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Abstract. We consider two teams of agents engaging in a debate to
persuade an audience of the acceptability of a central argument. This is
modelled by a bipartite abstract argumentation framework with a distin-
guished topic argument, where each argument is asserted by a distinct
agent. One partition defends the topic argument and the other parti-
tion attacks the topic argument. The dynamics are based on flag coor-
dination games: in each round, each agent decides whether to assert its
argument based on local knowledge. The audience can see the induced
sub-framework of all asserted arguments in a given round, and thus the
audience can determine whether the topic argument is acceptable, and
therefore which team is winning. We derive an analytical expression for
the probability of either team winning given the initially asserted argu-
ments, where in each round, each agent probabilistically decides whether
to assert or withdraw its argument given the number of attackers.

1 Introduction

Argument-based persuasion dialogues provide an effective mechanism for agents
to communicate their beliefs and reasoning in order to convince other agents
of some central topic argument [11]. In complex environments, persuasion is a
distributed process. To determine the acceptability of claims, a sophisticated
agent or audience should consider multiple, possibly conflicting, sources of in-
formation that can have some level of agent-hood. In this paper, we consider
teams of agents that work together in order to convince some audience of a
topic argument. While strategic considerations have been investigated for one-
to-one persuasion (e.g. [15]), and for one-to-many persuasion (e.g. [9]), the act
of persuading as a team is a largely unexplored problem.

Consider a political referendum, where two campaigns seek to persuade the
general public of whether or not they should vote for or against an important
proposition. Each campaign consists of separate agents, where each agent is an
expert in a single argument. For example, an environmentalist might argue how
a favourable outcome in the referendum would reduce air pollution. Each agent
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can assert its argument to the public, and each agent is aware of counterargu-
ments that other agents can make. However, no agent can completely grasp all
aspects of the campaign, for example the environmentalist may be ignorant of
relevant economic issues. If the agent thinks there are no counterarguments to
its argument it should keep asserting its argument, as it is beneficial for its team.
While each agent wishes to further other team’s persuasion goal, they do not
want to risk having their argument publicly defeated by counterarguments.

From this example, we consider a team of agents to have three key properties
that differentiate them from an individual agent when persuading. Firstly, each
agent may have localised knowledge which is inaccessible and non-communicable
to other agents in the same team. Secondly, agents may not be wholly benevo-
lent, potentially acting in their own interest before that of their team; reconciling
this conflict between individual and team goals makes strategising more com-
plex. Thirdly, there is no omniscient or authoritative agent able to determine
the actions of other members of the team, meaning each agent must act inde-
pendently, making the problem a distributed one. This problem is distinct from
that of an individual persuader, and therefore requires a different approach to
model the outcomes of persuasion.

We approach the problem of modelling team persuasion by exploring a par-
ticular team persuasion game, in which two opposing teams attempt to convince
an audience of whether some central issue, termed the topic, is acceptable or not.
Each member of a team is individually responsible for one argument in the do-
main, being an expert on that particular argument. As such, each member must
independently decide whether to actively assert its argument to the audience,
or to hold back from asserting its argument. The persuasion game proceeds in
rounds, where in each round an agent decides whether to assert its argument.
An agent can decide to stop asserting its argument even if in previous rounds
they had asserted it. Teams aim to reach a state in which the topic is acceptable
or unacceptable according to the audience (depending on whether the agent is
defending or attacking the topic), and in which no individual agent will change
its decision of whether to assert its argument; in such a state the topic is guaran-
teed to retain its (un)acceptability indefinitely. When deciding whether to assert
its argument, an agent takes into account whether the other agents are currently
asserting their arguments. It aims to have a positive effect on its team’s persua-
sion goal, but may also wish to avoid having its own argument publicly defeated
(since this may, for example, negatively affect their public standing or reputa-
tion). When deciding whether to assert its argument, the agent must therefore
balance the potential positive effect of this on its team’s persuasion goal with
the risk of its own argument being publicly defeated.

The audience determines whether they find the topic argument acceptable
in a particular round by considering the set of arguments that are currently
asserted. Note that the audience has no knowledge of which arguments were
asserted in previous rounds; we consider the audience to be memoryless, only
considering the arguments that are asserted in the current round.



