
Handwritten Malayalam Word Recognition
System using Neural Networks

Manoj Kumar P.

Assistant Professor in Computer Science,

CUCEK, CUSAT,

Pulincunnoo, Kerala, India.

 Sandeep Chandran,
Assistant Professor in Information Technology,

LBS ITWE,

Trivandrum, Kerala, India.

Abstract: The work describe an intelligent system for free hand entry

of characters and words using light pen model. The system developed

will recognize the character and words. The various approaches for

handwritten character recognition are studied in the literature review

phase. The different approaches are string matching schemes,

structural approach, Template matching, using neural networks etc.

The central objective of this project is demonstrating the capabilities

of Artificial Neural Network implementations with back propagation

algorithm in recognizing Malayalam characters. An emerging

technique in the character recognition application area is the use of

Artificial Neural Network implementation with networks employing

specific guides (learning rules) to update the links (weights)between

their nodes .Such network can be fed the data from the graphic

analysis of the input picture and trained to output characters on one

or another form . One such network with supervised learning rule is

the Multi – Layer Perception (MLP) model. It uses the generalized

Delta Learning Rule for adjusting its weight and can be trained for a

set of input /desire output values in a number of iterations. The very

nature of this particular model is that it will force the output to one

of nearby values if a variation of input is fed to the network that it is

not the technical approach is followed is processing input characters

detecting line segments, obtaining the direction feature vector and

training the network for a set of desired characters corresponding to

the input characters. Finally, the word is recognized by checking the

database trained for, thus solving the proximity issue.

I.INTRODUCTION

Handwriting recognition is classically separated in two

distinct domains: online and offline recognition. These two

domains are differentiated by the nature of the input signal.

For offline recognition, a static representation resulting

from the digitalization of a document is available.

handwriting recognition refers to the recognition of

handwritten paper documents which are optically scanned.

 The difficulty of recognition varies with a number

of factors:

 Restrictions on the number of writers.

 Constraints on the writer: entering characters in boxes

or in combs, lifting the pen between characters,

observing a certain stroke order, entering strokes with

a specific shape.

 Constraints on the language: limiting the number of

symbols to be recognized, limiting the size of the

vocabulary, limiting the syntax and/or the semantics.

 Many different applications currently exist, such as,

check, form, mail or technical document processing.

Whereas, online recognition systems are based on

dynamic information acquired during the production of

the handwriting.

 Malayalam Script

 Malayalam is the principal language of the South

Indian State of Kerala. It belongs to the southern group of

Dravidian Languages. Malayalam is spoken by over 50

million people. The Malayalam character set compromises

of 95 characters consisting of the following character

types:

 Vowels

 Consonants

 Anuswaram, Visargam and Chandrakkala

 Chillu

 Consonant signs

 Vowel signs

There are 13 vowels, 36 consonants, 5 chillu, 4 consonant

signs, 12 vowel signs, numbers and rest contributing to

anuswaram etc.

 Due to the peculiarities of the Malayalam

language, developing a recognition system to recognize the

variety of characters is a cumbersome process.

 A variety of techniques of Pattern Recognition

such as Template Matching, Neural Networks, Syntactical

Analysis, Wavelet Theory, Hidden Markov Models,

Bayesian Theory etc. have been explored to develop

recognizers for different languages such as Latin, Chinese,

Arabic etc.

 The proposed method uses direction feature

extraction techniques and Neural Networks to distinguish

characters and accomplish recognition tasks.

Objectives

The main objectives of this paper are to develop a

handwritten Malayalam word recognition system.

The two phases identified are:

i) To recognize Handwritten Malayalam character

ii) To develop Malayalam word recognition system

 Neural Networks with back propagation algorithm

is suggested for the recognition process. The input can be

given either by using light pen model.

II.SYSTEM STUDY

 The word is divided into different segments. The

characters are written in separate panels. The features are

extracted and given as input to a neural network. The

characters are identified. The identified characters are

obtained and are checked for word. A database of different

words is stored. The written word is checked in the

database and the appropriate Unicode of the characters are

retrieved.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

90

A. Modules identified

The entire system is divides into different modules. The

various modules identified in character recognition are:

i) Preprocessing

ii) Feature extraction

iii) Zoning

iv) Training using Neural Networks

v) Character identification

B. Preprocessing

 The preprocessing provide the acquired data I a

suitable form for further processing. In this phase the input

image is generally cleaned from noise and error caused by

the acquisition process. A great number of well-defined

algorithms for signal processing are currently used during

the preprocessing phase. However, in handwriting

recognition, the preprocessing deals with more specific

problems than in other fields of pattern recognition. For

example, the binarization (thresholding) of the image.

