
On Designing an Efficient Distributed Black-Box Fuzzing
System for Mobile Devices

Wang Hao Lee
Institute for Infocomm

Research
Singapore

whlee@i2r.a-star.edu.sg

Murali Srirangam
Ramanujam

Institute for Infocomm
Research
Singapore

muralism@i2r.a-
star.edu.sg

S. P. T. Krishnan
Institute for Infocomm

Research
Singapore

krishnan@i2r.a-
star.edu.sg

ABSTRACT
Security researchers who jailbreak iOS devices have usu-
ally crowdsourced for system level vulnerabilities [1] for iOS.
However, their success has depended on whether a particular
device owner encountered a crash in system-level code. To
conduct voluntary security testing, black-box fuzzing is one
of the ideal low-cost and simple techniques to find system
level vulnerabilities for the less technical crowd. However,
it is not the most effective method due to the large fuzzing
space. At the same time, when fuzzing mobile devices such
as today’s smartphones, it is extremely time consuming to
instrument mobile devices of varying versions of system soft-
ware across the world. This paper, describes Mobile Vul-
nerability Discovery Pipeline (MVDP), a semi-automated,
vulnerability discovery pipeline for mobile devices. MVDP
is a carefully crafted process targeted to produce malicious
output that is very likely to crash the target leading to vul-
nerability discovery. MVDP employs a few novel black-box
fuzzing techniques such as distributed fuzzing, parameter
selection, mutation position optimisation and selection of
good seed files. To date, MVDP has discovered around 1900
unique crashing inputs and helped to identify 7 unique vul-
nerabilities across various Android and iOS phone models.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software—Mo-
bile Vulnerability ; D.2.5 [Software Engineering]: Testing
and Debugging—Distributed Debugging

General Terms
Design, Experimentation, Security

Keywords
Black-Box Fuzzing, Zero-Day Vulnerability, Crash Analysis,
Smartphones

.

1. INTRODUCTION
The increased sophistication of mobile devices brings with

it many unknown vulnerabilities. It is critical to identify the
vulnerabilities before attackers use them for 0-day exploits.
The simplicity of black-box fuzzers allows non-security pro-
fessionals to run security experiments and gather security
related defects for the manufacturer or security researchers.
On the other hand, the space for blind fuzzing is intractable
and many duplicated fuzzed files or files with less meaning-
ful mutations are produced. Hence, it is vital to devise tech-
niques for discovering unknown vulnerabilities from a black-
box perspective that yield higher detection-rates with fewer
input tests. At a high level, three approaches to discover-
ing software vulnerabilities exist: white-box, black-box and
grey-box testing. The most suitable approach depends on
the availability of the source codes, design specifications, size
of source base and time and resources available. White box
testing makes use of a program’s source code to test the in-
ternal mechanism of the system or component. The openess
of today’s mobile Operating Systems today are mixed. Ap-
ple’s iOS is generally closed source with some open-sourced
components like XNU, WebKit, Objective-C runtime, dyld
and so on. Debugging system level binaries are difficult with-
out a Jailbreak which in itself is an exploit. Most of Google’s
Android OS is fully open-source with the exception of de-
vice drivers and UI customization [2]. This means bug in
the Android core system might not affect customised OEM
devices and vice-versa. The less popular Blackberry 10 and
Windows Phone operating systems on the other hand are
completely closed source. The complexity and size of the
code-base would require significant time and resources for
investigation. These code bases would also get updated be-
fore a researcher can sufficiently understand the system. In
the context of voluntary security testing, it would be too in-
trusive to instrument a volunteer’s device. Even though ro-
bust desktop environments may accurately simulate the en-
vironment libraries of mobile platforms, actual live devices
provide more accurate exploitation context. Furthermore,
not every mobile device platform has common libraries with
its desktop counterpart - for example, Webkit on iOS vs Mac
OS X. This means that instrumenting a library on a desktop
may not provide the same result as on a mobile device.

On the other hand, grey and black-box testing approaches
require little or no knowledge of the architecture, respec-
tively. As such, a large volume of test cases are needed to
probe an unknown target. Black-box fuzzing at the extreme

end of the spectrum, requires numerous unexpected or mal-
formed inputs to test the response of the target. Although
the basic idea may seem to lack elegance, it is highly effective
in practice and simple in discovering critical bugs [3] even for
users not coming from a security background. An average
user has nearly 3 mobile devices according to a Sophos sur-
vey [4]. Shops also have unsold display-set devices switched
on during the day. To harness the availability of idle devices
and allow mainstream users to help researchers find secu-
rity defects, we describe in this paper techniques such as
distributed fuzzing, parameter selection, mutation position
optimisation and selection of good seed files.

Audio, video and images are the most consumed media
types on smartphones and drive-by-download exploits have
been developed for these media in the past [5, 6, 7]. Hence,
for this paper, we targeted the multimedia libraries (audio,
video and images) on Android and iOS. Although only au-
dio, video and images are tested in this paper, the technique
is general and can be extended to include other data-formats
that can be sent over the internet.

1.1 Fuzzing Challenges and Motivations
Black-box fuzzing is a popular, cheap and effective for

finding bugs in applications for the masses. However, a good
scalable black-box fuzzing architecture can always present
challenges that need to be addressed before it can effectively
enable vulnerability discovery. Overall, we summarize sev-
eral challenges as below:

a) Selecting good starting (seed) files: The quality of
the fuzzing output depends on the quality of seed files.
This means the seed files from which the malformed
inputs are generated must be of good quality [8]. The
GIF file format, for example has several well-defined
sections defined in its specification [9]. A good seed file
should have all sections and sub-types of a particular
data-format. More information about this is provided
in Subsection 2.1.

b) Virtually unlimited fuzzing space: The fuzzing
space for any file format can be exponentially large and
exploring every single possibility can be next to impos-
sible. For example, fuzz testing executed using binary
files has is that it requires a large number of fault-
inserted files to cover every test case [10]. As such,
without much knowledge of the input format, we still
need a method of generating and selecting fuzzing con-
figurations that output fuzzed files containing a uni-
formly distributed set of mutation positions covering
a diverse set of fields of the seed file.

c) Fuzzing scalability: If we were to generate test cases
on the device itself, it is likely that the same malformed
file is generated across multiple devices. This con-
tributes to wasted computing power and less coverage
of fuzzing space. There is also no means to compare
test results across devices as each device might have
performed the same or a different test. Hence, the
fuzzed files should be generated only once and have
copies distributed to different devices for testing. We
need a server setup to coordinate the fuzz distribu-
tion across a great number of devices and collect and
quantify the results.

When multiple devices of the same model and OS
version are being fuzzed, there is a need to devise a
method of balancing the inputs. With load balanc-
ing, more tests can be processed on a device/OS plat-
form, duplicate tests can be eliminated and vulnera-
bilities can be discovered faster. This means that if
we have multiple devices running the same OS ver-
sion, the server must be able to identify them as of the
same model and and allocate different inputs to each
one of them.

When fuzzing many devices across the world, it is es-
sential to have a new set of test inputs ready for the
next arriving device of the same model and OS ver-
sion. Storing fuzzed input thus requires large amounts
of storage space and the growth of space utilisation
increases with the amount of devices connected to the
test server. In addition, conducting tests across the in-
ternet requires massive network transfer of these test
data - a problem when it comes to video files espe-
cially. Volunteers donating their free phone CPU cy-
cles might think twice if their mobile network utilisa-
tion is high. Hence, we will need a means of optimizing
the content being stored without comprimising on per-
formance considerably.

