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Typed Nominal Rewriting

ELLIOT FAIRWEATHER and MARIBEL FERNÁNDEZ, King’s College London, Department of

Informatics

Nominal terms extend first-order terms with nominal features and as such constitute a meta-language for

reasoning about the named variables of an object language in the presence of meta-level variables. This paper

introduces a number of type systems for nominal terms of increasing sophistication and demonstrates their

application in the areas of rewriting and equational reasoning. Two simple type systems inspired by Church’s

simply typed lambda calculus are presented where only well-typed terms are considered to exist, over which

α-equivalence is then axiomatised. The first requires atoms to be strictly annotated whilst the second explores

the consequences of a more relaxed de Bruijn style approach in the presence of atom-capturing substitution.

A final type system of richer ML-like polymorphic types is then given in the style of Curry, in which elements

of the term language are deemed typeable or not only subsequent to the definition of alpha-equivalence.

Principal types are shown to exist and an inference algorithm given to compute them. This system is then

used to define two presentations of typed nominal rewriting, one more expressive and one more efficient, the

latter also giving rise to a notion of typed nominal equational reasoning.

CCS Concepts: • Theory of computation→ Equational logic and rewriting; Type theory; Type struc-
tures; •Mathematics of computing → Lambda calculus;

Additional Key Words and Phrases: Nominal Syntax, Nominal Rewriting
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1 INTRODUCTION
This paper concerns the intersection of two areas of research, that of syntax with binding and type

systems.

The concept of binders is pervasive in the study of formal languages. Nominal techniques [36, 37,

41] offer an approach to reasoning about name binding in formal languages, allowing direct access

to binders and named bound variables, and use the properties of permutations of names to simplify

reasoning about object-language terms equivalent up to the renaming of bound names. This ‘α-
equivalence’ over terms can be provided as a formal, built-in axiomatisation and allows an approach

to structural induction modulo α-equivalence similar to that used in informal practice [58]. The

approach has already enjoyed success in both theory and practice. Nominal terms, first introduced

in [69], are a nominal extension of first-order terms and as such constitute a meta-language for

reasoning about named variables of an object-language in the presence of meta-level variables. They

have been studied extensively, particularly in the context of rewriting and equational reasoning [22,

23, 33, 34, 39]. Object-level variables are represented in nominal terms using atoms, which can
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:2 ELLIOT FAIRWEATHER and MARIBEL FERNÁNDEZ

be abstracted, and meta-level variables are represented by moderated variables (a variable with

an atom-permutation suspended over it). The suspended permutation acts when the variable is

instantiated by a substitution, which is first-order in nature (that is, not capture-avoiding). For

example, the nominal terms lam [a]X and app (lam [a]X , X ), where the permutation suspended

over X is the identity and has been omitted, represent the lambda term ‘contexts’ λx .M (or λx .[−])
and (λx .M ) M , respectively. Unification and matching of nominal terms has been shown to be

decidable [69] and linear time algorithms for matching have been developed [9]. As a result, both

logic-based and functional programming languages that integrate nominal techniques have already

been implemented [14, 16, 61, 66].

Type systems are another important area within the study of formal languages. First studied as a

means to overcome the paradoxes of set theory [64], they were later incorporated into the lambda

calculus by Church [1940]. In addition to extensive subsequent research from this theoretical

standpoint, type systems were later applied to the area of programming languages; they are

intrinsically linked to the specification and verification of program properties through constructivist

logics and the Curry-Howard isomorphism. Type systems provide a tractable, syntactic method to

define and check specifications of programs, allowing certain of their behaviours to be reasoned

about even before execution [56, 57].

This is an area of increasing importance; critical domain software, such as that used in the fields

of medicine, telecommunications, transport and defence, often demands mathematical certainty of

program correctness. Thus there is a corresponding demand for the development of type systems

of increasing power and sophistication for use in certified programming environments. However,

thus far, formal research in type systems for nominal abstract syntax, nominal terms and nominal

rewriting has been limited (see Related Work below). This paper contributes several type systems

for nominal terms and systems of nominal reasoning, in which object-level variables (atoms) may

inhabit any type and users may provide arbitrary type declarations for term-formers. Both Church-

and Curry-style approaches are considered, the latter in the presence of polymorphic types. Church-

style systems are considered in Section 3. In such systems, terms are well-typed by definition and

thus the typing of terms precedes the definition of relations on terms such as freshness and alpha-

equivalence. The first system which is briefly considered is in strict Church-style [18] whereby

atoms are annotated with their types. The second explores de Bruijn’s presentation of Church’s

system [8]. Whilst notationally less verbose than the fully annotated system, this approach, in which

types given to abstracted atoms may be added to the typing environment, is more complex due to

the possibility of typing conflicts arising from atom-capture when applying variable substitutions to

non-linear terms. For example, in the untyped nominal term app (lam [a]X , X ), the first occurrence
of the variable X is under the scope of an abstraction for the atom a, but the second occurrence

is not. Thus, a substitution [X 7→ a] applied to this term introduces both an abstracted and a

non-abstracted occurrence of a. To ensure safe interaction between capturing substitutions and

atom-typing contexts, the type systems designed in this paper check the type compatibility of the

abstraction contexts for each occurrence of a moderated variable, taking suspended permutations

into account. This is not needed in the strict Church system where each atom has a fixed type.

Two possible directions for further study then arise; one could consider polymorphic or other

more powerful types in a Church setting (such as the dependent types presented in [31]), or

alternatively, one could define a simple Curry-style system [8, 26], using meta-level type variables.

Here, it was decided to take a step in both directions simultaneously, and a Curry-style, ML-like

polymorphic type system is presented in Section 4. Term-formers may now be assigned type

schemes and only the types of unabstracted atoms are pre-determined. Elements of the term

language are deemed typeable or not only after the definition of alpha-equivalence. As for the

de Bruijn system, it is necessary to account for the interaction of capturing substitution but here
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the Curry-style typing allows freshness constraints to be taken into consideration and the effect

of permutations suspended upon variables to be considered only in the case where non-linear

substitutions may occur. Alternative designs are possible, for example by requiring a fixed type

for all the occurrences of an atom, as in the strict Church system. The chosen approach, however,

permits a more flexible use of atoms, where different occurrences of an atom may have different

types, provided a compatibility condition is satisfied. This condition ensures that a well-typed

capturing substitution acting on a well-typed term produces a well-typed term. Terms are also

shown to have a principal type and an inference algorithm to compute them is given.

This polymorphic system is then studied in the context of both rewriting and equational theories

in Section 5. Two formulations of typed nominal rewriting are presented, one more expressive, using

equivariant matching over sets of uniform rules and one more efficient, using nominal matching

with closed rules, which nevertheless encompasses most scenarios of interest. In both cases, the

rewriting relation preserves types. A formulation of typed nominal equational reasoning based on

the latter of these approaches is then derived. A wide selection of examples is given.

The work of Section 3 was first presented in [29]. An earlier version of the material presented

in Section 4 and Section 5 was published in [30] in collaboration with Murdoch J. Gabbay. It was

subsequently improved upon in [29].

Related Work. The subject of syntax with binding is an extremely large area of research, in

which many approaches exist. One of the first solutions was that of de Bruijn [1972] used in the

development of the theorem prover AUTOMATH, in which variables are nameless and instead

represented and manipulated as indices. Although excellent from a mechanical point of view, this

approach is far removed from the traditional, human-friendly representation of term languages. An

intermediate approach is that of ‘locally nameless’ systems, such as described in [3, 52]. There, de

Bruijn indices are used for bound variables and names for free variables. This approach has been

used in the implementation of many modern theorem provers including Coq [17, 24], LEGO [50],

and Isabelle [72]. Perhaps the most popular approach in higher-order rewriting [48, 49, 51] is that

of ‘higher-order abstract syntax’ [55]. In such systems, binding in term languages is represented

using the lambda calculus and thus, issues of α-equivalence and capture-avoiding substitution are

implicitly handled at the meta-level. The undecidable properties of the lambda calculus, such as the

undecidability of unification [44], do cause problems here but practical solutions do exist. However,

bound names are not directly accessible in such systems and inductive reasoning over expressions

containing binders is not easily supported.

For nominal terms, a Curry-style type system is given in [32], later simplified in [30]. Nominal

terms are given sorts in [69] where atoms inhabit base atom sorts and term-formers yield terms of

base ‘data’ sorts. The authors are unaware of any other approaches to type systems for nominal

terms directly but a number of systems of nominal abstract syntax, a more fundamental approach to

the incorporation of the ideas of nominal sets to syntax, have been typed including such as [11, 13,

25, 59, 60, 65]. As with sorted nominal terms, atoms in such systems are either typed with a single

type or restricted to a certain set of base types. Abstracted atoms are also subsequently required to

inhabit an ‘atom’ type. These restrictions, whilst sometimes desirable, deny to the nominal parts

of the syntax any of the more complex types or features present in the type systems. With the

view of developing rewriting applications, in those systems presented here both unabstracted and

abstracted atoms may inhabit any type.

The types used here are most similar to those of αProlog [15], a Prolog-like logic programming

language employing nominal abstract syntax. This system also gives terms ML-style polymorphic

types, built using type variables, type constructors, and abstraction types, and function applications

are also given fixed declarations. However, atoms must inhabit atom types, disjoint from the types

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article . Publication date: November 2017.



:4 ELLIOT FAIRWEATHER and MARIBEL FERNÁNDEZ

of terms, as must the atoms of abstractions, and the result type of function applications is restricted

to constructed term types. Whilst implemented, the type system is not formalised.

Urban [2008] describes how the nominal package for Isabelle [72], a higher-order logic theorem

proving environment, is typed. Within the Isabelle type system, atoms are given a single type.

Permutations are typed simply as lists of pairs of that type. The action of a permutation is an

overloaded operator allowing a definition to be given for each built-in ‘permutation type’. Such a

type is an instance of a type class that guarantees that certain properties of elements of the type

are maintained under the permutation operation. However, in later work [45], it is explained that

atoms may be given arbitrary sorts (‘multi-sorted concrete atoms’) at the term level which can be

enforced by the Isabelle type-checker by use of sub-typing.

Shinwell [2005] describes the implementation of the language Fresh OCaml, (successor to the

FreshML of [67], where atom-abstractions are implemented by dynamically generating fresh names),

an extension of OCaml for meta-programming with binding and data structures. Expressions for

generating fresh atoms, atom abstraction, swapping atoms and freshness conditions are added to

the language. Atoms are given a name type but one that is polymorphic over all types. Abstractions

need not necessarily abstract atoms and the abstracted expression need not be of a ‘name’ type.

However this language is not fully formalised. Instead a smaller subset, Mini-FreshML, is studied in

which the type system is extended with a single type for names and an abstraction type, of the type

of names over types. Pottier [2007] later provided a mechanism for static name control in FreshML.

Type systems for first-order rewriting are studied in [70, 71]. The first-order rewriting language

Maude [19, 20] has a rich type system, providing sorts, sub-sorts, operator overloading and more.

Type systems for formalisms of higher-order rewriting are less well developed. Higher-order

Rewrite Systems [51], use a typed lambda calculus as a meta-language together with restrictions

on patterns to ensure the decidability of higher-order unification, however, rewrite rules may only

be typed with base types. Richer types for function symbols in this system are considered in [47].

In ‘plain’ higher-order rewrite systems, the lambda calculus is extended with first-order rewriting

together with first-order matching. A mixed approach of standard and plain higher-order rewriting

is proposed in [46], using a system of polymorphic types.

Overview. The paper is organised as follows: Section 2 gives an overview of the nominal approach

to syntax with binding. Section 3 defines two approaches to Church-style simple types for nominal

terms and Section 4 a more sophisticated polymorphic type system in the style of Curry. This

system is then used in Section 5 to develop typed nominal equational systems. Section 6 concludes

and gives directions for future work.

2 BACKGROUND
Nominal terms [69] are a meta-language designed to specify and reason about formal languages

that use names and binding, such as logics or programming languages. Equational reasoning for

nominal terms has been extensively studied [22, 23, 33, 34, 39].

2.1 Atoms, Permutations and Terms
Atoms represent names or named variables at the object-language level.

Let there be a countably infinite set of atoms, A, and following the permutative convention
of [38], let a, b, c, . . ., range over distinct atoms in A.
A permutation, denoted π , is a bijective function on A, such that {a | π (a) , a, a ∈ A} is a

finite set. Call this set the support of π and write it as supp(π ). Permutations are represented as a

list of transpositions or ‘swappings’ of atoms, where id represents the identity permutation, that is,

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article . Publication date: November 2017.



Typed Nominal Rewriting :5

the permutation, π , which, for all a ∈ A, π (a) = a.

π ::= id | π ∗ (a b)

Note that permutations are read from right to left and that the final id and ‘list cons’ operators in

the representation of a permutation, π , will most often be omitted; for example, the permutation

(id ∗ (c d )) ∗ (a b) will be written simply as (c d ) (a b).
Below, π ranges over such syntactic representations of permutations as finite lists of pairs of

atoms. Due to redundancy in this presentation, a permutation need not have a unique representation;

for example, (a b) (b c ) (a b) represents the same permutation as (a c ), and (a a), the same as the

identity permutation.

Write π ′ @ π for the composition of the permutation π followed by the permutation π ′, which,
as a list of transpositions corresponds to the concatenation of π ′ onto the end of π . Write π -1

for

the inverse of π , which is obtained by reversing the order of the list of transpositions used to

represent π ; for example

(
(e f ) (c d ) (a b)

)
-1

= (a b) (c d ) (e f ).

The disagreement set of two permutations, π and π ′, written ds(π , π ′), is defined as {a |
π (a) , π ′(a)}; that is, the set of atoms for which π and π ′ have differing values.

Consider countably infinite, pairwise disjoint sets of variables, X , Y , Z , . . . ∈ X and term-
formers, f, g, . . . ∈ F, and then following [69], let nominal terms be defined using the grammar

described in Definition 2.1 immediately below.

Definition 2.1 (Nominal Terms).

s, t ::= a | [a] t | f t | (t1, . . . , tn ) | π · X

Let these constructions be called respectively atom terms, abstractions, function applica-
tions, tuples andmoderated variables. The symbol ≡ is used to denote syntactic equality over

terms.

Permutations are said to suspend on variables to form moderated variables; read (a b) · X as

‘swap a and b in X ’. Whilst a variable, X , is not by itself a nominal term, the moderated variable

id · X is a term; in this situation the identity permutation will most often be omitted and the term

be written as just X .

Write vars(t ) for the variables that occur syntactically in t and atms(t ) for the atoms syntactically

occurring in t . The definitions are inductive and omitted. Note that in the case of atoms this

includes all those mentioned in permutations suspended upon moderated variables. For example,

a, b, c ∈ atms([a] [b] (a c ) · X ) and X ∈ vars([a] [b] (a c ) · X ). These notations are extended to

other elements of syntax and tuples of elements in the obvious way.

Say an occurrence of an atom in a term t is concrete if it occurs in t directly as an atom subterm.

Call concrete occurrences of an atom, a, abstracted when they are in the scope of an abstraction

on a, [a] t , and otherwise call them unabstracted.
If one supposes term-formers lam and app, then one can build nominal terms that represent

terms of the lambda calculus [6].

Example 2.2 (Nominal Terms).

lam [a]a app (lam [a]a, a)

lam [a]X app (lam [a]X , X )

In this example the nominal terms in the first line represent, respectively, the lambda terms

λx .x and (λx .x ) x , and those in the second line, the lambda term ‘contexts’ λx .M (or λx .[−]) and
(λx .M ) M .

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article . Publication date: November 2017.



:6 ELLIOT FAIRWEATHER and MARIBEL FERNÁNDEZ

The second term in the second line contains two occurrences of the variable X ; these represent

the same unknown part of the term, and each occurs under different abstracted atoms. This is a

generalisation of the traditional notion of a lambda term ‘context’, in which usually only a single

unknown part of a term is allowed.

The term app (lam [a]a, a) has three occurrences of the atom a, the rightmost two of which are

concrete occurrences, the first abstracted and the second unabstracted. However, whilst the atoms

a and b are both in the term lam [a] (a b) · X , none of the occurrences is concrete.

2.2 Permutation Actions
The application of a permutation, π , to an atom, a, is written as a standard function application,

π (a), and is defined inductively over a list of transpositions as described in Definition 2.3.

Definition 2.3 (Permutation Action on Atoms).

id(a) ≜ a (π ∗ (a b)) (a) ≜ π (b)

(π ∗ (a b)) (b) ≜ π (a) (π ∗ (a b)) (c ) ≜ π (c )

Permutations are most commonly applied to terms at the level of the object-language. The

permutation action of a permutation, π , on a term, t , is written π · t and defined inductively,

as follows below in Definition 2.4. Note that this is the same notation as that used to represent a

permutation suspended upon a variable in a moderated variable; the two ideas are conceptually

similar and no ambiguity arises.

Definition 2.4 (Permutation Action on Terms).

π · a ≜ π (a) π · (π ′ · X ) ≜ (π @ π ′) · X

π · [a] t ≜ [π (a)]π · t π · f t ≜ f (π · t )

π · (t1, . . . , tn ) ≜ (π · t1, . . . , π · tn )

Example 2.5 (Permutation Action on Terms).

(a b) · f [a] (a, b, (b c ) · X ) = f [b] (b, a, (a b) (b c ) · X )

At times, it is necessary to apply a permutation at the level of nominal terms rather than of an

object language; this is called the meta-level permutation action on terms.

Define
π t , themeta-level permutation action of a permutation, π , on a term, t , inductively,

as follows.

Definition 2.6 (Meta-level Permutation Action on Terms).

πa ≜ π (a) π (π ′ · X ) ≜ (π @ π ′ @ π -1) · X

π ([a] t ) ≜ [π (a)] π t π (f t ) ≜ f (π t )
π (t1, . . . , tn ) ≜ (π t1, . . . ,

π tn )

Example 2.7 (Meta-level Permutation Action on Terms).

(a b )f [a] (a, b, (b c ) · X ) = f [b] (b, a, (a c ) · X )

The permutation (a c ) in the right-hand side is the same as (a b) (b c ) (a b) (as mentioned earlier,

permutations do not have a unique syntactical representation).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article . Publication date: November 2017.



Typed Nominal Rewriting :7

2.3 Variable Substitutions
Variable substitutions are substitutions that operate at the level of nominal terms.

Definition 2.8 (Variable Substitutions). A variable substitution is a mapping from variables

to terms, equal to the identity mapping but for finitely many arguments, and written as a set of

bindings [X1 7→ s1] . . . [Xn 7→ sn], such that the variables, X1, . . . , Xn , are pairwise distinct.

Let θ range over variable substitutions and write the value of a substitution, θ , for a variable, X ,

as θ (X ). The domain of a substitution θ , written dom(θ ), is the set of variables, {X | θ (X ) . X }.
id denotes the identity substitution, that is, the substitution whose domain is the empty set.