Another problem arises in several applications in several

applications of handwriting recognition is thinning. Here in

preprocessing noise detection and normalization is done.

C. Noise detection

Incomplete Images are not considered and are not accepted

for recognition. They are categorized to non recognizable.

D. Normalization

The size of the panel adopted is of 15*12 matrix. This is

adopted writing area. The characters written in that area are

accepted for recognition. The characters are shifted to that

particular writing area.

E. Feature Extraction

Feature extraction is defined as the problem of extracting

from the raw data the information, which is most relevant

for classification purpose, in this sense of minimizing

within the class pattern variably while enhancing the

between the class pattern variability. It should be clear that

different feature extraction methods fulfill these

requirements to a varying degree, depending on the specific

recognition problem and the available data. A feature

extraction method that proves to be successful in one

application domain may turn out to be not very useful in

another domain.

 Selection of feature extraction methods is

probably a single most important factor in achieving high

recognition performance. In addition the performance also

depends on the type of classifier used. Different feature

types may need different type classifiers. Also the choice

of feature extraction methods limits or dictates the nature

and output of preprocessing steps. Some feature extraction

method work on grey level sub images of single characters,

while other work on solid four or eight connected symbols

segmented from the binary raster image, thinned symbols,

skeletons or symbol contours. The following subsection

explains the feature extraction technique adopted for the

present work.

F. Direction feature extraction

 The feature extraction method used in the

proposed work is direction feature extraction. The line

segments that would be determined in each character image

were categorized in to four types: 1) Vertical lines 2)

Horizontal lines 3) Right diagonal and 4) Left diagonal.

Aside from these four line representations, the technique

also located intersection points between each type of line.

To facilitate the extraction of direction features, the

following steps were required to prepare the character

pattern:

1. Starting point and intersection point location

2. Distinguish individual line segments

3. Labeling line segment information

Starting point and intersection point location:

 To locate the starting point of the character, the

first black pixel in the lower left hand side of the image is

found. The choice of this starting point is based on the fact

that in cursive English hand writing, many characters begin

in the lower left hand side. Subsequently, intersection

points between line segments are marked. Intersection

points are determined as being those foreground pixels that

have more than two foreground pixel neighbors.

 Distinguish individual line segments: As

mentioned earlier, four types of line segments were to be

distinguished as compromising each character pattern. The

neighboring pixels along the thinned pattern/ character

boundary were followed from the starting point to known

intersection points. Upon arrival at each subsequent

intersection, the algorithm conducted a search in a

clockwise direction to determine the beginning and end of

individual line segments. Hence, the commencement of a

new line segment was located IF:

1. The previous direction was up-right or down-left

AND the next direction is down-right or up-left OR

2. The previous direction is down-right or up-left

AND the next direction is up-right or down-left OR

3. The direction of a line segment has been

changed in more than three types of direction OR

4. The length of the previous direction type is greater

than three pixels.

Labeling line segment information:

 Once an individual line segment is located, the

black pixels along the length of this segment are coded

with a direction number as follows:

Vertical Segment –2,

Right diagonal line-3,

Horizontal line segment-4 and

Left diagonal line-5

The figure illustrates the process of making individual line

segments.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

91

For example, Malayalam character „പ’ can be drawn in

the 15*12 panel as:

G. Zoning

 In order to provide an input vector to the neural

network the character representation was broken down into

a number of windows of equal size(zoning) whereby the

number, length and types of lines present in each window

was determined.

 The 15*12 writing panel is divided to windows of

equal size. Here the proposed window size is 5*4 matrix.

The values are assigned for the different types of line

segments. A feature vector is obtained for giving input to

the network Formation of feature vectors through zoning:

As neural classifiers require vectors of a uniform size for

training, a methodology was developed for creating

appropriate feature vectors. In the first step, the character

pattern marked with direction information was zoned into

windows of equal size. If the image matrix was not equally

divisible, it was padded with extra backgrounds pixels

along the length of its row s and columns. In the next step,

direction information was extracted from each individual

window. Specific information such as the line segment

direction, length, intersection points etc. were expressed as

floating point values between -1 and 1.

