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This book covers various topics of modern analysis and geometry related to
the concept of monodromy: singularity theory, local and global theory of analytic
differential equations, Abelian integrals, differential and topological Galois theory,
multiple hypergeometric integrals. We mainly concentrate in this review on dif-
ferential equations and related topics. The progress of the last three decades has
drastically changed the panorama of the field. In this review, together with major
results, some open problems are presented.

1. Linear systems with regular singular points

For a long time, the Riemann-Hilbert problem was a central one in the the-
ory of linear differential equations with complex time. This problem requires the
construction of a linear differential equation with a preassigned monodromy data.
The monodromy data is defined as follows. A circuit around a singular point of the
equation produces a linear transformation of the space of its solutions, called a mon-
odromy map. The set of singular points (a1, ..., am) and corresponding monodromy
maps (M1, ..., Mm) are called the monodromy data.

Riemann, who discovered the very concept of monodromy, stated the problem
at the end of his short life. Poincaré and Hilbert tried to solve it, and Hilbert
included it in his famous list under the number 21. In 1908 J. Plemelj, a disciple
of Hilbert, solved the problem. He presented his solution in full detail in a book
that he published in 1964, at the age of 89. For about 70 years the mathematical
community believed that the problem was completely solved.

Only in the 1970s did it become clear that Plemelj realized arbitrary monodromy
data for regular, not for Fuchsian, systems. A linear system

(1) ż = A(t)z, z ∈ C
n

is regular provided that A is rational and the solutions have but a power growth
at the singular points, the poles of A. The Fuchsian systems are those for which A
has simple poles only:

(2) ż =
m∑
1

Aj

t − aj
z;

A1, ..., Am are called the residue matrices of the system (2). In 1989 A. Bolibrukh
constructed a ground-breaking example of the monodromy data that cannot be
realized by Fuchsian systems. A problem arose: What data may be realized? The
answer depends on n. For n = 2 it is: any data. For n = 3, the criterion of
realizability was obtained by Bolibrukh and Anosov, [AB]; for n = 4, by Bolibrukh
and Gladyshev, [G]. For n = 5, the answer is unknown.

A simplified version of the problem is suggested by Arnold: What is a minimal
codimension of the nonlinearizable monodromy data?
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Another form of the Riemann-Hilbert problem is related to Lie group theory.
Suppose that the monodromy matrices Mj belong to a Lie group G. Is it possible
to realize this monodromy data by a Fuchsian system whose residue matrices Aj

belong to the Lie algebra g of G? Note that if Aj ∈ g, then Mj ∈ G.

2. Linear systems with irregular singular points

The local theory of irregular singular points is more complicated than in the
regular case. The reason is that in the regular case the normalizing Taylor series
converge, whilst in the irregular case they diverge as a rule.

In the regular case a classical normalizing transformation

(3) w = H(t)z

with a nondegenerate holomorphic matrix function H is used to bring system (1)
to a convergent normal form.

In the irregular case, system (1) near a singular point zero has the form

(4) ż =
A(t)
tr+1

z, z ∈ C
n, r > 0.

Let λ1, . . . , λn be the eigenvalues of A(0). Equation (4) is nonresonant provided
that the λ′

js are pairwise distinct. In the nonresonant case equation (4) may also
be transformed by (3) to a convergent normal form with the variables separated, but
this time H in (3) is not a holomorphic matrix function, but rather a holomorphic
cochain. By definition, this cochain is a 2r-tuple of holomorphic matrix functions:
H = (H1, . . . , H2r). Each function Hj is defined in an open sector Sj with vertex
0. Sectors S1, . . . , S2r, cyclically ordered, cover a punctured neighborhood of zero.
Components Hj and Hj+1 differ by an exponentially small increment in Sj ∩Sj+1;
more precisely, Hj(t) → E as t → 0 in Sj , and Φj(t) − E := Hj ◦ H−1

j+1(t) − E =
O(exp(− C

|t|r )) in Sj ∩ Sj+1. The 2r-tuple (Φ1, ..., Φ2r) is called the coboundary of
the cochain H. The statement that (3) conjugates (4) with its normal form

(5) ẇ =
B(t)
tr+1

w, B(t) = diag (b1(t), . . . , bn(t))

means that Hj conjugates (4) and (5) in any sector Sj .
A functional cochain is not merely a tuple of holomorphic (matrix) functions,

but rather an entity. For example, if one component Hj decreases faster than any
power of t as t → 0 in Sj , then all the components Hk are identically zero. This is
a Phragmen-Lindelöf theorem for cochains [IKh].