The action of a variable substitution, θ , upon a term, t , is written as juxtaposition to the right

thus, t θ , and is defined inductively as follows.

Definition 2.9 (Variable Substitution Action).

a θ ≜ a (π · X ) θ ≜ π · (θ (X ))

([a] t ) θ ≜ [a] (t θ ) (f t ) θ ≜ f (t θ )

(t1, . . . , tn ) θ ≜ (t1 θ , . . . , tn θ )

It is important to note that variable substitutions are grafting onto syntax trees and do not avoid
the capture of atoms by abstractions.

Example 2.10 (Atom Capture by Variable Substitution).

([a]X , [b]X ) [X 7→ a] = ([a]a, [b]a)

Notice how in the above example, the atom, a, is captured in the first abstraction following the

action of the variable substitution.

2.4 Freshness and Alpha-equivalence
The freshness and alpha-equivalence relations now presented are key concepts with regard to

nominal terms.

Call a # t a freshness constraint (read ‘a fresh for t ’). Let ∆, ∇ range over sets of freshness

constraints of the form a # X ; call such sets freshness contexts. The shorthand notation, A # X,

whereA and X are arbitrary sets of atoms and variables respectively, may be used to represent the

freshness context {a # X | a ∈ A, X ∈ X}. The brackets of singleton sets may be omitted in such

notation. The meta-level permutation action is extended to freshness contexts, thus
π∆ ≜ {π (a) #

X | a # X ∈ ∆}.
Write ∆ ⊢ a # t when a derivation exists using the rules given in Definition 2.11 below.

Definition 2.11 (Freshness Relation).

(atm)#
∆ ⊢ a # b

π -1 (a) # X ∈ ∆
(var )#

∆ ⊢ a # π · X

(abs : aa)#
∆ ⊢ a # [a] t

∆ ⊢ a # t
(abs : ab)#

∆ ⊢ a # [b] t

∆ ⊢ a # t1 . . . ∆ ⊢ a # tn
(tpl )#

∆ ⊢ a # (t1, . . . , tn )

∆ ⊢ a # t
(app)#

∆ ⊢ a # f t

Call s ≈α t an alpha-equality constraint and write ∆ ⊢ s ≈α t when a derivation exists using

the rules given in Definition 2.12 below.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article . Publication date: November 2017.



:8 ELLIOT FAIRWEATHER and MARIBEL FERNÁNDEZ

Definition 2.12 (Alpha-equivalence Relation).

(atm)α
∆ ⊢ a ≈α a

∀a ∈ ds(π , π ′) a # X ∈ ∆
(var )α

∆ ⊢ π · X ≈α π ′ · X

∆ ⊢ s ≈α t
(abs : aa)α

∆ ⊢ [a] s ≈α [a] t

∆ ⊢ s ≈α (a b) · t ∆ ⊢ a # t
(abs : ab)α

∆ ⊢ [a] s ≈α [b] t

∆ ⊢ s1 ≈α t1 . . . ∆ ⊢ sn ≈α tn
(tpl )α

∆ ⊢ (s1, . . . , sn ) ≈α (t1, . . . , tn )

∆ ⊢ s ≈α t
(app)α

∆ ⊢ f s ≈α f t

Example 2.13 (Alpha-equivalence).

∅ ⊢ [a]a ≈α [b]b ∅ ⊢ [a] c ≈α [b] c ∅ ̸⊢ [a] c ≈α [a]a

a # X , b # X ⊢ (a b) · X ≈α X

Let C range over freshness and alpha-equality constraints; a constraint problem, C, is an

arbitrary set of such constraints. Extend the above notation for the derivability of constraints

element-wise to constraint problems; thus, write ∆ ⊢ {C1, . . . , Cn } for ∆ ⊢ C1, . . . , ∆ ⊢ Cn . The

action of variable substitutions extends to constraints and thus constraint problems in the natural

way.

If there exists a freshness context ∆ such that ∆ ⊢ C, then C is valid in ∆. See [33, 69] for

algorithms to validate constraint problems.

The freshness and alpha-equivalence relations are closed under the action of permutations. That

is, for any permutation, π , if ∆ ⊢ a # t , then ∆ ⊢ π (a) # π · t , and if ∆ ⊢ s ≈α t , then ∆ ⊢ π ·s ≈α π · t .
The following result is one of the main technical correctness properties of nominal terms (see [69]

for a proof).

Theorem 2.14. If ∆ ⊢ a # s and ∆ ⊢ s ≈α t then ∆ ⊢ a # t .

2.5 Nominal Matching

Definition 2.15 (NominalMatching Problem). Given a constraint problem,C, of the form
{
. . . , si ≈α

ti , . . .
}
, a corresponding nominal matching problem

{
. . . , si

?≈α ti , . . .
}
, is defined when⋃

vars(si ) ∩
⋃

vars(ti ) = ∅.

A solution to such a problem, if one exists, is a pair, (∆, θ ), of a freshness context, ∆, and a

variable substitution, θ , such that dom(θ ) ⊆
⋃

vars(si ) and ∆ ⊢ C θ .

Informally, this says that a nominal matching problem is a constraint problem in which one adds

the restriction that the variables in the left-hand sides of alpha-equality constraints are disjoint

from the variables in the right-hand sides and that only variables in the left-hand sides of equality

constraints may be instantiated.

A solvable matching problem has a unique, minimal solution; nominal matching is decidable [69]

and can be solved in linear time if right-hand sides are ground [9].

Definition 2.16 (Terms-in-context). A term-in-context is a pair ∆ ⊢ s of a freshness context, ∆,
and a term, s .

Definition 2.17 (Nominal Pattern Matching Problem). A nominal pattern matching problem
consists of two terms-in-context,∇ ⊢ l and∆ ⊢ s , to bematched, where vars(∇ ⊢ l )∩vars(∆ ⊢ s ) = ∅
and is written: (∇ ⊢ l ) ?≈α (∆ ⊢ s ).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article . Publication date: November 2017.



Typed Nominal Rewriting :9

A solution to a nominal pattern matching problem (∇ ⊢ l ) ?≈α (∆ ⊢ s ), if one exists, is a variable
substitution, θ , such that (∇′, θ ) is a solution to the nominal matching problem ∇ ∪ {l ?≈α s} and
∆ ⊢ ∇′. The set of solutions is denoted sol((∇ ⊢ l ) ?≈α (∆ ⊢ s )).

Example 2.18 (Nominal Pattern Matching Problems).

(a # X ⊢ [a]X ) ?≈α (b # Y ⊢ [a] (a b) · Y )

(a # X ⊢ [a]X ) ?≈α (∅ ⊢ [a]a)

In the example above, the first pattern matching problem has the solution [X 7→ (a b) · Y ],
whereas the second has none.

2.6 Nominal Rewriting
Definition 2.19. A nominal rewrite rule is a 3-tuple, consisting of a freshness context, ∇, and

two terms, l and r , such that vars(∇) ∪ vars(r ) ⊆ vars(l ), and is written, ∇ ⊢ l → r .

A nominal term rewriting system or rewrite theory, R, is a pair of a set of term-formers and a

possibly infinite set of rewrite rules generated from those term-formers.

Expanding upon Example 2.2, consider again the term-formers, lam and app, together with the

term-former, sub, where sub ([a]M, N ) represents the substitutionM [N /a] in the lambda calculus.

One then has the following rewrite rules defining the β-reduction of lambda terms.

Example 2.20 (Rewrite Theory).

∅ ⊢ app (lam [a]X , Y ) → sub ([a]X , Y )

a # X ⊢ sub ([a]X , Z ) → X

∅ ⊢ sub ([a]a, Z ) → Z

∅ ⊢ sub ([a] (app (X , Y )), Z ) → app (sub ([a]X , Z ), sub ([a]Y , Z ))

b # Z ⊢ sub ([a] lam [b]X , Z ) → lam [b] sub ([a]X , Z )

A rewrite rule, ∇ ⊢ l → r , matches a term-in-context, ∆ ⊢ s , when there exists a solution to the

nominal pattern matching problem (∇ ⊢ l ) ?≈α (∆ ⊢ s ).
Say that a term, t , has a position at the variable X , when t contains only one occurrence of X

and the identity permutation, id, is suspended on this one occurrence. Write t [s] for t [X 7→ s].
One would usually call such a term, t , a ‘context’ but this terminology is not used below, because it

has already been employed for a different purpose, however the standard notation to represent a

position, C [s], is used. A position could also be defined by a path in the abstract syntax tree of a

term as in [35].

Example 2.21 (Positions). The terms X and [a]X both have positions at X , whereas (X , X ) and
(a b) · X do not.

Definition 2.22 (Nominal Rewriting). The one-step nominal rewriting relation generated by a

rewrite theory, R , is the least relation of tuples, ∆ ⊢ s →R t , such that for any rewrite rule ∇ ⊢ l → r
belonging to R, freshness context ∆, terms C and s ′, permutation π and variable substitution θ :

s ≡ C [s ′] ∆ ⊢ ∇θ ∪
{
π · (l θ ) ≈α s ′, C [π · (r θ )] ≈α t

}

∆ ⊢ s →R t

The nominal rewriting relation over a rewrite theory R, written ∆ ⊢ s ↠R t , is the reflexive,
transitive closure of the one-step rewriting relation.
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The nominal rewriting relation is equivariant at the level of nominal terms. The permutation,

π , in Definition 2.22, makes it equivalent to the approach in [33] where the set of rules in a rewrite

theory is made closed under the action of meta-level permutation. For example, a rewrite rule,

∅ ⊢ a → a, will rewrite any atom. Equivariant nominal matching is NP-complete [10], and thus

the notion of closed rewriting (see Definition 2.30) is often preferred, where possible (see [34] for

more details).

Example 2.23 (Nominal Rewriting). Using the rewrite theory of Example 2.20, one has the follow-

ing rewrite sequences.

app (lam [a]a, lam [b]b) → sub ([a]a, lam [b]b) → lam [b]b

app (lam [a]b, lam [b]b) → sub ([a]b, lam [b]b) → b

app (lam [a] lam [b]a, b) → sub ([a] lam [b]a, b) → lam [b ′] sub ([a]a, b) → lam [b ′]b

The class of uniform rewrite rules inherits the properties of first-order rewriting [33]. Intuitively,

uniform rules preserve the set of fresh atoms of rewritten terms.

Definition 2.24 (Uniform Rewrite Rule). A nominal rewrite rule, ∇ ⊢ l → r , is uniform if

∆ ⊢ ∇, a # l implies ∆ ⊢ a # r for any atom a and freshness context ∆.

As shown in [33], it is sufficient to check this condition for each atom mentioned in the rule and

one fresh atom.

2.7 Nominal Equational Reasoning
Nominal equational reasoning is to be understood in the sense of a nominal approach to universal

algebra, or the study of the logic of equality, as in [39] or [22]. The definitions in this section are

taken from [34], where a detailed treatment of the connection between nominal rewriting and

nominal equational reasoning can be found.

Definition 2.25. A nominal axiom is a 3-tuple, consisting of a freshness context, ∆, and two

terms, s and t , and written, ∆ ⊢ s = t .
An equational theory, E, is a pair of a set of term-formers and a possibly infinite set of axioms

generated from those term-formers.

Definition 2.26 (Nominal Equational Reasoning). The nominal equality relation generated by an

equational theory, E, is the least reflexive, symmetric, transitive relation of tuples, ∆ ⊢ s =E t , such
that for any axiom ∇ ⊢ l = r belonging to E, freshness context ∆, term C , permutation π , variable
substitution θ , and freshness context∆#

(where, ifa # X ∈ ∆#
, thena < atms(∆)∪atms(s )∪atms(t )):

∆ ∪ ∆# ⊢ ∇θ ∪
{
C [π · (l θ )] ≈α s, C [π · (r θ )] ≈α t

}

∆ ⊢ s =E t

2.8 Newly-freshened Variants and Closed Terms
A newly-freshened variant of a term, t , is a term, written t N

, in which all the atoms and variables

have been replaced by newly generated atoms and variables with respect to those occurring in t ;
that is, such that, atms(t N) ∩ atms(t ) = ∅ and vars(t N) ∩ vars(t ) = ∅. An inductive definition is

trivial and thus omitted.

The notion of newly-freshened variants is extended to other syntax, such as freshness contexts,

rewrite rules and axioms, in the obvious way.

Atoms and variables in a newly-freshened variant may, on occasion, need to be disjoint not

only from those atoms and variables occurring in one particular element of syntax itself but also
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from those occurring in other elements; in such situations, these extra constraints will be explicitly

specified.

Note that in practice the creation of newly-freshened variants is often accomplished by the

generation of new atoms and variables with respect to the entire system under consideration.

Example 2.27 (Newly-freshened Variants).

([a] [b]X ) N= [a N
] [b N

]X N

({a # X , b # Z }) N= {a N
# X N, b N

# Z N}

(c # Y ⊢ [a]X → b) N= c N
# Y N⊢ [a N

]X N→ b N

Intuitively, a closed term has no unabstracted atoms and all occurrences of a variable must

appear under the same abstracted atoms. Thus, ∅ ⊢ f ([a]X , X ) is not closed because the atom a is

abstracted in the first occurrence of the variable X and not in the second, but a # X ⊢ f ([a]X , X ) is
closed, because the freshness context ensures that a cannot occur in X . Closedness was introduced

in [35]. Definition 2.28 tests for closedness using newly-freshened variants and nominal matching

(see Definition 2.15) but inductive definitions are also possible [21, 38].

Definition 2.28 (Term Closedness Problems). Given a term t , if the nominal matching problem{
t N?≈α t

}
has a solution, (∇, θ ), then ∇ \ (atms(t N) # vars(t )) is a solution to the term closedness

problem for t .

If a term closedness problem has a solution, then there exists a unique, minimal one; this follows

from the properties of solutions to nominal matching problems. It is also independent of the newly-

freshened variant generated (any freshness constraint mentioning the atoms of t N
having been

removed).

Definition 2.29 (Closed Terms, Rules and Equations). A term t is closed if the empty set is a

solution to the term closedness problem for t .
A term-in-context, ∆ ⊢ t , is closed, if ∇ is the solution to the term closedness problem for t and

∆ ⊢ ∇.
Call a rewrite rule, ∆ ⊢ l → r , or an axiom, ∆ ⊢ l = r , closed, if the term-in-context ∆ ⊢ (l , r ) is

closed.

2.9 Closed Nominal Rewriting
As mentioned in Section 2.6, for reasons of efficiency, if possible, one should make use of closed

nominal rewriting.

Definition 2.30 (Closed Nominal Rewriting). The one-step, closed nominal rewriting relation,

generated by a rewrite theory, R, is the least relation of tuples, ∆ ⊢ s →C
R
t , such that for every

rewrite rule R ∈ R of the form ∇ ⊢ l → r , term-in-context ∆ ⊢ s , terms C and s ′, variable
substitution θ , and a newly-freshened variant R N

of R (fresh for ∆, s and t , in addition to R), where
∆# = atms(R N) # vars(∆) ∪ vars(s ) ∪ vars(t ):

s ≡ C [s ′] ∆ ∪ ∆# ⊢ ∇ Nθ ∪
{
l Nθ ≈α s ′, C [r Nθ] ≈α t

}

∆ ⊢ s →C
R
t

The closed nominal rewriting relation, ∆ ⊢ s ↠C
R
t is the reflexive, transitive closure of the

one-step, closed nominal rewriting relation.

Closed rewriting is sound and complete for nominal algebra, if all axioms are closed [34].

The notion of closed nominal rewriting is valuable for two reasons. Firstly, consider a rewrite

rule, a # X ⊢ fX → X . The term f Z will not rewrite using this rule under nominal rewriting,
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because no freshness information for Z is available. Although, intuitively, the rule says only that

there exists some atom that is fresh for Z , which is always true. However, f Z will rewrite using

closed nominal rewriting, because when matched against a newly-freshened variant of the rule,

a N
# X N⊢ fX N

→ X N
, the extra freshness constraint, a N

# Z , may be used.

Secondly, because the use of a newly-freshened rule makes matching against unabstracted atoms

impossible, closed nominal rewriting is used with sets of closed rewrite rules, that is, rules that

do not contain unabstracted atoms. This means that closed nominal rewriting can use standard

nominal matching to match rules to terms; meta-level equivariance need not be considered. This

reduces the complexity of the matching problem from exponential time to linear time. Other classes

of terms for which equivariant matching is polynomial are described in [12].

3 SIMPLE TYPES FOR NOMINAL TERMS
This section presents two simple type systems for nominal terms, taking inspiration from the

simply typed lambda calculus [7]. The systems considered are both Church-style in the sense that

atoms are typed ab initio, and the sets of well-typed permutations and well-typed terms are defined

before considering the actions of permutations, and the freshness and alpha-equivalence relations.

Firstly, a true Church-style system [18], with an annotated syntax for typed atoms, is considered in

Section 3.2. The notational burden of Church-style systems is usually alleviated in type systems

for the lambda calculus by introducing a typing environment for variables and only annotating

variables at the point of binding, a style attributed to de Bruijn [8]. Using typing environments is

more difficult when typing nominal terms, because of the presence of variables, which represent

unknown parts of terms, and the fact that variable substitutions may capture atoms. Subsection 3.3

considers the consequences of a de Bruijn-style approach for nominal terms.

3.1 Simple Types
This subsection outlines the syntax of simple types. The notion of types built using constructors and

that of products of types is standard. This is augmented with a type for the abstraction construction

of nominal terms.

3.1.1 Types and Declarations. Consider a countably infinite set of type-formers, C, and write

a typical element thus, C. For example, Nat or List might be type-formers.

Define simple types, σ , τ , and type declarations, ρ, ξ , using the grammar described in Defini-

tion 3.1.

Definition 3.1 (Types and Declarations).

σ , τ ::= [σ ]τ | Cτ | (τ1 × . . . × τn ) ρ, ξ ::= ⟨σ ↪→ τ ⟩

Call [σ ]τ an abstraction type, Cτ a constructed type and (τ1 × . . . × τn ) a product type.
Base data types may be represented by constructed types built from an empty product type; for

example, Nat (). In such cases, the product type will, more often than not, be omitted; for example,

the type Nat () will be written simply as Nat. Binary type formers are some times written infix, as

in Nat ⇒ Nat, where⇒ is a user-defined type-former for function types. Declarations are used

below to type term-formers. Let σ ≡ τ denote syntactic equality over types and extend this to type

declarations in the obvious fashion.

3.1.2 Environments. A type association is a pair of a variable, X , and a type, σ , written (X : σ ).
A typing environment, Γ, is a set of type associations subject to the condition that if (X : σ ) ∈ Γ
and (X : τ ) ∈ Γ then σ ≡ τ . Let ΓX be the type associated with the variable, X , in the environment,

Γ. If there is no association for X in Γ, ΓX is undefined, written ⊥. Write vars(Γ) for the set of
variables {X | ΓX , ⊥}.
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The equality relation on types is extended to environments in the obvious way. Bracketing in

environments may often be omitted for the sake of clarity.