Team Persuasion 3

Michael Gove:
“We have

heard enough
from experts”

YouGov: “Polls
show most

people think
hospital waiting
times will fall
if UK leave”

Alistair Heath:
“Financial

institutions are
often wrong

and therefore
untrustworthy”

The UK should
leave the EU

Richard
Dawkins:

“The public is
ill-informed,
experts know
more so we

should listen
to them”

Financial
Times:

“Financial
institutions
have many
experts and
so are often

correct”

Bank of
England:
“Inflation
will fall to
dangerous
levels if

we leave”

Treasury:
“The value of
sterling will

fall if we leave”

NHS: “Authori-
tative academic

studies show
that leaving
the EU will

cause hospital
waiting times
to increase”

Leave; arguments defending the topic

Remain; arguments attacking the topic

Topic argument

Fig. 1. An instantiated example of a bipartite argumentation framework.

For example, consider the arguments in Figure 1, in which the directed edges
represent conflict between arguments. The topic argument in this example is that
the United Kingdom should leave the European Union, with three arguments
defending the topic and five arguments attacking the topic (some indirectly).
Each argument is controlled by a particular individual or institution. The agents
are organised into two teams, those defending the topic (the Leave campaign),
and those attacking the topic (the Remain campaign). Consider the argument
that might be asserted by the Treasury: the Treasury is motivated to assert their
argument as it directly attacks the topic argument (which they are seeking to
dissuade the audience of). If they are aware of the argument possibly asserted by
Alistair Heath, they may decide not to assert their own argument to avoid the
risk of being publicly defeated. The public decides whether leaving the European
Union is acceptable depending on which arguments are currently being asserted.

The contribution of this paper is the application of team persuasion games [10]
to model public debates of this form. We answer the following:

Q1 How do we formalise the situation where one team has definitively
won? We define such a situation to be a state where agents that are assert-
ing their arguments will continue to do so, and agents not asserting their
arguments will never do so.

Q2 What is the probability that a particular team (e.g. the Remain
Campaign) has definitively won? We prove an expression for this prob-
ability, given the initially asserted arguments and the attacks between them.
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In Section 2 we define a team persuasion game on a bipartite abstract argu-
mentation framework [6], which is a special case of a flag coordination game [10].
In Section 3, we use our framework to answer Questions Q1 and Q2. We discuss
related work in Section 4, and conclude in Section 5.

2 Team persuasion games

In this section we present our model of team persuasion games. We begin by
briefly reviewing the relevant aspects of abstract argumentation [6].

Definition 1. An argumentation framework is a directed graph (digraph)
AF := 〈A,R〉 where A is the set of arguments and R ⊆ A × A is the attack
relation, where (a, b) ∈ R denotes that the argument a attacks the argument b.

Figure 1 is an example argumentation framework. We will only consider finite,
non-empty argumentation frameworks, i.e. where A 6= ∅ is finite. Given an ar-
gumentation framework, we can determine which sets of arguments (extensions)
are justified given the attacks [6]. There are many ways (semantics) to do this,
each based on different intuitions of justification. We do not assume a specific
semantics in this paper, only that all agents and the audience use the same
semantics.

Definition 2. Let AF be an argumentation framework. The set Acc(AF ) ⊆ A
is the set of acceptable arguments of AF , with respect to some argumenta-
tion semantics under credulous or sceptical inference. An argument a is said to
be acceptable with respect to AF iff a ∈ Acc(AF ).

We model team persuasion as an instance of a flag coordination game over an
argumentation framework [10]. A flag coordination game consists of a network
of agents and an index representing discrete time. Each agent has a set of flags
of different colours (representing e.g. choices or states) and a set of other agents
it can see. In each round, each agent raises a coloured flag synchronously and
independently, as the output of some (possibly random) decision procedure given
what the agent sees other agents doing in the preceding round. Such models have
been studied in the context of the adoption of new technology standards, voting
and achieving consensus [10, Section 1]. We now adopt a specific instance of a
flag coordination game for our purposes.

Definition 3. A team persuasion framework is a tuple 〈AF,X, β, Γ, φ, Λ〉 =:
F . Let AF = 〈A,R〉 be an argumentation framework, where the nodes represent
arguments, each owned by distinct agents.3 Let φ : A → P (A) be the visi-
bility function,4 i.e. φ(a) ⊆ A is the set of arguments that a can see. Let
X := {on, off, topic} denote the set of states. Let t ∈ A be a distinguished
argument called the topic (argument). Define the state function β : A→ X
such that β(t) := topic and (∀a ∈ A− {t})β(a) ∈ {on, off}.5

3 As each argument is owned by a distinct agent, we use the terms interchangeably.
4 If X is a set, then P (X) is its power set.
5 We further assume that φ is such that if b ∈ φ(a) then a can also see β(b) ∈ X.
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Let S := XA be the space of functions that assigns a state to each argument,
which defines a configuration. Let Γ ⊆ S be the set of goal states. For a ∈ A
let λa be the decision algorithm of agent a, that takes input β and φ and
outputs s(a) ∈ X, for s ∈ S. We define Λ as the set of algorithms for all a ∈ A.