 The algorithm for extracting and storing line

segment information first locates the starting point and any

intersections in a particular window. It then proceeds to

extract the number and lengths of line segments resulting in

an input vector containing nine floating-point values. Each

of the values compromising the input vector was defined as

follows:

1. The presence of horizontal lines, 2. The total

length of horizontal lines, 3. The presence of right diagonal

lines, 4. The total length of right diagonal lines, 5. The

presence of vertical lines, 6. The total length of vertical

lines, 7. The presence of left diagonal lines, The total

length of left diagonal lines and 9. The presence of

intersection points.

As an example, the first floating point value represents the

number of horizontal lines in a particular window. During

processing, the number starts from 1.0 to represent “no

line” in the window. If the window contains a horizontal

line, the input decreases by 0.2. The reason a value

commencing at 1.0 and decreasing by 0.2 was chosen was

mainly because in preliminary experiments, it was found

that the average number of line following a single direction

in a particular window was 5. However in some cases,

there were a small number of windows that contained more

than five lines and hence in these cases the input vector

contained some negative values. Hence values that tallied

the number of line type in particular window were

calculated as follows:

Value=1-(number of lines/10)*(2)....................................(1)

For each value that tallied the number of lines present in a

particular window, a corresponding input value tallying the

total length of the lines was also stored. To illustrate, the

horizontal line length can be used as an example. The

number starts at 0 to represent “no horizontal lines “ in a

particular window. If a window has a horizontal line, the

input will increase by the length of the line divided by the

maximum window length or window height, multiplied by

two. The reason this formula is used, is because it is

assumed that the maximum length of one single line type is

two times the largest window size. As an example, if the

line length is 7 pixels and the window size is 10 pixels by

13 pixels, then the line length will be 7/(13*2)=0.269.

Length= number of pixels in a particular direction

 (Window height or width)*2

 The operations discussed above for the encoding

of horizontal line information must be performed for the

remainder of direction. The last input vector value

represents the number of intersection points in the

character.

 It is calculated in same manner as for the number

of lines present. The windows are of 5*4 matrix. Nine

equal 5*4 windows are obtained from the 15*12 panel. The

line segments are distinguished.

Fig1 (a) Original line, (b) Line in binary file, (c) After

distinguishing directions

Fig 2 Sample Character & Character with line segment values

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

92

 2

 2

4 3 2

Fig 3 Sample 5*4 zone

From each zone the 10 feature vector values are found. The

feature vector for the above zone is as follows:

The number of horizontal line segment -1

The number of right diagonal line segment -1

The number of vertical line segment -3

The number of left diagonal line segment- Nil

The number of intersections – Nil

0.8 0.1 0.8 0.1 0.8 0.3 1 0.0 1 0.2

Fig 4 Feature Vector

Each of the 10 values of the 9 zones are obtained. So a total

of 95 values are found. This will constitute the input vector

to the neural network.

III. MULTILAYER PERCEPTRON

 The most common neural network model is the

multilayer Perceptron (MLP). This type of neural network

is known as a supervised network because it requires a

desired output in order to learn. The goal of this type of

network is to create a model that correctly maps the input

to the output using historical data so that the model can

then be used to produce the output when the desired output

is unknown. This is perhaps the most popular network

architecture in use today and discussed at length in most

neural network text books. The units each perform a biased

weighted some of their inputs and pass this activation level

through a transfer function to produce their output, and the

units are arranged in a layered feed forward topology. The

network thus has a simple interpretation as a form of input

output model, with the weights and thresholds the free

parameters of the model. Such networks can model

functions of all most arbitrary complexity, with the number

of layers and the number of units in each layer, determining

the function complexity. Important issues in multi layer

Perceptrons design include specification of the number of

hidden layers and the number of units in these layers. The

number of input and output units is defined by the problem.

 graphical representation of an MLP is shown below

The inputs are fed in to the input layer and get multiplied

by interconnection weights as they are passed from the

input layer to the first hidden layer. Within the first hidden

layer, they get summed, and then processed by a nonlinear

function (usually the hyperbolic tangent). As the processed

data leaves the first hidden layer, again gets multiplied by

interconnection weights, the summed and processed by the

second hidden layer. Finally the data is multiplied by

interconnection weights then processed one last time with

in the output layer to produce the neural network.

