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Abstract

Resistive hose growth for moderate or large skin-depth differs from
that derived from a conductivity model. Asymptotic growth is calculated for
the Bennett equilibrium, incorporating the inductive component in the
plasma return current, with phase-mixing accounted for via the "distributed-
mass" model. Analytic scalings are checked with numerical solutions of the
linearized model. For a ratio of skin-depth to beam radius less than 1/10 the
conductivity model appears quite adequate. When this ratio exceeds 1/4
inductive corrections appear.

Paper submitted to J. Phys. D: Appl. Phys.

(Work supported by Department of Energy contract DE-AC03-76SF00515)



2

Resistive hose instability for arbitrary skin depth

David H. Whittum

Stanford Linear Accelerator Center

Stanford University, Stanford CA 94309

(Received                         )

  Resistive hose growth for moderate or large sk in-depth

differs from that derived from a conductivity model. Asymptotic

growth is calculated for the Bennett equilibrium, incorporating t h e

inductive component in the plasma return current, with phase -

mixing accounted for via the "distributed-mass" model. Analytic

scalings are checked with numerical solutions of the linearized

model. For a ratio of skin-depth to beam radius less than 1/10 t h e

conductivity model appears quite adequate. When this ratio exceeds

1/4 inductive corrections appear.

PACS: 52.40 Mj, 52.35 Py, 52.50 Gj
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Of all instabilities of a relativistic electron beam in plasma, t h e

resistive hose effect is the most extensively studied.1,2,3,4,5,6,7,8  Yet t o -

date such studies have been limited to small plasma skin-depth, w i th

analytic work relying solely on conductivity models. The existing

literature offers no scaling appropriate in the limit of large sk in-

depth, where the inductive component in the plasma return cur ren t

is important and it is precisely in this regime where numerous

modern applications of the beam-plasma are to be found.9  In th is

work, asymptotic growth is computed including the inductive

correction, following a treatment of the slab-beam problem.10

The equilibrium plasma is assumed stationary in the b e a m

coordinate, τ, with spatial profile matched to the beam and constant

collision rate ν . To the quasineutral Bennett equilibrium we consider

first a rigid  transverse beam displacement, Y ŷ , with vanishing initial

conditions at τ=0. For Y  varying slowly in τ, the perturbed s t a t e

remains quasineutral and the plasma response may be expressed i n

terms of the perturbed plasma return current Je1, driven by t h e

perturbed axial vector potential A 1 according to

∂J
e 1

∂τ = −
n ee

2

m c
∂A

1

∂τ − νJ
e1 .  

      

The point of departure from the work of Ref. 4 is the inclusion of t h e

time derivative on the left.  The solution of the reduced Maxwell's

equations follows that in Ref.4 and takes the form, A D A r1 0= − sin /θ∂ ∂ ,

where A 0  is the equilibrium Bennett pinch potential, θ is t h e
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azimuthal angle in the tranverse plane, and the current centroid D is,

after a Laplace transform in τ ,

D~ = Γ
ν

p + ν
p + Γ Y~

= 1
1 +ε

1 + ε Γ
p +Γ{ } Y~

.

(1)    

The Laplace transform variable is p  and the tilde denotes the Laplace

transform. The dimensionless parameter

ε = 1
8

k e

2
a 2

,

(2)

with ke the plasma wavenumber on-axis, ke
2=4πnee

2/mc2, with -e  t h e

electron charge, m  the electron mass, and a the Bennett waist. This

parameter relates the diffusion time-scale to the collision time, τD=ε/ν.

The conductivity model is recovered by taking the limit ε→ . The

decay rate Γ  =ν/(1+ε).

From the Vlasov equation one can show that m o m e n t u m

conservation takes the form,

∂ 2Y~

∂z 2 = − k s

2 p
p + Γ{ } Y~

,   

where the slosh wavenumber ks is
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k s

2
= 1

3
ε

1 + ε
k β

2

.

(3)

The term kβ is the maximum betatron wavenumber kβ2~2ν /a2γ, w i th

γ the Lorentz factor for the beam, and the Budker parameter ν=I/I0,

with - I  the beam current, I0=mc3/e~17kA, and c the speed of light.

Evidently the slosh wavenumber ksB = k β /31/2  derived from t h e

conductivity model is relevant only when ε is large (small sk in-

depth). In particular, for small ε the beam centroid experiences n o

restoring force. This is due to the assumption of quasineutrality, i.e.,

the assumption |p|<< ωe. In the large skin-depth limit, t h e

macroscopic restoring (or deflecting) force becomes small since t h e

plasma return current near the beam becomes small. Previous w o r k

does not reveal this dependence of slosh wavenumber on skin-depth,

having adopted the limit ε>>1.

Taking a unit initial displacement at z=0, for τ>0, the asymptotic

form is,  in the limit of a short pulse, ksz>>Γτ  ,

Y ( z , τ) ≈ 0 . 3 4 A
−1 / 2

e A cos k sz −A + π
8

  ,  

where the exponent

A = k szΓτ( )
1 / 2

.

