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Abstract: The work describe an intelligent system for free hand entry 

of characters and words using light pen model. The system developed 

will recognize the character and words. The various approaches for 

handwritten character recognition are studied in the literature review 

phase. The different approaches are string matching schemes, 

structural approach, Template matching, using neural networks etc. 

The central objective of this project is demonstrating the capabilities 

of Artificial Neural Network implementations with back propagation 

algorithm in recognizing Malayalam characters. An emerging 

technique in the character  recognition  application area is the use of 

Artificial Neural  Network  implementation  with networks employing  

specific guides (learning rules )  to update the links (weights )between 

their nodes .Such network can be fed the data from the graphic 

analysis of the input picture and trained to output characters  on one 

or another form . One such network   with supervised learning rule is 

the Multi – Layer Perception (MLP) model. It uses the generalized 

Delta Learning Rule for adjusting its weight and can be trained for a 

set of input /desire output values in a number of iterations. The very 

nature of this particular  model is that it will force the  output  to one 

of nearby values if a variation of input is fed to the network that it is 

not the technical approach is followed is processing input characters 

detecting line segments, obtaining the direction feature vector and 

training the network for a set of desired characters corresponding to 

the input characters. Finally, the word is recognized by checking the 

database trained for, thus solving the proximity issue. 

 

I.INTRODUCTION 

 

Handwriting recognition is classically separated in two 

distinct domains: online and offline recognition. These two 

domains are differentiated by the nature of the input signal. 

For offline recognition, a static representation resulting 

from the digitalization of a document is available. 

handwriting recognition refers to the recognition of 

handwritten paper documents which are optically scanned. 

 The difficulty of recognition varies with a number 

of factors: 

 Restrictions on the number of writers. 

 Constraints on the writer: entering characters in boxes 

or in combs, lifting the pen between characters, 

observing a certain stroke order, entering strokes with 

a specific shape. 

 Constraints on the language: limiting the number of 

symbols to be recognized, limiting the size of the 

vocabulary, limiting the syntax and/or the semantics. 

 Many different applications currently exist, such as, 

check, form, mail or technical document processing. 

Whereas, online recognition systems are based on 

dynamic information acquired during the production of 

the handwriting. 

 

 

 

 Malayalam Script 

 Malayalam is the principal language of the South 

Indian State of Kerala. It belongs to the southern group of 

Dravidian Languages. Malayalam is spoken by over 50 

million people. The Malayalam character set compromises 

of 95 characters consisting of the following character 

types: 

 Vowels 

 Consonants 

 Anuswaram, Visargam and Chandrakkala 

 Chillu 

 Consonant signs 

 Vowel signs 

There are 13 vowels, 36 consonants, 5 chillu, 4 consonant 

signs, 12 vowel signs, numbers and rest contributing to 

anuswaram etc. 

 Due to the peculiarities of the Malayalam 

language, developing a recognition system to recognize the 

variety of characters is a cumbersome process. 

 A variety of techniques of Pattern Recognition 

such as Template Matching, Neural Networks, Syntactical 

Analysis, Wavelet Theory, Hidden Markov Models, 

Bayesian Theory etc. have been explored to develop 

recognizers for different languages such as Latin, Chinese, 

Arabic etc.  

 The proposed method uses direction feature 

extraction techniques and Neural Networks to distinguish 

characters and accomplish recognition tasks. 

Objectives 

The main objectives of this paper are to develop a 

handwritten Malayalam word recognition system. 

The two phases identified are: 

i) To  recognize Handwritten Malayalam character 

ii) To develop Malayalam word recognition system 

 Neural Networks with back propagation algorithm 

is suggested for the recognition process. The input can be 

given either by using light pen model. 

 

II.SYSTEM STUDY 

 The word is divided into different segments. The 

characters are written in separate panels. The features are 

extracted and given as input to a neural network. The 

characters are identified. The identified characters are 

obtained and are checked for word. A database of different 

words is stored. The written word is checked in the 

database and the appropriate Unicode of the characters are 

retrieved.  
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A. Modules identified 

The entire system is divides into different modules. The 

various modules identified in character recognition are: 

i) Preprocessing 

ii) Feature extraction 

iii) Zoning 

iv) Training using Neural Networks 

v) Character identification 

B. Preprocessing 

 The preprocessing provide the acquired data I a 

suitable form for further processing. In this phase the input 

image is generally cleaned from noise and error caused by 

the acquisition process. A great number of well-defined 

algorithms for signal processing are currently used during 

the preprocessing phase. However, in handwriting 

recognition, the preprocessing deals with more specific 

problems than in other fields of pattern recognition. For 

example, the binarization (thresholding) of the image. 