3.1.3 Signatures. A declaration association is a pair of a term-former, f, and a declaration,

ρ, written (f : ρ); for example, (0 : ⟨() ↪→ Nat⟩) and (suc : ⟨Nat ↪→ Nat⟩) might be declaration

associations. A signature, Σ, is a set of declaration associations, again subject to the condition that,

if (f : ρ) ∈ Σ and (f : ξ ) ∈ Σ then ρ ≡ ξ . Σf denotes the declaration associated with the term-former

f in Σ. If no associated declaration for f exists in Σ, then Σf is undefined, written ⊥.

3.2 Type System in the Style of Church
Following Church [1940], and in the style of nominal systems using sorted atoms such as [69], this

type system considers typed atoms, such that for each type there exists a countably infinite set of

atoms. This is achieved by extending the traditional syntax of nominal terms by annotating atoms

with their type.

3.2.1 Well-typed Terms. Whilst atoms are annotated by types in this system, variables and

term-formers are not and so, firstly a grammar for pseudo-terms is described in Definition 3.2

and then the set of well-typed terms is defined in Definition 3.3. Permutations are well-typed by

construction.

Definition 3.2 (Permutations and Pseudo-terms).

π ::= id | π ∗ (aτ bτ ) s, t ::= aσ | [aσ ] t | f t | (t1, . . . , tn ) | π · X

Note that this syntax implies that the sets of atoms for each type are disjoint. Thus, if σ . τ , then
aσ . aτ ; aσ and aτ are different atoms. Superficially, this appears to destroy the ‘atomic’ nature of

atoms, namely that atoms are distinguishable by name alone and their internal structure is opaque.

However it can easily be seen to be compatible with the notion of typed atoms if for each atom one

concatenates a textual representation of its type to its name.

The requirement that each atom in a swapping within a permutation be typed equally may seem

stronger than necessary, due to redundancy in the representation of permutations: for instance,

(a b) (b a) is the identity permutation, but in a Church-style system these swappings can only be

built if both atoms have the same type. Although for a given permutation, π , it might suffice to

check that for each atom a in the support of π , Γa ≡ Γπ (a) , swappings with atoms of different types,

even if redundant, would be at odds with the Church-style nature of the system.

Definition 3.3 (Well-typed Terms). Typing judgements have the form Γ ⊩Σ t : τ , where Γ is a

typing environment, Σ a signature, t a term and τ a type. If there exists Γ, Σ and τ such that

Γ ⊩Σ t : τ may be derived using the following axioms and rules, then t is a well-typed term.

σ ≡ τ
(atm)τ

Γ ⊩Σ aσ : τ

ΓX ≡ τ
(var )τ

Γ ⊩Σ π · X : τ

Γ ⊩Σ t : τ (abs )τ
Γ ⊩Σ [aσ ] t : [σ ]τ

Γ ⊩Σ t1 : τ1 . . . Γ ⊩Σ tn : τn (tpl )τ
Γ ⊩Σ (t1, . . . , tn ) : (τ1 × . . . × τn )

Σf ≡ ⟨σ ↪→ τ ⟩ Γ ⊩Σ t : σ (app)τ
Γ ⊩Σ f t : τ

Example 3.4 (Well-typed Terms). Consider a formalisation of first-order logic over the domain of

the natural numbers. Let Nat and o be base types for the natural numbers and formulas respectively.

Then, considering a signature, Σ, of the form, {0 : ⟨() ↪→ Nat⟩, suc : ⟨Nat ↪→ Nat⟩, eql : ⟨(Nat ×
Nat) ↪→ o⟩, and : ⟨(o × o) ↪→ o⟩, not : ⟨o ↪→ o⟩, all : ⟨[Nat] o ↪→ o⟩}, one has the following
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examples of well-typed terms.

X : Nat ⊩Σ suc sucX : Nat

P : o ⊩Σ all [aNat] P : o

⊩Σ not eql (0, suc sucaNat) : o

P : o ⊩Σ and (all [aNat] P , not eql (0, suc sucaNat)) : o

3.2.2 Action of Permutations and Variable Substitutions. Now consider the action of permutations

over atoms and well-typed terms. Notice that the possibility that atoms may have the same name

but be of different types, results in the proliferation of rules required to define the permutation

action on atoms in comparison with Definition 2.3.

Definition 3.5 (Permutation Action on Atoms).

id(aτ ) ≜ aτ (π ∗ (aτ bτ )) (cσ ) ≜ π (cσ )

(π ∗ (aτ bτ )) (aσ ) ≜



π (bτ ) if σ ≡ τ

π (aσ ) if σ . τ
(π ∗ (aτ bτ )) (bσ ) ≜




π (aτ ) if σ ≡ τ

π (bσ ) if σ . τ

Definition 3.6 (Permutation Action on Terms).

π · aτ ≜ π (aτ ) π · (π ′ · X ) ≜ (π @ π ′) · X π · [aτ ] t ≜ [π (aτ )]π · t

π · (t1, . . . , tn ) ≜ (π · t1, . . . , π · tn ) π · f t ≜ f (π · t )

Substitutions act on pseudo-terms and well-typed terms as specified in Definition 2.9; the

inductive definition is omitted. Despite variable substitution being atom-capturing, the fact that

atoms are directly annotated prohibits capture from affecting the typing of a term. Thus it follows

straightforwardly that given a substitution that respects the types of the variables of a term, the

type of the term is preserved following instantiation.

3.2.3 Freshness and Alpha-equivalence. Finally, consider the definitions of freshness and alpha-

equivalence for well-typed terms of the system. Again notice the increased number of rules in the

definition of freshness in comparison to Definition 2.11 resulting from the presence of atoms that

may have the same name but different types.

Definition 3.7 (Freshness Relation). Freshness judgements ∆ ⊢ aσ # t , where t is a well-typed
term, are derived using the following set of axioms and rules.

σ . τ
(atm : aa)#

∆ ⊢ aσ # aτ
(atm : ab)#

∆ ⊢ aσ # bτ

π -1 (aσ ) # X ∈ ∆
(var )#

∆ ⊢ aσ # π · X

∆ ⊢ aσ # t
(abs : ab)#

∆ ⊢ aσ # [bτ ] t

σ ≡ τ
(abs : aa)#

∆ ⊢ aσ # [aτ ] t

σ . τ ∆ ⊢ aσ # t
(abs : aa′)#

∆ ⊢ aσ # [aτ ] t

∆ ⊢ aσ # t1 . . . ∆ ⊢ aσ # tn
(tpl )#

∆ ⊢ aσ # (t1, . . . , tn )

∆ ⊢ aσ # t
(app)#

∆ ⊢ aσ # f t
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Definition 3.8 (Alpha-equivalence Relation). Let s and t be two well-typed terms under the same

environment Γ, and same signature Σ, that is, Γ ⊩Σ s : σ and Γ ⊩Σ t : τ .

σ ≡ τ
(atm)α

∆ ⊢ aσ ≈α aτ

∀aσ ∈ ds(π , π ′) . aσ # X ∈ ∆
(var )α

∆ ⊢ π · X ≈α π ′ · X

σ ≡ τ ∆ ⊢ s ≈α t
(abs : aa)α

∆ ⊢ [aσ ] s ≈α [aτ ] t

σ ≡ τ ∆ ⊢ aσ # t ∆ ⊢ s ≈α (aσ bτ ) · t
(abs : ab)α

∆ ⊢ [aσ ] s ≈α [bτ ] t

∆ ⊢ s1 ≈α t1 . . . ∆ ⊢ sn ≈α tn
(tpl )α

∆ ⊢ (s1, . . . , sn ) ≈α (t1, . . . , tn )

∆ ⊢ s ≈α t
(app)α

∆ ⊢ f s ≈α f t

If one considers once again the signature defined in Example 3.4 then one has the following

examples of freshness and alpha-equivalence over well-typed terms.

Example 3.9 (Freshness and Alpha-equivalence).

∅ ⊢ aNat # sucbNat ∅ ⊢ aNat # sucaNat⇒Nat ∅ ̸⊢ aNat # sucaNat
bNat # P ⊢ all [aNat] P ≈α all [bNat] (aNat bNat) · P

This section concludes by stating the main properties of this simple type system.

Theorem 3.10. (1) Γ ⊩Σ t : τ implies Γ ⊩Σ π · t : τ for any permutation π .
(2) If Γ ⊩Σ t : τ and θ is a variable substitution such that for any X ∈ vars(Γ), Γ ⊩Σ θ (X ) : ΓX then

Γ ⊩Σ t θ : τ .
(3) Given two well-typed terms s and t , such that Γ ⊩Σ s : σ and Γ ⊩Σ t : τ , if ∆ ⊢ s ≈α t then

σ ≡ τ .

Proof. Parts 1 and 2 are proved by induction on the type derivation for Γ ⊩Σ t : τ as given in

Definition 3.3. Part 2 uses Part 1 in the case of a variable. Part 3 is proved by induction on the

derivation of ∆ ⊢ s ≈α t , using Part 1 in the case of (abs : ab)α . □

The enforced annotation of all atoms with types makes the syntax of this system rather cum-

bersome and it could instead be presented using of a fixed typing environment for atoms. Such

an approach would have the additional advantage of removing the confusion created by atoms of

the same name but of different types. An extra relation would be required to define well-typed

permutations but the syntax of pseudo-permutations and pseudo-types could be the same as that

for standard nominal terms as given in Definition 2.1. However, instead of pursuing this alternative

presentation, the next subsection investigates a more standard approach to alleviating this problem,

in which a typing environment for atoms may be updated by local type annotations for abstractions.

3.3 Type System in the Style of de Bruijn
This subsection describes a Church-style type system in the manner of de Bruijn [7]. It is Church-

style in that it is based on the notion of typed atoms and only well-typed terms are considered

to exist, but it is presented by adopting the practice of a Curry-style system whereby atoms are

typed from associations in an accompanying environment. The atom of an abstraction is annotated

with a type and the environment is updated with a new association when such a construction is

encountered. The atom-capturing nature of variable substitution over nominal terms combined with

this updating of type associations, produces a conflict with the desire to type multiple occurrences

of a variable in the same environment and thus results in a more complex system than that of the

previous subsection or the simply typed lambda calculus.
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Definition 3.11 (Pseudo-permutations and Pseudo-terms).

π ::= id | π ∗ (a b) s, t ::= a | [a : τ ] t | f t | (t1, . . . , tn ) | π · X

Let environments now include associations for atoms, (a : σ ), in addition to those for variables

and subject to the same condition of uniqueness. Extend the notation, ΓX , to atoms, Γa and write

atms(Γ) to denote the set of atoms for which associations exist in Γ, that is, {a | Γa , ⊥}. Let an
association for an atom, a, now be added to an environment, Γ, written Γ Z (a : τ ) where this means

Γ ∪ {(a : τ )} such that if a ∈ atms(Γ) then Γa ≡ τ . This notation is extended element-wise to sets

of associations. For example, if Γ is the environment {(a : τ1), (c : τ2)} then Γ Z {(a : τ1), (b : τ3)}
denotes the environment {(a : τ1), (b : τ3), (c : τ2)}. Associations for variables may not be added to

an environment. Write
π Γ to denote the environment obtained by applying the permutation π , to

the atoms in the environment Γ.
The constraint that an association for an atom may not be changed in the environment is a

reflection of the Church-style nature of the system and the presence of atom-capturing substitution

for variables. In contrast, a simply typed lambda calculus presented in this way can allow types for

variables to be updated in Γ, because there substitution is non-capturing.

3.3.1 Well-typed Terms. The well-typedness of a permutation π in an environment Γ is given

by the predicate typP and holds when Γ ⊩ typP(π ) can be derived by the rules in Definition 3.12.

Definition 3.12 (Well-typed Permutations).

(id )τ
Γ ⊩ typP(id)

Γa ≡ τ ≡ Γb Γ ⊩ typP(π )
(prm)τ

Γ ⊩ typP(π ∗ (a b))

Definition 3.12 enforces the same constraint on permutations as that enforced by construction in

Definition 3.3 of the previous system, namely that only swappings of atoms of the same type are

permitted in permutations.

Note that Γ ⊩ typP(π ) if and only if Γ ⊩ typP(π−1).
A typing judgement is a tuple, (Γ, Σ, s, τ ), of an environment Γ, a signature Σ, a pseudo-term

s and a type τ , and is written Γ ⊩Σ s : τ .
Quasi-typing judgements, written Γ ⊪Σ s : τ , are inductively defined as follows below (Def-

inition 3.13). The validity of a typing judgement is determined in two stages. First, a derivation

for the corresponding quasi-typing judgement is constructed using the rules and axioms given

in Definition 3.13, and then a property on the typing of the variables of the term is checked as

described in Definition 3.17.

Definition 3.13 (Derivable Quasi-Typing Judgements).

Γa ≡ τ
(atm)τ

Γ ⊪Σ a : τ

ΓX ≡ τ Γ ⊩ typP(π )
(var )τ

Γ ⊪Σ π · X : τ

Γ Z (a : σ ) ⊪Σ t : τ (abs )τ
Γ ⊪Σ [a : σ ] t : [σ ]τ

Γ ⊪Σ t1 : τ1, . . . , Γ ⊪Σ tn : τn (tpl )τ
Γ ⊪Σ (t1, . . . , tn ) : (τ1 × . . . × τn )

Σf ≡ ⟨σ ↪→ τ ⟩ Γ ⊪Σ t : σ (app)τ
Γ ⊪Σ f t : τ

Proposition 3.14 (Form of Sub-judgements). Suppose Γ ⊪Σ t : τ . All sub-judgements of the
derivation of Γ ⊪Σ t : τ have the form, Γ Z Γ′ ⊪Σ t

′
: τ ′ where t ′ is a subterm of t and Γ′ contains

the type associations for abstracted atoms that were added to Γ.
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Proof. By induction on the structure of the derivation. The property holds trivially for atoms

and variables; the other cases follow directly by induction. □

Since different occurrences of a variable in a term may occur under the scope of different

abstractions, they may be typed in different type environments within a type derivation. The

notions of variable judgement and essential environment are introduced to refer to the type

environments that are relevant for each variable occurrence.

Definition 3.15 (Variable Judgement). Suppose Γ ⊪Σ t : τ . Call sub-judgements of the form

Γ Z Γ′ ⊪Σ π · X : τ ′ in the derivation of Γ ⊪Σ t : τ the variable judgements of the derivation.

Note that for a given derivation, there is a unique variable judgement for each occurrence of a

variable in a term.

The variable judgements indicate the types of the atoms that will be captured when the variable

is instantiated. However, since variables in nominal terms have permutations suspended over them,

the inverse of the permutation should be applied to the typing environments of variable judgements

in order to compute the actual environments in which the image of a substitution will be typed

when the term is instantiated. Such an environment is called an essential environment.

Definition 3.16 (Essential Environment). Let Γ′ ⊪Σ π ·X : τ ′ be a variable judgement of a derivation

of Γ ⊪Σ t : τ . Then, call
π -1

Γ′ the essential environment of the variable judgement Γ′ ⊪Σ π ·X : τ ′.

A property, called the compatibility property, is now defined for derivations of quasi-typing

judgements. A quasi-typing judgement that has a derivation for which this property holds is a

typing judgement.

Definition 3.17 (Compatibility Property). The compatibility property holds for a derivation of

Γ ⊪Σ t : τ , if for each variable X ∈ vars(t ), the essential environments of all variable judgements

for X throughout the derivation are equal.

Definition 3.18 (Derivable Typing Judgements). A typing judgement Γ ⊩Σ t : τ is derivable, if

there exists a derivation of the corresponding quasi-typing judgement for which the compatibility

property holds.

Informally, a derivable quasi-typing judgement becomes a derivable typing judgement if each

occurrence of a variable X ∈ vars(t ) is typed in the same environment.

Consider again the signature of Example 3.4. The examples of well-typed terms given there, have

the following derivable judgements in this de Bruijn-style system. Note that in the final example,

given a richer domain, the two abstractions of the atom a could be given different types.

Example 3.19 (Derivable Typing Judgements).

X : Nat ⊩Σ suc sucX : Nat

P : o ⊩Σ all [a : Nat] P : o

a : Nat ⊩Σ not eql (0, suc suca) : o

a : Nat, P : o ⊩Σ and (all [a : Nat] P , not eql (0, suc suca)) : o

P : o ⊩Σ and (all [a : Nat] P , all [a : Nat] P ) : o

However, consider the derivable quasi-typing judgement shown in Example 3.20. Here the

variable judgements for the two occurrences of the variable P have different environments, the

first {P : o, a : Nat}, and the second just {P : o}. A variable substitution for P would thus have to be

typed in multiple, inconsistent environments. Thus the compatibility property does not hold and

the typing judgement is not derivable.
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Example 3.20 (Failure of the Compatibility Property).

P : o ⊪Σ and (all [a : Nat] P , P ) : o

The need to check the equivalence of the environments for each separate occurrence of a variable

in a derivation is a result of the atom-capturing nature of variable substitution. Not allowing

associations for atoms to be changed in Γ is not sufficient to ensure that the environment for

all variable judgements for a given variable are equal because they may occur under different

abstractions, producing different environments.

The design of the type system, using the compatibility check, permits flexible typing of abstracted

atoms (the same atom can be abstracted with different types in different parts of the term) while

ensuring that alpha-equivalent terms have the same type. The approach used in the previous Church

system, where atoms are typed with a unique type from the outset, also ensures this property but

is more restrictive (and not suitable for the Curry-style typing that will be defined in Section 4).

One could also postpone the typing of permutations as described in the polymorphic type

system detailed in Section 4. However, it was decided to enforce earlier and stronger checks on

permutations in this system to draw attention to its Church-style nature and to the separate causes

of the difficulties arising in these systems.

3.3.2 Action of Permutations and Variable Substitutions. Given an environment Γ, the action of

a permutation is defined only for permutations well-typed in Γ, upon any atom a ∈ atms(Γ). The
action of permutations upon terms is defined only for well-typed permutations π , upon well-typed

terms t under the same typing environment Γ. In the rule for an abstraction the fact that the term

is well-typed ensures that the type of the abstracted atom is the same for any existing typing for

that atom in Γ and that it must therefore be compatible with the typing of the permutation.

Definition 3.21 (Permutation Action on Terms).

π · a ≜ π (a) π · (π ′ · X ) ≜ (π @ π ′) · X π · [a : τ ] t ≜ [π (a) : τ ]π · t

π · (t1, . . . , tn ) ≜ (π · t1, . . . , π · tn ) π · f t ≜ f (π · t )

The following lemma states that the composition of two well-typed permutations in Γ is also

well-typed in Γ, and is used in Theorem 3.23 to prove that well-typed permutations preserve types.