 The MLP and many other neural network learn

using an algorithm called back propagation. With back

propagation, the input data is repeatedly presented to the

neural network. With each presentation the output of the

neural network is compared to the desired output and an

error is computed. This error is then fed back(back

propagated) to the neural network and used to adjust the

weights such that the error decreases with each iteration

and the neural model gets closer and closer to producing

the desired output. This process is known as “training”.

 The X or data is repeatedly presented to the neural

network. With each presentation, the error between the

network output and the desired output is computed and fed

back to the neural network. The neural network uses this

error to adjust its weights such that the error will be

decreased. This sequence of events is usually repeated until

an acceptable error has been reached or until the network

no longer appears to be learning.

Figure 5 Two hidden layer multiplayer Perceptron (MLP)

Fig 6 Demonstration of a neural network learning to model the

exclusive-or (Xor) data

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

93

A. Training Multilayer Perceptrons

 Once the number of layers, and number of units in

each layer, has been selected, the network‟s weights and

thresholds must be set to minimize the prediction error

made by the network. This is the role of the training

algorithms. The historical cases that you have gathered are

used to automatically adjust the weights thresholds in order

to minimize this error. This process is equivalent to fitting

the model represented by the network to the training data

available. The error of a particular configuration of the

network can be determined by running all the training cases

through the network, comparing the actual output

generated with the desired target outputs. The differences

are combined together by an error function to give the

network error. The most common error functions are the

sum squared error (used for regression problems), where

the individual errors of output units on each case are

squared and summed together, and the cross entropy

functions (used for maximum likelihood classification).

 In traditional modeling approaches (e. g linear

modeling) it is possible to algorithmically determine the

model configuration that absolutely minimizes this error.

The price paid for the grater (non – linear) modeling power

of neural networks is that although we can adjust a network

to lower its error, we can never sure that the error could not

be lower still.

 A helpful concept here is the error surface. Each

of the weights and thresholds of the networks (i. e, the free

parameters of the model) is taken to be a dimension in

space. The N+l th dimension is the network error. For any

possible configuration of weights the error can be plotted in

the N+l th dimension forming an error surfacing. The

objective of network training is to find the lowest point in

this many dimensional surface.

 In a linear model with some squared error

function, this error surface is a parabola (a quadratic),

which means that is smooth bowl –shape with single

minimum it is therefore “easy” to locate the minimum.

 Neural network error surfaces are much more

complex , and characterized by a number of unhelpful

features, such as local minimum (which lower than the

surrounding terrain, but above the global minimum), flat-

sports plateaus saddle –points, and long narrow ravines.

 It is not possible to analytically determine where

the global minimum of the error surface is, and so neural

network training is essentially exploration of the error

surface. From an initially random configuration of weights

and thresholds (i.e, a random point on the error surface),

the training algorithms incrementally seek for the global

minimum. Typically, the gradient (slope) of the error

surface is calculated at the current point, and used to make

a downhill move. Eventually, the algorithm stops in a low

point, which may be a local minimum (but hopefully is the

global minimum)

B. The Back Propagation Algorithm

 The best known example of a neural network

training algorithm is back propagation. Modem second-

order algorithms such as conjugate gradient descent and

Levenberg - Marquardt are substantially faster (e.g, an

order of magnitude faster) for many problems , but back

propagation still has advantages in some circumstances,

and is the easiest algorithm to understand. We will

introduce this now, and discuss the more advanced

algorithms later. There, also heuristic modifications of back

propagation which work well for some problem domains,

such as quick propagation and Delta- Bar delta

 In back propagation, the gradient vector of the

error surface is calculated. This vector points along the line

of steepest descent from the current point, so we know that

if we move along it a “shop” distances, we will decrease

the error. A sequence of such moves (slowing as we near

the bottom) will eventually find a minimum of some sort.

The difficult part is to decide to how large the steps should

be.

 Large steps may converge more quickly but may

also overstep the solution or(if the error surface is very

eccentric) go off in the wrong direction. A classic example

of this in neural network training is where the algorithm

progress very slowly along a steep, narrow valley,

bouncing from one side across to the other. In contrast very

small steps may go in the correct direction but they also

require a large number of iterations. In the practice, the step

size is proportional to this slope (so that the algorithms

settles down in a minimum) and to a special constant the

learning rate. The correct setting for the learning rate is

application- dependent, and is typically chosen by

experiment:; it may also be time varying, getting smaller as

the algorithm progresses.

