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Staley, Kevin J., Jaideep S. Bains, Audrey Yee, Jennifer Hellier,
and J. Mark Longacher. Statistical model relating CA3 burst prob-
ability to recovery from burst-induced depression at recurrent collat-
eral synapses.J Neurophysiol86: 2736–2747, 2001. When neuronal
excitability is increased in area CA3 of the hippocampus in vitro, the
pyramidal cells generate periodic bursts of action potentials that are
synchronized across the network. We have previously provided evi-
dence that synaptic depression at the excitatory recurrent collateral
synapses in the CA3 network terminates each population burst so that
the next burst cannot begin until these synapses have recovered. These
findings raise the possibility that burst timing can be described in
terms of the probability of recovery of this population of synapses.
Here we demonstrate that when neuronal excitability is changed in the
CA3 network, the mean and variance of the interburst interval change
in a manner that is consistent with a timing mechanism comprised of
a pool of exponentially relaxing pacemakers. The relaxation time
constant of these pacemakers is the same as the time constant describ-
ing the recovery from activity-dependent depression of recurrent
collateral synapses. Recovery was estimated from the rate of sponta-
neous transmitter release versus time elapsed since the last CA3 burst.
Pharmacological and long-term alterations of synaptic strength and
network excitability affected CA3 burst timing as predicted by the
cumulative binomial distribution if the burst pace-maker consists of a
pool of recovering recurrent synapses. These findings indicate that the
recovery of a pool of synapses from burst-induced depression is a
sufficient explanation for burst timing in the in vitro CA3 neuronal
network. These findings also demonstrate how information regarding
the nature of a pacemaker can be derived from the temporal pattern of
synchronous network activity. This information could also be ex-
tracted from less accessible networks such as those generating inter-
ictal epileptiform discharges in vivo.

I N T R O D U C T I O N

One goal of synaptic physiology is to understand the work-
ing of neural networks in terms of the properties of the syn-
apses that connect the member neurons. However, the com-
plexity of real neural networks (Churchland and Sejnowski
1992; Hampson et al. 1999; Marder 1998) makes it difficult to
determine how various synaptic properties (Bains et al. 1999;
King et al. 1999; Malenka and Nicoll 1999; Markram et al.
1998; Martin et al. 2000) affect network ouput. One approach
to the complexity problem is to analyze synaptic influences on
very simple modes of network behavior, such as the periodic,
synchronous discharge of all neurons in the network. This
“bursting” mode of activity is amenable to analysis because the

outputs of all neurons in the network are so similar that to a
first approximation they can be considered identical (Traub and
Miles 1991). Further, the network activity can be simplified to
two states: all neurons firing at high frequencies during the
burst versus no or low-frequency firing between bursts (Cohen
and Miles 2000).

The analysis of network bursts is further simplified because
this mode of network operation does not depend on intact
inhibitory conductances. Blockade of postsynaptic inhibition is
one of the most robust ways to initiate burst activity in the CA3
network of the adult hippocampus (Traub and Miles 1991), and
spontaneous bursts occur in CA3 during the developmental
period during which the postsynaptic actions of GABA are
excitatory (Leinekugel et al. 1997). In bursting networks stud-
ied to date, bursts appear to be terminated by activity-depen-
dent depression at recurrent excitatory synapses (reviewed in
Feller 1999; O’Donovan and Rinzel 1997) rather than postsyn-
aptic feedback inhibition or calcium-activated potassium con-
ductances (Robinson et al. 1993; Staley et al. 1998). Although
the dissipation of inhibitory conductances can modulate the
interburst interval, the period between discharges is primarily
determined by the time required for the synapses to recover
from depression (as proposed by O’Donovan and Rinzel 1997;
Staley et al. 1998; modeled in Tabak et al. 2000; Tsodyks et al.
2000). Thus burst timing should reflect synaptic recovery in the
network.

In this paper, we consider whether the recovery of a network
of recurrent collateral synapses from burst-induced depression
(Selig et al. 1999) could be a sufficient explanation for the
timing of synchronous CA3 bursts. Periodic CA3 network
bursts are readily elicited in the CA3 hippocampal network
when neuronal excitability is increased (Johnston and Brown
1986; Traub and Wong 1982) due to the degree of positive
feedback mediated by recurrent collateral glutamatergic syn-
apses (King et al. 1999; Miles and Wong 1986; Traub and
Miles 1991). The next CA3 burst begins when synapses re-
cover sufficiently to generate spontaneous excitatory postsyn-
aptic potentials (EPSPs) at a rate that triggers action potentials
in some neurons (Chamberlin et al. 1990; Traub and Dingle-
dine 1990). With each CA3 cell that reaches action potential
threshold, the probability of recruiting subsequent CA3 cells
increases due to additional action potential-dependent gluta-
mate release. It follows that the probability of recruiting addi-
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tional pyramidal cells must be at a minimum when the number
of pyramidal cells firing synchronous action potentials is at a
minimum; thus the time dependence of this probability should
determine the timing of the next burst.