The team persuasion framework is such that each agent asserts a single argu-
ment, which can attack and be attacked by other asserted arguments, so it is
isomorphic to an argument framework. Each of the agents can assert their argu-
ment (turning it on) or not assert their argument (turning it off ). The topic is
a special argument that is labelled topic throughout the duration of the game.

Definition 4. Let F denote a team persuasion framework. Let i ∈ N denote
discrete time. Consider the sequence of configurations [s0, s1, ...], indexed by i.
We call s0 the initial configuration, and si is the ith configuration. The
update rule is such that for all a ∈ A−{t}, si+1(a) ∈ X is the output of λa given
si(b) ∈ X for all b ∈ φ(a) and possibly β(a). Further, (∀i ∈ N) si(t) := topic. A
team persuasion game with initial configuration s0 is the tuple 〈F , s0〉.

Initially, the agents start in some initial configuration defined by whether each
agent asserts its argument. In each subsequent round, the agents decide using
their own decision procedure whether to assert or stop asserting their argument
in the next round, given the actions of other agents they see.

Both teams are presenting their arguments to an audience who are assumed
to be memoryless across rounds and can only see the topic and the arguments
that are being currently presented. This prompts the following definition.

Definition 5. Given a team persuasion game, the set of arguments that are
on in round i is Aon

i := {a ∈ A si(a) = on} ∪ {t}. The induced argument
framework is AF on

i := 〈Aon
i , Ron

i 〉, where Ron
i := R ∩ [Aon

i ×Aon
i ].

The audience will therefore see a sequence of argument frameworks (AF on
i )i∈N

as the teams debate each other about the topic. The audience can determine
which team is winning based on whether the topic is justified in a given round.

Definition 6. In a given round i ∈ N of a team persuasion game, we say that
the team of defenders are winning iff t ∈ Acc (AF on

i ) iff the team of
attackers are not winning.

In each round the acceptability of the topic may change, and hence the winner
can change. We are interested in definitively winning states, as defined in Q1 in
Section 1. We explore the existence of such states in Section 3.

Since we are modelling the arguments between two teams, each trying to
persuade or dissuade an audience of the topic, we specialise to bipartite argu-
mentation frameworks because no agent should attack an argument of another
agent in its own team. Further, the framework is weakly connected because all
arguments asserted are relevant to the debate. Further, we assume that every
argument has a counterargument, and that the topic is not capable of defending
itself, so it does not directly attack any argument.
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Definition 7. Our team persuasion frameworks F = 〈AF,X, β, Γ, φ, Λ〉 have
an underlying argument framework AF = 〈A,R〉 that is bipartite and weakly
connected, with the requirements that (∀a ∈ A) a− 6= ∅ and t+ = ∅. As AF is
bipartite, let U and W be the two partitions of A such that t ∈ U . We call U
the set of defenders of the topic, and W the set of attackers of the
topic. The set of goal states is Γ := {γu, γw}, where γu(U −{t}) = {on} and
γu(W ) = {off}, and γw(U − {t}) = {off} and γw(W ) = {on}.6

The goal states indicate that each team has the goal of unilaterally asserting
their arguments and making the opposing team unilaterally withdraw their ar-
guments. See Figure 2 for an example of γu, and Figure 3 for an example of γw.
In our figures, white (resp. black) nodes are arguments that are on (resp. off ).

u1 u2 u3 t

w1 w2 w3 w4 w5

Fig. 2. The defenders’ goal state γu; all
defenders are asserting their argument.

u1 u2 u3 t

w1 w2 w3 w4 w5

Fig. 3. The attackers’ goal state γw; all
attackers are asserting their argument.

2.1 Agent visibility

There are several possible forms of the agents’ visibilities, φ, for example:
V1 (∀a ∈ A)φ(a) = a− := {b ∈ A (b, a) ∈ R},
V2 (∀a ∈ A)φ(a) = a+ := {b ∈ A (a, b) ∈ R}, or
V3 (∀a ∈ A)φ(a) = a− ∪ a+ (both).
Recall from Footnote 5 that if b ∈ φ(a), then a can also see the state s(b)
of b. It is possible to define φ(a) ⊆ A to be completely arbitrary, beyond the
immediate neighbours of a. However, it is not currently clear how the behaviour
of an agent might be influenced by knowledge of the states of arguments beyond
the immediate neighbours especially if there is to be localised knowledge (see
Section 3). In this paper, we focus on V1, leaving the rest for future work.