 The algorithm is also usually modified by

inclusion of a momentum term: this encourage movement

in a fixed direction, so that id several steps are taken in the

same direction , the algorithm “picks up speed”, which

gives it the ability to(sometimes) escape local minimum,

and also to move rapidly over flat spots and plateaus

 The algorithm therefore progress iteratively,

through a number of epochs. On each epoch, the training

cases are each submitted in turn to the network, and target

and actual outputs compared and the error calculated. This

error together with the error surface gradient is used to

adjust the weights, and then the process repeats. . The

initial work configuration is random, and training stop

when a given number of epochs elapses, or when the error

reaches an acceptable level, or when the error stop

improving (you can select which of these stopping

conditions to use).

 The back propagation network was probably the

main reason behind the re popularization of neural

networks after the publication of “learning internal

Representations by Error Propagation” in 1986. The

original network utilized multiple layers of weight-sum

units of the type f=g(w’x+b), where g was a sigmoid

function or logistic function such as used in logistic

regression. The employment of the chain rule of

differentiation in deriving the appropriate parameter

updates results in an algorithm that seems to “back

propagate error‟, hence the nomenclature. However it is

essentially a form of gradient descent. Determining the

optimal parameters in a model of this type is not trivial,

and steepest gradient descent methods cannot be replied

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

94

upon to give the solution without a good. Starting point. In

recent times networks with the same architecture as the

back propagation network are referred to as Multi- Layer

perceptions. This name does not impose any limitations on

the type of algorithm used for learning.

 The back propagation network generated much

enthusiasm at the times and there was much controversy

about whether such learning could be implemented in the

brain or not partly because a mechanism for reverse

signaling was not obvious at the time, but most importantly

because there was no plausible source for the „teaching‟ or

„target‟ signal.

C. Limitations

 Multilayered networks are capable of performing

just about any linear or nonlinear computation, and can

approximate any reasonable function arbitrarily well. Such

networks overcome. However, while the network being

trained might theoretically be capable of performing

correctly, back propagation and its various might not

always find a solution.

 Picking the learning rate for a nonlinear network

is a challenge. As with linear networks, a learning rate that

is too large leads to unstable learning. Conversely, a

learning rate that is too small results in incredibly long

training times. Unlike linear networks, there is no easy way

of picking a good learning rate for nonlinear multilayer

networks. With the faster training algorithms in the default

parameter values normally perform adequately.

 The error surface of a nonlinear is more complex

than the error surface of a linear network. The problem is

that nonlinear transfer functions in multilayer networks

introduce many local minima in the error surface. As

gradient descent is performed on the error surface it is

possible for the network solution to become trapped in one

of these local minima. This can happen, depending on the

initial starting conditions. Settling in local minima in the

error surface. As gradient descent is performed on the error

surface it is possible for the network solution to become

trapped in one of these local minima. This can happen,

depending on the initial starting conditions. Settling in a

local minimum can be good or bad depending on how close

the local minimum is to the global minimum and how

Iowan error is required. In any case, be cautioned that

although a multilayer back propagation network with

enough neuron can implement just about any function,

back propagation does not always find the correct weights

for the optimum solution. We might want to reinitialize the

network and retrain several times to guarantee that you

have the best solution.

 Networks are also sensitive to the number of

neurons in their hidden layers. Too few neurons can lead

contribute to overfitting, in which all training points are

well fitted, but the fitting curve oscillates wildly between

these points.

IV. SYSTEM DESIGN

 The entire system is divided to different sub

sections. The word is written in the prescribed panels of

size 15*12. Each character is pre processed. The line

segments values are found are assigned at appropriate

locations. The four line segments – horizontal, vertical, left

diagonal and right diagonal are checked using appropriate

rules.

 Once the general direction of line segments was

determined, a methodology was developed for creating

appropriate feature vectors. In the first step, the character

pattern marked with direction information was zoned into

windows of equal size. In the next step, direction

information was extracted from each individual window.

Specific information such as the line segment direction,

length, intersection points etc were expressed as floating

point values between -0 and 1[10].