Lemma 3.22. If Γ ⊩ typP(π ) and Γ ⊩ typP(π ′) then Γ ⊩ typP(π @ π ′).

Proof. By induction on the number of swappings in π @ π ′, using the fact that each swapping

(a b) in π @ π ′ comes either from π or π ′ and therefore Γa ≡ Γb as seen from Definition 3.12. □

Theorem 3.23 (Object-level Eqivariance of Typing Judgements). If Γ ⊩Σ t : τ and Γ ⊩
typP(π ) then π Γ ⊩Σ π · t : τ .

Proof. By induction on the derivation for Γ ⊪Σ t : τ for which see Definition 3.13. Distinguish

cases depending on the last rule applied. In the case of (atm)τ and (abs )τ , the result follows from
the fact that because Γ ⊩ typP(π ), by Definition 3.12, π swaps atom of the same type in Γ. The
case (var )τ follows from Lemma 3.22. The other cases follow directly by induction. In the case of a

tuple (t1, . . . , tn ), if some variable X occurs in different subterms, each variable judgement has

the same essential environment E, and the corresponding essential environment for π ·X in π · t is
πE. □

Substitutions act on pseudo-terms and well-typed terms in a similar fashion as to that specified

in Definition 2.9; the definition is inductive and omitted. The notion of a well-typed substitution
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is now defined, the action of which is shown to preserve the types of instantiated terms. Below,

for simplicity, consider only idempotent substitutions that instantiate all the variables in a term

(a substitution θ is idempotent if θ θ = θ ). This is a standard assumption, always satisfied by the

substitutions used in rewriting steps, since rewrite rules assume variables that are different from

the variables of the term to be rewritten.

Definition 3.24 (Well-typed Substitution). An idempotent substitution θ , such that dom(θ ) ⊆
vars(t ), is well-typed in Γ and Σ for Φ ⊩Σ t : τ under the following conditions.

(1) Γ = Γ′ Z Φatm , where Φatm denotes the set of declarations for atoms provided in Φ. Thus, Γ
contains the associations for atoms provided by Φ and possibly also declarations for other

atoms and variables from the image of θ .
(2) For each X ∈ vars(t ), where E = Eatm ∪ Evar is the essential environment of the variable

judgement for X in Φ ⊩Σ t : τ (here Eatm contains the declarations for atoms and Evar the
declarations for variables): Γ′ Z Eatm ⊩Σ θ (X ) : ΦX .

(3) The set of type derivations {Γ′ Z Eatm ⊩Σ θ (X ) : ΦX | X ∈ vars(t )} has the compatibility

property, that is, for each variable in the image of θ , the essential environments of the variable

judgements for that variable throughout all the derivations in the set are equal.

Note that Condition 3 is vacuous if t θ is ground. In that case, Condition 1 and Condition 2

become the standard conditions from the lambda calculus, except that θ (X ) is typed using the

essential environment of X , which is not explicit in the typing judgement for t .

Theorem 3.25 (Well-typed Substitutions Preserve Types). If θ is well-typed in Γ and Σ for
Φ ⊩Σ t : τ , then Γ ⊩Σ t θ : τ .

Proof. By induction on the derivation for Φ ⊪Σ t : τ given by Definition 3.13, distinguishing

cases on the last rule applied. In the case of a moderated variable (var )τ , t ≡ π ·X and the suspended

permutation π is well-typed in Φ and also in the environment E of each variable judgement (since

E = πΦ). Without loss of generality, one can assume that Γ′ contains only those atoms of Γ not

present in Φ and thus π · (Γ′ Z Eatm ) = (Γ′ Z Φatm ). The result then follows from Condition 2

of Definition 3.24 by Theorem 3.23. The case of a tuple is by induction and the assumption of the

compatibility property on the variables of the image of θ stated in Condition 3 of Definition 3.24.

The other cases follow by induction. □

3.3.3 Freshness and Alpha-equivalence. Freshness is defined only with respect to a single typing

environment Γ, that is, for an atom a ∈ atms(Γ) and a term well-typed in Γ. In the case of rule

(abs : aa)#, a must already have a type association and the fact that the term is well-typed in that

same environment ensures that it must be of the same type as that given for the abstracted atom.

Definition 3.26 (Freshness Relation).

(atm)#
∆ ⊢ a # b

π -1 (a) # X ∈ ∆
(var )#

∆ ⊢ a # π · X

(abs : aa)#
∆ ⊢ a # [a : τ ] t

∆ ⊢ a # t
(abs : ab)#

∆ ⊢ a # [b : τ ] t

∆ ⊢ a # t1 . . . ∆ ⊢ a # tn
(tpl )#

∆ ⊢ a # (t1, . . . , tn )

∆ ⊢ a # t
(app)#

∆ ⊢ a # f t
Let s and t be well-typed terms under the same environment Γ and signature Σ, that is, Γ ⊩Σ s : σ

and Γ ⊩Σ t : τ . Say s is alpha-equivalent to t if ∆ ⊢ s ≈α t can then be derived using the following

axioms and rules.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article . Publication date: November 2017.



:20 ELLIOT FAIRWEATHER and MARIBEL FERNÁNDEZ

Definition 3.27 (Alpha-equivalence Relation).

(atm)α
∆ ⊢ a ≈α a

∀a ∈ ds(π , π ′) . a # X ∈ ∆
(var )α

∆ ⊢ π · X ≈α π ′ · X

σ ≡ τ ∆ ⊢ s ≈α t
(abs : aa)α

∆ ⊢ [a : σ ] s ≈α [a : τ ] t

σ ≡ τ ∆ ⊢ a # t ∆ ⊢ s ≈α (a b) · t
(abs : ab)α

∆ ⊢ [a : σ ] s ≈α [b : τ ] t

∆ ⊢ s1 ≈α t1 . . . ∆ ⊢ sn ≈α tn
(tpl )α

∆ ⊢ (s1, . . . , sn ) ≈α (t1, . . . , tn )

∆ ⊢ s ≈α t
(app)α

∆ ⊢ f s ≈α f t

The following examples of freshness and alpha-equivalence correspond to those given for the

Church-style system in Example 3.9.

Example 3.28 (Freshness and Alpha-equivalence). The atoms and terms mentioned below are

well-typed in Γ = {a : Nat, b : Nat, P : o}. The following judgements are then derivable using the

rules in Definition 3.26 and Definition 3.27.

∅ ⊢ a # sucb ∅ ̸⊢ a # suca

b # P ⊢ all [a : Nat] P ≈α all [b : Nat] (a b) · P

Theorem 3.29 (Types and Alpha-eqivalence). Given two well-typed terms s and t , such that
Γ ⊩Σ s : σ and Γ ⊩Σ t : τ , if ∆ ⊢ s ≈α t then σ ≡ τ .

Proof. By induction on the derivation of ∆ ⊢ s ≈α t . The cases of (atm)α and (var )α are trivial.

In the case of (abs : ab)α the result follows from Theorem 3.23 and then by induction. The other

cases follow directly by induction. □

4 POLYMORPHIC TYPES FOR NOMINAL TERMS
This section describes a polymorphic type system for nominal terms in the style of Curry [7, 26].

It extends the syntax of simple types with type variables and quantified declarations in order to

implement a ML-style polymorphic type system [27], in which multiple applications of a term-

former within a term may each be given a different type.

The notion of a principal solution to a typeability problem for a term is defined and an algorithm

presented to compute such solutions. This algorithm is shown to be sound and complete with

respect to the derivable judgements of the type system.

Such a type system is powerful enough to be of practical interest in programming language

design and rewriting. Its polymorphism allows for stronger specifications than those possible using

the simple type systems in Section 3, whilst its Curry-style nature and the decidability of type

inference are of great importance in terms of the reduction of notational burden. A selection of

interesting examples using this system is given in Section 5.

Curry and Church approaches to typing are intrinsically different: in a Church-style system,

terms are well typed by construction, whereas in systems à la Curry, terms can be typeable or

untypeable — types are assigned to (some) terms a posteriori. This change of perspective has a

deep impact: in a Church-style system, the atoms aσ and aτ (where σ and τ are different types)

are different, so, for example, the term (aσ , aτ ) has two atoms; in a Curry-style system, the term

(a, a) has only one atom. For this reason, the system defined in this section is not a polymorphic

extension of the previous simply typed systems. A polymorphic Church system can be defined

following the ideas presented in this section, but a Curry style system, being closer to the ML-style

of typing, is better for applications in programming language design and rewriting.
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4.1 Polymorphic Types
In this subsection, the syntax of simple types is extended with the addition of type variables

and quantified declarations for term-formers. The former necessitates a formalisation of type

substitutions and the associated action of type instantiation, and the latter a notion of generic type

instantiation.

4.1.1 Types and Declarations. Consider a countably infinite set of type variables, T, pairwise
disjoint from the set of type-formers, C, and let α , β , γ , . . ., range over elements in T. Extending
the syntax of the simple types given in Section 3.1.1, let polymorphic types and type declarations

be defined by the grammar described below in Definition 4.1.

Definition 4.1 (Polymorphic Types and Declarations).

σ , τ ::= α | [σ ]τ | Cτ | (τ1 × . . . × τn ) ρ, ξ ::= ∀(α ).⟨σ ↪→ τ ⟩

Call the first, new construction, a variable type.
In the rule for a declaration, α denotes any finite set of type variables (if empty, the initial

quantification may be omitted entirely); these type variables are generic type variables and are

bound throughout the declaration.

Write tvars(σ ) for the set of type variables occurring in the type, σ . Extend this notation to

declarations, tvars(ρ), to represent the set of type variables which occur in ρ but are not bound;
that is, for a declaration ∀(α ).⟨σ ↪→ τ ⟩, the set (tvars(σ ) ∪ tvars(τ )) \ α . Call the elements of this

set the free type variables of ρ.
Write ≡ for syntactic equality over types and extend this to declarations, modulo the standard

notion of α-equivalence of bound type variables. Note that nominal syntax is not used for the

definition of declarations (that is, type variables are not modelled as atoms but as conventional

meta-level variables).

Example 4.2 (Equality of Declarations).

∀(α ).⟨Listα ↪→ Nat⟩ ≡ ∀(β ).⟨List β ↪→ Nat⟩ . ∀(α ).⟨Listγ ↪→ Nat⟩

4.1.2 Type Substitutions and Instantiation.

Definition 4.3 (Type Substitution). A type substitution, S , is a mapping from type variables

to types, equal to the identity mapping but for finitely many arguments, and written as a set of

bindings [α1 7→ τ1] . . . [αn 7→ τn], such that the type variables, α1, . . . , αn , are pairwise distinct.

Let S, T , U , . . . range over type substitutions. The domain of a type substitution S , written
dom(S ), is the set of type variables, {α | α S . α }. Let id denote the identity substitution; that is

the substitution whose domain is the empty set. Composition of type substitutions is written S ◦T ,
that is, the substitution equivalent to applying S followed by T .

Definition 4.4 (Instantiation). The action of a type substitution, S , upon a type, τ , called instanti-
ation, is written to the right thus, τ S , and is defined in the usual inductive way as described below.

Instantiation is extended to declarations in the usual capture-avoiding manner.

α S ≜ S (α ) ([σ ]τ ) S ≜ [σ S]τ S (Cτ ) S ≜ C (τ S )

(τ1 × . . . × τn ) S ≜ (τ1 S × . . . × τn S )

Example 4.5 (Instantiation of Types and Declarations).

([α]α ) [α 7→ β] = [β] β

(∀(β ).⟨(α × β ) ↪→ α⟩) [α 7→ β] = ∀(β ′).⟨(β × β ′) ↪→ β⟩
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Substitutions are partially ordered by instantiation. Define the most general unifier of two
types, written mgu(σ , τ ), as a least element, S , if one exists, in an ordering of substitutions, such

that, σ S ≡ τ S . [4] is an excellent reference to detailed algorithms for the calculation of most

general unifiers.

Extend the notion of the ordering of types by instantiation and the most general unifier of

two types to declarations in the obvious way by considering the declaration as a tuple (this

ordering on declarations will be used after a generic instantiation has eliminated the quantifiers,

see Definition 4.6 below).

4.1.3 Generic Instantiation. Generic instantiation acts only upon generic type variables and

therefore only upon declarations.

Definition 4.6 (Generic Instantiation). A declaration, ρ, of the form ∀(α ).⟨σ ↪→ τ ⟩, has a generic
instance, written ρ ≽ ξ , where ξ is a declaration of the form ∀().⟨σ ′ ↪→ τ ′⟩ and σ S ≡ σ ′ and
τ S ≡ τ ′ for some type substitution, S , where S instantiates all but only the generic type variables

in ρ.

Example 4.7 (Generic Type Instantiation).

∀(α , β ).⟨(α × β ) ↪→ α⟩ ≽ ⟨(Nat × Bool) ↪→ Nat⟩

∀(α ).⟨(α × β ) ↪→ α⟩ ⋡ ⟨(Nat × Bool) ↪→ Nat⟩

∀(α , β ).⟨(α × β ) ↪→ α⟩ ≽ ⟨(α × β ) ↪→ α⟩

∀(α ).⟨(α × β ) ↪→ α⟩ ≽ ⟨(Nat × β ) ↪→ Nat⟩

Definition 4.8 (Most General Generic Instance). The most general generic instance, ξ , of a declara-
tion, ρ, is the generic instance, such that for any other generic instance, ξ ′, ξ ≤ ξ ′.

The following useful technical result follows by an easy induction.

Lemma 4.9. If ρ ≽ ξ then ρ S ≽ ξ S .

Proof. By induction over the syntax of the pair of types forming the declaration. A similar result

is proven in [27]. □

4.2 Type System in the Style of Curry
The following subsection starts by recalling and conflating those concepts relating to environ-

ments and signatures given in Section 3 and adding definitions relating to type variables and type

substitutions. Following that, a description of the type system is given, together with proofs of

a number of properties over derivable typing judgements, the most important of which is that

alpha-equivalence respects typeability.

4.2.1 Environments. A type association is a pair of a variable, X , and a type, σ , written (X : σ ),
or a pair of an atom, a, and a type, σ , written (a : σ ).

A typing environment, Γ, is a set of type associations subject to the condition that if (X : σ ) ∈ Γ
and (X : τ ) ∈ Γ then σ ≡ τ (and similarly for atom associations).

As usual, ΓX denotes the type associated with the variable X in the environment Γ. If there is
no association for X in Γ, ΓX is undefined, written ⊥. This notation is extended to atoms.

The equality relation on types is extended to environments in the obvious way. Bracketing in

environments may often be omitted for the sake of clarity.

Write
π Γ to denote the environment obtained by applying the permutation, π , to the atoms in

the environment, Γ.
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Let the association for an atom, a, be updated in an environment, Γ, written Γ Z (a : τ ) where
this means either Γ∪{(a : τ )} or (Γ \ {(a : σ )})∪{(a : τ )} as well-formedness demands. This notation

is extended element-wise to sets of associations.

Note that, unlike the notion of an update in Section 3, it is now permitted to change the types

of atoms, reflecting the Curry-style nature of the system. For example, if Γ is the environment

{(a : σ1), (c : σ2)} then Γ Z {(a : τ1), (b : τ2)} denotes the environment {(a : τ1), (b : τ2), (c : σ2)}.
The associations for variables in an environment may not be updated.

Write Γ S for the environment obtained by applying the type substitution, S , to the types in the

environment, Γ.
Let tvars(Γ) denote the set of type variables occurring in the environment, Γ, and S |Γ , the

restriction of the domain of the type substitution, S , to those type variables occurring in Γ.

4.2.2 Signatures. A declaration association is a pair of a term-former, f, and a declaration, ρ,
written (f : ρ); for example, (suc : ⟨Nat ↪→ Nat⟩) and (0 : ⟨() ↪→ Nat⟩).

A signature, Σ, is a set of declaration associations, again subject to the condition that, if (f : ρ) ∈ Σ
and (f : ξ ) ∈ Σ then ρ ≡ ξ . Σf denotes the declaration associated with the term-former, f, in Σ. If no
associated declaration for f exists in Σ, then Σf is undefined, written ⊥.

All type variables occurring in declarations in a signature are considered to be generic type variables;
that is, for every declaration, ρ, tvars(ρ) = ∅.

4.2.3 Typing Judgements. A typing judgement is a tuple, (Γ, Σ, ∆, s, τ ), of an environment,

Γ, a signature, Σ, a freshness context, ∆, a term, s and a type, τ , and is written Γ ⊩Σ ∆ ⊢ s : τ .
Quasi-typing judgements, written Γ ⊪Σ ∆ ⊢ s : τ , are defined inductively as follows below. The

freshness context ∆ is not used in quasi-typing derivations, but will be needed later in Definition 4.13.

Definition 4.10 (Derivable Quasi-typing Judgements).
Γa ≡ τ

(atm)τ
Γ ⊪Σ ∆ ⊢ a : τ

ΓX ≡ τ
(var )τ

Γ ⊪Σ ∆ ⊢ π · X : τ

Σf ≽ ⟨σ ↪→ τ ⟩ Γ ⊪Σ ∆ ⊢ t : σ
(app)τ

Γ ⊪Σ ∆ ⊢ f t : τ
Γ Z (a : τ ) ⊪Σ ∆ ⊢ t : τ ′

(abs )τ
Γ ⊪Σ ∆ ⊢ [a] t : [τ ]τ ′

Γ ⊪Σ ∆ ⊢ t1 : τ1 . . . Γ ⊪Σ ∆ ⊢ tn : τn
(tpl )τ

Γ ⊪Σ ∆ ⊢ (t1, . . . , tn ) : (τ1 × . . . × τn )

The rule (var )τ differs from that of the same name in Definition 3.13 in that, here, the permutation,

π , is not checked as an assumption of the rule. The correctness of the permutation with respect to the

typing of variables is delayed until the definition of derivable typing judgements in Definition 4.16.

This is true to the Curry-style nature of the system, in that terms involving a single occurrence of a

variable need not be peremptorily rejected as untypeable on the basis of an associated suspended

permutation. It is only in the case of multiple occurrences of the same variable in a term, that

one truly needs to check that the permutation swaps atoms of compatible types. The notion of

quasi-typing also allows terms to be typed irrespective of the action of variable substitutions, if so

desired.

The following structural property of quasi-typing derivations is used below.

Proposition 4.11. Suppose a derivation exists for the quasi-typing judgement, Γ ⊪Σ ∆ ⊢ t : τ . All
the ‘sub-judgements’ of this derivation have the form Γ′ ⊪Σ ∆ ⊢ t ′ : τ ′ where t ′ is a subterm of t and
Γ′ is Γ updated with associations for abstracted atoms.

Proof. By induction on the structure of the derivation. □
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4.2.4 Essential Environments for Variable Judgements.