With these challenges, it is noted that more efficient black-
box fuzzing framework should be developed for discovering
unknown vulnerabilities and bugs in mobile platforms, es-
pecially on smartphones.

1.2 Contributions
In this paper, we address the challenges described above

and designed Mobile Vulnerability Discovery Pipeline (MVDP),
a scalable distributed fuzzing infrastructure for discovering
unknown vulnerabilities for smartphones.MVDP comprises
of techniques to enable internet-scale voluntary security test-
ing. The paper emphasizes the following key contributions
for improvising black-box testing:

• Ensuring universal uniqueness of fuzzes. Send-
ing the same file to the same device is a wastage of
time, computing and network resources. Our paper
presents FEET (Fuzzing Engine Evaluation Tool), a
novel mechanism that ensures unique fuzzed files with
well-distributed modification positions are prioritised.

• Ensuring uniformity of fuzz campaigns (jobs).
Fuzzing is phased as jobs. Jobs are groups of N files
analagous to a campaign in [11]. The basic idea of
an optimized job in our case is that a job will contain
a high diversity of modification positions as possible.
Without considering too many intricacies of the file-
format or system code from a black-box perspective,
this technique attempts to ensure that a job tests out
as many “fields” of a data-format as possible. This
uniformity is measured using a chi-square test on all
files in a job/fuzz epoch.

• Improving Scalability and Fuzz Reuse. It is men-
tioned in Section 1.1 that fuzz files are generated once
and the copy is used to fuzz many devices, the side ef-
fect of it is the staggering growth of storage use when
devices run out of test cases or arrival of more test
devices. Diff-patches rather than use of actual file has

a huge impact especially when it comes to MP4 and
other storage-heavy files. Before fuzzing, the device
creates the actual fuzz file by patching out the seed
file. Refer to subsection 3.1.1 for more information on
this approach.

By sending just the patches of the seed file rather than
sending fuzzed files, we have been able to achieve up
to 90% lesser network traffic. Each fuzzed file is only
a BSDdiff patch file of approximately 500bytes. This
makes it suitable for large scale fuzzing across the in-
ternet and future voluntary experiments by the general
public on a large scale analagous to SETI@home [13]
or BOINC [12].

Overall, MVDP comprises of various stages to generate
good fuzzing output, hasten the process of vulnerability dis-
covery and maximize the coverage of the test space. MVDP
at its present stage discovers vulnerabilities of media file-
formats but can be applied to target any data-format aces-
sible over the internet.

The layout of the paper is organised as follows. Section
2 introduces the architecture of MVDP and its four oper-
ational stages. In Section 3 we share the implementation
and experiments done. Section 3 sheds light on the results
obtained and its implications. Section 4 lists related work,
Section 5 talks about future work and Section 6 concludes
the paper.

2. THE PROCESS
The Mobile Vulnerability Discovery Pipeline consists of

several processes that can be programmed into server-end
and device-end. Figure 1 provides an overview of the pipeline
with the numbers representing the order of operations. The
entire MVDP process can be described as three operating
stages: the Quality Input Generation, Device and Task Man-
agement, and Crash Analysis.

2.1 Quality Input Generation
This is a semi-automated stage consisting of automatic

downloading and initial good seed file selection. Additional
manual augmentation of good seed files is advisable but op-
tional. It aims to construct the best fuzzing configuration
to be used such that the fuzzed files have good coverage and
uniform distribution. The following sub-sections describe
them in more detail.

2.1.1 Seed File Downloader (SFD)
To fuzz a data-format effectively, the clean input data

(also known as seed files or initial files [14]) must cover as
high field coverage as possible as defined in the respective
file format RFC. To achieve this, data-format samples are
downloaded and further manually augmented.

For the purpose of this paper, the main data inputs for
fuzzing are file-based inputs. Rather than constructing such
a file from scratch, files are downloaded from the internet.
The search and download process is automated using web
APIs. We scan the Internet for seed files using the Google
custom search Engine [15] and Microsoft Azure Search [16]
to obtain raw inputs which are then given to SFAT.

2.1.2 Seed File Analysis Tool (SFAT)
SFAT compares, sorts and clusters the raw input files ac-

cording to their protocol coverage. File format parsers like

1)#SFD#'#Seed#Files#Download#
(auto)#

2)#SFAT#–#Seed#File#Analysis#
Tools#(auto)#

3)#Augmenting#Seed#Files#
(manual#'#optional)#

Quality(Input(Generation(

SERVER(
24x7#Web#Console#

4)#Fuzzing#Engine#(auto)#
10)#CACE#
(auto)#

#

6)#Fuzzed#
File#

Delivery#
(auto)#

5)#FEET#
Fuzz#
Engine#

Evaluation##
Tool#
(auto)#

11)#
Exploitability#
Analysis#
(manual)#

DEVICE(
#SOFT#(auto)#

7)#Fuzz#Download#/##
9)#Result#Upload#

8)#Crash#Log#Extractor#
(auto)#

24x7#SOFT#Application#Monitor#(auto)#

(
#

#
Figure 1: Architectural Flow Diagram of MVDP
showing automatic and manual processes.

Hachoir [17] provides file information for the seed file selec-
tion algorithm (more in section 2.1.3) to calculate file format
specification (RFC) coverage for a particular file. The files
containing high data-format coverage are known as good
seed files. In some protocols, there are mutually exclusive
fields; each forming a sub-type of a file format. For example,
in the case of PNG files, there are RGB and ICCP PNG file
sub-types [18]. A PNG file can contain only either one of
the ICCP or the sRGB chunk. In this case, SFAT automat-
ically ignores files with field-coverage being total subsets of
another downloaded file so sub-types are covered.

2.1.3 Seed File Selection Algorithm
SFAT is the tool to be run when a new binary file format

is to be fuzzed using mutation fuzzing. It examines all seed
files by using the following heuristics in the following order:

1. Top-Level Domain Score (TLD)
2. Field Score (F)
3. Field Occurrence Score (D)
4. Occurrence Distribution Score
5. File Size Score

The scoring is done for each file format separately and
heuristics are used hierarchically. For the file formats we
tested, there are (usually) many seed files with equally high
TLD score; for example, internet downloaded PNG seed files
with highest TLD scores have all 3-4 critical chunks [18] and
6 more ancillary chunks. These files with highest TLD scores
are further ranked using Field Score. The best from Field
Score is ranked by Field Occurrence Score and so on. If
more than one seed file reaches the 5th level heuristic, the
file with the smallest file size is selected.

data_start file_size header

header_bpp header_compression header_size header_height header_horizontal_dpi

pixels

line

pixel

blue red green

1.0 1.0 1.0

0.5 0.5 0.5 0.5 0.5

0.5

0.25

0.125 0.125 0.125

1.0

Figure 2: Field Score

(i) Top-Level-Domain Score

File-formats typically use markers/chunks to deter-
mine a major field. For example, PNG has 21 types
of chunks out of which only 3 to 4 are mandatory [18].
Typically, the higher the number of top-level mark-
ers/chunks are, the better the seed file candidate.

(ii) Field Score

Given an instance of a file type F where there are n
top-level domain fields we define the fields of file F as
< fi.....fn >.

A weight is assigned to a field/sub-field to denote the
significance of a field in a file-type instance. This
weight value assignment scheme is experimental and
can be changed accordingly. Within fi where i < n,
the set of weights for each subfields of a field fi is de-
noted by Si =< sij ...sim >, where m is the number of
subfields of the field fi.