Another problem arises in several applications in several 

applications of handwriting recognition is thinning. Here in 

preprocessing noise detection and normalization is done. 

C. Noise detection 

Incomplete Images are not considered and are not accepted 

for recognition. They are categorized to non recognizable. 

D. Normalization 

The size of the panel adopted is of 15*12 matrix. This is 

adopted writing area. The characters written in that area are 

accepted for recognition. The characters are shifted to that 

particular writing area. 

E. Feature Extraction 

Feature extraction is defined as the problem of extracting 

from the raw data the information, which is most relevant 

for classification purpose, in this sense of minimizing 

within the class pattern variably while enhancing the 

between the class pattern variability. It should be clear that 

different feature extraction methods fulfill these 

requirements to a varying degree, depending on the specific 

recognition problem and the available data. A feature 

extraction method that proves to be successful in one 

application domain may turn out to be not very useful in 

another domain. 

 Selection of feature extraction methods is 

probably a single most important factor in achieving high 

recognition performance. In addition the performance also 

depends on the type of classifier used. Different feature 

types may need different type classifiers. Also the choice 

of feature extraction methods limits or dictates the nature 

and output of preprocessing steps. Some feature extraction 

method work on grey level sub images of single characters, 

while other work  on solid four or eight connected symbols  

segmented from the binary raster image, thinned symbols, 

skeletons or symbol contours. The following subsection 

explains the feature extraction technique adopted for the 

present work. 

 

 

 

F. Direction feature extraction 

 The feature extraction method used in the 

proposed work is direction feature extraction. The line 

segments that would be determined in each character image 

were categorized in to four types: 1) Vertical lines 2) 

Horizontal lines 3) Right diagonal and 4) Left diagonal. 

Aside from these four line representations, the technique 

also located intersection points between each type of line. 

To facilitate the extraction of direction features, the 

following steps were required to prepare the character 

pattern: 

1. Starting point and intersection point location  

2. Distinguish  individual line segments  

3.  Labeling line segment information 

Starting point and intersection point location: 

 To locate the starting point of the character, the 

first black pixel in the lower left hand side of the image is 

found. The choice of this starting point is based on the fact 

that in cursive English hand writing, many characters begin 

in the lower left hand side. Subsequently, intersection 

points between line segments are marked. Intersection 

points are determined as being those foreground pixels that 

have more than two foreground pixel neighbors. 

 Distinguish individual line segments: As 

mentioned earlier, four types of line segments were to be 

distinguished as compromising each character pattern. The 

neighboring pixels along the thinned pattern/ character 

boundary were followed from the starting point to known 

intersection points. Upon arrival at each subsequent 

intersection, the algorithm conducted a search in a 

clockwise direction to determine the beginning and end of 

individual line segments. Hence, the commencement of a 

new line segment was located IF: 

1. The previous direction was up-right or down-left 

AND the next direction is down-right or up-left OR 

2. The previous direction is down-right or up-left 

AND the next direction is up-right or down-left OR 

3. The direction of a line    segment has been 

changed in more than three types of direction OR 

4. The length of the previous direction type is greater 

than three pixels. 

Labeling line segment information: 

 Once an individual line segment is located, the 

black pixels along the length of this segment are coded 

with a direction number as follows: 

Vertical Segment –2, 

Right diagonal line-3, 

Horizontal line segment-4 and  

Left diagonal line-5 

The figure illustrates the process of making individual line 

segments. 
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For example, Malayalam character „പ’ can be drawn in 

the 15*12 panel as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G. Zoning 

 In order to provide an input vector to the neural 

network the character representation was broken down into 

a number of windows of equal size(zoning) whereby the 

number, length and types of lines present in each window 

was determined. 

 The 15*12 writing panel is divided to windows of 

equal size. Here the proposed window size is 5*4 matrix. 

The values are assigned for the different types of line 

segments.  A feature vector is obtained for giving input to 

the network Formation of feature vectors through zoning: 

As neural classifiers require vectors of a uniform size for 

training, a methodology was developed for creating 

appropriate feature vectors. In the first step, the character 

pattern marked with direction information was zoned into 

windows of equal size. If the image matrix was not equally 

divisible, it was padded with extra backgrounds pixels 

along the length of its row s and columns. In the next step, 

direction information was extracted from each individual 

window. Specific information such as the line segment 

direction, length, intersection points etc. were expressed as 

floating point values between -1 and 1. 