Definition 4.12 (Variable Judgement). Suppose a derivation exists for the quasi-typing judgement

Γ ⊪Σ ∆ ⊢ t : τ . Call leaves of the form Γ′ ⊪Σ ∆ ⊢ π · X : τ ′ the variable judgements of the
derivation of Γ ⊪Σ ∆ ⊢ t : τ .

Note that for a given derivation of a quasi-typing judgement, there is one variable judgement

for each separate occurrence of a variable in a term and each one is uniquely defined modulo the

names of type variables.

Definition 4.13 (Essential Environment). Let Γ′ ⊪Σ ∆ ⊢ π · X : τ ′ be a variable judgement of a

derivation of Γ ⊪Σ ∆ ⊢ t : τ . Then, call π
-1

Γ′ \ {(a : σ ) | ∆ ⊢ a # X } the essential environment
of the variable judgement Γ′ ⊪Σ ∆ ⊢ π · X : τ ′.

In the above definition, type associations for atoms that are fresh for a variable are removed,

because those atoms can not appear in any instantiation of that variable and so need not be typed.

This was not done in the Church system (see Definition 3.16) because freshness is defined only for

well-typed terms.

Example 4.14 (Essential Environments). The variable judgements of a derivation of the quasi-

typing judgement a : Int, b : Int, X : τ ⊪∅ ∆ ⊢ ((a b) · X , [a]X ) : (τ × [Bool]τ ) are as follows.

a : Int, b : Int, X : τ ⊪∅ ∆ ⊢ (a b) · X : τ (1)

a : Bool, b : Int, X : τ ⊪∅ ∆ ⊢ id · X : τ (2)

If one takes the freshness context, ∆ to be the empty set, ∅, then the corresponding essential

environments for these variable judgements are as follows.

{b : Int, a : Int, X : τ } (1)

{a : Bool, b : Int, X : τ } (2)

However, if ∆ is taken to be the freshness context, {a # X }, the corresponding essential environ-

ments are thus.

{b : Int, X : τ } (1)

{b : Int, X : τ } (2)

4.2.5 Typing Derivations. The compatibility property is again used to distinguish those quasi-

typing derivations where variable judgements are uniform, in the sense that, for each variable, all

occurrences are typed in the same essential environment.

Definition 4.15 (Compatibility Property). The compatibility property holds for a derivation of

Γ ⊪Σ ∆ ⊢ t : τ , if, for each variable X ∈ vars(t ), the essential environments of all variable

judgements for X throughout the derivation are equal.

Definition 4.16 (Derivable Typing Judgements). A typing judgement Γ ⊩Σ ∆ ⊢ t : τ is derivable, if

there exists a derivation of the corresponding quasi-typing judgement for which the compatibility

property holds.

Informally, a derivable quasi-typing judgement becomes a derivable typing judgement if each

occurrence of a variable X ∈ vars(t ), is typed in the same environment.

Γ ⊩Σ ∆ ⊢ s : τ may sometimes be written to express ‘Γ ⊩Σ ∆ ⊢ s : τ is derivable’.

The following are examples of derivable typing judgements:
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Example 4.17 (Derivable Typing Judgements).

a : α , X : β ⊩∅ ∅ ⊢ (a, X ) : (α × β ) (1)

∅ ⊩∅ ∅ ⊢ [a]a : [α]α (2)

a : β ⊩∅ ∅ ⊢ [a]a : [α]α (3)

∅ ⊩∅ ∅ ⊢ [a]a : [γ ]γ (4)

a : α , b : β ⊩∅ ∅ ⊢ ([a] [b] [b] (a, b), a, b) : ([α ′] [β ′] [γ ] (α ′ × γ ) × α × β ) (5)

a : τ1, b : τ2, X : τ ⊩∅ ∅ ⊢ (a b) · X : τ (6)

a : τ1, b : τ1, X : τ ⊩∅ ∅ ⊢ ((a b) · X , id · X ) : (τ × τ ) (7)

X : τ ⊩∅ a # X ⊢ ([a] id · X , id · X ) : (τ × τ ) (8)

a : α , b : β , X : τ ⊩∅ ∅ ⊢ [a] ((a b) · X , id · X ) : [β] (τ × τ ) (9)

Notice that for the sixth term above, a type is still derivable, despite the incompatible types of

the atoms occurring in the permutation, because there is only one occurrence of the variable, X ,
whereas the seventh, requires the types of the atoms, a and b, to be equal. For the eighth term, the

freshness condition equates the conflicting environments of the two variable judgements, whilst for

the ninth, the type association for a is updated in the environment to produce equal environments

for the two variable judgements.

4.2.6 Properties of Derivable Typing Judgements. Lemma 4.18 is standard. Lemma 4.20 is a key

property for this type system.

Lemma 4.18 (Instantiation of Typing Judgements). If Γ ⊩Σ ∆ ⊢ t : τ then Γ S ⊩Σ ∆ ⊢ t : τ S .

Proof. By induction on the derivation of the corresponding quasi-typing judgement. Again, a

similar result is shown in [27]. □

Lemma 4.19 (Meta-level Eqivariance of Typing Judgements). Given a permutation, π , if
Γ ⊩Σ ∆ ⊢ t : τ , then π Γ ⊩Σ

π∆ ⊢ π t : τ .

Proof. By induction on the derivation of the quasi-typing judgement Γ ⊪Σ ∆ ⊢ t : τ .

• For an atom term, a, if Γ ⊪Σ ∆ ⊢ a : τ , then Γa = τ follows, as does
π Γπ a = τ and thus

π Γ ⊩Σ
π∆ ⊢ πa : τ .

• For a moderated variable, π ′ · X , if Γ ⊪Σ ∆ ⊢ π ′ · X : τ , then ΓX =
π ΓX = τ follows, and thus

π Γ ⊩Σ
π∆ ⊢ π (π ′ · X ) : τ .

• For a function application, f t , if Γ ⊩Σ ∆ ⊢ f t : τ , then by the induction hypothesis,
π Γ ⊩Σ

π∆ ⊢ π t : τ ′ and because Σ is fixed under permutation, thus
π Γ ⊩Σ

π∆ ⊢ π (f t ) : τ .
• For a tuple, (t1, . . . , tn ), each element follows from the inductive hypothesis but one must

check that the compatibility property still holds. The difficulty is that a variable could occur

in more than one ti . Assume there are n occurrences of a variable X : (π1 ·X , . . . , πn ·X ), one
knows that the essential environments for each variable judgment Γi ⊪Σ ∆ ⊢ πi · X : τi are
equal, but now one must prove that the essential environments of

π Γi ⊪Σ
π∆ ⊢ π (πi · X ) : τi

are also equal.

Observe that
π (πi ·X ) = π @ πi @ π -1 ·X and thus, if

π -1

i Γi \ {(a : σ ) | ∆ ⊢ a # X } are equal,

then, because
(π@πi@π -1 )-1@π Γi =

π@π -1

i @π -1
@π Γi =

π@π -1

i Γi , it follows that
π@π -1

i Γi \ {(a : σ ) |
π∆ ⊢ a # X } are all equal.
• For an abstraction, [a] t , if Γ ⊪Σ ∆ ⊢ [a] t : τ , then τ ≡ [τ ′]τ ′′ and Γ Z (a : τ ′) ⊪Σ ∆ ⊢ t : τ ′′.
By the induction hypothesis,

π (Γ Z (a : τ ′)) ⊪Σ
π∆ ⊢ π t : τ ′′. Now, π (Γ Z (a : τ ′)) ≡
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π Γ Z (πa : τ ′) and so
π Γ Z (πa : τ ′) ⊪Σ

π∆ ⊢ π t : τ ′′. One can now infer that
π Γ ⊩Σ

π∆ ⊢
[
πa] π t : [τ ′]τ ′′ and so

π Γ ⊩Σ
π∆ ⊢ π

[a] t : τ .

□

Lemma 4.20 (Object-level Eqivariance of Typing Judgements). Given a permutation, π , if
Γ ⊩Σ ∆ ⊢ t : τ then π Γ ⊩Σ ∆ ⊢ π · t : τ .

Proof. Proceed by induction on the derivation. The cases for an atom term, a moderated variable

and a function application proceed as in the proof of Lemma 4.19 for meta-level equivariance.

• For a tuple, (t1, . . . , tn ), Γ ⊩Σ ∆ ⊢ (t1, . . . , tn ) : τ , again each element follows by the

induction hypothesis and one must check that the compatibility property continues to hold.

Similarly, in the case where there are n occurrences of a variable X , (π1 ·X , . . . , πn ·X ), one
knows that the essential environments for each variable judgment Γi ⊪Σ ∆ ⊢ πi · X : τi are
equal, but now one must prove that the essential environments of

π Γi ⊪Σ ∆ ⊢ π · (πi · X ) : τi
are equal, which follows from the fact that

(π@πi )-1@π Γi =
π -1

i @π -1
@π Γi =

π -1

i Γi .
• For an abstraction, [a] t , if Γ ⊪Σ ∆ ⊢ [a] t : τ , then τ ≡ [τ ′]τ ′′ and Γ Z (a : τ ′) ⊪Σ ∆ ⊢
t : τ ′′. By the induction hypothesis,

π (Γ Z (a : τ ′)) ⊩Σ ∆ ⊢ π · t : τ ′′. One still knows

that
π (Γ Z (a : τ ′)) ≡ π Γ Z (πa : τ ′) but now π Γ Z (πa : τ ′) ⊩Σ ∆ ⊢ π · t : τ ′′ and

π Γ Z (π · a : τ ′) ⊩Σ ∆ ⊢ π · t : τ ′′ follows from the fact that
πa = π (a) = π · a. One can now

infer that
π Γ ⊩Σ ∆ ⊢ [π · a]π · t : [τ ′]τ ′′ and so

π Γ ⊩Σ ∆ ⊢ π · [a] t : τ .

□

The notion of a well-typed substitution is now defined, for which in Theorem 4.23 it is proved

that the types of terms are preserved under their action. More precisely, given a typing judgement

for a term t , conditions are given that typeable substitutions should satisfy to ensure that the

corresponding instance of the term t has the same type as t .
This property is important for rewriting applications, specifically, to ensure that rewriting (using

well-typed rules) preserves types. This is not straightforward in a polymorphic Curry-style system

due to the fact that atoms, for which types are provided in the environment, may be captured when

the substitution is applied.

Below, for simplicity, consider only idempotent substitutions that instantiate all the variables

in a term. This is a standard assumption that is always satisfied by the substitutions generated in

rewriting steps, because the variables of rewrite rules are taken to be disjoint from those variables

of the term to be rewritten.

Definition 4.21 (Well-typed Substitution). An idempotent substitution θ , where dom(θ ) ⊆ vars(t ),
is well-typed in Γ, Σ and ∆ for Φ ⊩Σ ∇ ⊢ t : τ under the following conditions.

(1) ∆ ⊢ ∇θ
(2) Γ = Γ′ Z Φatm , where Φatm denotes the set of declarations for atoms provided in Φ. Thus, Γ

contains the associations for atoms provided by Φ and possibly also declarations for other

atoms and variables from the image of θ .
(3) For each X ∈ vars(t ), where E is the essential environment of X in Φ ⊩Σ ∇ ⊢ t : τ :
(a) Γ′ Z Eatm ⊩Σ ∆ ⊢ X θ : ΦX , where E = Evar ∪ Eatm such that Evar contains associations

for variables and Eatm associations for atoms;

(b) supp(π ) ∩ (atms(Γ′) − atms(E)) = ∅, for every π such that π · X occurs in t .
(4) The set of type derivations {Γ′ Z Eatm ⊩Σ ∆ ⊢ X θ : ΦX | X ∈ vars(t )} has the compatibility

property, that is, for each variable in the image of θ , the essential environments for that

variable throughout all the derivations in the set are equal.
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Condition 2 ensures that Γ types atoms in the same way as Φ: for any atom a, Γa = Φa . This

definition is more involved than Definition 3.24: Condition 1 is needed here due to the fact that

freshness constraints are taken into account in essential environments in this system, and Con-

dition 3b is not stated in Definition 3.24 because it holds trivially, since all the atoms in supp(π )
must be typed in Φ (permutations are well-typed by construction in Church-style systems).

For example, consider part 6 in Example 4.17, and assume τ ≡ τ1 ≡ Nat and τ2 ≡ Bool. The substi-
tution [X 7→ a] is not well-typed; but [X 7→ b] is, where Γ′ = ∅ and E = {b : Nat, a : Bool, X : Nat}.

It is now proved that well-typed substitutions preserve types. The following lemma must first be

stated and proved.

Lemma 4.22 (Type Weakening and Strengthening).

• If Γ ⊩Σ ∆ ⊢ t : τ then Γ Z (a : τ ′) ⊩Σ ∆ ⊢ t : τ , provided that either a < atms(t ) or ∆ ⊢ a # t .
Call this type weakening.
• If Γ ⊩Σ ∆ ⊢ t : τ and (a : τ ′) ∈ Γ then Γ \ {(a : τ ′)} ⊩Σ ∆ ⊢ t : τ provided that either a < atms(t )
or ∆ ⊢ a # t . Call this type strengthening.

Proof. By induction on the typing judgement derivation. Note that, if a ∈ atms(t ), then, because
∆ ⊢ a # t , a must either be abstracted and (a : τ ) is updated or occur in a suspended permutation in

which case (a : τ ) is removed from the essential environment. □

Theorem 4.23 (Well-typed Substitutions Preserve Types). If θ is well-typed in Γ, Σ and ∆
for Φ ⊩Σ ∇ ⊢ t : τ , then Γ ⊩Σ ∆ ⊢ t θ : τ .

Proof. By induction on the structure of the derivation of the quasi-typing judgement Φ ⊪Σ ∇ ⊢

t : τ , distinguishing cases according to the last rule applied.

• For an atom term, a, if Φ ⊪Σ ∇ ⊢ a : τ , then Φa = τ follows as does a θ = a, and Γa = Φa by

Condition 2 of Definition 4.21 since θ is well-typed in Γ. Thus Γ ⊩Σ ∆ ⊢ a θ : τ .
• For a moderated variable, π · X , if Φ ⊪Σ ∇ ⊢ π · X : τ , then ΦX = τ and the essential

environment of X is E = π -1

Φ \ {a : σ | ∇ ⊢ a # X }. Due to the fact that θ is well-typed,

Γ′ Z Eatm ⊩Σ ∆ ⊢ θ (X ) : ΦX by Condition 3a of Definition 4.21. Hence, by Lemma 4.20,

π (Γ′ Z Eatm ) ⊩Σ ∆ ⊢ π ·X θ : ΦX . Since
πEatm ⊆ Φatm and ∆ ⊢ a # Xθ for any a # X ∈ ∇ by

Condition 1 of Definition 4.21, by typeweakening one obtains
π Γ′ Z Φatm ⊩Σ ∆ ⊢ π ·X θ : ΦX .

By Condition 3b of Definition 4.21, it also follows that Γ′ Z Φatm ⊩Σ ∆ ⊢ π · X θ : ΦX , which

completes the proof of this case because Γ = Γ′ Z Φatm by Condition 2 of Definition 4.21.

• For an application term, the result follows directly by the induction hypothesis.

• For a tuple, (t1, . . . , tn ), each element follows from the inductive hypothesis but one must

check that the compatibility property still holds. This is a consequence of part 4 in Defini-

tion 4.21.

• For an abstraction, [a] t ′, if Φ ⊪Σ ∇ ⊢ [a] t
′
: τ , then τ ≡ [τ ′]τ ′′ and Φ Z (a : τ ′) ⊪Σ ∇ ⊢

t ′ : τ ′′. Note that θ is well-typed in Γ Z (a : τ ′) and ∆ for Φ Z (a : τ ′) ⊩Σ ∇ ⊢ t
′
: τ ′′ because

t ′ has the same set of variables and essential environments as t . The result then follows

directly from the inductive hypothesis.

□

4.2.7 Types and Alpha-equivalence. It is now proved that alpha-equivalence respects types, or

in other words, that the type system correctly deals with alpha-equivalence classes of terms, in

the sense that two alpha-equivalent terms have the same types. Most importantly, this requires

that the defined static semantics for derivable typing judgements correctly handles the action of

suspended permutations and also the possibility that the application of a variable substitution may

result in the capture of atoms by abstractions.
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Theorem 4.24 (Types and Alpha-eqivalence). If ∆ ⊢ s ≈α t and Γ ⊩Σ ∆ ⊢ s : τ then
Γ ⊩Σ ∆ ⊢ t : τ .

Proof. By induction on the size of the pair, (s, t ). The form of (s, t ) is rather restricted by the

assumption that ∆ ⊢ s ≈α t ; for example, if s ≡ π ·X then t ≡ π ′ ·X for some permutation, π ′. This
information is used without comment in the proof.

• If ∆ ⊢ a ≈α a and Γ ⊩Σ ∆ ⊢ a : τ , then there is nothing to prove.

• If ∆ ⊢ π ·X ≈α π ′ ·X and Γ ⊩Σ ∆ ⊢ π ·X : τ , then ΓX = τ and it follows that Γ ⊩Σ ∆ ⊢ π ′ ·X : τ .
• If ∆ ⊢ f s ≈α f t and Γ ⊩Σ ∆ ⊢ f s : τ , then Γ ⊩Σ ∆ ⊢ s : τ ′, and by the inductive hypothesis,

one deduces that Γ ⊩Σ ∆ ⊢ t : τ ′ and concludes that Γ ⊩Σ ∆ ⊢ f t : τ .
• If ∆ ⊢ (s1, . . . , sn ) ≈α (t1, . . . , tn ) and Γ ⊩Σ ∆ ⊢ (s1, . . . , sn ) : τ , then each element again

follows by the inductive hypothesis but one must check the compatibility property still holds.

Assume there arem occurrences of X , π1 ·X , . . . , πm ·X , in s . Since t is alpha-equivalent to s ,
there are alsom occurrences π ′

1
·X , . . . , π ′m ·X in t , at the same positions. Now, πi ·X ≈α π ′i ·X

when ∆ ⊢ ds(πi , π ′i ) # X , and so if the essential environments of each variable judgement in

s are equal, then they must also be equal for t .
• If ∆ ⊢ [a] s ≈α [a] t and Γ ⊩Σ ∆ ⊢ [a] s : τ , then ∆ ⊢ s ≈α t and τ ≡ [τ ′]τ ′′ and Γ Z
(a : τ ′) ⊩Σ ∆ ⊢ s : τ ′′. Use the inductive hypothesis to deduce that Γ Z (a : τ ′) ⊩Σ ∆ ⊢ t : τ ′′

and conclude that Γ ⊩Σ ∆ ⊢ [a] t : [τ ′]τ ′′.
• If ∆ ⊢ [a] s ≈α [b] t and Γ ⊩Σ ∆ ⊢ [a] s : τ , then again, τ ≡ [τ ′]τ ′′ and Γ Z (a : τ ′) ⊩Σ ∆ ⊢

s : τ ′′ and by the properties of ≈α [69, theorem 2.11], ∆ ⊢
{
s ≈α (a b) · t , a # t , (a b) · s ≈α

t , b # s
}
.