2.2 The agents’ decision algorithm

We claim that agents with visibility of a− can be motivated by two factors: their
desire to make the topic acceptable/unacceptable to the audience (the goal of the
team), and their desire not to have their argument publicly defeated (the goal
of the individual). An individual does not want to have its argument publicly

6 Recall that for a function f : X → Y and A ⊆ X the image set of A under f is
f(A) := {y ∈ Y (∃x ∈ A) f(x) = y}.
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defeated (that is, its argument is asserted, but is not considered acceptable by
the audience in the current round), as it is somehow a challenge to the agent’s
authority, and therefore reflects negatively on its ego. An agent can estimate
how likely it is that their argument will be publicly defeated by considering
how many attacking arguments the agent could see are being asserted: the more
attackers that are asserted, the more likely one of the attacks will be successful,
and therefore the higher the chance its argument is defeated.

• Altruistic: An agent which is only motivated by the team goal of making
the topic (un)acceptable would always assert its argument a, regardless of
the state of the arguments in a−. We call such selfless agents altruistic.

• Timid: An agent which is only motivated by its individual goal of not hav-
ing its argument being publicly defeated would never assert its argument,
regardless of which arguments in a− are being asserted. If the agent never
asserts its argument, it can never be defeated, and therefore will always
achieve its individual goal.

• Balanced: An agent motivated by both factors must find a way to balance
these two goals. Such an agent is certain to assert its argument when none
of its attackers are asserted, because the chance of a successful defeat is
minimal. Similarly, the agent is least likely to assert when all of its attackers
are asserted because the chance of successful defeat is maximised.

As a starting point for our analysis we will consider balanced agents. We
define the probability of the agent not asserting its argument when all of its
attackers are on as 1, and conversely the probability of the agent not asserting
its argument when all of its attackers are off as 0. To begin with, we assume
this probability increases linearly, proportional to the number of arguments a−

that are on.

Definition 8. Let F be a team persuasion framework on an argument frame-
work AF as defined in Definition 7. An agent a ∈ A − {t} is balanced iff λa
(Definition 3) is defined as follows. For i ∈ N, λa outputs si+1(a) = off with
conditional probability

P (si+1(a) = off si) :=
|a− ∩Aon

i |
|a−|

∈ [0, 1]. (1)

Further, λa outputs si+1(a) = on given si with probability 1−P (si+1(a) = off si).
We will assume that for all a ∈ A− {t}, a is balanced.

Example 1. Consider Figure 4, which represents the situation in Figure 1 as a
team persuasion framework with the initial configuration where the on argu-
ments are u2, u3, w2, and w3, with the rest of the arguments being off. Consider
the argument w3. It is attacked by u1 and u2, which are respectively off and on.
Therefore, the probability of w3 remaining on in the next round is 1

2 .

3 Results

From the setup described in Section 2, we can now answer more precise versions
of the two questions posed at the end of Section 1.
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u1 u2 u3 t

w1 w2 w3 w4 w5

Fig. 4. An Initial Configuration (F , s0)
for the example in Figure 1.

u1, u2, w1, w3

w4

w5

u3, w2 t

Fig. 5. Condensation graph of Figure 4,
showing strongly connected components.

F1 Are there any states of the arguments (on or off ) in which no agent is
going to change their state in any future round according to λa as defined
in Equation 1? We call such a state a state-stable configuration.7

F2 What is the probability of a particular team winning, i.e. achieving a state-
stable configuration, where the topic is either acceptable or unacceptable?

3.1 State-Stable Configurations

We now answer Question F1, which concerns state-stable configurations.

Definition 9. A state-stable configuration is a function s ∈ S such that, if
attained at round i ∈ N of the team persuasion game following Equation 1, will
also be the state of the game in all subsequent rounds.

This formalises the intuition that no agent is going to change their state in any
future round once a state-stable configuration is reached.

Proposition 1. Given the setup of Section 2, the two goal states, γu and γw
(Definition 7) are the only state-stable configurations.

Proof. Please refer to Appendix A for all proofs in this paper.

3.2 Probabilities for State-Stable Configurations

We now answer Question F2. We first translate our team persuasion game into a
consensus game. In a consensus game, the update is such that in round i+1, every
digraph node a copies the colour of a randomly (uniformly) sampled neighbour
in a−, rather than adopting the opposite colour as in Equation 1 [10].