The weight for each subfield is defined as sij . It is
defined as: sij = 1

(2l−1) where l is the level of the field

in the subfield tree.

By definition, top-level domain fields always have a
weight of 1. The weight value decreases with tree
height. For example, in BMP file format, the weight of
a field called used colors, (header/used colors) is a sec-
ond level sub-field and ’header’ is the top-level-domain
field. 1

21
= 0.5

Consider another example, if its a 4 level field e.g.
(/pixels/line/pixel/red) 1

23
= 0.125

The total weight of a field fi, denoted wi is defined as:

wi =

m∑
j=0

sij (1)

Given the definitions above, we define the Field Score
of file F as:

N∏
i=0

wi (2)

where wi = a weighted sum of the sub-fields and root
field defined in Equation 1.

Consider the example of a Field score of a hypothetical
file in Figure 2.

F = dataStart ∗ FileSize ∗Header ∗ Pixels
= 1.0 ∗ 1.0 ∗ 3.5 ∗ 2.125 = 7.4375

In general, a higher field score represents a better seed
file.

(iii) Field Occurrence Score

The field occurrence shows the number of times a field/sub-
field appears in the file. Let the field occurrence of a
sub-field sij be oj . The subfield weighted occurrence
score B is given by:

Bi,j = oi,j ∗ si,j (3)

From Equation 3 the field weighted occurrence score
C is calculated as:

Ci =

m∑
j=0

Bj (4)

Where m is the number of fields in the ith field. Given
Bj and Ci, we can calculate the fieldOccurrenceScore
D as follows:

D =

n∑
i=0

Ci (5)

A higher field occurrence score corresponds to a gen-
erally better seed file as it generally denotes a better
overall spec coverage given the lack of time to read
RFCs.

An example of a field occurrence score calculation is
shown in Figure 3.

(iv) Occurrence Distribution Score
In occurrence distribution score, all fields or subfields
are flattened and not weighted. We define the occur-
rence of a field/subfield as ok. Let T be the total num-
ber of all subfields and fields of the input file and the
set of all subfields and fields be k. We define the mean
field/subfield occurrence as

µ =

T∑
k=0

ok
(T)

(6)

The file-wide standard deviation of the occurrences is
given by:

data_start (1) file_size (1) header (1)

header_bpp (1) header_compression (1) size (1) height (1) horizontal_dpi (1)

pixels (1)

line (48)

pixel (2295)

blue (2294) red (2295) green (2294)

1.0 1.0 1.0

0.5 0.5 0.5 0.5 0.5

0.5

0.25

1.0

Numbers in “()” are the number of occurrence of the field
Field occurrence score
= data_start x file_size x header x pixels
= 1.0 + 1.0 + (1+ 5*0.5) + (1+ 48*0.5 + 2295*0.25 +
2294*0.125 + 2295*0.125 + 2295*0.125
= 1464.75

Figure 3: Field Occurrence Score

0

100

200

300

400

/data/start /file_size /header /header/bpp /header/height /header/
compression

/header/
header_size

/header/
image_size

input 1

Input 2

2 per. Mov. Avg. (input 1)

2 per. Mov. Avg. (Input 2)

Figure 4: Occurrence Distribution Score

σ =
√

(
1

n
) ∗ (

T∑
k=0

(ok − µ)2) (7)

From Equation 6 and 7, the occurrence distribution
score is calculated as:

occurrenceDistributionScore =
µ

σ
(8)

A higher field-wide occurence distribution score is less
desirable. This is because mutation fuzzing will tend
to fuzz only data in one field type. So the mean occur-
rence is taken into consideration. A higher occurrence
distribution score is a better seed file. Figure 4 shows
an example of a more desirable seed file (input 1) in
terms of occurrence distribution score.

(v) File Size Score
Finally, after applying the above heuristics, if more
than one seed file reaches this level, the best seed file
is the file with the smallest size. This is because the
mutations by a fuzzer will be more likely to hit a wider
range of fields. FEET also works more efficiently with
a seed file of a smaller size. Patching a smaller seed
file (see section 2.2.1) to produce a fuzzed file will also
be faster.

The selected seed files are still downloaded from the inter-
net and may not contain rare fields that are less commonly
used. The combination of SFD and SFAT seeks to reduce
the amount of rarer fields to be introduced by automati-
cally selecting a high coverage seed file as a starting point.
One can then instrument execution of a open source library
supporting the data format (for example libSkia [19] is to
PNG) to get maximum coverage. However, this technique
is platform and application library dependant. Good code
coverage in Skia on Android might not directly imply good
code coverage on ImageIO [20] for iOS.

2.1.4 Fuzzing Engine
Seed files selected by SFAT are fed into a fuzzing engine

and the results are evaluated to determine the best fuzzing
configuration to use with test devices. Since the fuzzing is
done on server end, another fuzzing engine can be swapped
out without affecting the SUT (system under test) in a re-
mote corner of the internet. The fuzzer we created for this
set of experiments is called Fe2 that mutates files with op-
erators that mutate meta-data targeted at parsing logic.

Fe2 makes use of FEET described in Section 2.1.5 to
automatically ensure that seed files have their mutations
spread out throughout the protocol. Spreading the muta-
tions throughout the protocol ensures that the fuzzer tests
the handling of the file in all its protocol regions which may
improve vulnerability detection due to the potential increase
in code coverage.

Several different file fuzzing operators were implemented
in Fe2. The operators are file-format agnostic so they can
be used on several file formats.

(a) Remove random string - Removes a random section
of random size and location in the input file. The ob-
jective is to stress the file parser by removing essential
and nonessential parts of the input.

(b) Add random string - Adds a random string of ran-
dom size to a random location. The objective is to add
unexpected sections to the input file.

(c) Change random string - Changes multiple random
sections. Randomizes the number and size of the sec-
tions, and the contents to be substituted. The objec-
tive is to determine if the file parser could recover from
multiple errors in the input file.

(d) Change random characters - Replaces characters
in the input file with random characters. Randomizes
the number of locations selected for replacement and
the replacement characters. The objective is to intro-
duce unexpected characters.

(e) Change cases - These 2 operators seeks out and in-
vert either the lowercase or uppercase ascii characters
in the input file. It replaces single characters at one
or more locations. Replaces one or more number of
characters.

(f) Replace null characters - Finds null characters and
replaces them with character A. This is similar to mu-
tation operation (g) with the difference being single
null characters instead of double. This operation probes
libraries written in traditional C-style dynamic mem-
ory allocations with null-terminated strings. It aims
to trigger buffer overflow errors in the parser.

(g) Replace null string - Finds instances of double null
characters and replaces them with AA. The objective is
to test file parsers dependent on double-null delimiters
in C++ coded programs.

2.1.5 Fuzzing Engine Evaluation Tool
In order to determine the superiority of the fuzzed output,

we have devised a Fuzzing Engine Evaluation Tool (FEET).
FEET considers fuzzing parameters, uniqueness of the job
and uniformity of the fuzzing space covered to evaluate the
quality of the fuzzed output. Here we define a job to be a set
of fuzzed files which were fuzzed with a particular fuzzing
configuration. This notion is similar to a ’campaign’ in [21]
except larger numbers of up to 10000 files can be used in 1
job.

We define three levels of uniqueness for grouping of fuzzed
input. They are local, global and universal uniqueness.
The best fuzzing configuration has most files with univer-
sal uniqueness. All files for one file-type in MVDP have
been selected to be globally unique.