 

 

 

 

 The algorithm for extracting and storing line 

segment information first locates the starting point and any 

intersections in a particular window. It then proceeds to 

extract the number and lengths of line segments resulting in 

an input vector containing nine floating-point values. Each 

of the values compromising the input vector was defined as 

follows: 

1. The presence of horizontal lines, 2. The total 

length of horizontal lines, 3. The presence of right diagonal 

lines, 4. The total length of right diagonal lines, 5. The 

presence of vertical lines, 6. The total length of vertical 

lines, 7. The presence of left diagonal lines, The total 

length of left diagonal lines and 9. The presence of 

intersection points. 

As an example, the first floating point value represents the 

number of horizontal lines in a particular window. During 

processing, the number starts from 1.0 to represent “no 

line” in the window. If the window contains a horizontal 

line, the input decreases by 0.2. The reason a value 

commencing at 1.0 and decreasing  by 0.2 was chosen was 

mainly because in preliminary experiments, it was found 

that the average number of line following a single direction 

in a particular window was 5. However in some cases, 

there were a small number of windows that contained more 

than five lines and hence in these cases the input vector 

contained some negative values. Hence values that tallied 

the number of line type in particular window were 

calculated as follows:  

Value=1-(number of lines/10)*(2)....................................(1) 

For each value that tallied the number of lines present in a 

particular window, a corresponding input value tallying the 

total length of the lines was also stored. To illustrate, the 

horizontal line length can be used as an example. The 

number starts at 0 to represent “no horizontal lines “ in a 

particular window. If a window has a horizontal line, the 

input will increase by the length of the line divided by the 

maximum window length or window height, multiplied by 

two. The reason this formula is used, is because it is 

assumed that the maximum length of one single line type is 

two times the largest window size. As an example, if the 

line length is 7 pixels and the window size is 10 pixels by 

13 pixels, then the line length will be 7/(13*2)=0.269. 

Length= number of pixels in a particular direction 

  (Window height or width)*2 

 The operations discussed above for the encoding 

of horizontal line information must be performed for the 

remainder of direction. The last input vector value 

represents the number of intersection points in the 

character.  

 It is calculated in same manner as for the number 

of lines present. The windows are of 5*4 matrix. Nine 

equal 5*4 windows are obtained from the 15*12 panel. The 

line segments are distinguished. 

 

 

 

 

 
Fig1 (a) Original line, (b) Line in binary file, (c) After 

distinguishing directions 

 

 
Fig 2 Sample Character & Character with line segment values 
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4 3 2  

Fig 3 Sample 5*4 zone 

From each zone the 10 feature vector values are found. The 

feature vector for the above zone is as follows: 

The number of horizontal line segment -1 

The number of right diagonal line segment -1 

The number of vertical line segment -3 

The number of left diagonal line segment- Nil 

The number of intersections – Nil 

 

0.8 0.1 0.8 0.1 0.8 0.3 1 0.0 1 0.2 

Fig 4 Feature Vector 

Each of the 10 values of the 9 zones are obtained. So a total 

of 95 values are found. This will constitute the input vector 

to the neural network. 

III. MULTILAYER PERCEPTRON 

 The most common neural network model is the 

multilayer Perceptron (MLP). This type of neural network 

is known as a supervised network because it requires a 

desired output in order to learn. The goal of this type of 

network is to create a model that correctly maps the input 

to the output using historical data so that the model can 

then be used to produce the output when the desired output 

is unknown. This is perhaps the most popular network 

architecture in use today and discussed at length in most 

neural network text books. The units each perform a biased 

weighted some of their inputs and pass this activation level 

through a transfer function to produce their output, and the 

units are arranged in a layered feed forward topology. The 

network thus has a simple interpretation as a form of input 

output model, with the weights and thresholds the free 

parameters of the model. Such networks can model 

functions of all most arbitrary complexity, with the number 

of layers and the number of units in each layer, determining 

the function complexity. Important issues in multi layer 

Perceptrons design include specification of the number of 

hidden layers and the number of units in these layers. The 

number of input and output units is defined by the problem. 