The translation is as follows. We consider the finite, weakly connected, bi-
partite digraph G := 〈V,E〉 which is the induced subgraph of 〈A,R〉 with nodes
V := A − {t}. For each configuration s : A − {t} → X := {on, off} we define a
colouring function s′ : V → X ′ := {0, 1} such that

s′(a) := 1 if [(a ∈ U and s(a) = on) or (a ∈W and s(a) = off)] . (2)

s′(a) := 0 if [(a ∈ U and s(a) = off) or (a ∈W and s(a) = on)] . (3)
We intuitively associate the colour 1 with the state on and similarly, 0 with off,
but notice how this association is swapped for a ∈W . Thus, the correspondence
s 7→ s′ is well-defined and bijective.

7 This is to avoid confusion with the notion of stable semantics [6].
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Example 2. Consider the digraph in Figure 4.8 Given this initial configuration
s0 such that s0 (u1) = off, s0 (u2) = on... etc. (see Example 1), we get a corre-
sponding s′ where s′ ({u2, u3, w1, w4, w5}) = {1} and s′ ({u1, w2, w3}) = {0}, by
Footnote 6. If we arrange V = {u1, . . . , u3, w1, . . . , w5}, we can represent s′0 as
the boolean vector (0, 1, 1, 1, 0, 0, 1, 1).

We now give some definitions and results for consensus games on digraphs.

Definition 10. Let G = 〈V,E〉 be a finite digraph. Given some fixed order of
the nodes V =

{
a1, . . . , a|V |

}
,9 the (row-normalised) in-matrix of G is the

|V | × |V | matrix H := (hij), where

if (vj , vi) ∈ E then hij =
1∣∣v−i ∣∣ , else hij = 0. (4)

The intuition of Equation 4 is that the ith node vi ∈ V has a probability hij > 0
to copy the colour of vj when (vj , vi) ∈ E.

Definition 11. Let G = 〈V,E〉 be a digraph. Its condensation is the digraph
〈K, E〉 such that K ⊆ P (V ) is the set of strongly connected components (SCCs)
of G and (K,K ′) ∈ E ⊆ K2 iff [(∃a ∈ K) (∃b ∈ K ′) (a, b) ∈ E and K 6= K ′]. A
source component is a component with no in degree.

Example 3. The condensation of Figure 4 is Figure 5. The only source component
is {u1, u2, w1, w3}.

The following theorem answers Question F2 with an analytic expression of
the probability of a particular team winning. We then apply this to solve our
motivating example in Example 4. Intuitively, we first look at the condensation
of a given bipartite AF . Since source components are not going to be influenced
by any external argument, the probability of them reaching either one of the
state-stable configurations is independent of the eventual state of the rest of the
AF . Also, non-source components have no influence over the final outcome, since
once the source components stabilise, they will be a constant influence in either
defending or attacking the topic. Thus, we need all source SCCs to converge to
the same state-stable configuration, otherwise a global state-stable configuration
will not be reached. Finally, in order to calculate the probability of either the
defender or the attacker to win in each source SCC, we find each individual
agents’ influence in the network.

Theorem 1. Consider a team persuasion game on a bipartite AF = 〈A,R〉
with initial colouring s′0. Let K = {{t},K1, . . . ,Km} be the set of SCCs of AF
(for some m ∈ N+), where {t} is the component that contains only the topic
argument. We also define sourceK ⊆ K as the set of source SCCs in the con-
densation of AF . Let K{t} ⊆ sourceK denote the set of SCCs for which there is
a E-path in the condensation of AF to {t}.
8 Note that Figure 5 will be relevant for a following proof.
9 In the context of team persuasion games, we write all nodes in U first and then the

nodes in W , as in Example 2.
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Let µK be the stationary distribution of HK , where HK
10 is the in-matrix of

the subgraph of AF induced by K ∈ K (Definition 10). Let µ(K) =
∑

a∈K µ(a)
for K ⊂ A. Finally, each set K ∈ K{t} has a value g that stands for the greatest
common divisor (gcd) of the lengths of all cycles in K. This generates a g-partite
AF with partitions {K1, . . . ,Kg} as in Lemma 2 (Appendix A). We have that11

P(γu is reached | s0) =
∏

K∈K{t}

g∏
i=1

(
1

µ(Ki)

∑
a∈Ki

µKi(a)s′0(a)

)
. (5)

Example 4. Consider the bipartite AF = 〈V,E〉 in Figure 1 and s0 as in Figure
4. The condensation graph can be seen in Figure 5, so K = {{t},K1,K2,K3,K4},
where K1 = {u1, u2, w1, w3}, K2 = {u3, w2}, K3 = {w4} and K4 = {w5}. K1 is
the only source component. Since K1 (indirectly) influences the acceptability of
the topic, we have K{t} = {K1}. We now need to evaluate µ = µK1

