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Introduction

Many ecological and epidemiological systems are better modeled
in continuous time instead of discrete time.

There are many continuous-time frameworks: reaction—diffusion
integral equations, integro-differential equations.

Diffusion is a local operator, i.e., individuals can only influence
their immediate neighbors and may also present some difficulty in
matching with experimental data

Integrals have been used instead to model non-local spatial
processes giving rise to integral and integro-differential equations.

These models have all the advantages of the discrete-time
integrodifference equations: more flexibility in using dispersal
data, predicting faster wave speeds, and the possibility for
accelerating waves.
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Spatial epidemic models

Reaction—diffusion: Noble (1974); Bailey (1975); Murray, Staley,
& Brown (1986)

0,8 = —BI 4+ aVi)S + DsV?S,
ol = B +aV?)S —~I+ DV,
R = ~I+ DrV?R

Integral equations: Thieme (1977, 1979); Diekmann (1978, 1979);
Rass & Radcliffe (1984, 1986, 2003)

S = =AS,
) = AS,
i(t,7,x) = i(t—T1,0,2),
)

= /O / (t, 7, &) AT, x, €) dedr
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Integro-differential equations: Kendall (1957, 1965) and Mollison
(1972); Medlock & Kot (2003)

Integrodifference equations: Allen & Ernest (2002)
Sr = [ 1510+ (4 E0) — BL)Si0)] bl )dy,

Ly = /Q (1 — p— ) 1I(y) + BI(y)Se(y)] k(z — y)dy
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S| model: Brief review

We divide the population into two groups:

Susceptible individuals, S(t)
Infective individuals, I(t)

SAS=I

Assumptions

Population size is large and constant, S(t) + I(t) = K

No birth, death, immigration, or emigration

No recovery or latency

Homogeneous mixing

Infection rate is proportional to the number of infectives, i.e.,

\ = QI
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BIS

S

A pair of ordinary differential equations describes this model
(Ross, 1911):

S'(t) = —BI)S(¢),
I'(t) = pIt)S(t).

With constant population size, K = S(t) + I(t), this reduces to
I'(t) = BI(t)(K — I(t))-

The solution is the logistic curve, K

I(0)K
1(0) + (K — I(0))e=PEE 0

I(t) =
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Spatial spread: Two different non-local mechanisms
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Fig. 1. Selected dispersal events of fungal pathogens. Red and blue arrows VI (27), VII (22), and VIII (70)]. Orange circles indicate the worldwide spread
indicate invasions of new territories (first year recorded in brackets). Red of black Sigatoka disease of banana; the first outbreak recorded on each
arrows indicate dispersal that probably occurred by direct movement of  continent is marked [IX (79)]. Green arrows indicate periodic migrations of
airborne spores [I (72), Il (77), Il (23), and IV (52)]. Blue arrows indicate airborne spores in extinction-recolonization cycles [X (32), XI (33), Xl (34)
pathogens that were probably transported to the new territory in infected

XIIl (35-38), and XIV (47)]. [Background world map © C. Lukinbeal, Southern
plant material or by people and spread thereafter as airborne spores [V (9), Connecticut State University, New Haven, Connecticut]

From Brown, J.K.M. & Hovmgiller, M.S., Science, 297 537.
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From |http://www.hort.uconn.edu/ipm/veg/htms/potblpic.htm|
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Distributed Contacts (DC)

The governing equations (Kendall, 1957, 1965; Mollison, 1972):

08 = ([ Ko~ )10 dy) s
91 — 5( /Q k(z — ) I(y, 1) dy) S.

(3 is the infection rate
k(u), the kernel, is the contact distribution

Assumptions: K = S + I is constant and {) = R, give

ol = 8 ( [ ke = w1 dy) (K1),
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FEBRUARY 1936 - MARCH 1937

From |http://www.phls.wales.nhs.uk /measlgen.htm|

ICELAND

REYKJAViKUR

100 miles
100 500 2500
— 1
100 km REPORTED CASES

500 miles

500 km

From Cliff, A.D., Haggett, P., Ord, J.K. & Versey, G.R., Spatial Diffusion, 1981.


http://www.phls.wales.nhs.uk/measlgen.htm
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Distributed Infectives (Dl)

The governing equations (Fedotov, 2000; Medlock & Kot, 2003;
Lutscher et al., 2004):

oS = —ﬁ]S—DS—I—D/k(x—y)S(y,t) dy,
Q
ol = ﬂIS—DI—I—D/k(:C—y)I(y,t) dy.
Q

(3 is the infection rate
D is the dispersal rate
k(u), the kernel, is the dispersal distribution

Assumptions: K = S + I is constant and {) = R, give

GtI:ﬁI(K—I)—DI+D/Rk(x—y)I(y,t) dy.
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The movement process:
Linear integro-differential equations

N (x,t) is the density of a population at position x and time ¢
At rate D, individuals move to a new location instantaneously

k(x — y) is the proportion of individuals moving from y to x

0N =D /k(x—y)N(y,t) dy — DN
R
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Position jump process or kangaroo process
(Othmer et al., 1988)

An individual startsat x =0 at ¢t =0
He waits an exponentially-distributed time (with parameter D)...