 

 

 

 

 

 

 

 

 

 graphical representation of an MLP is shown below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inputs are fed in to the input layer and get multiplied 

by interconnection weights as they are passed from the 

input layer to the first hidden layer. Within the first hidden 

layer, they get summed, and then processed by a nonlinear 

function (usually the hyperbolic tangent). As the processed 

data leaves the first hidden layer, again gets multiplied by 

interconnection weights, the summed and processed by the 

second hidden layer. Finally the data is multiplied by 

interconnection weights then processed one last time with 

in the output layer to produce the neural network. 

 The MLP and many other neural network learn 

using an algorithm called back propagation. With back 

propagation, the input data is repeatedly presented to the 

neural network. With each presentation the output of the 

neural network is compared to the desired output and an 

error is computed. This error is then fed back(back 

propagated) to the neural network and used to adjust the 

weights such that the error decreases with each iteration 

and the neural model gets closer and closer to producing 

the desired output. This process is known as “training”.  

 

 

 

 

 

 

 

 

 

 

 

 The X or data is repeatedly presented to the neural  

 

network. With each presentation, the error between the 

network output and the desired output is computed and fed 

back to the neural network. The neural network uses this 

error to adjust its weights such that the error will be 

decreased. This sequence of events is usually repeated until 

an acceptable error has been reached or until the network 

no longer appears to be learning. 

 

 

 

 

 

 
Figure 5 Two hidden layer multiplayer Perceptron (MLP) 

 
Fig 6 Demonstration of a neural network learning to model the 

exclusive-or (Xor) data 
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A. Training Multilayer Perceptrons 

 Once the number of layers, and number of units in 

each layer, has been selected, the network‟s weights and 

thresholds must be set to minimize the prediction error 

made by the network. This is the role of the training 

algorithms.  The historical cases that you have gathered are 

used to automatically adjust the weights thresholds in order 

to minimize this error. This process is equivalent to fitting 

the model represented by the network to the training data 

available. The error of a particular configuration of the 

network can be determined by running all the training cases 

through the network, comparing the actual output 

generated with the desired target outputs. The differences 

are combined together by an error function to give the 

network error. The most common error functions are the 

sum squared error (used for regression problems), where 

the individual errors of output units on each case are 

squared and summed together, and the cross entropy 

functions (used for maximum likelihood classification). 

 In traditional modeling approaches (e. g linear 

modeling) it is   possible to algorithmically determine the 

model configuration that absolutely minimizes this error. 

The price paid for the grater (non – linear) modeling power 

of neural networks is that although we can adjust a network 

to lower its error, we can never sure that the error could not 

be lower still. 

 A helpful concept here is the error surface. Each 

of the weights and thresholds of the networks (i. e, the free 

parameters of the model) is taken to be a dimension in 

space. The N+l th dimension is the network error. For any 

possible configuration of weights the error can be plotted in 

the N+l th dimension forming an error surfacing. The 

objective of network training is to find the lowest point in 

this many dimensional surface. 

 In a linear model with some squared error 

function, this error surface is a parabola (a quadratic), 

which means that is smooth bowl –shape with single 

minimum it is therefore “easy” to locate the minimum. 

 Neural network error surfaces are much more 

complex , and characterized by a number of unhelpful 

features, such as local minimum (which lower than the 

surrounding terrain, but above the global minimum), flat- 

sports plateaus saddle –points, and long narrow ravines. 

 It is not possible to analytically determine where 

the global minimum of the error surface is, and so neural 

network training is essentially exploration of the error 

surface. From an initially random configuration of weights 

and thresholds (i.e, a random point on the error surface), 

the training algorithms incrementally seek for the global 

minimum. Typically, the gradient (slope) of the error 

surface is calculated at the current point, and used to make 

a downhill move. Eventually, the algorithm stops in a low 

point, which may be a local minimum (but hopefully is the 

global minimum) 

B. The Back Propagation Algorithm  

 The best known example of a neural network 

training algorithm is back propagation. Modem second- 

order algorithms such as conjugate gradient descent and 

Levenberg -  Marquardt are substantially faster (e.g, an 

order of magnitude faster) for many problems , but back 

propagation still has advantages in some circumstances, 

and is the easiest algorithm to understand. We will 

introduce this now, and discuss the more advanced 

algorithms later. There, also heuristic modifications of back 

propagation which work well for some problem domains, 

such as quick propagation and Delta- Bar delta  

 In back propagation, the gradient vector of the 

error surface is calculated. This vector points along the line 

of steepest descent from the current point, so we know that 

if we move along it a “shop” distances, we will decrease 

the error. A sequence of such moves (slowing as we near 

the bottom) will eventually find a minimum of some sort. 