Figure 5: Different modification position distribu-
tions between 2 fuzz jobs (Black areas in a file are
mutations)

a) Local Uniqueness

Local uniqueness is the percentage of unique fuzzed
files in a job. Uniqueness of a file is determined by
comparing the hash of the file against the hashes of all
the remaining files within a job.

b) Global Uniqueness

There are usually millions of fuzzed files generated and
packaged in several hundred jobs. Let D and G be 2
jobs with all locally unique files. Let di be a file in
a job D and gj be a file in job G, where i, j > 0. It
is possible that di ≡ gj or even D ≡ G. Hence, for
a fuzzed file to be globally unique, it must be unique
across all jobs produced from a given fuzzer regardless
of fuzzing parameters.

c) Universal Uniqueness

As MVDP is able to utilize several different fuzzers
to produce fuzzed output, it is then possible for two
fuzzers to produce 2 identical files. A fuzzed file is
considered universally unique if it is both locally and
globally unique and an identical copy of the fuzzed file
is also not produced by another fuzzer within MVDP.

d) Uniformity

Fuzzing needs to concentrate on a specific location of
the targeted data-type within a job. If the fuzzing is
wildly distributed throughout the file, critical sections
of files might be missed. Hence, we deduced that in
each job, the fuzzing needs to be concentrated yet uni-
formly spread out in one particular section. As such,
the definition of uniformity here refers to having a
’goodness-to-fit’ between distributions of modified po-
sitions in a fuzz job against that of an even distribu-
tion of positions. An example of an evenly distributed
fuzzed job and a non-evenly distributed fuzzed job is
as shown in Figure 5.

The uniformity for seed file modification locations is mea-
sured using the chi-square test. We used the chi-square
statistic χ2 for a fuzzed job with k modifications as the uni-
formity distance:

χ2 =
∑

1≤i≤k

(Yi − E)2

E
(9)

where Y1, Y2, . . . , Yk are the modifications positions in the
fuzzed file and the expected position of each modification is
E (where 1 < i < k). The expected value E is given as:

E =

∑k
i=1 Yi

K
(10)

After obtaining the chi-square distance for each job, we
calculated the chi-squared probability using the uniformity
distance with the degree of freedom being K−1. We ensured
that all fuzzing jobs have a chi-squared probability > 0.05
to be considered uniform.

For each file format, we let FEET generate and analyse
multiple jobs with various fuzzing configurations and se-
lect fuzzed jobs ranked by their chi-squared probability and
uniqueness.

2.2 Device and Task Management
To test the Mobile OS’s resistance to the malformed files,

we would need to open/render each file individually and log
the results. With the vast quantity of fuzzed files to be
tested, we needed an automated system to deliver jobs to the
devices, collect and consolidate results. Hence, we built the
Security Testing Arsenal for Mobile Platforms (STAMP).

2.2.1 STAMP
STAMP is a server based system that automatically coor-

dinates the flow of generating fuzzing jobs, distributing them
to the devices, load balancing the work among devices of the
same type and collating the results for centralised graphical
analysis and evaluation.

The problem of duplicate test cases is solved by generating
the jobs within STAMP and distributing them to every new
device to be tested. This also removes the waiting time
for fuzzed files to be generated when a new device registers
with STAMP. When a device registers with STAMP, there
are already a large number of fuzzed inputs downloadable
so the device can be tested without delay.

STAMP server holds history of all fuzzed files for newly
registered unseen devices and generates new fuzzed file for
seen devices. On a large scale of mobile clients, requests
for fuzz files arrive faster than fuzz generation. The server
then has to churn fuzz output at full-capacity creating expo-
nential storage space growth. In addition, mobile network
transfers are slow and less reliable especially for bigger file
formats. To delay the rate of increase of storage use and
reduce the amount of network data usage, we made use of
the binary diff/patch utility. We generated patches between
the fuzzed files and the Super Seed Files and stored the
patches instead. This reduced the used space by more than
90%. This also greatly reduced the amount of network traf-
fic (when sending the file from server to devices) and traded
the download time for mobile device CPU’s patching time.
Today’s mobile devices have sufficiently capable processors
for patching files. Hence, this trade-off is worthwhile.

2.2.2 STAMP clients
In the MVDP architecture in Figure 1, we mentioned

about SOFT clients. These are small applications called
SOFT (STAMP on-device Fuzzing Tool). SOFT clients are
developed for each mobile platform. The client is easily
portable to other mobile platforms if needed. The SOFT
clients automatically interacts with the STAMP server to
download jobs and patch them (since the fuzzed files in the

server are stored as diff patches). Once a job is downloaded
and patched, the SOFT client renders the fuzzed input using
the native libraries/APIs provided by the OS. Upon com-
pletion of a job the clients reply to the server with the job
results.

2.3 Crash Analysis
STAMP has a web interface which the security researcher

can visit to obtain information about the fuzzing progress.
The researcher can tell exactly which file caused a crash in
a particular device at a particular time. All the STAMP re-
ported crashes can be reproduced manually using the default
application provided by the respective mobile OS. When do-
ing so, logs on the mobile device (for example - Android)
are monitored for any crashes. For example, image files are
opened using the default Gallery application in Android.
The Android system logs kernel errors during a crash into
a Tombstone report; which are automatically extracted by
using a shell script for further analysis. Similarly with iOS,
the logs registering the stack trace, register values and fault
locations during a crash are captured.

Inspection of crash dumps - Manual binning of all
crash dumps is not scalable and is time consuming. With
the Crash Automatic Classification Engine (CACE), this
process has been automated. CACE processes the reports
from Android’s kernel crash logs (also known as tombstone)
and iOS’s crash logs to generate bins of unique vulnera-
bilities based on the type of crash. The bins are - Ex-
ploitable, Non-exploitable, Potentially Exploitable, Poten-
tially non-exploitable or DOS. After CACE bins the crashes,
researchers can focus on exploitable or potentially exploitable
cases.

The key features of the engine are as follows:

• CACE is a rule based system to identify unique vul-
nerabilities that could have been exposed by multiple
malformed files. The crash dumps are examined for
terminated signal, fault address, terminated code (if
exists) and the call stack along with the program coun-
ters. Hash value of all these entities combined form a
unique ID for the vulnerability.

• CACE identifies the source of crash in binary (for iOS
and Android) and in source locations (for Android).
For example, if a crash occurs when opening an mp4
file on Android, CACE is able to point to the location
in the source code/binary that led to the crash from
the stack trace.

The unique vulnerabilities are then manually inspected for
security issues. With the help of a scriptable disassembler.
We inspect the libraries at the fault location to determine
the nature of crash and severity level.

Depending on the type of access, crashes may or may not
be exploitable. Various exception types and exploitability
levels exist and we explored the approaches of CrashWran-
gler and Microsoft’s !exploitable [22] to derive the common
set of conditions for our own implementation; especially for
Android where no crash triaging tool is available for security
related purposes. In general, the SIGSEGV (11), SIGBUS
(10) and SIGILL (4) on Unix flavoured Operating Systems
such as Android and iOS are considered interesting to our
experiments as they mean invalid memory access at the user

space or kernel space and are possibly an indication of ex-
ecution of data segments. Thus CACE automatically first
filters out crashes containing these signals for exploration.

Next, based on the crashing address we found at the point
of crash, we determine the instruction type last executed
before the crash. Several types of ARM instruction classes
correspond to read, write or execute instructions. Some ex-
amples are given below:

ldr r0, r1, r2; - read

bl r1; - execute

mov r1, [r4]; - write

When the last executed instruction before crashing is an
unprivileged write or execute instruction, it is considered as
potentially exploitable. Comparatively, crashes where the
last instruction is an unprivileged read are not-likely ex-
ploitable.