Due to the linearity of the problem, the coboundary of the normalizing cochain
may be expressed through constant linear operators called Stokes operators. These
operators are invariants of the analytic classification of irregular singular points and
cannot be determined by any finite jet of the vector field at a singular point. The
occurrence of such invariants is called the Stokes phenomenon.

The Riemann–Hilbert problem has been considered for linear systems with ir-
regular singularities since the time of Birkhoff. Recent progress is described in
[BMM].

3. Nonlinear differential equations in the plane

The planar theory of analytic differential equations, both real and complex, has
been developed much further than its multidimensional analog. The main problem
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in this field is Hilbert’s 16th: What may be said on the number and position of limit
cycles of a real planar polynomial vector field of degree n? This problem is not yet
solved, but it motivates the development of many branches of the theory, including
local ones.

One of the most famous local results is the Desingularization Theorem: Isolated
singular points of planar analytic vector fields, however complex they are, may
be split into a finite number of elementary singular points by a finite number of
blow-ups. A blow-up is a map that may be locally defined as (x, y) �→ (x, y

x .) A
singular point is elementary provided that at least one of its eigenvalues is nonzero.
The desingularization theorem, without a proof, was claimed by Bendixson in 1901.
The centennial history of this theorem was completed in 2006, when the transparent
proof due to Van der Essen was published in the book by Zoladek.

On the other hand, elementary singular points are in a sense simple. Their
orbital analytic classification has been mainly completed. In the nonresonant case
(the ratio λ of the eigenvalues is not zero or negative rational or natural or inverse
to natural), a germ of a planar vector field is analytically equivalent to a linear one
under some special condition on λ. The statement of this condition, and the proof
of its sufficiency, is due to Bruno. Proof of the necessity, due to Yoccoz, was one of
the results that gained him the Fields Medal in 1994.

The analytic classification of resonant singular points, saddle-nodes (λ = 0)
and resonant saddles (λ rational negative), was obtained in the early 1980s by
Martinet and Ramis. It relies heavily upon the classification of germs of conformal
maps tangent to identity achieved by Écalle, Malgrange and Voronin in 1981. All
these classifications have functional moduli. These moduli are coboundaries of
normalizing cochains. These cochains occur in the nonlinear theory in the same
way as in the theory of irregular singular points. The occurrence of these functional
moduli is called the Nonlinear Stokes phenomena; see [I2].

One of the major problems of the local theory going back to R. Thom is to
give a complete analytic classification of germs of planar analytic foliations near a
singular point. Despite reasonable progress [L-N], [MS], the problem has not yet
been solved. A similar problem is to give a topological classification of the same
germs.

Nonlinear Stokes Phenomena and functional cochains were applied by Écalle [E]
and Ilyashenko [I1] to prove that polynomial vector fields in the real plane have but
a finite number of limit cycles. This is a partial answer to Hilbert’s question.

4. Parameter depending Abelian integrals

Another problem closely related to Hilbert’s 16th is a problem on the number of
zeros of integrals of the form

(6) I(t) =
∫

γ(t)

ω.

Here ω is a 1-form with polynomial coefficients of degree m, γ(t) is a real oval, that
is, a compact component of a level curve H = t, of a real polynomial H in two
variables of degree n. Real ovals of such polynomials form continuous families of
closed curves bounded by critical level curves of H. Zeros of integral (6) correspond
to limit cycles generated from the ovals of H by a perturbation

(7) H + εω = 0.
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Note that ovals of H satisfy the equation dH = 0.
This gives rise to the following infinitesimal Hilbert problem: give an upper

estimate of the number of real zeros of integral (7). Varchenko and Khovanski
proved the existence of a uniform estimate for zeros of integral (7):

∀m, n ∃V (m, n) such that #{I = 0} ≤ V (m, n).

This is one of the first applications of the fewnomial theory originated by Khovanski
[Kh].