The difficult part is to decide to how large the steps should 

be.  

 Large steps may converge more quickly but may 

also overstep the solution or(if the error surface is very 

eccentric) go off in the wrong direction. A classic example 

of this in neural network training is where the algorithm 

progress very slowly along a steep, narrow valley, 

bouncing from one side across to the other. In contrast very 

small steps may go in the correct direction but they also 

require a large number of iterations. In the practice, the step 

size is proportional to this slope (so that the algorithms 

settles down in a minimum) and to a special constant the 

learning rate. The correct setting for the learning rate is 

application- dependent, and is typically chosen by 

experiment:; it may also be time varying, getting smaller as 

the algorithm progresses. 

 The algorithm is also usually modified  by 

inclusion of a momentum term: this encourage movement 

in a fixed direction, so that id several steps are taken in the 

same direction , the algorithm “picks up speed”, which 

gives it the ability to(sometimes) escape local minimum, 

and  also  to move rapidly over flat spots and plateaus  

 The algorithm therefore progress iteratively, 

through a number of epochs. On each epoch, the training 

cases are each submitted in turn to the network, and target 

and actual outputs compared and the error calculated. This 

error together with the error surface gradient is used to 

adjust the weights, and then the process repeats. . The 

initial work configuration is random, and training stop 

when a given number of epochs elapses, or when the error 

reaches an acceptable level, or when the error stop 

improving (you can select which of these stopping 

conditions to use). 

 The back propagation network was probably the 

main reason behind the re popularization of neural 

networks after the publication of “learning internal 

Representations by Error Propagation” in 1986. The 

original network utilized multiple layers of weight-sum 

units of the type f=g(w’x+b), where g was a sigmoid 

function or logistic function such as used in logistic 

regression. The employment of the chain rule of 

differentiation in deriving the appropriate parameter 

updates results in an algorithm that seems to “back 

propagate error‟, hence the nomenclature. However it is 

essentially a form of gradient descent. Determining the 

optimal parameters in a model of this type is not trivial, 

and steepest gradient descent methods cannot be replied 
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upon to give the solution without a good. Starting point. In 

recent times networks with the same architecture as the 

back propagation network are referred to as Multi- Layer 

perceptions. This name does not impose any limitations on 

the type of algorithm used for learning.  

 The back propagation network generated much 

enthusiasm at the times and there was much controversy 

about whether such learning could be implemented in the 

brain or not partly because a mechanism for reverse 

signaling was not obvious at the time, but most importantly 

because there was no plausible source for the „teaching‟ or 

„target‟ signal. 

C. Limitations 

 Multilayered networks are capable of performing 

just about any linear or nonlinear computation, and can 

approximate any reasonable function arbitrarily well. Such 

networks overcome. However, while the network being 

trained might theoretically be capable of performing 

correctly, back propagation and its various might not 

always find a solution. 

 Picking the learning rate for a nonlinear network 

is a challenge. As with linear networks, a learning rate that 

is too large leads to unstable learning. Conversely, a 

learning rate that is too small results in incredibly long 

training times. Unlike linear networks, there is no easy way 

of picking a good learning rate for nonlinear multilayer 

networks. With the faster training algorithms in the default 

parameter values normally perform adequately. 

 The error surface of a nonlinear is more complex 

than the error surface of a linear network. The problem is 

that nonlinear transfer functions in multilayer networks 

introduce many local minima in the error surface. As 

gradient descent is performed on the error surface it is 

possible for the network solution to become trapped in one 

of these local minima. This can happen, depending on the 

initial starting conditions. Settling in local minima in the 

error surface. As gradient descent is performed on the error 

surface it is possible for the network solution to become 

trapped in one of these local minima. This can happen, 

depending on the initial starting conditions. Settling in a 

local minimum can be good or bad depending on how close 

the local minimum is to the global minimum and how 

Iowan error is required. In any case, be cautioned that 

although a multilayer back propagation network with 

enough neuron can implement just about any function, 

back propagation does not always find the correct weights 

for the optimum solution. We might want to reinitialize the 

network and retrain several times to guarantee that you 

have the best solution. 