2.4 Vulnerability Analysis
The degree of control the fuzz input has on exploitabil-

ity is examined manually after a crash is binned by CACE.
For every fuzzed input that corresponds to a potentially ex-
ploitable crash, we search for another existing crash with
the same stack trace. For these two crashes with the same
stack trace, we manually compare the crashing address value
and its address contents/register value to be written or exe-
cuted. If these address values or contents are relatively sim-
ilar (ASLR slides library start addresses), then fuzz input
does not influence the crash to a sufficently large extent and
is henceforth considered as less interesting. On the other
hand if the address/values for the similar crashes are all dif-
ferent, it means the crash is at least partially dependent on
the given fuzzed input.

From time to time, it might not be possible to identify at
least 2 potentially exploitable crashes with the same stack
trace. When this happens, a diff operation is performed on
the crashing input against the original seed file. The dif-
ferences are recorded as we slowly move from the crashing
input to the original seed file removing irrelevant file modifi-
cations. We stop removing modifications when we reach an
input with a minimal set of modifications that produces the
same crashing stack trace. When moving from the original
crashing file to the minimal modification crashing file, the
crashing address value and address contents/register values
are examined for each crash. If the crash addresses or values
are different during the minimisation process, this crash can
be controlled from a given fuzzed input and is considered to
be a crash where an exploit can be made.

3. IMPLEMENTATION AND EVALUATION
In this section we describe the experiment setup and dis-

cuss some of the important results obtained from MVDP.

3.1 Experimental Setup
All of our experiments were run on STAMP which is im-

plemented with a server running Ubuntu 12.04 on an Intel
Xeon E5-2697 v2 @ 2.70GHz 64 GB RAM. SFD, SFAT,
Fe2 and FEET are implemented as Python scripts with the
Python NumPy library. We modified hachoir-urwid [17] to
provide SFAT with the structure of a recogonised file format
in a hierarchical form. STAMP has been developed using
Python’s Django Framework with an interactive web-based

Without BSDiff With BSDiff

Storage Space 9.8mb 60kb
Fuzzing Time (if no crash) 1018s 1105s
Creation Time 63s 1864s
Network transmission 8.38s 0.46s

Table 1: Performance hit when using BSDiff to re-
duce storage requirement

dashboard, connecting to a MySQL and monogb database
backend. The console allows for fuzz job monitoring, addi-
tion of jobs with user-preferred configuration, assignment of
jobs to the devices, test device management, device progress
monitoring, user administration and statistical visualization
of crashes. HiCharts library was used to give a graphical
representation of the number of crashes discovered and rate
of discovery. This aids the security researcher in modifying
the fuzzing configurations to better target vulnerable for-
mats and regions.

The SOFT clients are developed using the Android and
iOS SDKs. They are running on real devices or emulators. 5
workstations with Intel Xeon E5-2650 v2 @ 2.60GHz 32GB
RAM run a total of 100 Android Emulators. We set up
a fuzz farm a dozen iOS and Android devices in addition
to running the Android emulators. The clients also verify
any crashes discovered by the system and restart themselves
upon a crash. On Android, for example, there is a service
that constantly monitors the SOFT application to detect
crashes. When the application is found to have crashed, the
service takes the necessary steps to clean up and relaunch
the application. The application then proceeds to retest the
same file which caused the crash before moving onto the
next test file. Information about whether the crash was re-
producible is sent to the server. This has largely helped in
reducing the waiting time between a crash and human inter-
vention to restart the SOFT application. It has thus made
it possible for SOFT to be running continuously for months
with little/no supervision. We conducted the fuzzing ex-
periments on multiple Android Emulators running Android
2.3.x, 4.0.x, 4.1.x, 4.2.x, 4.3.x, 4.4.x and 5.0 and popular de-
vices from Samsung, LG, Motorola, Huawei and Google and
all iOS devices. A total of approximately 5 million test
cases were evaluated in the system for formats PNG, GIF,
JPEG, TIF, MP3 and MP4. Note that not all the devices
finished processing all the jobs at the point of this paper as
devices run at different speeds due to their hardware and
software capabilities.

3.1.1 Storage Space Management
To mitigate the exponential disk space explosion from gen-

erating a few million fuzzed inputs, we developed a new way
of producing and delivering the fuzzed input. Rather than
directly generating the fuzzed input, BSDiff [23] patches are
generated for each fuzzed input “diffed” against the seed file.
These diff patches are stored on the server disk. Prior to
fuzzing, the mobile device clients download a copy of the
seed file and the BSDiff patches. The client then recon-
structs the fuzzed files by applying the patch to the seed
file. Finally the clients begins fuzzing by opening the files
reconstructed from the patches.

3.1.2 Crash Classification

With FEET Without FEET
95.24 86.49
95.66 81.18
99.13 83.23
98.89 87.93
97.83 79.66
96.09 79.49
95.40 84.09
96.97 85.72
96.13 84.61
95.29 98.68

Table 2: Percentage uniqueness of first 10 jobs dis-
tributed to clients

To identify the module and function that caused the crash,
the stack trace - obtained by the method described previ-
ously - is parsed to get the filename of the shared library
and its offset to the function. IDA pro is then invoked via a
IDAPython script to read the shared library and identify the
function and instruction causesing the crash. For Android
devices, ADB’s logcat output is parsed to look for crashes
and CACE examines basic exploitability information. For
iOS devices, CrashWrangler [24] is modified with access to
ARM shared libraries and an ARM version of GDB/LLDB
to triage iOS crashes.

3.1.3 Crash Similarity
For all reproducible identified crashes, a core-dump is gen-

erated and symbolicated. With the presence of ASLR, stack
trace similarity is identified based on function-names call se-
quence in the stack backtrace along with the ARM CPSR
value before crash.

3.2 Experimental Parameters
We set up a fuzz farm consisting of a dozen iOS and An-

droid devices in addition to running more than 100 Android
emulators in Ubuntu desktops. The file formats tested are
GIF, JPEG, PNG, MP3 and MP4 video. The fuzzing ex-
periments were run for 2 weeks and the crashes are analysed
by CACE. As we are still investigating several crashes to
discover the vulnerabilities and to prevent attackers from
exploiting them, we have anonymised the device identities.

For every stage of the vulnerability discovery pipeline, we
define groups of metrics for our experimental findings cate-
gorised below:

3.2.1 SFAT Metrics
We evaluated all fuzzed results across all devices based on

fuzzes created from 2 different mpeg-4 seed files across all de-
vices. One mp4 file has lower field scores, field occurance scores
and occurancedistributionscores compared to the second mp4
file. The number of unique crashes and total number of
crashes identified for each seed file to evaluate the effective-
ness of SFAT.

3.2.2 FEET Metrics
We ran some GIF fuzzing experiments without FEET on

several devices running Android 4.0.4 and compared the re-
sults with FEET to ascertain its effectiveness. A total of
9 jobs with 10000 files each were tested. The job IDs are
fuzzed in order - i.e., ID 1 is fuzzed first and 9 last. We
derived the following metrics to measure the effectiveness:

FEET Job ID #Crashes #Unique Bugs
Without FEET 1 1 1

2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

With FEET 1 0 0
2 0 0
3 3 1
4 3 1
5 6 1
6 0 0
7 0 0
8 0 0
9 2 1

Table 3: Fuzzing on Android 4.0.4 Device 1 with and
without FEET

(a) Uniqueness

FEET tests the uniqueness of fuzz files produced by
each fuzz configuration.A job in this experiment con-
sisted of 10,000 fuzzed files. The more uniqueness a
job has, the more diverse the individual test files in it.
We of course prefer to maximise the uniqueness per-
centage as this means we are fuzzing more variety of
files which in turn promises more chances of striking a
crash.