The probability of initiating and propagating the first syn-
chronous action potentials should be highest at strong syn-
apses, synapses whose postsynaptic neurons are close to action
potential threshold, and synapses with high release probabili-
ties (Bains et al. 1999; Dobrunz and Stevens 1997; Markram et
al. 1998; Martin et al. 2000). If there areN such synapses, then
the “depression recovery” hypothesis predicts that a burst will
be initiated only when a sufficient number of theseN synapses
have recovered from the depression induced by the last burst.
If K represents this sufficient number of synapses, then the
probability of a network discharge at any point in time should
be directly linked to the probability thatK of N synapses have
recovered from synaptic depression. Because the time course
of synaptic recovery can be measured (Dittman et al. 2000;
Markram et al. 1998; Stevens and Wesseling 1998), compari-
son of the time course of synaptic recovery to the mean and
variance of the burst interval permits estimations of bothN
andK.

In this paper, we derive expressions relatingN andK to burst
timing. It was not possible to test these expressions directly by
independent measurements ofN andK. Instead, we tested the
utility of these expressions by pharmacologically manipulating
the strength of recurrent synapses, measuring the consequent
changes in CA3 burst timing, fitting the interburst time interval
distributions to the expressions forN and K and determining
whether the changes inN andK predicted by the expressions
are consistent with the pharmacological effects on synaptic
function.

M E T H O D S

Recordings

Hippocampal slices were prepared from adult rats as described
previously (Staley et al. 1998). Recordings were performed in artifi-
cial cerebrospinal fluid (ACSF) at 35°C. ACSF was saturated with
95% O2-5% CO2 and included (in mM) 126 NaCl, 2.5 KCl, 26
NaHCO3, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, and 10 glucose. Whole
cell pipette solutions contained (in mM) 123 cesium methylsulfonate,
2 MgCl2, 8 NaCl, 1 potassium ethylene glycol-bis(b-aminoethyl
ether) N, N,N9,N9-tetraacteic acid (EGTA), 4 potassium ATP, 0.3
sodium GTP, and 1 N-(2,6-dimethylphenylcarbamoylmethyl) trieth-
ylammonium bromide (QX314) (for current-clamp experiments, Cs
was replaced by K and QX314 was omitted). Whole cell solutions
were buffered with 16 mM KHCO3 and saturated with 95% O2-5%
CO2. Extracellular recordings were performed using ACSF-filled
whole cell pipettes placed in stratum pyramidale. Bursting in CA3 was
induced by either increasing the Ko

1 to between 4.5 and 8.5 mM as
noted in the text, or by one-time tetanic stimulation (100 Hz for 1 s)
of the recurrent collateral system using a bipolar electrode placed in s.
pyramidale (Staley et al. 1998). When bursts were induced by tetanic
stimulation, final ACSF ionic concentrations were as described by
Stasheff et al. (1989): (in mM) 1.3 Ca21, 0.9 Mg21, and 3.3 K1.
Long-term depression (LTD) of the recurrent synapses was induced
by temporary partial block of theN-methyl-D-aspartate (NMDA)
receptor during spontaneous network discharges using 40–100mM
DL-amino-5-phosphonovaleric acid (APV) (Bains et al. 1999). Evoked
network discharges (Fig. 7,A andB) were triggered after every third
spontaneous discharge by electrical stimulation in the pyramidal cell
layer at an intensity that was sufficient to trigger a population spike

prior to initiation of periodic discharges. Excitatory postsynaptic
currents (EPSCs) were identified using a rectangular window (ampli-
tude3 duration), with amplitude set by eye to exclude baseline noise.
Recordings were performed with an Axoclamp 2B amplifier (Axon
Instruments, Foster City, CA) and digitized at 2-kHz using a PCI-
DAS 1602/16 (Computer Boards, Middleboro, MA) and software
written in visual basic 6.0. Drugs were obtained from Sigma (St.
Louis, MO) and applied by bath.

Some of the experimental data in Figs. 4, 9, 10, and 11 have been
previously published in aggregate form (Bains et al. 1999; Staley et al.
1998).