 Networks are also sensitive to the number of 

neurons in their hidden layers. Too few neurons can lead 

contribute to overfitting, in which all training points are 

well fitted, but the fitting curve oscillates wildly between 

these points. 

 

 

 

 

IV. SYSTEM DESIGN 

 The entire system is divided to different sub 

sections. The word is written in the prescribed panels of 

size 15*12. Each character is pre processed. The line 

segments values are found are assigned at appropriate 

locations. The four line segments – horizontal, vertical, left 

diagonal and right diagonal are checked using appropriate 

rules. 

 Once the general direction of line segments was 

determined, a methodology was developed for creating 

appropriate feature vectors. In the first step, the character 

pattern marked with direction information was zoned into 

windows of equal size. In the next step, direction 

information was extracted from each individual window. 

Specific information such as the line segment direction, 

length, intersection points etc were expressed as floating 

point values between -0 and 1[10]. 

 The characters are divided to different zone. Each 

zone is of size 5*4. From each zone the direction feature 

vector is found. The direction feature vector is the input to 

the neural network. Neural network is trained for character 

recognition. The words are stored in database. Unicode of 

each character is stored in the appropriate table. The 

Unicode of the hand written word is retrieved from the 

database 

 The goal of the DF was to simplify each 

character‟s boundary through identification of individual 

stroke or lines segments in the image  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Proposed Artificial Neural Network  

 

 The neural classifier chosen for the task of 

character recognition were back- propagation (BP) 

networks. For experimentation purposes, the architectures 

were modified varying the number of inputs, outputs, 

hidden units, hidden layers and the various learning terms. 

The number of input each network was associated with the 

size of the feature vector for each image. Most successful 

vector configurations were of 81 for the direction feature. 

 

 

 
Fig 7 Block Diagram of the system 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS040180

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

95



 Here a multilayer perception with back 

propagation algorithm is proposed for training    or 

recognition of characters. There will one input layer, one 

hidden layer and one output layer. A three layer network is 

suggested  

 The number of nodes in the input in the input 

layer is 90, since 90 values are obtained from the 15*12 

panel. These are floating point values between +1 and -1.  

 The hidden layer consists of 100 nodes and the 

output layer of 10 nodes.95 characters is identified. The 

back propagation network is trained with a large sample set 

of each character. 

 The invention of back propagation algorithm has 

played a large part in the resurgence of interest in the field 

of artificial neural networks. Back propagation is a 

systematic method of training multilayer artificial neural 

network. It has a mathematical foundation that is strong if 

not practical. 

 Neuron is used as the fundamental building block 

for back propagation networks. A set of inputs is applied, 

either from outside or from previous layer. Each of these 

multiplied by a weight, and the products are summed. This 

summation of products is termed NET and ust be 

calculated for each neuron in the network. After NET is 

calculated, the activation Function F is applied to modified 

it, there by producing the signal OUT 

OUT= 1/(1+e
-NET

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The input x, of the neuron consist of the variables “X., Xn 

and a bias term, known as the momentum constant, which 

is equal to one. Each of the input values is multiplied by a 

weight wi, after which the results are added. On the result, 

a simple mathematical function.  

 F(x) , is performed. the function is also known  as 

the activation  function. The calculations the neuron 

performs are thus  given by: 

Y= f(w0+X1*w1+...+xn* wn)  

Numerous choices for the functions exist. Frequently used 

in implementations are sigmoid functions: 

F(u)= 1/|(1+e
-u

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The objective of training the network is to adjust 

the weights so that the application of a set of input 

produces the desire set of outputs or reasons of brevity, this 

input- output set can be referred to as vectors.  Training 

assumes that each input vectors is paired with a target 

vector representing the desire output together these are 

called training pair. Usually a network is trained over a 

number of training pairs. For example, the input part of a 

training pair might consists of a pattern of ones and zeros 

representing a binary image of a letter of the alphabet. 

 When training an ANN with a set of input and 

output data, we wish to adjust the weights in the ANN, to 

make the ANN give the same outputs as seen in the 

training data. On the other hand, we do not want to make 

the ANN too specific, making it give precise results for the 

training data, but incorrect results for all other data. When 

this happens, we say that the ANN has been over-fitted. 