By type weakening, Lemma 4.22, Γ Z {(a : τ ′), (b : τ ′)} ⊩Σ ∆ ⊢ s : τ ′′ and by object-level

equivariance, Lemma 4.20, Γ Z {(a : τ ′), (b : τ ′)} ⊩Σ ∆ ⊢ (a b) · s : τ ′′.
From the fact that ∆ ⊢ (a b) · s ≈α t , deduce by the inductive hypothesis that Γ Z
{(a : τ ′), (b : τ ′)} ⊩Σ ∆ ⊢ t : τ ′′ and then that Γ Z {(a : τ ′)} ⊩Σ ∆ ⊢ [b] t : [τ ′]τ ′′.
From the fact that ∆ ⊢ a#[b] t , conclude by type strengthening, Lemma 4.22, that Γ ⊩Σ ∆ ⊢
[b] t : [τ ′]τ ′′.

□

It is to be noted that Theorem 4.24 is stronger than its counterpart in the Church system (see

Theorem 3.29) in the following sense: in a Church system, all terms are typed by construction, so

to prove that the type system is compatible with the alpha-equivalence relation it need only be

shown that alpha-equivalent terms have the same type. In contrast, here it is proved that if one

term of an alpha-equivalence class may be given a type, all terms of that class may be given the

same type. For this reason, typing judgements in the Curry system also take into consideration the

freshness context in which the term exists.

4.3 Inference of Principal Solutions
This subsection first presents the notions of a term typeability problem and a principal solution to

such a problem. There then follows a description of an algorithm for the computation of principal

solutions and a proof that this algorithm is sound and complete with respect to derivable typing

judgements within the system.

4.3.1 Typeability Problems.

Definition 4.25 (Typeability Problem). A typeability problem is a tuple (Γ, Σ, ∆, t ), written,
Γ ⊩Σ ∆ ⊢ t , which asks whether the term, t , is typeable using the type and declaration associations
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given in the environment, Γ, and signature, Σ, respectively, and the freshness constraints given in

the freshness context, ∆.

Given a typeability problem, Γ ⊩Σ ∆ ⊢ t , if there exists a type, τ , such that Γ ⊩Σ ∆ ⊢ t : τ is

derivable, then say that Γ ⊩Σ ∆ ⊢ t is typeable. Otherwise, say that Γ ⊩Σ ∆ ⊢ t is untypeable, or
say that it is quasi-typeable if a derivation for the quasi-typing judgement Γ ⊪Σ ∆ ⊢ t : τ exists

for some type τ .
More generally, say that a typeability problem is solvable if there exists a type substitution, S ,

that when applied to the environment, Γ, allows a type, τ , to be derived for the term, t . This is
stated formally in Definition 4.26.

Definition 4.26 (Typeability Problem (Quasi-)Solution). A quasi-solution to a typeability problem,

Γ ⊩Σ ∆ ⊢ t , is a pair, (S, τ ), consisting of a type substitution, S , and a type, τ , such that the

quasi-typing judgement, Γ S ⊪Σ ∆ ⊢ t : τ , is derivable. If, moreover, the compatibility property

holds, then (S, τ ) is a solution.

Note that a typeability problem may have a solution but still not be typeable. A problem is only

typeable when there exists a solution of the form (id, τ ).

Example 4.27 (Typeability Problem Solutions). The typeability problem,a : Bool, b : Bool, X : α ⊩∅
∅ ⊢ (a b) · X , has the solutions (id, α ) and ([α 7→ Nat], Nat) amongst others, and is both solvable

and typeable.

4.3.2 Principal Solutions and Principal Types. Solutions and quasi-solutions have a natural

ordering given by the instantiation of substitutions.

(S, σ ) ≤ (T , τ ) when ∃U . {T = S ◦U ∧ τ ≡ σ U }

A most general (quasi-)solution to a problem is a minimal element in a set of (quasi-)solutions; it

is called a principal (quasi-)solution. The type component of a principal (quasi-)solution for a

given typing problem is a most general (quasi-)type or principal (quasi-)type for that problem.

By these definitions, there may be many principal solutions and thus many principal types for a

given typeability problem. For example, if one lets Σ be the signature, {f : ∀(α ).⟨Nat ↪→ α⟩}, then
both (id, α ′) and (id, β ) are principal solutions to the typeability problem, X : Nat ⊩Σ ∅ ⊢ fX .
However, principal solutions for a solvable typeability problem, Γ ⊩Σ ∆ ⊢ s , are unique modulo the

names of those type variables that are not elements of the set tvars(Γ). In fact, principal types can

be viewed as principal schemes, as in the type system described in [27] for the language ML.

4.4 Inference of Principal Types
A partial function, pt, is now presented that given a typeability problem, Γ ⊩Σ ∆ ⊢ t , computes its

principal solution if there is one, and fails if there is no solution.

It is defined in two phases: firstly, given a typeability problem Γ ⊩Σ ∆ ⊢ t , the function ptQ
constructs a most general derivation for Γ ⊪Σ ∆ ⊢ t : τ and then, the function ptE checks the

compatibility property for the essential environments of this derivation and outputs a solution, if

one exists.

4.4.1 ptQ . Phase ptQ , takes as input a typeability problem and outputs a typeability problem

quasi-solution, if one exists, together with the derivation tree constructed for that quasi-solution.

During the computation of ptQ , it is necessary to preserve the full derivation tree constructed in

order to compute ptE. The preservation of this tree is verbose and relatively straightforward and is

omitted in the outline of the algorithm for ptQ given below, in order to maintain clarity.
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The only point of interest is that one must remember to apply the type substitution output to

the preserved derivation tree, because typing function applications may instantiate previously

computed sub-trees, due to the computation of most general unifiers over types returned in those

sub-trees.

Definition 4.28 (Algorithm for ptQ). Let S |Γ denote the restriction of the substitution S to the

variables in Γ.

• ptQ (Γ ⊩Σ ∆ ⊢ a) = (id, τ ) where Γa = τ .
• ptQ (Γ ⊩Σ ∆ ⊢ π · X ) = (id, τ ) where ΓX = τ .
• ptQ (Γ ⊩Σ ∆ ⊢ [a] s ) = (S |Γ, [τ

′
]τ ) where ptQ (Γ Z (a : α ) ⊩Σ ∆ ⊢ s ) = (S, τ ), the type

variable, α , is newly generated and τ ′ = α S .
• ptQ (Γ ⊩Σ ∆ ⊢ f t ) = (SS ′ |Γ, ϕ S

′) where ptQ (Γ ⊩Σ ∆ ⊢ t ) = (S, τ ), Σf = ρ and ⟨ϕ ′ ↪→ ϕ⟩ is
the most general generic instance of ρ, where every type variable, α ∈ tvars(⟨ϕ ′ ↪→ ϕ⟩), is
newly generated and S ′ = mgu(ϕ ′, τ ).
• ptQ (Γ ⊩Σ ∆ ⊢ (t1, . . . , tn )) = (S1 . . . Sn , (τ1S2 . . . Sn × . . . × τn−1Sn × τn )) where ptQ (Γ ⊩Σ

∆ ⊢ t1) = (S1, τ1), ptQ (Γ S1 ⊩Σ ∆ ⊢ t2) = (S2, τ2), . . . , ptQ (Γ S1 . . . Sn−1 ⊩Σ ∆ ⊢ tn ) =
(Sn , τn ).

4.4.2 ptE. Phase ptE takes the typeability problem quasi-solution and derivation output by ptQ
and, if defined, returns a typeability problem solution, more specific than or equal to the input

solution.

The functions to determine variable judgements within a derivation tree and to compute the

essential environments that then arise are straightforward.

The function to compute the most general unifier of two types, mgu(σ , τ ), is extended to sets of

pairs of types in the obvious way, using the transitivity of equality. The most general unifier of two

environments, Γ and ϒ, is defined such that, for all a ∈ Γ ∪ ϒ, both Γa and ϒa must be defined, and

that set of pairs of types be unifiable bymgu. The notion is extended further to sets of environments

in the obvious way.

The algorithm for ptE is easily defined using these subcomponents. Given the derivation for the

typeability problem, Γ ⊩Σ ∆ ⊢ t , a most general unifier for the essential environments for each

variable X ∈ vars(t ), is computed and, if defined, this unifier is composed with the substitution

component and applied to the type component of the input solution from ptQ to produce the

solution to the initial typeability problem. Thus the function pt is defined simply as pt(Γ ⊩Σ ∆ ⊢
t ) = (S ◦ S ′, τ S ′) where ptQ (Γ ⊩Σ ∆ ⊢ t ) = (S, τ ) and ptE(Γ ⊩Σ ∆ ⊢ t ) = S ′.

4.4.3 Soundness and Completeness of pt. Given a typeability problem, P , it must now be shown

that pt(P ) is a solution to P , and that every solution to P is an instance of pt(P ). This is now stated

and proved formally.

Lemma 4.29 is required for the proof.

Lemma 4.29 (Newly-generated Environments and pt). If pt(Γ Z (a : τ ) ⊩Σ ∆ ⊢ t ) = (S, σ )
and α is a newly-generated type variable with respect to Γ Z (a : τ ), then there exists a type substitution,
T , and a type, τ ′, such that pt(Γ Z (a : α ) ⊩Σ ∆ ⊢ t ) = (T , τ ′) and (T , τ ′) ≤ (S, σ ).

Proof. By induction on the term, t . The only interesting case is that for an atom term, a.
There, pt(Γ Z (a : τ ) ⊩Σ ∆ ⊢ a) = (id, τ ) and so it follows that pt(Γ Z (a : α ) ⊩Σ ∆ ⊢ a) = (id, α )

and, because α is newly-generated, (id, α ) ≤ (id, τ ). □

Theorem 4.30 (Soundness and Completeness of pt).

• Soundness: if pt(Γ ⊩Σ ∆ ⊢ t ) = (S, τ ) then Γ S ⊩Σ ∆ ⊢ t : τ is derivable.
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• Completeness: let U be a substitution such that dom(U ) ⊆ tvars(Γ); if ΓU ⊩Σ ∆ ⊢ t : σ is
derivable then pt(Γ ⊩Σ ∆ ⊢ t ) is defined and equal to (S, τ ) and (S, τ ) ≤ (U , σ ).

Proof. The argument for soundness is by a routine induction on the definition of pt(Γ ⊩Σ ∆ ⊢
t ) = (S, τ ), using Lemma 4.18 and is omitted.

That for completeness is divided into two parts, corresponding to the two phases of pt. The first
part is thus proving completeness of ptQ for quasi-solutions, and is by induction on the abstract

syntax tree of the term, t , with the help of Lemma 4.29. Distinguish the following cases:

• If ΓU ⊩Σ ∆ ⊢ a : σ then σ = (ΓU )a = Γa U . Let Γa = τ , then by definition ptQ (Γ ⊩Σ ∆ ⊢
a) = (id, τ ), which is clearly the principal solution.

• The case for a moderated variable follows that for an atom term.

• If ΓU ⊩Σ ∆ ⊢ [a] t : σ , then σ ≡ [σ ′]σ ′′, and ΓU Z (a : σ ′) ⊩Σ ∆ ⊢ t : σ ′′.
By the inductive hypothesis, ptQ (Γ Z (a : σ ′) ⊩Σ ∆ ⊢ t ) = (S, τ ′′), of which, (U , σ ′′), is an
instance; that is, there is a substitution, T , such thatU = S ◦T and σ ′′ ≡ τ ′′T .
Now also, by definition, ptQ (Γ ⊩Σ ∆ ⊢ [a] t ) = (V |Γ, [µ

′
] µ ′′), where µ ′ = α V and ptQ (Γ Z

(a : α ) ⊩Σ ∆ ⊢ t ) = (V , µ ′′), thus, by Lemma 4.29, there exists a substitution,W , such that,

V ◦W = S and µ ′′W ≡ τ ′′.
However, because α is newly generated, it follows that for all β ∈ tvars(Γ) then β V |Γ≡ β S .
The fact that α < dom(S ) gives µ ′ ≡ α V ≡ σ ′ and α < tvars(µ ′′), gives µ ′′ ≡ τ ′′. Thus,
(U , [σ ′]σ ′′) is an instance of (V |Γ, [µ

′
] µ ′′).

• If ΓU ⊩Σ ∆ ⊢ f t : σ , then ΓU ⊩Σ ∆ ⊢ t : σ ′, Σf = ρ ≡ ⟨ρ ′ ↪→ ρ ′′⟩ and ⟨ρ ′ ↪→ ρ ′′⟩ ≽ ⟨σ ′ ↪→
σ ⟩.
By the inductive hypothesis, ptQ (Γ ⊩Σ ∆ ⊢ t ) = (S, τ ′), of which, (U , σ ′), is an instance;

that is, there is a substitution, T , such thatU = S T , σ ′ ≡ τ ′T .
Thus by definition, ptQ (Γ ⊩Σ ∆ ⊢ f t ) = ((S ◦V ) |Γ, ϕ

′′V ), where ⟨ϕ ′ ↪→ ϕ ′′⟩, is a newly
generated most general generic instance of ρ, and V = mgu(ϕ ′, τ ′).
Now, because ϕ ′ is part of the most general generic instance of ρ, there exists a substitution
W , such that ϕ ′W ≡ σ ′ ≡ τ ′T but τ ′V ≡ ϕ ′V , thus V ≤W ◦T , otherwise V would not be

the mgu of ϕ ′ and τ ′.
• If ΓU ⊩Σ ∆ ⊢ (t1, . . . , tn ) : (σ1 × . . . × σn ), then ΓU ⊩Σ ∆ ⊢ t1 : σ1, . . . , ΓU ⊩Σ ∆ ⊢ tn : σn .
By definition:

ptQ (Γ ⊩Σ ∆ ⊢ (t1, . . . , tn )) = (S1 . . . Sn , (τ1 S2 . . . Sn × . . . × τn−1 Sn × τn )) where ptQ (Γ ⊩Σ

∆ ⊢ t1) = (S1, τ1), ptQ (Γ S1 ⊩Σ ∆ ⊢ t2) = (S2, τ2), . . . , ptQ (Γ S1 . . . Sn−1 ⊩Σ ∆ ⊢ tn ) =
(Sn , τn ).
This is equivalent to computing, first, ptQ (Γ ⊩Σ ∆ ⊢ t1) = (S1, τ1), . . . , ptQ (Γ ⊩Σ ∆ ⊢ tn ) =
(Sn , τn ), and then computing the most general unifier of these solutions.

Element-wise each is provable by induction and ((t1, . . . , tn ), (σ1 × . . . × σn )), must be an

instance of the most general unifier of the solutions.

This completes the proof of completeness of ptQ with respect to quasi-solutions: if a typeability

problem has a quasi-solution, then ptQ finds a principal one.

Now consider the second phase, ptE.
If ΓU ⊩Σ ∆ ⊢ t : σ is derivable then there exists a derivation for the quasi-typing judgement

ΓU ⊪Σ ∆ ⊢ t : σ in which the essential environments of the variable judgements are equal

for each variable, X ∈ vars(t ). Given the completeness of ptQ , shown immediately above, then

ptQ (Γ ⊩Σ ∆ ⊢ t ) is defined and equal to (S, τ ) and (S, τ ) ≤ (U , σ ). By the fact that ptE computes

a most general unifier and it is known that one exists, then pt(Γ ⊩Σ ∆ ⊢ t ) is defined and must

remain more general than (U , σ ). □
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The following property follows as a corollary of Theorem 4.30.

Corollary 4.31 (Empty Type Substitution). A typeability problem, Γ ⊩Σ ∆ ⊢ t , is typeable, if
and only if pt(Γ ⊩Σ ∆ ⊢ t ) = (id, τ ) for some type, τ .

The following property follows as a corollary of Theorem 4.30 and Theorem 4.24.

Corollary 4.32 (Alpha-eqivalence and Principal Solutions). ∆ ⊢ s ≈α t implies pt(Γ ⊩Σ

∆ ⊢ s ) = pt(Γ ⊩Σ ∆ ⊢ t ) modulo the names of type variables, for any environment, Γ, and signature,
Σ, such that pt is defined for either s or t .

5 TYPED NOMINAL EQUATIONAL THEORIES
This section explores the application of the polymorphic type system of Section 4 to nominal

equational theories.

A formalisation of typed nominal rewriting is given by first defining the notion of a typeable

rewrite rule and then providing conditions upon nominal rewriting sufficient to guarantee the

preservation of types. A simplification, using the more efficient approach of closed nominal rewrit-

ing, over typeable terms, is then investigated and a corresponding system of typed nominal algebra

defined.

5.1 Typed Nominal Rewriting
This subsection begins by defining a typeable rewrite rule. This is followed by conditions upon

nominal rewriting that ensure the property of subject reduction. These conditions are formulated

in Section 5.1.2, as typed nominal pattern matching.

5.1.1 Typeable Rewrite Rules.

Definition 5.1 (Typeable Rewrite Rule). A typeable rewrite rule, written Φ ⊩Σ ∇ ⊢ l → r : τ , is a
tuple of an environment, Φ, a signature, Σ, a freshness context, ∇, two terms, l and r and a type, τ ,
such that the following conditions hold.

(1) ∇ ⊢ l → r is a uniform rule;

(2) pt(Φ ⊩Σ ∇ ⊢ l ) = (id, τ ) and Φ ⊩Σ ∇ ⊢ (l , r ) : (τ × τ ).

The first condition requires the rewrite rule to be uniform; intuitively, this means that reductions

do not generate new atoms.

The second says that l and r are both typeable with the principal type of l in the context of ∇, Φ
and Σ. Most importantly, this condition is so framed to ensure that the essential environments of

both sides of the rule are the same, which is key to proving the property of subject reduction (that

is, the rewriting relation generated by typeable rules preserves types).

Note that by the unicity of principal types, given ∇ and Φ there exists at most one τ such that

Φ ⊩Σ ∇ ⊢ l → r : τ is typeable.

Let Σ be the signature, {lam : ∀(α , β ).⟨[α] β ↪→ α ⇒ β⟩, app : ∀(α , β ).⟨(α ⇒ β × α ) ↪→
β⟩, sub : ∀(α , β ).⟨([α] β ×α ) ↪→ β⟩}, where⇒, is a type-former, written infix, to construct function

types. One then has the following typeable rules representing βη-reduction for a polymorphically

typed lambda calculus.
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Example 5.2 (Typeable Rewrite Rules).