 The characters are divided to different zone. Each

zone is of size 5*4. From each zone the direction feature

vector is found. The direction feature vector is the input to

the neural network. Neural network is trained for character

recognition. The words are stored in database. Unicode of

each character is stored in the appropriate table. The

Unicode of the hand written word is retrieved from the

database

 The goal of the DF was to simplify each

character‟s boundary through identification of individual

stroke or lines segments in the image

A. Proposed Artificial Neural Network

 The neural classifier chosen for the task of

character recognition were back- propagation (BP)

networks. For experimentation purposes, the architectures

were modified varying the number of inputs, outputs,

hidden units, hidden layers and the various learning terms.

The number of input each network was associated with the

size of the feature vector for each image. Most successful

vector configurations were of 81 for the direction feature.

Fig 7 Block Diagram of the system

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

95

 Here a multilayer perception with back

propagation algorithm is proposed for training or

recognition of characters. There will one input layer, one

hidden layer and one output layer. A three layer network is

suggested

 The number of nodes in the input in the input

layer is 90, since 90 values are obtained from the 15*12

panel. These are floating point values between +1 and -1.

 The hidden layer consists of 100 nodes and the

output layer of 10 nodes.95 characters is identified. The

back propagation network is trained with a large sample set

of each character.

 The invention of back propagation algorithm has

played a large part in the resurgence of interest in the field

of artificial neural networks. Back propagation is a

systematic method of training multilayer artificial neural

network. It has a mathematical foundation that is strong if

not practical.

 Neuron is used as the fundamental building block

for back propagation networks. A set of inputs is applied,

either from outside or from previous layer. Each of these

multiplied by a weight, and the products are summed. This

summation of products is termed NET and ust be

calculated for each neuron in the network. After NET is

calculated, the activation Function F is applied to modified

it, there by producing the signal OUT

OUT= 1/(1+e
-NET

)

The input x, of the neuron consist of the variables “X., Xn

and a bias term, known as the momentum constant, which

is equal to one. Each of the input values is multiplied by a

weight wi, after which the results are added. On the result,

a simple mathematical function.

 F(x) , is performed. the function is also known as

the activation function. The calculations the neuron

performs are thus given by:

Y= f(w0+X1*w1+...+xn* wn)

Numerous choices for the functions exist. Frequently used

in implementations are sigmoid functions:

F(u)= 1/|(1+e
-u

)

 The objective of training the network is to adjust

the weights so that the application of a set of input

produces the desire set of outputs or reasons of brevity, this

input- output set can be referred to as vectors. Training

assumes that each input vectors is paired with a target

vector representing the desire output together these are

called training pair. Usually a network is trained over a

number of training pairs. For example, the input part of a

training pair might consists of a pattern of ones and zeros

representing a binary image of a letter of the alphabet.

 When training an ANN with a set of input and

output data, we wish to adjust the weights in the ANN, to

make the ANN give the same outputs as seen in the

training data. On the other hand, we do not want to make

the ANN too specific, making it give precise results for the

training data, but incorrect results for all other data. When

this happens, we say that the ANN has been over-fitted.

 The training process can be seen as an

optimization problem, where we wish to minimize the

mean square error of the entire set of training data. This

problem can be solved in many different, ranging from

standard optimization heuristics like simulated annealing,

through more special optimization techniques like genetic

algorithms to specialized gradient descent algorithms like

back propagation. The most used algorithm is the back

propagation algorithm, but this algorithm has some

limitations concerning, the extent of adjustment to the

weights in each iteration. This problem has been solved in

more advanced algorithms like PROP and quick prop

before starting the training process, all of the weights must

be initialized to small random numbers. This ensures that

the network is not saturated by large values of weights, and

prevents certain other training pathologies. For example if

the weights all start at equal values and the desired

performance requires unequal values, the network will not

learn.

Training the back propagation network requires the steps

that follow:

i) Select the next training pair from the training set;

apply the input vector to the network input.

ii) Calculate the output of the network.

iii) Calculate the error between the network output and the

desired output.

Fig 8 Artificial neuron with activation function

Fig 9 Sigmoid function

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

96

iv) Adjust the weights of the networking a way that

minimizes the error.

v) Repeat steps 1 through 4 for each vector in the training

set until the error for the entire set is acceptably low.

 The back propagation algorithm works in much

the same way as the name suggests: After propagating an

input through the network, the error is calculated and the

error is propagated back through the network while the

weights are adjusted in order to make the error smaller.