, a stationary
distribution of the in-matrix HK1 , the induced subgraph of AF generated by
K1. Then, we have

µHK1
= µ⇔ µ


0 0 1 0
0 0 1

2
1
2

0 1 0 0
1
2

1
2 0 0

 = µ⇒ µ =
1

10
(1, 4, 3, 2). (6)

Note that g = 2. We now use the initial configuration s0 and the translation to
s′0 according to Equations 2 and 3. We have s′0(u1) = 0, s′0(u2) = 1, s′0(w1) = 0,
s′0(w3) = 0, therefore, by Theorem 1, we have

P(γu is reached | s0) =
∏

K∈K{t}

g∏
i=1

(
1

µ(Ki)

∑
a∈Ki

µKi(a)s′0(a)

)

=

(
1

µ(K1
1 )

4

10

)(
1

µ(K2
1 )

3

10

)
=

12

25
= 48%. (7)

Therefore, the probability of the topic being accepted is 48%. Analogously, the
probability of the topic being rejected is given by

P(γw is reached | s0) =

(
1

µ(K1
1 )

1

10

)(
1

µ(K2
1 )

2

10

)
=

2

25
= 4%. (8)

The probability for this game not reaching a state-stable configuration is 48%.

4 Related Work

In this paper we have presented and analysed an argumentation framework for a
very common form of public debate. Our work has made two novel contributions.
The first contribution is the formalisation using argumentation frameworks of
public policy debates where multiple parties with only local information propose

10 Recall the row vector µ is the stationary distribution of H iff µH = µ.
11 We have abused notation here: we have considered γu to be a state configuration not

on the entire AF , but just on the subgraph induced by the arguments that have a
path to the topic. In other words, we exclude arguments that do not even indirectly
influence the acceptability of the topic.
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arguments to support (or attack) claims of interest to a wider audience, seeking
to persuade that audience of a claim (or not, as the case may be). The second
contribution is the use of flag co-ordination games, specifically its analysis of
the dynamics of graph colouring, to understand the properties of this formal
framework. Analogues of graph colouring have been used in argumentation, for
example, in labelling semantics to determine acceptability of arguments [3]. How-
ever, to the best of our knowledge, interpreting such colourings as the argument
having been asserted or not, and the dynamics of how such a colouring changes,
have not previously been used in argumentation theory.

The general problem of two parties with contradictory viewpoints, each seek-
ing to persuade an impartial third party of their viewpoint, has been investigated
in economics, e.g. using game theory [13,14] or mechanism design [7,8]. Applying
argumentation theory to study multi-agent persuasion with two teams, in which
one is arguing for the acceptability of a topic and the other against, has been
investigated in the work by Bonzon and Maudet [2]. They focus specifically on
the problem with respect to the kinds of dialogue that occur on social websites,
specifying that agents “vote” on the attack relations between arguments. One of
the main differences between their work and ours is that they assume that each
agent has a total view of the argumentation framework, where as we assume
agents have a specific area of expertise and thus, in general, do not have com-
plete knowledge of the structure of the argumentation framework. Furthermore,
agents in their formulation do not have any motivation to act in a way that
might be detrimental to their team’s goal, whereas agents in our work may also
be motivated by their own individual goals.

Dignum and Vreeswijk developed a testbed that allows an unrestricted num-
ber of agents to take part in an inquiry dialogue [5]. The focus of their work is
on the practicalities of conducting a multi-party dialogue, concerned with issues
like turn-taking, rather than in the strategising of agents participating in such a
dialogue. Bodanza et al. [1] survey work on how multiple argumentation frame-
works may be aggregated into a single framework. While this direction of work
considers how frameworks from multiple agents might be merged, it removes the
strategic aspect of persuasion which we are interested in here.

5 Conclusion and Future work

We have shown how to determine the probability of each team winning in a
team persuasion game (Theorem 1). However, we have shown that not all games
become state-stable (Appendix A, Lemma 1), having no definite winner. Consid-
ering games which do not become state-stable, we are interested in determining
(1) in what proportion of rounds is the topic acceptable, and (2) what is the
probability the topic being acceptable at a specific round in the future. With
respect to the first question, we might determine the winning team to be the
one who makes the topic acceptable/unacceptable in the majority of rounds.
The second question is particularly interesting in the context of referendum-like
domains, in which there is a set date (round n) in which the audience determines
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whether the topic is acceptable (and thus which team wins): in this case it does
not matter whether there is state-stability, only that the topic is acceptable in
round n.