(b) Crash Arrival Rate

We first compare the crash arrival rate, i.e. how fast
can a crash be obtained using FEET selected fuzzing
configurations against randomly selected fuzzing con-
figurations.

(c) Number of Crashes

We also compare the number of crashes obtained us-
ing FEET selected fuzzing configurations against ran-
domly selected fuzzing configurations.

(d) Variety of bugs

How many unique bugs are discovered using FEET se-
lected fuzzing configurations against randomly selected
fuzzing configurations.

3.2.3 STAMP Metrics
We analyse the speedup using distributed fuzzing 10,000

files against a fixed number of fuzzes.

3.3 Experimental Results
Please note that we have anonymised the device identities

because we are still investigating several crashes to discover
vulnerabilities.

3.3.1 FEET Results

(a) Uniqueness Table 2 shows the percentage uniqueness
of jobs distributed to clients. From Table 2, we see that

out of the 100,000 files in this experiment (10 jobs *
10,000 files per job), using FEET provides an average
uniqueness factor of 96.67% compared to an average
uniqueness factor of 85.11% without FEET.

For illustration purposes, let us consider that testing
one JPG image on an iPhone takes 1 second (in real-
ity, the time taken is much lesser). Let us have two
iPhones side by side - one fuzzing inputs processed by
FEET, and the other fuzzing inputs without FEET.
Given 100,000 seconds, the first iPhone would have
processed 96,670 unique images whereas the second
iPhone would have processed 85,100 unique images.
We can say the first iPhone “wasted” 3330 seconds out
of 100,000 (a ratio of 0.033) whereas the second iPhone
“wasted”14,900 seconds (a ratio of 0.149) or around 4.5
times as much wastage. This gap only widens when we
fuzz for longer durations.

(b) Crash Arrival Rate Comparison In Table 3, it can
be seen that without using FEET, the device encoun-
tered the first crash in its first fuzzing job. However,
that is the only crash found; hence this crash could
be a one-off incident. Remaining jobs do not yield
any crashes. This is in contrast with the utilisation
of FEET to first determine uniformity and uniqueness
of resulting configurations before generating patches.
Crashes come only from the 3rd job onwards.

(c) Number of Crashes

There are 14 crashes discovered on the Android 4.0.4
device using FEET selected fuzzing configurations.

(d) Variety of Bugs

For the GIF file format, there is only one bug discov-
ered by both FEET selected and randomly selected
configurations.

Manufac. Version
File
Format

Crash
Count

#Unique
bugs

HTC Android 2.3.x GIF 825 1
HTC Android 2.3.x MP4 9 2
Samsung Android 4.0.x GIF 253 1
LG Android 4.0.x GIF 708 1
Samsung Android 4.1.x PNG 19 1
Samsung Android 4.2.x MP3 27 2
Samsung Android 4.3.x MP3 13 2
Asus Android 4.4.x MP4 1 1
Apple iOS 6.x JPEG 25 1
Apple iOS 6.x JPEG 12 1
Apple iOS 6.1.x JPEG 9 1

Table 5: Table of top 10 devices with maximum
crashes found using STAMP.

3.3.2 SFAT results
As the result shows in Table 4, the 1st file with higher

field and occurance scores generally yield an overall better
number of unique crashes and total crashes. We can con-
clude that SFAT’s scoring mechanism is effective for finding
a good seed file. The additional crashes are due to a loca-
tion of the flag change corresponding to the size value of an
TBPM (beats per minute) which is not present in 2.mp4.

Seed File I Field Occurance Score Mean/StdDeviation Size (KB) #Unique Bugs #Total Crashes
1.mp4 367.4 77.64 0.2 162 2 8
2.mp4 234.8 33.2 0.66 296 1 1

Table 4: Field score and occurance score for 2 mp4 files. Lesser score is better (See Section 2.1.2)

3.3.3 STAMP results
Within the span of 2 weeks, STAMP conducted close to 5

million test cases and uncovered close to 1900 unique crash-
ing inputs in both Android and iOS devices affecting GIF,
JPEG, PNG, MP3 and MP4 video files. The speedup ob-
tained (as shown in Table 6) from distributed parallel fuzzing
of 4 devices of the same model achieves a better than ex-
pected 5.27. This is likely due to less (or no) crashes hap-
pening on some devices in parallel. Network latency may
also play a part.

Overall, fuzzing speed depends on the file-type fuzzed.
Video and audio files are significantly slower as they have to
be played back even though the duration of all seed files are
1 second.

#GIF files
fuzzed

#Devices
Time
Taken

10000 4 55 min
1 290 min

Table 6: Speedup obtained with distributed fuzzing
Times include downloading, patching and fuzzing.

3.3.4 CACE - Variety of bugs
CACE triaged all discovered crashes discovered into 7 dif-

ferent bugs. They are detailed in Table 5. CACE traced
the 1786 GIF crashes to a single bug in the LZW compres-
sion algorithm located in the Android 2D graphics library.
That crash is an invalid read access and is not likely to be
exploitable. On the other hand CACE deduced that the 19
PNG crashes are due to a potentially exploitable write to an
invalid memory location also in the same Android 2D graph-
ics library. The MP3 crash indicates an invalid address or
address of corrupt block passed to dlfree to release mem-
ory. Further up the stack, it is actually discovered that the
real error happened in the utilities library, where Android
was actually trying to free a shared StringBuffer. This
appears to be a use-after-free vulnerability. However, when
libc is examined with IDA Pro, r3 points to the address
0xdeadbaad [25] intentionally to cause a segment violation
and forcibly abort the playback. This is a countermeasure
to address a possible heap corruption while rendering the
file. The crash for MP3 is due to the TBPM flag set, a tag
that is not always used in MP3 files; indicating the impor-
tance of fuzzing with a high coverage seed file. The MP4
crashes in Android 2.3.x and 4.4.x are 2 different bugs in
the media extractor library. The crash in 2.3.x is likewise a
0xdeadbaad. The MP4 crash in the newer android version
points to a read access violation during media extraction.
From the centralised web-console, it we can see that this
bug did not affect Samsung devices; cementing our claim
that bugs in the Android core system might not affect cus-
tomised OEM devices and probably vice-versa. The single
discovered JPEG crash for iOS 6.1.x is a memory leak bug
where an extraordinarily large image dimensions are pro-

vided in a much smaller JPEG file. Although the fuzzing
yielded no iOS crashes on newer devices. This bug discov-
ered in iOS 6.1.x affects newer iOS devices upon discovering
this root cause and re-crafting the JPEG input for them.
All bugs have been reported to their respective manufactur-
ers thus the anonymisation of the OS information. We do
not yet know if the bugs have been fixed by all affected ven-
dors: Apple Google, OEM and telecom operators around the
world. This approach is in line with responsible disclosure
best practices.