Abelian integrals (7) may be extended to the complex domain as nonunivalent
functions. Their ramification is described by the Picard-Lefschetz theorem. These
integrals form a particular case of the so-called Gauss-Manin connection.

The main problem in the field is to give an upper estimate of the number V (m, n).
Numerous particular results have been obtained by L. Gavrilov, D. Novikov–
Yakovenko, G. Petrov–Khovanski, Glutsyuk and others.

5. Global theory of planar polynomial foliations

This theory mainly describes the topological properties of generic polynomial
foliations of the complex projective plane. These properties are drastically different
from parallel properties of foliations of the real plane. Generic polynomial vector
fields on the real plane have but a finite number of limit cycles; ω-limit sets of their
orbits are either steady-state points or cycles; generic vector fields are structurally
stable. Generic polynomial vector fields in the complex plane have a countable
number of complex limit cycles, all their leaves are dense and the foliations are
topologically rigid. Roughly speaking, a foliation F is topologically rigid provided
that any foliation topologically equivalent to F is analytically equivalent to it.

The main problem in the domain is to generalize these results to foliations in
higher dimensions. Some progress in this study is achieved in [G-M], [LR].

The analytic theory of differential equations is presented in detail in the forth-
coming book [IYa]. This book and Zoladek’s have a large intersection, but they are
written in different styles and their symmetric difference is large as well.

6. Differential and topological Galois theory

Differential Galois theory, also called Picard-Vessiot theory, mainly studies ex-
tensions of the field K of rational functions by the components of solutions of linear
and nonlinear systems of differential equations. It reduces the problem of solvabil-
ity of these equations in quadratures to the study of the group of automorphisms
of the extension that are identical on K. This group is called the differential Galois
group of the extension or, by abuse of language, the Galois group of the differential
equation itself.

In the 1980s Ramis studied the Galois group of a linear system (4) near an
irregular singular point. He proved that Stokes operators of the equation belong
to its Galois group. He also gave a complete description of the Galois group of
the equation above in terms of its formal normal form, monodromy and Stokes
operators. Zoladek’s proof of this theorem makes use of the Phragmen-Lindelöf
theorem for functional cochains.

In the last decade methods of the Galois theory of linear equations have been
applied to the study of nonintegrability of nonlinear differential equations.
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At the beginning of the 1960s, Arnold originated a topological version of Galois
theory. He connected nonsolvability of algebraic equations in quadratures with the
unsolvability of the monodromy group of the corresponding algebraic functions.
Khovanski, a graduate student of Arnold at that time, created a topological version
of the Picard-Vessiot theory for linear differential equations with complex time.
At the same time, he extended this approach to the functions that are beyond
the Picard-Vessiot theory, for instance, to those that have a countable dense set
of ramification points on different leaves of the corresponding Riemann surface.
Recently Khovanski extended this theory to analytic functions of several variables.

7. The book of Zoladek

In the book of Zoladek most of the results above are presented. Due to the huge
amount of material, the exposition is very concentrated. Yet it is quite clear, with
all the ideas described before the technical details. Some proofs are replaced by
sketches. Many proofs are drastically improved by the author in comparison with
the original sources. Numerous original results of the author are also presented.

The book also contains the core of singularity theory. This includes the classifi-
cation of critical points of functions, in particular, results of Tougeron and Arnold,
the monodromy theorem for the Milnor fibration, and asymptotics of oscillating
integrals. These results were basically obtained in the 1960s and 1970s. The main
part of these results is presented in [AGV1], [AGV2]. The presentation of Zoladek
is more concentrated and provides a rapid introduction to some highlights of the
theory.

The book contains all the preliminary material from algebra and topology nec-
essary for the understanding of the other parts.

The last chapter deals with hypergeometric functions. It starts with the classical
results on the Gauss hypergeometric equation and presents the Picard-Deligne-
Mostow theory. The chapter concludes with the introduction to the Gelfand-
Kapranov-Zelevinski-Varchenko theory of multivariable hypergeometric functions.

The book is an encyclopedia of various topics in geometry and analysis related
to the concept of monodromy. It contains all the preparatory material and may be
used for various graduate courses. On the other hand, it contains a lot of material
for future research, especially in analytic differential equations and related topics.
The book is a most valuable source in analytic differential equations and an excellent
treatment of the singularity theory.
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