...and then jumps to a new position y that is governed by the
distribution k(z — y)

N =D /k(x—y)N(y,t) dy — DN
R
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Both models have traveling wave solutions

K
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Wave speed
Distributed Contacts
ot = ( [ Ko~ )1w.0) dy) (56 = 1
Using the traveling-wave coordinate, z = x + ct,
ot =5 ([ ke 01w dy) (- D)
Linearizing about I =0,
o1’ =K ([ ke = 0)1) dy).

Assuming I = Ae= 7,

c) = —BKM(0),

14
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where

M () = /R B(w)e®™ du.

For a constant speed traveling wave, k(z) < Ae= "l which
implies M () exists for |0] < 7.

The critical speeds are

M (0) .. M(0)
cr=—FRsup =y, e =0k ml
Parametrically,
¢t = —BKM'(6%),

M) = 6*M'(6").

Aronson (1977) showed this is the asymptotic speed.

15
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Distributed Infectives
ol =pI(K—1)— DI+D/ k(x —y)I(y,t) dy
R

The same procedure gives

¢t = —DM'(6%),
BK = DI[1— M(6*)+6"M'(6)].

Lutscher et al. (2004) showed this is the asymptotic speed.

16
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A perturbation scheme for the wave shape

The key to the perturbation scheme is expanding the convolution

k*I:/Rk(y)I(z—y) dz

for large c.

Let £ = z/c and h(&) = I(z). Then

k*-’z/Rk(y)I(z—y)dy

Z/R/f(y)h (S = %) dy

— [ k) [ - W)+ 0 ()| ay
—h(e) - () +0 ().

% c2

19
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Distributed Infectives

= BI(K — DI + D/
with I(—o0) =0, I(+oc )— = K/2.
Letting £ = z/c and h(&) = I(2) gives

_ BR(K —h)— D [M/(O)h’+ 0 (

dy

20
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Expanding h = hg + %hl + O (6—12)

ho = Bho(K — ho),

hy = Bhi(K — 2hg) — DM'(0)hy,
with ho(—OO) =3 ho(—l—OO) = K, hO(O) = K/Q,
and hl(—OO) — hl(—|—OO) = hl(()) = (.
Then

KePKS
1 + eBKE’

EeP i

hi(§) = DPK M/(O)(1+65K§)2'

21
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Abs. Error

-0.1

Exponential kernel

=30

-15

N O

Abs. Error

Laplace kernel

0.02

0.01
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Asymptotic speed

For an accelerating invasion k(z) > Ae~ 717l we can compute the
wave asymptotically.

Starting with the linearized DC equation

oI = BK / bz — y)I(yt)dy,  I(z,0) = Iod(x),

taking the Fourier transform

gives

23
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Inverting gives

Iy

o

I(x,t) = /ewweﬁKé(”)tdw ~ [oeP 2 lk(z) as |z| — oo,
R

subject to some technical conditions.
Likewise for the DI model
I(x,t) ~ IpePXtk(x) as |z| — oo

~

Setting some threshold value, I, gives

the position of the threshold as a function of time.

24
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front position vs. time
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Time-periodic coefficients

oI = B(OI(K(t) — I) — D(t)I + D(t) / k(e — y,)I(y,1) dy

Using the same linearization procedure, the speed is given by

BK D — DM(6) 4+ 0D0yM(0),
c = —D(?gM(@),

where

26
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speed vs. time

%
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Numerics: IDEs are better than PDEs!

28

Integral dispersal is much more stable than diffusion, which allows

much larger time steps

In general,

Oy

= J

k’1>l<’u,1

kl*un

Trapezoid rule and Simpson’s rule are O (N?).

FFT is O (N log N) (Andersen, 1991)
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Algorithm
Compute F(k;) at the beginning.

Each time step, compute F(u;) and F~— [F(k;)F (u;)].

Step in time with Runge—Kutta scheme.

29
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Conclusions

There are more flexible frameworks than reaction—diffusion for
continuous-time models.

Integro-differential equations can be used with empirical dispersal
data, give faster speeds than r—d, and can give accelerating waves.

Traveling wave speed is sensitive to the form of the model; care
should be used.

Perturbation techniques can be used to compute approximate
solutions to the IDEs.
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Problems

Instead of space, x represents some other characteristic.
Estimating kernels from dispersal data.

The inverse problem: Given a traveling wave, what is the kernel?

31