 Although we want to minimize the mean square

error for all the training data, the most efficient way of

doing this with the back propagation algorithm, is to train

on a data sequentially one input at a time, instead of

training on the combined data. However, this means that

the order the data is given in is of importance, but it also

provides a very efficient way of avoiding getting stuck in a

local minima.

 First the input is propagated through the ANN to

the output. After this error
ek

on a single output neuron k can

be calculated as:

Ek =d k-y k

Where yk is the calculated output and dk is the desired

output of neuron k. This error value is used to calculate a δk

value, which is again used for adjusting the weights. The δk

value is calculated by:

δk=ekg’(yk)

Where g’ is the derived activation function. When the δk

value is calculated, we can calculate the δj values for

preceding layers. The δj values of the previous layer are

calculated from the δk values of this layer. By the following

equation:

Where K is the number of neurons in this layer and η is the

learning rate parameter, which determines how much the

weight should be adjusted. The more advanced gradient

descent algorithms does not use a learning rate, but a set of

more advanced parameters that makes a more qualified that

makes a more qualified guess to how much the weight

should be adjusted.

 Using these δ values, the ∆W values that the

weights should be adjusted by, can be calculated by:

∆ W jk = δjyk

The ∆jk value is used to adjust the weight jk by

Wjk=Wjk+∆jk and the back propagation algorithm moves

on to the next input and adjusts the weights according to

the output. This process goes on until a certain stop criteria

is reached. The stop criteria is typically determined by

measuring the mean square error of the training data while

training with the data, when this mean square error reaches

a certain limit, the training is stopped. More advanced

stopping criteria involving both training and testing data

are also used.

 The primary reason why neural networks are

studied is because they have a remarkable ability to process

imprecise data and deliver meaningful results. They can

detect patterns or trends that are otherwise unnoticeable by

other computer techniques. A neural network that has been

trained to process a particular type of data may well be

considered an expert in analyzing that data type. Further, it

can enable us to speculate how the system would perform

in different situations.

B. Proposed Network

 The MLP network implemented for the purpose of

this project is composed of 3 layers, one input, one hidden

and one output as shown in the figure. The input layer

constitutes of 90 neurons which receive pixel binary data

from a 15*12 symbol pixel matrix. The size of this matrix

was decided taking into consideration the average height

and width of character image that can be mapped without

introducing any significant pixel noise.

 The hidden layer constitutes of neurons whose

number is decided on the basis of optimal results on a trial

and error basis.

 The output layer is composed of neurons

corresponding to each Malayalam characters. The target

values are assigned for each character. To initialize the

weights a random function was used to assign an initial

random number which lies between two present integers

named. The weight bias is selected from trial and error

observation to correspond to average weights for quick

convergence.

C. Procedure Steps

S1: Create a panel of size with 15 rows and 12 columns

S2: If any mouse event is found, set the pixel value to 1

S3: Check the connectivity of pixels

S4: Grab the pixels and set the corresponding array values

to ones and zeros

S5: Divide the panel to nine equally zoned matrices of size

5 rows and 4 columns

S6: Feature extraction

 For each matrix of size 5*4 do the following

Find the horizontal, vertical, right diagonal, left diagonal

lines and intersections by checking immediate pixels

See the following values for the line segments

Vertical-2

Right diagonal-3

Horizontal-4

Left diagonal-5

Fig 10 Proposed MLP Network

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

97

S7: Find the input vector to the network from the nine

zones

S8: Design a Neural Network with 90 input nodes, 100

hidden nodes and 10 output nodes

S9: Initially generate the weights for the links, randomly

S10: Set the target values for output nodes

S11: Train each character with samples and make the

network to learn

D. Procedure steps for training routine

S1: Analyze the input character and find the zones

S2: Read the desired output sample from the database

S3: Add the pattern

S4: Do the training and learning process with the sample

S5: For each character do the following

Calculate the output of the back propagation network

Compare the obtained output with the target value of that

value of that character

Compute the error

Back propagate the error across each link and adjust the

weight value between the nodes

Repeat for all steps

S6: Check whether the error value is minimum. If yes, then

exit. Otherwise continue the process

E. Procedure for word recognition

S1: Obtain the recognized character

S2: Group the character to form a word

S3: Create a database for a specific number of words

S4: Compare the written word with the word stored in the

table

S5: If the word is fund display the appropriate Unicode of

the characters

F. Setting the target values

The target values for the 10 output neurons vary within the

range .001 to 0.19 separated by a difference of .002

between successive ones as shown in Fig 11.