Future work will apply the techniques of [10] to the situation investigated in
this paper. Specifically, if the team persuasion game will reach a goal state, we
can calculate the expected number of rounds until that happens [10, Proposition
4]. Further, we can study the game-theoretic implications of some knowledge-
able external agent “bribing” a specific agent to either assert or stop asserting
its argument [10, Section 3]. We will also investigate different generalisations
of the team persuasion game. There are various assumptions on the digraph
that we can modify. For example, generalising from bipartite to multipartite
argumentation frameworks where many teams seek to persuade the audience.
Additionally, we can lift the assumption that no agent attacks its fellow agents
of the same team. Such a team seems quite unlikely (and thus is not considered
here), but occasionally this may occur, e.g. a campaigner who wishes to leave
the EU because their environmental laws are too restrictive on UK businesses,
and a campaigner who wishes to leave the EU because they do not have strong
enough environmental laws; both campaigners would be on the same team, but
their arguments are seemingly in conflict. Further generalisations include: con-
sideration of the different visibility functions φ for each agent, or the case where
each agent can assert more than one argument, or having a non-linear version
of Equation 1. We will show that the results also apply to the case when the
attacking arguments are weighted differently by agents in Equation 1, which
we will articulate in future work. Ultimately, we hope such generalisations can
give insight into situations where individual goals and societal goals conflict to
a greater extent, and how this conflict can be resolved.

A Lemmas and Proofs

Proof (of Proposition 1). To show that γu is a state stable configuration, notice
that in round i ∈ N, if γu is attained, then for a ∈ U − {t}, the probability
(Equation 1) a will be off in round i + 1 is zero, because a− ⊆ W and all
attackers of a are off. Therefore, a will still be on in round i + 1. Similarly, we
can show that the probability of being off for all b ∈ W in round i + 1 is one.
Therefore, in round i+ 1, the state is still γu. A similar argument to this proves
that if γw is attained in round i, then it will also be the state for round i + 1.
By induction over i, γu and γw satisfy Definition 9.

We now show that both γu and γw are the only state stable configurations.
Assuming the contrary. Then, we have a configuration different from γu and
γw in which no argument has a positive probability of changing their state. In
this case, we would have two nodes, say u1 and u2, in the same partition, say
U , that have different colours (otherwise we have γu and γw). Since G is weekly
connected, there is a path that ignores edges’ directions from u1 to u2. This path
has even length and, therefore, since u1 to u2 are different, there must be at least
two consecutive nodes in this path with the same colour. One it attacking the
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other, therefore, the attacked one has a positive probability of changing their
colour. We have a contradiction. Thus γu and γw must be the only state-stable
configurations in a bipartite AF . �

We now answer a more general version of Question F2 using the framework of
consensus games and colours. We derive a formula for a colour to win the consen-
sus game on a strongly connected digraph, given that consensus will be achieved.
We then investigate the necessary conditions for consensus to be achieved, and
derive an expression for the probability of failing to achieve consensus that de-
pends on s′0. We then generalise to the case of weakly connected graphs, and
answer Question F2 via our translation back into team persuasion games.

The in-matrix H of the digraph G can be seen as a transition matrix of a
time homogeneous Markov chain, where the each node v represents a state and
the reversed edges represent the transitions. If the Markov chain is irreducible
and finite, there is a unique stationary distribution, which is a row vector µ ∈ RV

+

that satisfies µH = µ.

Proof (of Theorem 1). The theorem follows from the following lemmas. Note
that these lemmas are considering a general digraph G = (V,E) and colours 0
and 1. We also denote 0 and 1 as the consensus on colour 0 and 1 respectively.

Lemma 1. A consensus game on a strongly-connected digraph G = 〈V,E〉
reaches consensus with probability for all initial configurations 1 iff gcdC = 1,
where C ⊆ N is the set of the lengths of all cycles in G. In the case gcdC = g > 1,
then G is g-partite with parts V1, . . . , Vg where all edges go from Vi to Vi+1.

Proof (of Lemma 1). (⇐) Assuming gcdC = 1. Then, given an initial configura-
tion, a game has already reached consensus or it has not. If not, we can assume,
WLOG, that there is at least one v ∈ V coloured 0. We note that the gcdCv = 1,
where Cv is the set of the lengths of the cycles passing through v. This follows
from the fact that G is strongly connected. We can then show that there is a
large enough n0 > 0 such that for any n ≥ n0, we have P(sn(u) = 0 | s0) > 0
for all u ∈ V . For that it is enough to show that there is finite n0, such that for
every n ≥ n0 there is a directed path from v to u of length n. The existence of
such n0 follows from Lemma 2.1 of [12]. Thus, if the game runs long enough, it
will reach consensus (either 0 or 1) with probability 1.

