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Introduction

I Many ecological and epidemiological systems are better modeled

in continuous time instead of discrete time.

I There are many continuous-time frameworks: reaction–diffusion

integral equations, integro-differential equations.

I Diffusion is a local operator, i.e., individuals can only influence

their immediate neighbors and may also present some difficulty in

matching with experimental data

I Integrals have been used instead to model non-local spatial

processes giving rise to integral and integro-differential equations.

I These models have all the advantages of the discrete-time

integrodifference equations: more flexibility in using dispersal

data, predicting faster wave speeds, and the possibility for

accelerating waves.
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Spatial epidemic models

I Reaction–diffusion: Noble (1974); Bailey (1975); Murray, Staley,

& Brown (1986)

∂tS = −β(I + α∇2I)S + DS∇2S,

∂tI = β(I + α∇2I)S − γI + DI∇2I,

∂tR = γI + DR∇2R

I Integral equations: Thieme (1977, 1979); Diekmann (1978, 1979);

Rass & Radcliffe (1984, 1986, 2003)

Ṡ = −λS,

i(t, 0, x) = λS,

i(t, τ, x) = i(t− τ, 0, x),

λ(t, x) =
∫ ∞

0

∫
Ω

i(t, τ, ξ)A(τ, x, ξ) dξdτ
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I Integro-differential equations: Kendall (1957, 1965) and Mollison

(1972); Medlock & Kot (2003)

I Integrodifference equations: Allen & Ernest (2002)

St+1 =
∫

Ω

[St(y) + (µ + γ)It(y)− βIt(y)St(y)] k(x− y)dy,

It+1 =
∫

Ω

[(1− µ− γ)It(y) + βIt(y)St(y)] k(x− y)dy
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Outline

I Two integro-differential–equation models from epidemiology

I The SI model: Brief review
I Distributed Contacts model
I Distributed Infectives model
I The movement process: Linear integro-differential equations
I Wave speed
I Wave shape

I Conclusions
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SI model: Brief review

I We divide the population into two groups:

I Susceptible individuals, S(t)
I Infective individuals, I(t)

-S I
λS

I Assumptions

I Population size is large and constant, S(t) + I(t) = K
I No birth, death, immigration, or emigration
I No recovery or latency
I Homogeneous mixing
I Infection rate is proportional to the number of infectives, i.e.,

λ = βI
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-S I
βIS

I A pair of ordinary differential equations describes this model

(Ross, 1911):

S′(t) = −βI(t)S(t),

I ′(t) = βI(t)S(t).

I With constant population size, K = S(t) + I(t), this reduces to

I ′(t) = βI(t)(K − I(t)).

I The solution is the logistic curve,

I(t) =
I(0)K

I(0) + (K − I(0))e−βKt
.

t0

K
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Spatial spread: Two different non-local mechanisms

From Brown, J.K.M. & Hovmøller, M.S., Science, 297 537.

From http://www.hort.uconn.edu/ipm/veg/htms/potblpic.htm.

http://www.hort.uconn.edu/ipm/veg/htms/potblpic.htm
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Distributed Contacts (DC)

I The governing equations (Kendall, 1957, 1965; Mollison, 1972):

∂tS = −β

(∫
Ω

k(x− y)I(y, t) dy

)
S,

∂tI = β

(∫
Ω

k(x− y)I(y, t) dy

)
S.

I β is the infection rate
I k(u), the kernel, is the contact distribution

I Assumptions: K = S + I is constant and Ω = R, give

∂tI = β

(∫
R

k(x− y)I(y, t) dy

)
(K − I).
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From http://www.phls.wales.nhs.uk/measlgen.htm.

From Cliff, A.D., Haggett, P., Ord, J.K. & Versey, G.R., Spatial Diffusion, 1981.

http://www.phls.wales.nhs.uk/measlgen.htm
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Distributed Infectives (DI)

I The governing equations (Fedotov, 2000; Medlock & Kot, 2003;

Lutscher et al., 2004):

∂tS = −βIS −DS + D

∫
Ω

k(x− y)S(y, t) dy,

∂tI = βIS −DI + D

∫
Ω

k(x− y)I(y, t) dy.

I β is the infection rate
I D is the dispersal rate
I k(u), the kernel, is the dispersal distribution

I Assumptions: K = S + I is constant and Ω = R, give

∂tI = βI(K − I)−DI + D

∫
R

k(x− y)I(y, t) dy.
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The movement process:
Linear integro-differential equations

I N(x, t) is the density of a population at position x and time t

I At rate D, individuals move to a new location instantaneously

I k(x− y) is the proportion of individuals moving from y to x

∂tN = D

∫
R

k(x− y)N(y, t) dy −DN
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Position jump process or kangaroo process
(Othmer et al., 1988)

I An individual starts at x = 0 at t = 0

I He waits an exponentially-distributed time (with parameter D)...

I ...and then jumps to a new position y that is governed by the

distribution k(x− y)

∂tN = D

∫
R

k(x− y)N(y, t) dy −DN
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Both models have traveling wave solutions
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Wave speed

I Distributed Contacts

∂tI = β

(∫
R

k(x− y)I(y, t) dy

)
(K − I)

Using the traveling-wave coordinate, z = x + ct,

cI ′ = β

(∫
R

k(z − y)I(y) dy

)
(K − I).