The error of i
th

output neuron

∆i=Outi* (1-Outi)*(Targeti-OUTi) ------------------------- (1)

 The The error of j
th

 hidden layer neuron is

∆Hj=OutHj*(Targeti-OUTi)*∑
10

 i=1(∆i*Wtji) ------------ (2)

New weight between j
th

 hidden neuron and i
th

 output

neuron is

Wtji=Wtji+η*∆i*OutHj-- (3)

The new weight between k
th

 input neuron and j
th

 hidden

neuron is

Wtkj=Wtkj+(η*∆Hj*Ik)--(4)

Outi is the output value of i
th

 neuron

Targeti is the target value of the i
th

 neuron

OutHi is the output value of j
th

 hidden layer neuron is the

learning rate.

 The learning rate used in the project is .01 this is

finalized by trial and error method. The error tolerance is

.000001.

 The error in a particular iteration is back

propagated only if it is greater than the error Tolerance.

Typically error tolerance is a small value in the range 0 to

1.

Sets the value for the acceptable difference between the

desire output value and the actual output value. This must

be real value between 0.0 and 1.0. for example, if young

training data set contains expected values of 0 and I and

the tolerance is set to 0.1 (the default), then the average

pattern error goes to 0 wl; 1 en all of the output are within

0.1 of the desire values

 The best approach to take in setting this parameter

is often determined by trial and error. The error tolerance

setting controls the training process. For a data set

containing binary targets (0,1), the tolerance parameter is

usually set to 0.1.This means that the output is considered

“good” when it is within 0.1 of the desire output that is,

0.9 for a 1, 0.1 for a 0) . When every output is within the

tolerance range of the desire output value, the network

status is changed to LOCKED and weights updates.

V. CONCLUSION

 In this paper a new feature extraction technique

(direction feature) for the recognition of Malayalam

character is used. Input can be given through light pen

model. The system successfully recognizes the characters.

The obtained word is compared with the database stored

for validity.

 Neural Network with backpropogation algorithm

is explored in depth. Various other approaches for

character recognition is also studies in detail. Malayalam

characters are found to be recognized successfully.

 It was discovered that a better approach could be

developed employing neural network techniques in

recognizing characters, one of the major advantages of

using neural networks is their inherent ability to respond to

variations. This ability is important in particular where

handwriting is concerned. This approach can be applied to

printed letter also.

Fig 11

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

98

REFERENCES

1. Programming Windows by Charley Petzold

2. Microsoft Visual C++.Net step by step
3. Dr. Suneetha Agarwal, Vikas Kumar, Online Character

Recognition: IEEE2005

4. IBM R. esea.rch, T. J Watson Research center, Yorktown Heights,
New York centre for artificial Intelligence, Ka.ist University, Soul,

South Korea, ON_LINE HANDWRITTEN CHARACTER

RECOGNITION USING PARALLEL NEURAL NETWORKS:
1994 IEEE

5. Jack. M. Zurada, Introduction to Artificial Neural Systems

6. M. Blumenstein,B. Verma amd H. Basli,A Novel Feature
Extraction Technique for the Recognition of statement of segmented

Handwritten Characters: Proceeding of CDAR2003

7. Philip Wasserman: Neural Computing
8. Samuel Talleux, Vedat and Emir Tufan, Handwritten character

recognition using steerable filters and Neural Networks: 1998IEEE

9. Seethalakshmi , R, SreeRajani, Balachandran, Optical Character
Recognition for printed Tamil text using Unicode: JZUS2005

10. Sutat Sea-Tang and Ithipan Methaste, Thai Online Handwritten; t: 1

Character Recognition Using Windowing Back Propagation Neural
Networks: ISCIT2004

11. The State- of- the Art: Cheng- Lin Liu, Stefan Jaeger and Maski

Makagawa, Online recognition of Chinese Characters: IEEE2004
12. VS. Roshni, Shanifa BEEVI and Revathy, Machine Recognition of

Printed Malayalam Characters: Proceeding of the International
Conference of Cognition and Recognition, December2005

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

99