3.3.5 Storage Utilisation
Table 1 shows the times taken for conducting a 1000 file

PNG fuzz job with and without BSDiff.
The process trades storage space for only a minor loss in

fuzzing speed as files have to be patched before every fuzzing
experiment. A small and good seed file selected by SFAT
helps too. On an iOS device, patching a 1000 job packet
takes less than a minute. The main disadvantage of using
BSDiff patching comes from a lot of CPU time and memory
consumed while the patch for a file is produced [23]. This
can be easily mitigated when running parallel threads of
fuzzing on a high-performance server and running the tests
on more instances of mobile devices of the same model.

3.4 Results Discussion
From our experiments, we found that preprocessing fuzzed

inputs can be a worthwhile trade-off to make. In Subsection
3.2.2, spending a few seconds on preprocessing prior
to testing reduced the incidence of repeated tests
by upto 4 times. This of course is only a concern when
dealing with a large number of test cases as was our case.

Usage of SFAT to maximise RFC coverage has benefits.
As explained in Subsection 3.2.1, a file that would not have
caused a crash was modified within the constraints of the
file format. The resulting file then causes a crash in the
target device due to the modified bit. This is just one ex-
ample among many others and shows that instead of blind
fuzzing, intelligently crafting the inputs beforehand
really pays dividends. On the other hand, automatically
downloaded and analysed seed files may not cover 100% of
the code coverage as is evident from [14]. Manual insertion
of less common fields are still necessary.

FEET is successful in creating fuzz jobs that yield a good
number of crashes. It can be augmented by using the Black-
box fuzz scheduling techniques identified in [11] to select jobs
based on a smaller epochs and assign weights to determine
probability of selection of subsequent jobs after measuring
crash ratio obtained from fuzzing one epoch. In this way
we could get a crash arrival even faster than by the sole
utilization of FEET.

To improve the bug variety discovered, fuzzing operators
with a higher entropy such as bit-level operations could pro-
vide better results such as with zzuf[26].

The similarity of the number of crashes for multiple de-
vices running Android 4.0.4 devices suggests that the bug

is at the Android AOSP level that is independent of device
manufacturer.

Usage of SOFT clients for browser renderable formats are
still not very scalable to new platforms. For files renderable
in the web browser, the mobile client can be made much
simpler.

Exponential storage space growth is also mitigated at some
expense of fuzzing speed. However, the payoff can be in-
creased with more users joining the fuzzing experiments.

4. RELATED WORK
The concept of fuzzing was originally introduced in 1990

by Miller et al. [27]. The fuzzer’s targets were Unix utili-
ties. Since then a lot of research work has been conducted
to improve the methodology of fuzzing. However, mobile
Operating systems though Unix based do not expose com-
mand line utilities to the average user. With the changing
IT landscape new data formats will be defined and existing
formats will evolve - all of which require an investment of
time and energy to adapt generational fuzzing methodology.
Therefore, techniques that use probabilistic heuristics such
as mutation ratio, belief metrics and mutation distribution
such as our approach are some of the first attempts to pro-
vide intelligence to blind fuzzing.

Google [28] has the necessary space and resources to build
a fuzzing farm where they have full-control of instrumenta-
tion. However, independent researchers and smaller labs
have no such luxury. Crowdsourced vulnerability discovery
on the other hand has limited control over the remote device.

BFF [29] by CERT is an automated system for finding
defects in applications that run on the Linux and Mac OS
X platforms. It is also integrated with a tool called CERT
Triage Tools that classifies crashes by severity. BFF fuzzes
applications which run on the same system as the BFF it-
self. It is one of the mutational fuzzers that fuzzes a sin-
gle program with a collection of seeds and a set of muta-
tion ratios. It uses a Multi-Armed-Bandit [32] algorithm
to select the best seed-ratio pairs during a fuzz campaign.
Due to the shared space, it is easier to coordinate fuzzing,
amend fuzzing configuration by feedback and make use of
system tools like GDB and Crashwrangler to capture back
traces. Also, each fuzzed input is not retained. For testing
every new application, the fuzzer is generated and testing
cycle repeated. This introduces unnecessary fuzz genera-
tion time and duplication of malicious files. There is also no
co-relation of fuzz inputs tested across applications or de-
vices that distributed fuzzing provides. Although BFF as a
framework is efficient, it is not applicable when the target is
a mobile device and runs independently outside the vicini-
ties of the fuzzer without volunteer’s administrative access.
Automatic Exploit Generation [30] sought to automatically
find vulnerabilities in an application and immediately write
exploits for them. They have tested the tool on 14 open
source projects and discovered 16 exploits. They make use
of preconditioned symbolic execution of source and binary
code analysis to come up with formula for exploits [30]. This
means that they need to have access to the source code. In
the mobile domain we know this is not always possible. The
exact source code of the Android version in common devices
is not released as they contain proprietary code, added on
by the OEMs. This is even more true on iOS. Even if the
source code does become accessible, the large program size
poses a limitation on the extent of manual analysis possible.

Additionally, with Mobile OS’s implementing Address Space
Randomizations (ASLR), symbolic execution methodologies
are not effective.

The approach described in this paper for selection of good
fuzzing configuration is analogous to the work by both Woo
et. al. [11] and Householder et. al. [21]. The former stud-
ied how to find the greatest number of unique bugs in a fuzz
campaign. They particularly developed an analytic frame-
work using a mathematical model of black-box mutational
fuzzing, which modeled black-box mutational fuzzing as a
WCCP process with unknown weights and used the condi-
tion in the No Free Lunch theorem to decide a better online
algorithm. The latter described a workflow for black-box
fuzz testing and an algorithm for selecting fuzz parameters
to maximize the number of unique application errors. They
presented an implementation of the algorithm, which was
used to find several previously unknown security vulnerabil-
ities.

Robert et. al [11] have devised a general fuzz confgura-
tion scheduling problem-model for selection of seed files for
fuzzing independent of the fuzzing scheduling algorithm. In
our work on fuzzing, fuzz scheduling is mainly based on the
knowledge of position modification.

The authors Woo et. al [8] identified and tested several
belief metrics based on past fuzzing results to select the next
best seed/program pairs for fuzzing the following campaign.
Like our approach, it uses no information of the target and
the file format.

We can augment FEET by adopting CERT, Robert’s[11]
and Woo’s[8] approach so a crash can be expected sooner.

To summarize, fuzz configuration scheduling algorithms
and belief metrics can be used in conjunction with the se-
lection of modification positioning to improve the number
of unique bugs discovered. In particular, the modified posi-
tions can be a parameter to select different seed files or fuzz
jobs consisting of a disparate set of modification positions
based on previously performed experiments.

None of these related work however, address problems as-
sociated with fuzzing in a distributed client-server fashion
such as pre-generation of fuzz input and reduction of stor-
age overhead.

5. FUTURE WORK
This fuzzing paradigm works against downloadable con-

tent which includes documents and multimedia formats. All
of which are vulnerable to today’s drive-by download at-
tacks. However, system level components also involve net-
work protocols and USB I/O protocols which speak directly
to the operating system. Voluntary fuzzing should also ex-
pand to these targets as a future work.

MVDP uses byte or block level mutation operators. These
operators can only offer overly coarse grained modifications
that may be specialised to certain control elements of data
formats. Future work can involve the exploration of more
mutation operators that operate at the bit level, synony-
mous to the zzuf [26] fuzzer used by BFF.

We are also working on a specially crafted gateway ap-
pliance that can periodically fetch new crash information
from STAMP. This information can include modification po-
sitions of files that successfully cause an exploitable crash in
a particular target device. The modification information
can be mapped to the initial/seed file to infer violations of
data-format specification predicates. Subsequent incoming

data-streams that match the set of failed predicates will be
rejected by the gateway appliance before it reaches the end-
host. This application is similar to anti-virus apps on de-
vices, but it checks incoming files rather than applications.
The application could also be made extensible by providing
hooks into which other sources of information feed known
attack signatures.