Linearizing about I = 0,

cI ′ = βK

(∫
R

k(z − y)I(y) dy

)
.

Assuming I = Ae−θz,

cθ = −βKM(θ),
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where

M(θ) =
∫

R
k(u)eθu du.

For a constant speed traveling wave, k(x) ≤ Ae−γ|x|, which

implies M(θ) exists for |θ| < γ.

The critical speeds are

cR = −βK sup
θ>0

M(θ)
θ

, cL = −βK inf
θ<0

M(θ)
θ

.

Parametrically,

c∗ = −βKM ′(θ∗),

M(θ∗) = θ∗M ′(θ∗).

Aronson (1977) showed this is the asymptotic speed.



Integro-differential–Equation Models for Infectious Disease 16

I Distributed Infectives

∂tI = βI(K − I)−DI + D

∫
R

k(x− y)I(y, t) dy

The same procedure gives

c∗ = −DM ′(θ∗),

βK = D [1−M(θ∗) + θ∗M ′(θ∗)] .

Lutscher et al. (2004) showed this is the asymptotic speed.
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A perturbation scheme for the wave shape

The key to the perturbation scheme is expanding the convolution

k ∗ I =
∫

R
k(y)I(z − y) dz

for large c.

Let ξ = z/c and h(ξ) = I(z). Then

k ∗ I =
∫

R
k(y)I(z − y)dy

=
∫

R
k(y)h

(
ξ − y

c

)
dy

=
∫

R
k(y)

[
h(ξ)− y

c
h′(ξ) + O

(
1
c2

)]
dy

=h(ξ)− M ′(0)
c

h′(ξ) + O
(

1
c2

)
.
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Distributed Infectives

cI ′ = βI(K − I)−DI + D

∫
R

k(y)I(z − y) dy

with I(−∞) = 0, I(+∞) = K, I(0) = K/2.

Letting ξ = z/c and h(ξ) = I(z) gives

h′ = βh(K − h)−D

[
M ′(0)

c
h′ + O

(
1
c2

)]
.
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Expanding h = h0 + 1
ch1 + O

(
1
c2

)
,

h′0 = βh0(K − h0),

h′1 = βh1(K − 2h0)−DM ′(0)h′0,

with h0(−∞) = 0, h0(+∞) = K, h0(0) = K/2,

and h1(−∞) = h1(+∞) = h1(0) = 0.

Then

h0(ξ) =
KeβKξ

1 + eβKξ
,

h1(ξ) = DβK2M ′(0)
ξeβKξ

(1 + eβKξ)2
.
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Asymptotic speed

For an accelerating invasion k(x) > Ae−γ|x|, we can compute the

wave asymptotically.

I Starting with the linearized DC equation

∂tI = βK

∫
R

k(x− y)I(y, t)dy, I(x, 0) = I0δ(x),

taking the Fourier transform

∂tÎ = βKk̂(ω)Î , Î(ω) = I0,

gives

Î(ω, t) = I0eβKk̂(ω)t.
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Inverting gives

I(x, t) =
I0

2π

∫
R

e−ıωxeβKk̂(ω)tdω ≈ I0eβKtk(x) as |x| → ∞,

subject to some technical conditions.

I Likewise for the DI model

I(x, t) ≈ I0eβKtk(x) as |x| → ∞.

Setting some threshold value, Ĩ, gives

x ≈ k−1

(
Ĩ

I0
e−βKt

)
,

the position of the threshold as a function of time.
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Time-periodic coefficients

∂tI = β(t)I(K(t)− I)−D(t)I + D(t)
∫

R
k(x− y, t)I(y, t) dy

Using the same linearization procedure, the speed is given by

βK = D −DM(θ) + θD∂θM(θ),

c = −D∂θM(θ),

where

f =
1
T

∫ T

0

f(t) dt.
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Numerics: IDEs are better than PDEs!

I Integral dispersal is much more stable than diffusion, which allows

much larger time steps

I In general,

∂t

u1
...

un

 = f


u1

...

un


,

k1 ∗ u1 . . . km ∗ u1
... ...

k1 ∗ un . . . km ∗ un


 .

I Trapezoid rule and Simpson’s rule are O
(
N2
)
.

I FFT is O(N log N) (Andersen, 1991)

F(ki ∗ uj) = F(ki)F(uj).
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I Algorithm

I Compute F(ki) at the beginning.
I Each time step, compute F(uj) and F−1 [F(ki)F(uj)].
I Step in time with Runge–Kutta scheme.
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Conclusions

I There are more flexible frameworks than reaction–diffusion for

continuous-time models.

I Integro-differential equations can be used with empirical dispersal

data, give faster speeds than r–d, and can give accelerating waves.

I Traveling wave speed is sensitive to the form of the model; care

should be used.

I Perturbation techniques can be used to compute approximate

solutions to the IDEs.
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Problems

I Instead of space, x represents some other characteristic.

I Estimating kernels from dispersal data.

I The inverse problem: Given a traveling wave, what is the kernel?