(4a)
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= k

sB
z ντ( )

1 / 2 ε1 / 4

1 +ε( )
3 / 4

.

(4b)

The  form  of the exponent Eq. (4a) is just that of Eq. (82) in Ref. 4,

however for given ντ and ksBz, low growth favors large sk in-depth

(small ε).

To incorporate phase-mixing in the beam electron motion, w e

adopt the distributed mass model, representing the beam as a n

ensemble of oscillators with displacement Yα, with a distribution i n

betatron wavenumbers α 1/2kβ where 0<α <1. The beam centroid t akes

the form, Y z ,τ( ) = d∫ αg α( )Y α z ,τ( ) , where g=6α (1-α ). The equations

for the Y α take the form,

∂ 2

∂z 2 Y α( z , τ) = − α k β

2
Y α( z , τ) − D( z , τ){ }

,  

(5)

w h e r e

D( z , τ) = Γ
ν Y ( z ,τ) + dτ ′

0

τ

∫ W ( τ −τ ′) Y ( z ,τ ′)
,     

(6)

after an inverse Laplace transform of Eq. (1). The kernel is
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W ( τ) = ε
1 +ε

Γ e x p − Γτ( )
.

(7)

To obtain the dispersion relation, Eq. (5) is Fourier t ransformed

in z  with wavenumber kz=kkβ and Laplace transformed in τ  to reveal

p
ν =

χ
ε − χ ,

(8)

the susceptibility is just that of Ref. 4

χ = 3 k
2

+ 6 k
4

1 − k
2( ) l n

k
2

− 1

k
2







−1






 .    

The conductivity model corresponds to the approximation ε>>|χ| in t h e

denominator of Eq. (8).  For large ε, with p  scaled by τD, there is a

single solution to the dispersion relation. In general, however, t h e r e

is a family of solutions parameterized by ε.  

Performing inverse Laplace transforms one can show that

Y ( z , τ) ≈ − 1
2 π i

d kz∫ e x p i k zz + pτ( ) p + Γ
Γ







1
k z ,

where the contour parallels the real k  axis, displaced downward t o

avoid poles in the integrand, and p=p(k)  is given by Eq. (8).
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The saturation amplitude is determined from a saddle-point

calculation. Saturation occurs at

L sat = − τ I m
∂p

∂k ′ ,   

and the envelope takes the form

Y ≈ 2
π

 
1 / 2

τ k
2 ∂ 2 p

∂k
2









− 1 / 2

p + Γ
Γ e x p pτ( )

,   

o r

Y ≈ Y
0

e x p p rτ( )
Γτ( )

1 / 2

,  

(9)

where pr=Rep. The saddle point and the various derivatives a r e

computed numerically and the results are found to be well-fit on t h e

interval 10-4<ε<104, by the following expressions in ρ=0.1ln[ε/(1+ε)],

p r

Γ ≈ 0 . 6 9 e x p − 5 . 2 3 ρ + 7 .4 1 ρ2 + 3 . 8 1 ρ3{ }
,          (10)

p i

Γ ≈ 1 . 0 2 e x p − 2 . 7 2 ρ + 1 2 . 4 6 ρ2 + 6 . 8 6 ρ3{ }
       (11)

k s L sat

Γτ ≈ 3 . 7 e x p − 1 1 .2 8 ρ + 6 . 6 7 ρ2{ }
,     (12)

Y0 ≈ 0 . 5 2 e x p 5 . 5 4 ρ + 0 . 6 2 ρ2{ } .               (13)
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The exact results are depicted in Fig. 1 to illustrate the dependence

on ε. Resonance occurs at frequencies ±pi and  wavenumbers +kr,

well-fit by

k r

k s
≈

n =0

4

∑ κ n µn

,            (14)

where we abbreviate µ=εln[ε/(1+ε)], and -1≤µ≤0. The constants a r e

κ 0=1, κ 1=0.4915, κ 2=0.6525, κ 3=0.7947, and κ 4=0.5359.

The results for saturation amplitude and length are compared

to those from the numerical solution of Eq. (5) in Fig. 2, showing fair

agreement. Evolution in z for ντ ~10.7 is illustrated in Fig. 3.

We have seen that the effect of the induced current in the large

skin-depth limit is to increase the saturation amplitude and length.

For long range propagation, small skin-depth is favored. At the s a m e

time, for short range, growth tends to be less rapid, as reflected i n

the exponent of Eq. (4). Roughly, when ε>10, the conductivity model

should be quite adequate.
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FIG. 1. Depicted is the dependence on skin-depth parameter ε, of ( a )

saturation length Lsat (b )  saturation exponent p r and (c )  sa turat ion

amplitude factor. Overlayed are the approximate fits of Eqs. (10) -

(12).

FIG. 2. Analytic results for (a) saturation length and (b) saturat ion

amplitude from Eq. (9) are compared to the results of numerical

solution of Eq. (5) giving fair agreement.

FIG. 3 .   Comparison of evolution in z  for for ε=0.5 and ε=2 wi th

ντ~11.
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