6. CONCLUSIONS
MVDP was designed to overcome the constraints internet-

scale voluntary fuzzing. We used FEET to ensure the fuzzed
files are highly unique and uniformly distributed. We de-
signed a method to ensure that the seed files used for fuzzing
are of high quality and RFC coverage. We also developed
FEET to inform us of the best fuzzing configurations. STAMP
and SOFT applications are designed to enable fuzz distri-
bution and testing of the mobile device respectively. The
CACE tool enabled automatic binning of unique vulnera-
bilities from crashes obtained from fuzz testing. Analysis
of these crashes and visualizing them according to unique-
ness, crash occurrence and severity give us a better chance
at exploit generation for the sake of mobile security.

7. REFERENCES
[1] A. Imran, Chronic Dev Team Announces ”Tool of

Mass Exploitation”, Install It Now To Help
Community Find Exploits For Untethered Jailbreak
redmonpie.com, November 27, 2011.

[2] J. Drake, Reversing and Auditing Android’s
Propietary Bits RECon, June, 2013.

[3] Michael Sutton, Adam Greene, and Pedram Amini.
2007. Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional.

[4] Sophos Press Release: Users Weighed Down by
Multiple Gadgets and Mobile Devices, New Sophos
Survey Reveals March 18 2013, Sophos Ltd.

[5] National Cyber Awareness System - Vulnerability
Summary for CVE-2012-0003 http://web.nvd.nist.

gov/view/vuln/detail?vulnId=CVE-2012-0003

[6] National Cyber Awareness System - Vulnerability
Summary for CVE-2013-0976: http://web.nvd.nist.

gov/view/vuln/detail?vulnId=CVE-2013-0976

[7] National Cyber Awareness System - Vulnerability
Summary for CVE-2013-1750 http://web.nvd.nist.

gov/view/vuln/detail?vulnId=CVE-2013-1750

[8] A.Rebert, S.K.Cha, T.Avgerinos, J.Foote, D.Warren,
G.Grieco, D.Brumley. Optimising Seed Selection for
fuzzing In Proc. 23rd USENIX Security Symposium,
2014.

[9] Graphics Interchange Format, Version 89a, W3C; 31
July 1990.

[10] H.C.Kim, Y.H.Choi, D.H.Lee. Efficient file fuzz testing
using automated analysis of binary file format.
Journal of Systems Architecture-Embedded Systems
Design, vol. 57, no. 3, pages 259-268, 2011.

[11] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. 2013. Scheduling black-box mutational
fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security
(CCS ’13). ACM, New York, NY, USA, 511-522.

[12] Open-source software for volunteer computing and
grid computing. https://boinc.berkeley.edu/

[13] SETI@home http://setiathome.ssl.berkeley.edu/

[14] C. Miller. How smart is intelligent fuzzing or - How
stupid is dumb fuzzing? Independent Security
Evaluators, August 3, 2007.

[15] Google Custom Search Engine.
https://www.google.com/cse/

[16] Bing Search API.
http://datamarket.azure.com/dataset/bing/search

[17] Hachoir Project.
https://pypi.python.org/pypi/hachoir-core

[18] Information technology – Computer graphics and
image processing – Portable Network Graphics
(PNG): Functional specification. ISO/IEC 15948:2003
(E) W3C Recommendation 10 November 2003.

[19] Skia 2D graphics library -
https://code.google.com/p/skia/

[20] Apple iOS ImageIO - https://developer.apple.com/
library/ios/documentation/GraphicsImaging/

Conceptual/ImageIOGuide

[21] A. D. Householder and J. M. Foote. Probability-Based
Parameter Selection for Black-Box Fuzz Testing.
Technical Report August, CERT, 2012

[22] !exploitable http://msecdbg.codeplex.com/

[23] Binary Diff Utility FreeBSD Man Pages

[24] Mac Developer Library: Apple Technical Note TN233,
Accessing CrashWrangler to analyze crashes for
security implications, March 2014

[25] (SIGSEGV), fault addr deadbaad
https://groups.google.com/forum/#!topic/android-
ndk/jQg6DM6-D6o

[26] C. Labs. zzuf: multi-purpose fuzzer.
http://caca.zoy.org/wiki/zzuf.

[27] B. P. Miller, L. Fredriksen, and B. So. An Empirical
Study of the Reliability of UNIX Utilities.
Communications of the ACM, 33(12):32(44), 1990.

[28] Chris Evans, Matt Moore and Tavis Ormandy, Google
Security Team: Fuzzing at scale
http://googleonlinesecurity.blogspot.sg/2011/08/fuzzing-
at-scale.html Friday, August 12,
2011

[29] Basic Fuzzing Framework.
http://www.cert.org/vulnerability-
analysis/tools/bff.cfm

[30] Thanassis Avgerinos, Sang Kil Cha, Alexandre
Rebert, Edward J. Schwartz, Maverick Woo, and
David Brumley. 2014. Automatic exploit generation.
Commun. ACM 57, 2 (February 2014), 74-84.

[31] Hex-Rays IDA.
https://www.hex-rays.com/products/ida/

[32] D. A. Berry and B. Fristedt. Bandit
Problems:Sequential Allocation of Experiments.
Chapman and Hall, 1985.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0003
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0003
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0976
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0976
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1750
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1750
https://boinc.berkeley.edu/
http://setiathome.ssl.berkeley.edu/
https://www.google.com/cse/
http://datamarket.azure.com/dataset/bing/search
https://pypi.python.org/pypi/hachoir-core
 https://developer.apple.com/library/ios/documentation/GraphicsImaging/Conceptual /ImageIOGuide
 https://developer.apple.com/library/ios/documentation/GraphicsImaging/Conceptual /ImageIOGuide
 https://developer.apple.com/library/ios/documentation/GraphicsImaging/Conceptual /ImageIOGuide
http://msecdbg.codeplex.com/
 http://www.freebsd.org/cgi/man.cgi?query=bsdiff&sektion=1&manpath=FreeBSD+5.5-RE LEASE
https://groups.google.com/forum/#!topic/android-ndk/jQg6DM6-D6o
https://groups.google.com/forum/#!topic/android-ndk/jQg6DM6-D6o
https://groups.google.com/forum/#!topic/android-ndk/jQg6DM6-D6o
http://caca.zoy.org/wiki/zzuf
http://www.cert.org/vulnerability-analysis/tools/bff.cfm
https://www.hex-rays.com/products/ida/

	Introduction
	Fuzzing Challenges and Motivations
	Contributions

	The Process
	Quality Input Generation
	Seed File Downloader (SFD)
	Seed File Analysis Tool (SFAT)
	Seed File Selection Algorithm
	Fuzzing Engine
	Fuzzing Engine Evaluation Tool

	Device and Task Management
	STAMP
	STAMP clients

	Crash Analysis
	Vulnerability Analysis

	Implementation and Evaluation
	Experimental Setup
	Storage Space Management
	Crash Classification
	Crash Similarity

	Experimental Parameters
	SFAT Metrics
	FEET Metrics
	STAMP Metrics

	Experimental Results
	FEET Results
	SFAT results
	STAMP results
	CACE - Variety of bugs
	Storage Utilisation

	Results Discussion

	Related Work
	Future Work
	Conclusions
	References