Data analysis

The cumulative probability of recovery from short-term depression
at an individual synapse (p1) has been derived in a number of prep-
arations by fitting the response to evoked transmitter release to an
exponential function (Dittman et al. 2000; Markram et al. 1998;
Stevens and Wesseling 1998)

p1 5 1 2 e~2t/t! (1)

wheret is the time constant describing the recovery rate, andt is the
time since the onset of depression. The same expression has also been
derived by considering that the rate of recovery is proportional to the
remaining number of empty release sites (Staley et al. 1998). Because
the rate of recovery at each synapse may not be identical (Stevens and
Wesseling 1998), in this study we estimated a population-average
recovery rate from the rate of spontaneous EPSCs. ThenEq. 1can be
considered to be the probability that a synapse has recovered suffi-
ciently, if the average recovery rate is 1/t and synaptic recovery
proceeds as a Poisson process (Bethea et al. 1995: the cumulative
Poisson probability is also described byEq. 1). For Poisson recovery,
the probability of recovery is constant during a given interval of time
so that as more time intervals elapse, the probability that a synapse has
recovered increases with time constantt.

The number of synapses that are capable of participating in burst
initiation is denoted byN, and the number that must recover to initiate
a burst is denoted byK. We assumed that allN synapses are uniformly
depressed at the end of each burst, which seems reasonable given the
high probability of transmitter release during action potential bursts
(Selig et al. 1999). This uniform postburst depression implies that the
current interburst interval is independent of prior intervals. If theN
synapses recover from depression as described byEq. 1,then we can
greatly simplify the calculation of the probability of recovery ofK of
N synapses during the interburst interval by using the binomial dis-
tribution to estimate the probability thatK synapses from a candidate
pool of sizeN have recovered

P~N, K, p1! 5 S N!

K! 3 ~N 2 K!!
D~p1!

K~1 2 p1!
~N2K! (2)

The binomial distribution applies to binary (true/false) variables; we
are considering synapses to be in two states, either recovered suffi-
ciently to be capable of releasing transmitter during burst initiation, or
not (Debanne et al. 1996).

We are interested in the probability thatK or moresynapses have
recovered. The cumulative binomial probability distribution gives the
probability that less thanK synapses have recovered. The survival
function, which is equal to one minus the cumulative binomial dis-
tribution (Hastings and Peacock 1975), therefore gives the probability
thatK or more of theN synapses have recovered. Thus the cumulative
probability of a burst in the interval (0,t) is given by

Pdischarge5 P~N, $K, p1! 5 1 2 O
X51

X5K21

P~N, X, p1! (3)
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This is the probability thatK or more ofN synapses have recovered.
The value ofp1 increases with time (Eq. 1), so the probability thatK
of N synapses have recovered also changes with time (Fig. 1).

How unique are the solutions provided by particular values ofK
andN? At any one point in time, for example 2 s after the last burst,
many different values ofN andK might provide a reasonable burst
probability. However, to fit the experimental data,Eq. 3must be fit
to the burst probability using the same values ofN andK at every
time interval using the corresponding value ofp1 calculated from
Eq. 1. This severely constrains the acceptable values ofN and K
because the rate at whichEq. 3 changes with time (which corre-
sponds to the variance of the burst interval) depends on the
difference betweenK andN (Fig. 2B), while the point at which the
probability becomes significant (which corresponds to the mean
burst interval) depends on the ratio ofK to N (Fig. 2A).

Equation 3 was fit to the cumulative probability plots of the
interburst intervals using 50 –100 time increments and least-
squares estimates of goodness of fit to the cumulative probability
of the burst interval. The incomplete beta function was used to
calculate the cumulative binomial distribution (Press et al. 1997).
Equation 1was fit to EPSC rates at postburst intervals before the
probability of a subsequent discharge became significant (Fig. 6B)
and the EPSC rate became unstable (Fig. 6,B and C), using the
least-squares method.Equation 1was also used to fit the length of
bursts evoked at variable intervals after a spontaneous burst to
assay the degree of synaptic recovery (Staley et al. 1998), a method
analogous to compound EPSC amplitude measurements in paired
pulse paradigms (Markram et al. 1998). This fit was only relevant

when the stimulus was sufficiently large to preclude burst initiation
failure (Fig. 7B).