X : α , Y : β ⊩Σ ∅ ⊢ app ((lam [a]X ), Y ) → sub ([a]X , Y ) : α

X : α ⇒ β ⊩Σ a # X ⊢ lam [a] (app (X , a)) → X : α ⇒ β

X : α , Z : γ ⊩Σ a # X ⊢ sub ([a]X , Z ) → X : α

Z : γ ⊩Σ ∅ ⊢ sub ([a]a, Z ) → Z : γ

X : β ⇒ α , Y : β, Z : γ ⊩Σ ∅ ⊢ sub ([a] (app (X , Y )), Z )
→ app (sub ([a]X , Z ), sub ([a]Y , Z )) : α

X : α , Z : γ ⊩Σ b # Z ⊢ sub ([a] (lam [b]X ), Z )

→ lam [b] (sub ([a]X , Z )) : α ′ ⇒ α

5.1.2 Typed Nominal Pattern Matching. Given a typeable rewrite rule and a typeable term for

which a solution to an equivariant nominal pattern matching problem exists, it does not necessarily

hold that their respective types are compatible (see Example 5.4 below).

Thus, this section introduces the concept of typed nominal pattern matching.

Typed nominal pattern matching, as defined below, is an equivariant matching.

Definition 5.3 (Typed Nominal Pattern Matching). Let Φ ⊩Σ ∇ ⊢ l → r : τ be a typeable rule. A

typed nominal pattern matching problem, (Φ ⊩Σ ∇ ⊢ l )
?≈α (Γ ⊩Σ ∆ ⊢ s ) is a pair of tuples,

where Φ and Γ are environments, Σ is a signature, ∇ and ∆ are freshness contexts, and l and s
are terms, such that the variables and type variables occurring on the left-hand side are disjoint

from those occurring on the right-hand side, that is, vars(Φ ⊩Σ ∇ ⊢ l ) ∩ vars(Γ ⊩Σ ∆ ⊢ s ) = ∅ and

tvars(Φ) ∩ tvars(Γ) = ∅.

The solution to a typed nominal pattern matching problem, if it exists, is the least 3-tuple,

(S, θ , π ), of a type substitution, a variable substitution and a permutation such that the following

conditions are met.

(1) ∆ ⊢
{
∇θ , π · (l θ ) ≈α s

}

(2) θ is well-typed in Γ, Σ and ∆ for (πΦ) S ⊩Σ ∇ ⊢ π · l : τ S .

Condition 1 defines a solution, to an untyped equivariant nominal matching problem and

determines the substitution, θ , and the permutation, π , of the solution to the typed nominal

matching problem.

Condition 2 checks that the variable substitution θ is well-typed for an instance (given by the

type substitution S) of the typing judgement for the permuted pattern. It ensures that the term

substituted for each variable is typeable in the essential environment for that variable in the

pattern with the addition of any extra associations in the term’s environment. Note that the second

condition entails that associations for atoms in Γ are not updated with incompatible types. Note

also that θ is idempotent due to the fact that variables in the left-hand side of a pattern matching

problem are disjoint from those in the right-hand side.

To see why it is necessary to check the variable substitution θ , consider the following example.

Example 5.4. Consider a signature Σ, such that Σf = ∀(α ).⟨α ↪→ Nat⟩ and Σtrue = ⟨() ↪→
Bool⟩. Given the pattern fX , and the term f true, then the untyped pattern matching problem

∅ ⊢ fX ?≈α ∅ ⊢ f true has a solution [X 7→ true], but the typed pattern matching problem

(X : Nat ⊩Σ ∅ ⊢ fX ) ?≈α (∅ ⊩Σ ∅ ⊢ f true) has none: the variable substitution [X 7→ true] is not
well-typed, because X is required to have the type Nat, but it is instantiated with a term of type

Bool.
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The following proof shows that given a typeable pattern, then a typeability problem that is

solved by typed nominal pattern matching is typeable with an instance of the type of the pattern.

Theorem 5.5 (Typed Nominal Pattern Matching). If Φ ⊩Σ ∇ ⊢ l : τ , and (Φ ⊩Σ ∇ ⊢ l )
?≈α

(Γ ⊩Σ ∆ ⊢ s ) = (S, θ , π ), then Γ ⊩Σ ∆ ⊢ π · (l θ ) : τ S .

Proof. By Lemma 4.20, (πΦ) S ⊩Σ ∇ ⊢ π · l : τS . By Theorem 4.23, Γ ⊩Σ ∆ ⊢ π · (l θ ) : τ S . □

5.1.3 Typed Nominal Rewriting. The conditions of typed nominal rewriting are inherited from

nominal rewriting (see section 2.6 and [33, 35]) and extended with types.

Definition 5.6 (Typed Nominal Rewriting). Given a rewrite theory, R, of which, R is a typeable

rewrite rule of the form Φ ⊩Σ ∇ ⊢ l → r : σ , a typeability problem, Γ ⊩Σ ∆ ⊢ s , and a term, t , such

that vars(R) ∩
(
vars(Γ ⊩Σ ∆ ⊢ s ) ∪ vars(t )

)
= ∅ and tvars(R) ∩ tvars(Γ) = ∅ (renaming variables

or type variables in R, if necessary), then the one-step typed nominal rewriting relation, ∆ ⊢ s →T
R
t ,

is the least relation generated over the theory R such that the following conditions are met.

(1) s ≡ C [s ′]
(2) Γ ⊩Σ ∆ ⊢ s : τ , with a subderivation Γ′ ⊩Σ ∆ ⊢ s ′ : τ ′.
(3) (Φ ⊩Σ ∇ ⊢ l )

?≈α (Γ′ ⊩Σ ∆ ⊢ s ′) has the solution (S, θ , π ).
(4) ∆ ⊢ C [π · (r θ )] ≈α t .

The typed nominal rewriting relation over a rewrite theory, R, written ∆ ⊢ s ↠T
R
t , is the

reflexive, transitive closure of the one-step typed nominal rewriting relation.

5.1.4 Subject Reduction. It is now proved that typed nominal rewriting enjoys the property of

subject reduction; that is, given typeable rules, the type of a term is preserved under rewriting.

Theorem 5.7 (Subject Reduction). Given a typeable rewrite rule, Φ ⊩Σ ∇ ⊢ l → r : σ , let R be
the rewrite theory (Σ, {∇ ⊢ l → r }); if Γ ⊩Σ ∆ ⊢ s : τ and ∆ ⊢ s ↠T

R
t then Γ ⊩Σ ∆ ⊢ t : τ .

Proof. By Corollary 4.31, it suffices to prove that, if pt(Γ ⊩Σ ∆ ⊢ s ) = (id, τ ) and ∆ ⊢ s ↠T
R
t

then Γ ⊩Σ ∆ ⊢ t : τ .
The proof proceeds by induction on the length of the finite rewrite sequence, ∆ ⊢ s ↠T

R
t and

thus it also suffices to prove that subject reduction holds for the one-step nominal rewriting relation,

∆ ⊢ s →T
R
t .

From this base case, it is known that s ≡ C [s ′] and that ∆ ⊢ ∇θ∪
{
π · (l θ ) ≈α s ′, C [π · (r θ )] ≈α t

}
.

From the assumption that the term, s , is typeable, one deduces that there exists a subderivation
such that Γ′ ⊩Σ ∆ ⊢ s ′ : τ ′, for the subterm s ′ (Definition 5.6, part 2).

However, pt(Φ ⊩Σ ∇ ⊢ l ) = (id, σ ) and by Theorem 5.5 and Theorem 4.24, then Γ′ ⊩Σ ∆ ⊢ s ′ : σ S
and therefore there exists some type substitution, T , such that Γ′T ≡ Γ′ and σ S T ≡ τ ′.
By Theorem 4.24, that is, that alpha-equivalence respects types, it follows now that Γ′ ⊩Σ ∆ ⊢

π · l θ : σ S T .
By the assumptions on typeable rewrite rules,Φ ⊩Σ ∇ ⊢ r : σ , and by Lemma 4.18, the instantiation

of types, it follows that Φ S T ⊩Σ ∇ ⊢ r : σ S T . By Lemma 4.20,
πΦ S T ⊩Σ ∇ ⊢ π · r : σ S T .

It is now proved that θ is well-typed in Γ′,∆ for
πΦ S ⊩Σ ∇ ⊢ π · r : σ S , that is, it satisfies the

conditions in Definition 4.21. Condition 2 and Condition 1 follow directly from the fact that θ is a

solution to a typed pattern matching problem, and hence well-typed for the pattern under the same

type and freshness environments. Condition 3a and Condition 4 follow from the second condition

of Definition 5.1, namely that l has the same essential environments for each variable judgement as

those that occur in r , and condition 3b follows from the fact that typeable rules are uniform.
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Hence Γ′ ⊩Σ ∆ ⊢ π · r θ : σ S . Γ′T ≡ Γ′, and so again by Lemma 4.18, it also holds that

Γ′ ⊩Σ ∆ ⊢ π · (r θ ) : σ S T .
Hence, Γ ⊩Σ ∆ ⊢ C [π · (r θ )] : τ , and then, again by Theorem 4.24, Γ ⊩Σ ∆ ⊢ t : τ , as required. □

5.2 Typed Closed Nominal Rewriting
As previously noted, closed nominal rewriting, Definition 2.30, is markedly more efficient than

the equivariant matching required in Definition 5.3 (see [9, 10, 12]). Thus a system of typed closed

nominal rewriting is highly desirable.

In addition, when using typed nominal pattern matching (Definition 5.3), each attempted match-

ing is type-checked and this represents a significant overhead when used at each rewrite step. Thus,

the system presented here also adds conditions upon the typing of function applications in rewrite

rules to ensure that untyped pattern matching may be safely used to generate rewriting steps —

safely in the sense that rewriting preserves types. Rewrite rules may then be typed statically, whilst

still ensuring subject reduction.

5.2.1 Typeable-closed Rewrite Rules.

Definition 5.8 (Typeable-closed Rewrite Rule). A typeable-closed rewrite rule, R, written, Φ ⊩Σ

∇ ⊢ l → r : τ is a tuple of a freshness context, ∇, an environment, Φ, which has type associations

for variables only, a signature, Σ, two terms, l and r and a type, τ such that the following conditions

are met.

(1) The rule, ∇ ⊢ l → r , is closed.
(2) pt(Φ ⊩Σ ∇ ⊢ l ) = (id, τ ) and Φ ⊩Σ ∇ ⊢ (l , r ) : (τ × τ ).
(3) Every variable in l has an occurrence within a function application f t , and for every sub-

derivation Γ′ ⊩Σ ∆ ⊢ f t : τ ′ in l where t is not ground, if Σf = ∀(α ).⟨σ ↪→ τ ⟩, then the type

of t is as general as σ .

Condition 1 in Definition 5.8 is stronger than Condition 1 in Definition 5.1 since every closed

rule is uniform. Condition 2 is the same as in Definition 5.1. Therefore, every typeable-closed rule

is a typeable rewrite rule.

Condition 3 in Definition 5.8 says that the subterm that forms the argument to an occurrence

of a term-former has the most general type possible. This imposes the rigidity of generic type

variables in rewrite rules using function applications, (that is, if f is declared to be polymorphic,

its rewrite rules should be generic) and ensures that for every variable X ∈ vars(l ), ΦX is the

most general type possible. Thus, the problem regarding different instantiations of generic type

variables when typing matching substitutions discussed in Example 5.4 does not arise. To see

why variables should occur under function applications in l , consider the pathological example:

X : Nat ⊩Σ ∅ ⊢ (X , X ) → (sucX , X ) : Nat × Nat. Then the typeable term (true, true), where
Σtrue = Bool would rewrite to the untypeable term (suc true, true)).

Example 5.9 (Typeable-closed Rewrite Rules). Assume a signature, Σ, of the following form,

{fst : ∀(α β ).⟨(α × β ) ↪→ α⟩, snd : ∀(α β ).⟨(α × β ) ↪→ β⟩}. One then has the following set of

typeable-closed rules, defining surjective pairing (which cannot be implemented by a compositional

translation to the lambda calculus, [5]).

X : α , Y : β ⊩Σ ∅ ⊢ fst (X , Y ) → X : α

X : α , Y : β ⊩Σ ∅ ⊢ snd (X , Y ) → Y : β

Z : (α × β ) ⊩Σ ∅ ⊢ (fstZ , sndZ ) → Z : (α × β )

Note that rewrite rules may be closed but not typeable-closed. The conditions on typeable-closed

rules, given in Definition 5.8 are such that rewrite rules can be typed statically and typed nominal
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pattern matching not be required. A closed rule that is not typeable-closed may still be typeable

according to Definition 5.1.

Also note that condition 1 in Definition 5.8 cannot be deduced from condition 2: the fact that all

the essential environments for a given variable are the same throughout the type derivation does

not mean that the rule is closed, as the following example shows:X : α ⊩Σ ∅ ⊢ f (X ) → (a b) · X : α .

5.2.2 Typed Closed Nominal Rewriting Relation. The conditions given in Definition 5.8 allow

typed closed nominal rewriting to be defined using nominal matching and closed nominal rewriting;

that is, neither equivariant matching nor typed matching is required.
However typed closed nominal rewriting still has the property of subject reduction; that is, given

typeable-closed rules, the type of a typeable term is preserved under rewriting.

Theorem 5.10 (Subject Reduction). Given a typeable-closed rewrite rule, Φ ⊩Σ ∇ ⊢ l → r : σ ,
let R be the rewrite theory (Σ, {∇ ⊢ l → r }); if Γ ⊩Σ ∆ ⊢ s : τ and ∆ ⊢ s ↠C

R
t then Γ ⊩Σ ∆ ⊢ t : τ .

Proof. By induction on the length of the rewriting sequence. The base case, where t is obtained
from s in one closed-rewriting step is proved below.

Closed nominal rewriting reduces to nominal rewriting: by Definition 2.30, if ∆ ⊢ s →C
R
t , then

there exists ∆′ (containing freshness assumptions for atoms that do not occur in s or t ) such that

∆,∆′ ⊢ s →R t . Also, typeable-closed rules are typeable rewrite rules, since the conditions in

Definition 5.1 are satisfied.

Therefore, in order to prove subject reduction for typed closed nominal rewriting, it is sufficient to

show that the conditions on typeable-closed rewrite rules ensure the conditions in Definition 5.3 of

typed nominal pattern matching, that is, that there is a typed nominal rewriting step ∆,∆′ ⊢ s →T
R
t .

One may then proceed as in Theorem 5.7 in Section 5.1.4.

Since ∆,∆′ ⊢ s →R t , by definition of nominal rewriting (see Definition 2.22), there exists a

subterm s ′ of s and a permutation π such that the nominal pattern matching problem (∇ ⊢ π · l ) ?≈α
(∆,∆′ ⊢ s ′) has solution θ .
To complete the proof, it is sufficient to show that there exists a type substitution S such that

(S, θ , π ) is a solution of the corresponding typed nominal pattern matching problem.

Condition 1 of Definition 5.3 is satisfied by the definition of nominal rewriting (see Definitions 2.22

and 2.17):

Condition 2 of Definition 5.3 requires checking the conditions stated in Definition 4.21. Recall

that the variables in the rule are newly generated for each rewrite step, so all the variables in l are
in dom(θ ), and θ is idempotent.

Condition 1 of Definition 4.21 holds by definition of rewriting.

Since the rewrite rule must be closed, and for the type environment, Φ, of a typeable-closed
rewrite rule, it may be considered that atms(Φ) = ∅, condition 2 in Definition 4.21 holds.

Condition 3a (that the variable substitution is well-typed with the types provided in Φ S for

the variables in l ) and Condition 4 are here a consequence of the fact that only typeable terms are
subject to rewriting, using Condition 3 of Definition 5.8 that ensures that each occurrence of a

variable in l is under a term-former that is typed with the most general type possible. Indeed, it

can be proved by induction on the structure of l that there is a type derivation for l using Φ S , for
a type substitution S , such that if E is the essential environment of X in Φ S ⊩Σ ∇ ⊢ l : σ S then

Γ Z Eatm ⊩Σ ∆ ⊢ θ (X ) : (Φ S )X .
Condition 3b of Definition 4.21 holds because closed rewriting steps are generated using freshened

versions of rules, therefore the support of the permutations occurring in the rule is always disjoint

with respect to the set of atoms occurring in the term to be rewritten. □
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Consider again the set of rewrite rules for βη-reduction for a polymorphically typed lambda

calculus given in Example 5.2. Whilst all the rules in this set are typeable rewrite rules, not all are

typeable-closed. Specifically, the rule for substitution over a lambda abstraction does not comply

to Condition 3 of Definition 5.8: in the subterm sub ([a] (lam [b]X ), Z ), the first argument has

type [γ ] (α ′ ⇒ α ) which is too specific an ‘argument’ type for the declaration for the substitution

term-former sub. This brings to attention the fact that this rule does not exhibit genuine generic

polymorphism but is rather making use of an ad-hoc polymorphism where a rewrite depends on

the type of the term being rewritten. It also highlights a conflict between the types for the lambda

calculus being modelled and the type system for nominal terms explored here that specifies the

syntactic representations of the lambda terms. The rules for substitution give behaviour to the

syntax trees defined for lambda terms and do not require the information provided by the lambda

calculus types being represented.

Subject reduction for both typed nominal rewriting and typed closed nominal rewriting should

allow a hybrid approach where the greater efficiency of closed nominal rewriting is harnessed

whenever it is possible to do so.

The authors also conjecture that techniques borrowed from research into polymorphically typed

logic programs [42, 53] and generalised algebraic data types (GADTs) [54], may allow such ad-hoc

polymorphism in rules to be made less problematic.

5.3 Typed Nominal Equational Reasoning
Closed nominal rewriting is complete for nominal equational reasoning when using closed axioms,

[34]. Thus it is straightforward to extend the result in Section 5.2 to define a system of typed

nominal equational reasoning in which types are preserved.

The definition of a typeable-closed axiom follows closely that for a typeable closed rewrite rule,

given in Definition 5.8.

Definition 5.11 (Typeable-closed Axiom). A typeable-closed axiomA, written Φ ⊩Σ ∇ ⊢ l = r : τ ,
is a tuple of a freshness context ∇, an environment Φ, containing type associations for variables
only, a signature Σ, two terms l and r and a type τ , such that the following conditions are met.

(1) The axiom ∇ ⊢ l = r is closed.
(2) pt(Φ ⊩Σ ∇ ⊢ (l , r )) = (id, (τ × τ ))
(3) Every variable in l and r has an occurrence within a function application f t , and for every

subderivation Γ′ ⊩Σ ∆ ⊢ f t : τ ′ in either l or r , where t is not ground, if Σf = ∀(α ).⟨σ ↪→ τ ⟩,
then the type of t is as general as σ .

From the aforementioned result [34, Theorem 5.19], that closed nominal rewriting is complete

for nominal equational reasoning when using closed axioms, it is again straightforward to prove

that typed nominal equational reasoning also preserves types, by demonstrating that the conditions

on typeable-closed axiom given in Definition 5.11 are sufficient to guarantee typed nominal pattern

matching (Definition 5.5).

The following axioms defining quantifier exchange for a fragment of first-order logic provide a

good example of typeable-closed axioms.