(⇒) We now want to prove that if the game reaches consensus with probabil-
ity 1, then gcdC = 1. We are going to prove this by showing that if gcdC > 1,
then there is a positive chance that the game never reaches consensus. Let
gcdC = g > 1. We start by showing that the graph must be not only a g-
partite graph, but also of the form that every edge from a node in partition i
points to a node in partition i+ 1(mod g). Let v ∈ V . For all w ∈ V , we define
the partition that w belongs to by taking the x(mod g), where x is the length of
any path from v to w.

We show that this is well defined. First, the existence of such a path is
guaranteed by the strongly connectivity of G. Also, the lengths of all paths from
v to w must coincide modulo g. If not, by concatenating both paths to the same
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returning path from w to v, we would have created two cycles from v to v that
differ in length modulo g (by assumption, all cycles must be 0(mod g)).

We now observe that, if the game reaches a configuration in which a partition
is all 0 and another all 1, consensus will never be reached. Thus it can not be
reaching consensus for sure from all possible initial configurations. We will show
that no non-consensual initial configuration reaches consensus with probability
1. �

Lemma 2. Consider a consensus game in a strongly connected and direct graph
G = 〈V,E〉 in which gcdC = g. Then, we know by Lemma 1 that G is g-partite12

and we denote the partitions V1, . . . , Vg. We further denote µ(U) =
∑

v∈U µ(v)
for U ⊂ V . In these conditions,

P(Colour 1 wins in G | s0) =

g∏
i=1

(
1

µ(Vi)

∑
v∈Vi

µ(v)s0(v)

)
(9)

Proof (of Lemma 2). We use a similar approach to the one in [10] and apply
Theorem 1 of [4]. Note that the state of vertices of Vi+1 in the round n + 1,
depends only in the state of vertices of Vi in the round n. We can then consider
g parallel consensus games on g copies of G, where in the i-th consensus game
we set the initial state of the vertices in Vi to their original initial state in the
consensus game, but set the state of all other vertices to 1. Denote by pi the
probability of the i-th consensus game reaching a 1 winning state. It is then easy
to see that P(1 wins in G | s0) =

∏g
i=1 pi.

We are left to show that pi =
1

µ(Vi)

∑
v∈Vi

µ(v)s0(v). For that end, over

the i-th consensus game define the random variable Xn =
∑

v∈Vj
µ(v)sn(v),

where j = n+ i− 1(mod g). We show that the process (Xn)n∈N is a martingale
with respect to the sequence sn. We need to show that E(Xn+1|sn) = Xn.
By linearity of expectation E(Xn+1|sn) =

∑
v∈Vj+1

µ(v)E(sn+1(v)|sn). Note

that E(sn+1(v)|sn) =
∑

u∈Vj
hvusn(u) and by changing the order of summa-

tion we get that: E(Xn+1|sn) =
∑

u∈Vj
sn(u)

∑
v∈Vj+1

µ(v)hvu. Due to station-
arity of µ and the fact that hvu is non-zero only for v ∈ Vj+1, we have that∑

v∈Vj+1
µ(v)hvu = µ(u), which implies that E(Xn+1|sn) = Xn.

Now, it is easy to see that µ(Vi)pi = E(X∞|X0) = E(X0) and this proves

that pi =
1

µ(Vi)

∑
v∈Vi

µ(v)s0(v), which concludes the result. �

Lemma 3. Consider a consensus game played in a weekly connected digraph
G = 〈V,E〉 and let K = {K1, . . . ,Kn} be the set of strongly connected compo-
nents (SCC) of G. We define sourceK as the set of SCCs that have no attack
coming from the outside, i.e., if K ∈ K, then K ∈ sourceK if for every (a, b) ∈ E
such that b ∈ K, we have a ∈ K. Then,

P(Colour 1 wins in G | s0) =
∏

K∈sourceK

P(Colour 1 wins in K | s0) (10)

12 By 1-partite, we mean gcdC = 1 and V1 = V
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Proof (of Lemma 3). First note that each K ∈ sourceK is independent of each
other, since they are independent from anything outside each of these SCCs.
Then, we cannot have consensus if they reach different consensus. It remains
now to observe that, in the case they reach same consensus colours, then all the
other SCCs will eventually stabilise in the same colour. That happens because of
the influence they receive from components in sourceK, so consensus cannot be
achieved by any other colour. Finally, for every node not in a source component,
there is a path from a source node to it, therefore there is a non-zero probability
that the game achieves the sources’ colour. �
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