through two data points. A solution is considered

feasible only if the number of points on the interior of R1 (not including points on the boundary)

from H2 is less than or equal to l2 − 1 and the number of points from H3 is less than or equal to

l3− 1 (the -1 accounts for the fact that there may be points from H2 and/or H3 on the boundary).

The algorithm starts by considering a line segment with one endpoint at vertex 3 and the other

endpoint at vertex 1. Move the latter endpoint along the 1-2 side toward vertex 2. As it moves

(thus pivoting on vertex 3) the line segment will hit points from the training samples. Keep track

of the number of points in R1 from each of the three training samples. Eventually, the segment

will hit the lth2 point from H2 or the lth3 point from H3 (step 1 in Figure 7). Pivot on the last

point hit; that is, keep it fixed and continue moving the endpoint on the 1-2 side toward vertex 2.

The endpoint on the 1-3 side will simultaneously start moving toward vertex 1. Points may be

lost or gained as the line pivots. If a point is hit where further pivoting would cause a violation of

the constraints, then stop and pivot on this new point. It’s also possible that a point hit from H2

or H3 will be lost from R1 on further pivoting. If that will cause the number of points from H2

14



and H3 in R1 to both be strictly less than their limits, then stop and pivot on this new point.

Continue until the endpoint on the 1-2 side reaches vertex 2. During this whole process, keep

track of which candidate lines maximize the number of points from H1 in R1. Figure 7 shows the

sequence of pivots; the resulting candidate line segments are defined by the following pairs of

points: i-1, i-F, i-J, and J-4. Each of these includes 5 points from population 1 in R1.

[Figure 7 here]
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Figure 1: Anderson’s solution with λ21 = 0.7, λ31 = 0.2, λ12 = 0.5, λ32 = 1.3, λ13 = 1.2, λ23 = 3.1

Table 1: Classification matrices for diabetes data: (a) forced discrimination by LDA; (b) pivot
procedure constrained solution with all αij = 0.1

(a)

Classified
True Into

Population 1 2 3

1 5 3 25
2 1 19 16
3 3 6 67

(b)

Classified
True Into

Population 1 2 3 0

1 22 3 2 6
2 1 19 3 13
3 7 4 30 35

Table 2: Population configurations and Mahalanobis distances between means for equal covariance
case.

Means Distance
Configuration Pop. 1 Pop. 2 Pop. 3 1-2 1-3 2-3

E1 (0, 0) (-0.5, 0.866) (0.5,0.866) 1 1 1
E2 (0, 0) (-1, 1.732) (1, 1.732) 2 2 2
E3 (0, 0) (-1, 0) (1, 0) 1 1 2
E4 (0, 0) (-0.5, 2.958) (0.5, 2.958) 3 3 1
E5 (0, 0) (0, 2) (2.905, -0.75) 2 3 4
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Figure 2: Example ternary plots for (a) pmax procedure with threshold of 0.444 and (b) p
dif

proce-
dure with threshold of 0.2
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Figure 3: Diabetes data: (a) scatterplot of raw data; (b) ternary plot of posterior probabilities
from LDA with proportional priors with boundaries for forced rule (dashed lines) and for optimal
constrained rule estimated by pivot procedure (solid lines).
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Table 3: Population configurations and distances between means for unequal covariance case.

Means Distance
Configuration Pop. 1 Pop. 2 Pop. 3 1-2 1-3 2-3

U1 (0, 0) (-0.25, 0.75) (0.25, 0.75) 1 1 1
U2 (0, 0) (0, 0.791) (1.99, 0.395) 1 2.57 4
U3 (0, 0) (0, 0) (2, 0) 0 2.53 4
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2 3
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Figure 4: Mean configurations with 50% contours of normal densities
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Figure 5: Simulation results for normal populations displaying mean classification rates across 2000
simulations. Rules are: LDA forced rule (◦), pivot algorithm constrained rule (△), pmax constrained
rule (+), optimal constrained rule (×) for E1 and E2. Target misclassification rate is 0.1 (horizontal
dotted line).
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Figure 6: Simulation results for 10% contaminated normal populations displaying mean classifica-
tion rates across 2000 simulations. Rules are: LDA forced rule (◦), pivot algorithm constrained
rule (△), pmax constrained rule (+), p

dif
constrained rule (♢), optimal constrained rule (×) for E1

and E2. Target misclassification rate is 0.1 (horizontal dotted line).
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Figure 7: Sequence of steps for the Pivot Algorithm for finding candidates for L1 = 0. Numerals,
lowercase letters and uppercase letters represent points from populations 1, 2, and 3, respectively.
Sample size is 10 for each population and the misclassification bounds are 0.2. The sequence of
pivot points is e, d, i, J.
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