Assume Σ to be the signature, {and : ⟨(o×o) ↪→ o⟩, or : ⟨(o×o) ↪→ o⟩, not : ⟨o ↪→ o⟩, all : ⟨[i] o ↪→
o⟩, some : ⟨[i] o ↪→ o⟩}, where the base types, i and o , represent individuals and propositions

respectively.
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Example 5.12 (Typeable-closed Axioms).

P : o, Q : o ⊩Σ a # P ⊢ and (P , all [a]Q ) = all [a] and (P , Q ) : o

P : o, Q : o ⊩Σ a # P ⊢ or (P , all [a]Q ) = all [a] or (P , Q ) : o

P : o, Q : o ⊩Σ a # P ⊢ and (all [a]Q, P ) = all [a] and (Q, P ) : o

P : o, Q : o ⊩Σ a # P ⊢ or (all [a]Q, P ) = all [a] or (Q, P ) : o

P : o, Q : o ⊩Σ a # P ⊢ and (P , some [a]Q ) = some [a] and (P , Q ) : o

P : o, Q : o ⊩Σ a # P ⊢ or (P , some [a]Q ) = some [a] or (P , Q ) : o

P : o, Q : o ⊩Σ a # P ⊢ and (some [a]Q, P ) = some [a] and (Q, P ) : o

P : o, Q : o ⊩Σ a # P ⊢ or (some [a]Q, P ) = some [a] or (Q, P ) : o

P : o ⊩Σ ∅ ⊢ not all [a] P = all [a] not P : o

P : o ⊩Σ ∅ ⊢ not some [a] P = some [a] not P : o

Recall again Example 5.2. One may also axiomatise βη-reduction for that polymorphically typed

lambda calculus as follows, [40].

Example 5.13 (Axiomatised Polymorphic Lambda Calculus).

X : α , Y : β ⊩Σ ∅ ⊢ app ((lam [a]X ), Y ) = sub ([a]X , Y ) : α

X : α ⇒ β ⊩Σ a # X ⊢ lam [a] (app (X , a)) = X : α ⇒ β

X : α , Z : γ ⊩Σ a # X ⊢ sub ([a]X , Z ) = X : α

Z : γ ⊩Σ ∅ ⊢ sub ([a]a, Z ) = Z : γ

X : β ⇒ α , Y : β, Z : γ ⊩Σ ∅ ⊢ sub ([a] (app (X , Y )), Z )
= app (sub ([a]X , Z ), sub ([a]Y , Z )) : α

X : α , Z : γ ⊩Σ b # Z ⊢ sub ([a] (lam [b]X ), Z )

= lam [b] (sub ([a]X , Z )) : α ′ ⇒ α

X : α , a : β ⊩Σ ∅ ⊢ sub ([a]X , a) = X : α

The axioms for substitution over abstractions and applications are not typeable-closed for

the same reasons as those outlined above in Section 5.2.2. However, in addition, the axiom,

X : α , a : β ⊩Σ ∅ ⊢ sub ([a]X , a) = X : α is not typeable-closed because it violates Condition 1 of

Definition 5.11. The remaining axioms are typeable-closed.

Non-closed rules are not common (and are not accepted by the standard higher-order rewriting

formalisms), but interesting examples do exist, such as for models of the π -calculus; here, in this

case, the rule is needed for completeness with respect to the models, [40]. A formalism of non-

closed typed nominal equational reasoning, following that for typed nominal rewriting, given in

Section 5.1, using typed nominal pattern matching would allow this axiom to be typed.

5.4 Further Examples
This subsection gives a number of further examples of sets of rewrite rules and axioms that are

typeable or typeable-closed.
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5.4.1 Arithmetic. Given a base type for natural numbers, Nat, and a signature, Σ, thus, {0 : ⟨() ↪→
Nat⟩, suc : ⟨Nat ↪→ Nat⟩, add : ⟨(Nat × Nat) ↪→ Nat⟩, mul : ⟨(Nat × Nat) ↪→ Nat⟩, ack : ⟨(Nat ×
Nat) ↪→ Nat⟩}, then one has the following typeable-closed rewrite rules for arithmetic.

X : Nat ⊩Σ ∅ ⊢ add (X , 0) → X : Nat

X : Nat, Y : Nat ⊩Σ ∅ ⊢ add (X , sucY ) → suc (add (X , Y )) : Nat

X : Nat ⊩Σ ∅ ⊢ mul (X , 0) → 0 : Nat

X : Nat, Y : Nat ⊩Σ ∅ ⊢ mul (X , sucY ) → add (X , mul (X , Y )) : Nat

Y : Nat ⊩Σ ∅ ⊢ ack (0, Y ) → sucY : Nat

X : Nat ⊩Σ ∅ ⊢ ack (sucX , 0) → ack (X , suc 0) : Nat

X : Nat, Y : Nat ⊩Σ ∅ ⊢ ack (sucX , sucY ) → ack (X , ack (sucX , Y )) : Nat

In general, any many-sorted first-order term rewriting system over a signature consisting of a

set S of sorts s , and a set F of function symbols fs1 ...sn→s , can be specified as a typeable closed

nominal rewriting system as follows. Define a type-former s for each sort s ∈ S (that is, sorts are

base types) and a signature Σ = {f : ⟨(s1 . . . sn ) ↪→ s⟩ | fs1 ...sn→s ∈ F }. Any first-order term built

over F and a set of variables X may now be represented as a nominal term by replacing each

variable X ∈ X with a moderated variable id ·X , and first-order rewrite rules can be represented as

nominal rewrite rules in an empty freshness context. Since there are no atoms in first-order rules

(and hence no abstractions or permutations) and no polymorphism, all rules are typeable closed,

and the nominal rewriting relation coincides with the first-order rewriting relation.

5.4.2 Higher-order Logic. Let o, be a base type representing propositions and Σ be the signature,

{⊤ : ⟨() ↪→ o⟩, ⊥ : ⟨() ↪→ o⟩, ∧ : ⟨(o×o) ↪→ o⟩, ⇒ : ⟨(o×o) ↪→ o⟩, ⇔ : ⟨(o×o) ↪→ o⟩, ≈ : ∀(α ).⟨(α×
α ) ↪→ o⟩, ∀ : ∀(α ).⟨[α] o ↪→ o⟩, σ : ∀(α ).⟨([α] o × α ) ↪→ o⟩}.

Write function applications for substitution, σ ([a] s, t ), as s [a/t], and use infix notation for all

the binary type-formers.

The set of rewrite rules defined below, representing equality and simplification for (a fragment

of) higher-order logic, are typeable-closed.

Z : α ⊩Σ ∅ ⊢ Z ≈ Z → ⊤ : o

X : o ⊩Σ a # X ⊢ ∀ [a]X → X : o

X : o, Y : o ⊩Σ ∅ ⊢ ∀[a] (X ∧ Y ) → ∀ [a]X ∧ ∀ [a]Y : o

One also has the following typeable-closed axioms.

P : o, R : α ⊩Σ ∅ ⊢ ∀ [a] P ⇒ P [a/R] = ⊤ : o

P : o, Q : o ⊩Σ a # P ⊢ ∀ [a] (P ⇒ Q ) ⇔ (P ⇒ ∀ [a]Q ) = ⊤ : o

P : o, R : α , S : α ⊩Σ ∅ ⊢ R ≈ S ∧ P [a/R]⇒ P [a/S] = ⊤ : o

5.4.3 Gödel’s System T. Consider an extension of Example 5.2 for the polymorphically typed

lambda calculus to represent Gödel’s System T of total higher-order functions over the natural

numbers.

Let Nat be a base type for the natural numbers and let⇒, again be a type-former, written infix,

for the construction of function types.
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Given the extended signature, Σ, of the form, {lam : ∀(α , β ).⟨[α] β ↪→ α ⇒ β⟩, app : ∀(α , β ).⟨(α ⇒
β ×α ) ↪→ β⟩, sub : ∀(α , β ).⟨([α] β ×α ) ↪→ β⟩, 0 : ⟨() ↪→ Nat⟩, suc : ⟨Nat ↪→ Nat⟩, rec : ∀(α ).⟨(α ×
α ⇒ (Nat⇒ α ) × Nat) ↪→ α⟩} then to define System T the following rules are added to those in

Example 5.2.

Z : γ ⊩Σ ∅ ⊢ sub ([a] 0, Z ) → 0 : Nat

X : Nat, Z : γ ⊩Σ ∅ ⊢ sub ([a] (sucX ), Z ) → suc (sub ([a]X , Z )) : Nat

U : α , V : α ⇒ (Nat⇒ α ), X : Nat, Z : γ

⊩Σ ∅ ⊢ sub ([a] (rec (U , V , X )), Z )

→ rec (sub ([a]U , Z ), sub ([a]V , Z ), sub ([a]X , Z )) : α

U : α , V : α ⇒ (Nat⇒ α ) ⊩Σ ∅ ⊢ rec (U , V , 0) → U : α

U : α , V : α ⇒ (Nat⇒ α ), X : Nat ⊩Σ ∅ ⊢ rec (U , V , sucX )

→ app (app (V , rec (U , V , X )), X ) : α

The specification of the declarations for the term-formers 0, suc and rec, results in the violation

of Condition 3 of Definition 5.8, with respect to the declarations for sub in all cases except for the

rules for rec, which are typeable-closed.

One can define a lambda term for addition (and for the other arithmetic functions in Section 5.4.1)

over Church numerals, thus:

∅ ⊩Σ ∅ ⊢ lam [m] lam [n] rec (m, lam [a] lam [b] suca, n) : Nat⇒ (Nat⇒ Nat)

5.4.4 Untyped Lambda Calculus. Suppose a base type, Lam, representing terms of an untyped

lambda calculus and let Σ be the signature, {lam : ⟨[Lam] Lam ↪→ Lam⟩, app : ⟨(Lam × Lam) ↪→
Lam⟩, sub : ⟨([Lam] Lam × Lam) ↪→ Lam⟩}.
A set of rewrite rules, which define βη-reduction for the untyped lambda calculus, and all of

which satisfy the conditions given for a typeable-closed rule in Definition 5.8, are given below.

X : Lam, Y : Lam ⊩Σ ∅ ⊢ app ((lam [a]X ), Y ) → sub ([a]X , Y ) : Lam

X : Lam ⊩Σ a#X ⊢ lam [a] (app (X , a)) → X : Lam

X : Lam, Z : Lam ⊩Σ a # X ⊢ sub ([a]X , Z ) → X : Lam

Z : Lam ⊩Σ ∅ ⊢ sub ([a]a, Z ) → Z : Lam

X : Lam, Y : Lam, Z : Lam ⊩Σ ∅ ⊢ sub ([a] (app (X , Y )), Z )
→ app (sub ([a]X , Z ), sub ([a]Y , Z )) : Lam

X : Lam, Z : Lam ⊩Σ b # Z ⊢ sub ([a] (λb .X ), Z )

→ lam [b] (sub ([a]X , Z )) : Lam

In general, any untyped closed nominal rewriting system can be defined as a typeable closed

system with only one base type of terms.

5.4.5 Untyped Linear Lambda Calculus with Unbounded Recursion. The final example in this

section specifies a nominal representation of an untyped linear lambda calculus with unbounded

recursion, and an abstract machine implementing the closed reduction strategy, where β-redexes
are reduced only if the argument is closed [1].
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Suppose, again, a base type, Lam, representing untyped lambda terms and add to the signature, Σ,
the following declaration associations: 0 : ⟨() ↪→ Lam⟩, suc : ⟨Lam ↪→ Lam⟩, let : ⟨([Lam] [Lam] Lam ×
Lam) ↪→ Lam⟩, par : ⟨(Lam× Lam) ↪→ Lam⟩ and rec : ⟨(Lam× Lam× Lam× Lam) ↪→ Lam⟩. One can now

represent the closed reduction strategy using the following typeable-closed rewrite rules. Below, for

simplicity, lam [a] s , app (s, t ) and sub ([a] s, t ) will be written as λa.s , s t , and s [t/a], respectively.

X : Lam, Y : Lam ⊩Σ ∅ ⊢ (λa.X ) Y → X [Y/a] : Lam

X : Lam ⊩Σ a#X ⊢ λa.(X a) → X : Lam

X : Lam, Z : Lam ⊩Σ a#X ⊢ X [Z/a]→ X : Lam

Z : Lam ⊩Σ ∅ ⊢ a [Z/a]→ Z : Lam

X : Lam, Y : Lam, Z : Lam ⊩Σ ∅ ⊢ (X Y ) [Z/a]→ X [Z/a] Y [Z/a] : Lam

X : Lam, Z : Lam ⊩Σ b#Z ⊢ (λb .X ) [Z/a]→ λb .(X [Z/a]) : Lam

Z : Lam ⊩Σ ∅ ⊢ 0 [Z/a]→ 0 : Lam

X : Lam, Z : Lam ⊩Σ ∅ ⊢ (sucX ) [Z/a]→ suc (X [Z/a]) : Lam

X : Lam, Y : Lam, Z : Lam ⊩Σ b # Z , c # Z ⊢ (let ([b] [c]X , Y )) [Z/a]

→ let ([b] [c] (X [Z/a]), Y [Z/a]) : Lam

X : Lam, Y : Lam, Z : Lam ⊩Σ ∅ ⊢ (par (X , Y )) [Z/a]
→ par (X [Z/a], Y [Z/a]) : Lam

V : Lam, W : Lam, X : Lam, Y : Lam, Z : Lam

⊩Σ ∅ ⊢ (rec (V , W , X , Y )) [Z/a]
→ rec (V [Z/a], W [Z/a], X [Z/a], Y [Z/a]) : Lam

V : Lam, W : Lam, X : Lam, Y : Lam ⊩Σ ∅ ⊢ rec (par (0, V ), W , X , Y )

→W : Lam

U : Lam, V : Lam, W : Lam, X : Lam, Y : Lam

⊩Σ ∅ ⊢ rec (par (sucU , V ), W , X , Y )

→ X rec (Y par (U , V ), W , X , Y ) : Lam

Extend this model again with base types, stkT, elemT and cfgT, representing stacks, stack

elements and configurations, respectively, and let Σ′ be the signature, Σ ∪ {cfg : ⟨(Lam × stkT) ↪→
cfgT⟩, elem : ⟨Lam ↪→ elemT⟩, cns : ⟨(elemT × stkT) ↪→ stkT⟩, recS1 : ⟨(Lam × Lam × Lam) ↪→
elemT⟩, recS2 : ⟨(Lam × Lam × Lam × Lam) ↪→ elemT⟩, letS : ⟨[Lam] [Lam] Lam ↪→ elemT⟩}.
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One now has the following typeable-closed rewrite rules to describe the stack machine for the

extended lambda calculus defined above, as detailed in [1, Table 6].

M : Lam, N : Lam, S : stkT ⊩
Σ′
∅ ⊢ cfg ((M N ), S )

→ cfg (M, cns (elemN , S )) : cfgT

M : Lam, N : Lam, S : stkT ⊩
Σ′
∅ ⊢ cfg (λa.M, cns (elemN , S ))

→ cfg (M [a/N ], S ) : cfgT

M : Lam, N : Lam, S : stkT ⊩
Σ′
∅ ⊢ cfg (let ([a] [b]M, N ), S )

→ cfg (N , cns (letS [a] [b]M, S )) : cfgT

N 1 : Lam, N 2 : Lam, M : Lam, S : stkT

⊩
Σ′
b # N 1 ⊢ cfg (par (N 1, N 2), cns (letS [a] [b]M, S )

→ cfg ((M [a/N 1]) [b/N 2], S ) : cfgT

N : Lam, U : Lam, V : Lam, W : Lam, S : stkT

⊩
Σ′
∅ ⊢ cfg (rec (N , U , V , W ), S )

→ cfg (N , cns (recS1 (U , V , W ), S ) : cfgT

N 1 : Lam, N 2 : Lam, U : Lam, V : Lam, W : Lam, S : stkT

⊩
Σ′
∅ ⊢ cfg (par (N 1, N 2), cns (recS1 (U , V , W ), S ))

→ cfg (N 1, cns (recS2 (N 2, U , V , W ), S ) : cfgT

T : Lam, U : Lam, V : Lam, W : Lam, S : stkT

⊩
Σ′
∅ ⊢ cfg (0, cns (recS2 (T , U , V , W ), S ))

→ cfg (U , S ) : cfgT

N : Lam, T : Lam, U : Lam, V : Lam, W : Lam, S : stkT

⊩
Σ′
∅ ⊢ cfg (sucN , cns (recS2 (T , U , V , W ), S ))

→ cfg (V , cns (elem rec ((W par (N , T )), U , V , W ), S )) : cfgT

The translation of the rules for this stack machine to a system of typeable-closed nominal rewrite

rules and their subsequent machine-checking by the first author’s implementation identified a

previously implicit freshness condition needed to ensure closedness in one of the rules for the

reduction of a let-expression (b # N 1).

6 CONCLUSIONS AND FUTUREWORK
This paper has presented two simple type systems for nominal terms in the style of Church. The

second of these, the de Bruijn style presentation, could be developed to derive a further simply typed

system, in the style of Curry. Such a system was not explored here; it was preferred to demonstrate

the Curry-style approach using more powerful, ML-like polymorphic types in Section 4. For that

system it has been proved that the derivation of typeable terms respects the notion of alpha-

equivalence. That is, that the type system gives derivations compatible with the action of suspended

permutations on variables and the atom-capturing nature of variable substitution. It has also been

shown to have principal solutions modulo the renaming of those type variables not occurring in
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the environment. An algorithm to compute such principal solutions for a given term typeability

problem has been given and its soundness and completeness with respect to the derivable typing

judgements of the type system proven. Based on this polymorphic type system for nominal terms,

two systems of typed nominal rewriting and one of typed nominal equational reasoning have

been defined. The first, typed nominal rewriting, is a general formulation that uses an equivariant

nominal matching extended with conditions on types. Subject reduction is ensured and it allows

non-closed (but uniform) rules to be typed. The second, closed typed nominal rewriting is more

efficient, allowing rules to be statically typed and uses standard nominal matching but is more

restrictive as to which rules are considered typeable. A formulation of typed nominal equational

reasoning follows from this second system as a corollary.

The work of Section 3 on Church-style systems is being drawn upon in the development of

a dependent type system for nominal terms to be used in a future nominal logical framework

[31]. This work is similar in spirit to that of the Edinburgh Logical Framework (LF) [43], itself

a dependently typed extension of the simply typed lambda calculus in the style of Church. The

work developed in Section 4 and Section 5 is hoped to be extended to more advanced systems of

equational reasoning such as that of [2] in which nominal unification in the presence of a given

equational theory is used to define a theory of nominal narrowing. It is hoped to integrate the

present work on Curry-style types with this theory and further work on AC-unification to allow a

future nominal extension to a modelling and specification language such as Maude [19] or K [63].
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