 The training process can be seen as an 

optimization problem, where we wish to minimize the 

mean square error of the entire set of training data. This 

problem can be solved in many different, ranging from 

standard optimization heuristics like simulated annealing, 

through more special optimization techniques like genetic 

algorithms to specialized gradient descent algorithms like 

back propagation. The most used algorithm is the back 

propagation algorithm, but this algorithm has some 

limitations concerning, the extent of adjustment to the 

weights in each iteration. This problem has been solved in 

more advanced algorithms like PROP and quick prop 

before starting the training process, all of the weights must 

be initialized to small random numbers. This ensures that 

the network is not saturated by large values of weights, and 

prevents certain other training pathologies. For example if 

the weights all start at equal values and the desired 

performance requires unequal values, the network will not 

learn. 

Training the back propagation network requires the steps 

that follow: 

i) Select the next training pair from the training set; 

apply the input vector to the network input. 

ii) Calculate the output of the network. 

iii) Calculate the error between the network output and the 

desired output. 

 
Fig 8 Artificial neuron with activation function 

 
Fig 9 Sigmoid function 
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iv) Adjust the weights of the networking a way that 

minimizes the error. 

v) Repeat steps 1 through 4 for each vector in the training 

set until the error for the entire set is acceptably low. 

 The back propagation algorithm works in much 

the same way as the name suggests: After propagating an 

input through the network, the error is calculated and the 

error is propagated back through the network while the 

weights are adjusted in order to make the error smaller. 

 Although we want to minimize the mean square 

error for all the training data, the most efficient way of 

doing this with the back propagation algorithm, is to train 

on a data sequentially one input at a time, instead of 

training on the combined data. However, this means that 

the order the data is given in is of importance, but it also 

provides a very efficient way of avoiding getting stuck in a 

local minima. 

 First the input is propagated through the ANN to 

the output. After this error
ek 

on a single output neuron k can 

be calculated as: 

Ek =d k-y k  

Where yk is the calculated output and dk is the desired 

output of neuron k. This error value is used to calculate a δk 

value, which is again used for adjusting the weights. The δk 

value is calculated by: 

δk=ekg’(yk) 

Where g’ is the derived activation function. When the δk 

value is calculated, we can calculate the δj values for 

preceding layers. The δj values of the previous layer are 

calculated from the δk values of this layer. By the following 

equation: 

 
Where K is the number of neurons in this layer and η is the 

learning rate parameter, which determines how much the 

weight should be adjusted. The more advanced gradient 

descent algorithms does not use a learning rate, but a set of 

more advanced parameters that makes a more qualified that 

makes a more qualified guess to how much the weight 

should be adjusted. 

 Using these δ values, the ∆W values that the 

weights should be adjusted by, can be calculated by: 

∆ W jk = δjyk 

The ∆jk value is used to adjust the weight jk by 

Wjk=Wjk+∆jk and the back propagation algorithm moves 

on to the next input and adjusts the weights according to 

the output. This process goes on until a certain stop criteria 

is reached. The stop criteria is typically determined by 

measuring the mean square error of the training data while 

training with the data, when this mean square error reaches 

a certain limit, the training is stopped. More advanced 

stopping criteria involving both training and testing data 

are also used. 

 The primary reason why neural networks are 

studied is because they have a remarkable ability to process 

imprecise data and deliver meaningful results. They can 

detect patterns or trends that are otherwise unnoticeable by 

other computer techniques. A neural network that has been 

trained to process a particular type of data may well be 

considered an expert in analyzing that data type. Further, it 

can enable us to speculate how the system would perform 

in different situations. 

B. Proposed Network 

 The MLP network implemented for the purpose of 

this project is composed of 3 layers, one input, one hidden 

and one output as shown in the figure. The input layer 

constitutes of 90 neurons which receive pixel binary data 

from a 15*12 symbol pixel matrix. The size of this matrix 

was decided taking into consideration the average height 

and width of character image that can be mapped without 

introducing any significant pixel noise. 

 The hidden layer constitutes of neurons whose 

number is decided on the basis of optimal results on a trial 

and error basis. 