R E S U L T S

Probability distribution of interburst intervals

We induced stable periodic population bursts in hippocam-
pal area CA3 in vitro by either long-term potentiation (LTP) of
recurrent collateral synapses (Bains et al. 1999) or by increas-
ing the concentration of extracellular potassium (Ko

1) above
4.5 mM (Fig. 3, A and B; n 5 145 slices). The intervals
between bursts were normally distributed for all conditions
(Fig. 3, C andD) (Robinson et al. 1993). Increasing network
excitability by increasing Ko

1 from 5.5 to 10.5 mM altered the
frequency of bursts by over 6 octaves, from,0.05 Hz in 5.5
mM Ko

1 to 1 Hz in 10.5 mM Ko
1 (Fig. 4, A andB). For each

change in Ko
1, the corresponding burst intervals were normally

distributed about the mean (Fig. 4B) and the variance of the
intervals increased with the third power of the mean (Fig. 4C).

The nonlinear relationship between the variance and the
mean of the discharge interval (Fig. 4C) is not easy to reconcile
with a single pacemaking mechanism whose probability

FIG. 1. Relationship between probability of recovery of 1 synapse vs. the
probability of recovery of a pool of synapses.Middle: the probability of
recovery of one synapse based onEq. 1. Top andbottom: the probability of
recovery of a fraction of a pool of 30 such synapses. For thetop panel,the
cumulative probability of recovery of 9 of 30 synapses is illustrated usingEq.
3. The bottom panelillustrates the cumulative probability that 20 of 30
synapses have recovered. - - -, for a given probility of recovery at an individual
synapse, the probability that a fraction of a pool of such synapses has recovered
is strongly dependent on the size of the fraction.

FIG. 2. Behavior of the survival function. A time constant of 8 s isused in
these examples.A: the difference betweenN andK determines the slope of the
survival function. When (N 2 K) is constant, variations ofN andK shift the
curve to the left or right without changing the slope.B: the ratio ofK to N
determines the position of the curve on the ordinate. When (N/K) is constant,
varyingN andK changes the slope but has minor effects on the position of the
rising portion curve.C: changingt affects both the position of the survival
function on the ordinate and the shape of the survival function.t was fixed at
8 s in all fits of experimental data.
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changes with network excitability. Neither a Poisson nor a
binomial distribution can describe the observed relationship
between the mean and the variance of the burst intervals
(Bethea et al. 1995; cf. Reid and Clements 1999). Rather, this
relationship supports the idea that a process such as recovery
from synaptic depression (Eq. 1) of a population of synapses is
the primary determinant of the burst interval: because the
probability of recovery of a single synapse (Eq. 1) increases
rapidly at short time intervals and more slowly at longer time
intervals (Fig. 5A), the survival function (Eq. 3) has a very tight
time distribution for short time intervals and a much broader
distribution at longer intervals for any givenN andK (Fig. 5,
B and C). In fact, the probability of recovery ofK synapses
from among a candidate pool of sizeN has the same relation-
ship between the variance and the mean as the experimentally
observed probability of a burst (Fig. 4B vs. 5C; the data in Fig.
4B are fit byEq. 3 in Fig. 11A).

Estimating the time constant for recovery from synaptic
depression

To determine the time constant for recovery from depression
at individual synapses (Eq. 1), we measured the rate of spon-
taneous transmitter release (Liu and Tsien 1995; Otis et al.
1996; Stevens and Wesseling 1998). The frequency of spon-
taneous EPSCs was measured as a function of time after a burst

(Fig. 6, A and B). Although the postburst spontaneous EPSC
rate should reflect a variety of processes such as diminishing
facilitation (Dittman et al. 2000), the monoexponential increase
suggests that the EPSC rate is dominated by recovery from
depression. At short postdischarge intervals, the frequency of
EPSCs increased with a time constant of 86 2.3 (SD) s (n 5
8 cells; Fig. 6B). The measured EPSC recovery rate is similar
to the rate of recovery in single-synapse studies of these
neurons (Stevens and Wesseling 1998) and is of the same order
of magnitude as the intervals between spontaneous bursts (e.g.,
Fig. 4B). The EPSC rates at longer intervals from the last burst
discharge fluctuated widely, consistent with action-potential-
dependent transmitter release (Fig. 6,B and C) as a conse-
quence of the positive feedback mediated by the recurrent
collateral synapses (Traub and Dingledine 1990; Traub and
Miles 1991). There was no correlation between the EPSC
recovery rate measured from a single cell recording and the
interburst interval in the slice from which the cell was re-
corded, consistent with the idea that synaptic recovery does not
vary from slice to slice so that the variation in the measured
EPSC recovery rate represented sampling error (1 pyramidal
cell of the thousands in the slice) rather than a systematic
difference in synaptic recovery rates between slices. We used
a fixed recovery time constant of 8 s to fit the data in all
subsequent experiments.