 The output layer is composed of neurons 

corresponding to each Malayalam characters. The target 

values are assigned for each character. To initialize the 

weights a random function was used to assign an initial 

random number which lies between two present integers 

named. The weight bias is selected from trial and error 

observation to correspond to average weights for quick 

convergence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Procedure Steps 

S1: Create a panel of size with 15 rows and 12 columns 

S2: If any mouse event is found, set the pixel value to 1 

S3: Check the connectivity of pixels 

S4: Grab the pixels and set the corresponding array values 

to ones and zeros 

S5: Divide the panel to nine equally zoned matrices of size 

5 rows and 4 columns 

S6: Feature extraction 

 For each matrix of size 5*4 do the following 

Find the horizontal, vertical, right diagonal, left diagonal 

lines and intersections by checking immediate pixels 

See the following values for the line segments 

Vertical-2 

Right diagonal-3 

Horizontal-4 

Left diagonal-5 

 
Fig 10 Proposed MLP Network 
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S7: Find the input vector to the network from the nine 

zones 

S8: Design a Neural Network with 90 input nodes, 100 

hidden nodes and 10 output nodes 

S9: Initially generate the weights for the links, randomly 

S10: Set the target values for output nodes 

S11: Train each character with samples and make the 

network to learn 

D. Procedure steps for training routine 

S1: Analyze the input character and find the zones 

S2: Read the desired output sample from the database 

S3: Add the pattern 

S4: Do the training and learning process with the sample 

S5: For each character do the following 

Calculate the output of the back propagation network 

Compare the obtained output with the target value of that 

value of that character 

Compute the error 

Back propagate the error across each link and adjust the 

weight value between the nodes 

Repeat for all steps 

S6: Check whether the error value is minimum. If yes, then 

exit. Otherwise continue the process  

E. Procedure for word recognition 

S1: Obtain the recognized character 

S2: Group the character to form a word 

S3: Create a database for a specific number of words 

S4: Compare the written word with the word stored in the 

table 

S5: If the word is fund display the appropriate Unicode of 

the characters 

F. Setting the target values 

The target values for the 10 output neurons vary within the 

range .001 to 0.19 separated by a difference of .002 

between successive ones as shown in Fig 11. 

 

 

 

 

 

 

 

 

 

The error of i
th 

output neuron 

∆i=Outi* (1-Outi)*(Targeti-OUTi) ------------------------- (1) 

 The The error of j
th

 hidden layer neuron is 

∆Hj=OutHj*(Targeti-OUTi)*∑
10

 i=1(∆i*Wtji) ------------ (2) 

 

New weight between j
th

 hidden neuron and i
th

 output 

neuron is 

Wtji=Wtji+η*∆i*OutHj---------------------------------------- (3) 

The new weight between k
th

 input neuron and j
th

 hidden 

neuron is 

Wtkj=Wtkj+(η*∆Hj*Ik)----------------------------------------(4) 

Outi is the output value of i
th

 neuron  

Targeti is the target value of the i
th

 neuron 

OutHi is the output value of j
th

 hidden layer neuron is the 

learning rate. 

 The learning rate used in the project is .01 this is 

finalized by trial and error method. The error tolerance is 

.000001. 

 The error in a particular iteration is back 

propagated only if it is greater than the error Tolerance. 

Typically error tolerance is a small value in the range 0 to 

1. 

Sets the value for the acceptable difference between the 

desire output value and the actual output value. This must 

be real value between 0.0 and 1.0. for example, if young 

training  data set contains expected values of 0 and I and 

the tolerance is set to 0.1 (the default), then the average 

pattern error goes to 0 wl; 1 en all of the output are within 

0.1  of the desire values 

 The best approach to take in setting this parameter 

is often determined by trial and error. The error tolerance 

setting controls the training process. For a data set 

containing binary targets (0,1), the tolerance parameter is 

usually set to 0.1.This means that the output is considered 

“good”  when it is within 0.1 of the desire  output that is, 

0.9 for a 1, 0.1 for a 0) . When every output is within the 

tolerance range of the desire output value, the network 

status is changed to LOCKED and weights updates.  

V. CONCLUSION 

 In this paper a new feature extraction technique 

(direction feature) for the recognition of Malayalam 

character is used. Input can be given through light pen 

model. The system successfully recognizes the characters. 

The obtained word is compared with the database stored 

for validity. 

 Neural Network with backpropogation algorithm 

is explored in depth. Various other approaches for 

character recognition is also studies in detail.  Malayalam 

characters are found to be recognized successfully. 

 It was discovered that a better approach could be 

developed employing neural network techniques in 

recognizing characters, one of the major advantages of 

using neural networks is their inherent ability to respond to 

variations. This ability is important in particular where 

handwriting is concerned. This approach can be applied to 

printed letter also. 

 

 

 

 

 

 
Fig 11 
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