Shorter time constant obtained by measuring evoked release

The 8-s time constant for synaptic recovery assayed by
EPSC frequency is longer than the time constant of recovery
assayed using osmotically and electrically evoked transmitter
release (Staley et al. 1998). When bursts were evoked at
various time intervals following a spontaneous burst, synaptic
recovery as assayed by the evoked burst length was too rapid
to explain the interval between discharges: evoked burst length
was already maximal when the probability of a spontaneous
burst was still negligible (Fig. 7A). It has recently been dem-
onstrated that during recovery from synaptic depression, large
stimuli can evoke transmitter release when small stimuli cannot
(Stevens and Wesseling 1998; Wu et al. 1999; modeled in
Mateev and Wang 2000). Thus one explanation for the differ-
ence in spontaneous versus evoked recovery may be the size of
the depolarization and the number of cells that are synchro-
nously depolarized by the electrical stimulus versus a sponta-
neous EPSP. If this was true, then it would be expected that
smaller external stimuli should be less effective at triggering
bursts at short postburst time intervals. This effect is illustrated
in Fig. 7B: stimuli of two different amplitudes were delivered
through the same electrode using the same protocol as for the
experiment illustrated in Fig. 7A. The large stimulus was
sufficient to evoke the maximum-amplitude population spike
before the induction of bursting. The smaller stimulus was
sufficient to evoke a just-detectable population spike. The
duration of the burst evoked by either of these two stimuli,
each delivered at random intervals after a spontaneous burst, is
plotted in Fig. 7B. The smaller stimuli resulted in more failures
of burst initiation when delivered at short intervals following a
spontaneous burst. The resulting sigmoidal, rather than expo-
nential, relationship between evoked burst length and the in-
terval since the last burst resembled the cumulative probability
distribution of spontaneous burst initiation (Fig. 7,A andB; see

FIG. 3. The intervals between CA3 population bursts are normally distrib-
uted.A, left: a whole cell recording from a pyramidal cell demonstrating the
temporal pattern of spontaneous CA3 discharges in 8.5 mM Ko

1. Right: paired
recordings from a pyramidal cell (IC) and the pyramidal cell layer (EC)
demonstrating that the CA3 network discharges are a synchronous, all-or-none
process.B: plot of the intervals between spontaneous CA3 population bursts
demonstrates a stable mean burst interval over 30 min.C: intervals inB are
normally distributed: a histogram of intervals binned at 100-ms intervals is
well fit by the normal distribution (—).D: unbinned cumulative probability
plot of the data shown inC and the cumulative normal distribution (—).
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also Figs. 3D and 4B), as well as the probability of evoking a
burst when a single neuron is stimulated (Miles and Wong
1983). Thus the rate of recovery from depression varies as a
function of the stimulus used to measure it as demonstrated in
other systems (Stevens and Wesseling 1998; Wu et al. 1999;
modeled in Mateev and Wang 2000). Because spontaneous
bursts are initiated by EPSPs (Chamberlin et al. 1990; Traub
and Dingledine 1990), we used the 8-s time constant estab-
lished by the experiments shown in Fig. 6 for our calculations.

Fitting interburst interval probability distributions to the
survival function

Once the time course of synaptic recovery is known (Fig. 6B
andEq. 1), it should be possible to predict the probability of a
burst from the probability of recovery of the appropriate num-
ber of synapses (i.e., the probability thatK synapses from a
pool of N candidate synapses have recovered,Eq. 3). The best
test of this idea would be to experimentally determine the value
of K and N and then use these values to predict the burst
probability. In the absence of a means to determineK or N
directly, we tested the validity ofEq. 3by fitting it to the burst
probability, thereby deriving the values ofK andN. Although
there is no direct method to test whether these fitted values
correspond to the actual numbers of synapses involved in burst
initiation, we can test two predictions that follow from the idea

that CA3 bursts occur when a sufficient number of the pool of
initiating synapses have recovered from depression. First, the
size of the initiating pool should be directly reflected in the
probability of a CA3 discharge. Second, manipulations of
either neuronal excitability or synaptic strength should change
N, the number of synapses at which transmitter release signif-
icantly increases the probability of successful initiation of a
burst. Manipulations of either neuronal excitability or synaptic
strength should also produce a corresponding change inK, the
number of synapses whose recovery is necessary to initiate a
burst.

To test these predictions, synaptic strength was decreased up
to 50% using either low concentrations of the competitive
non-NMDA antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-di-
one (DNQX) (Andreason et al. 1989; Chamberlin et al. 1990)
(n 5 7; Fig. 8,A andB), decreasing release probability with
baclofen (Scanziani et al. 1992; Swartzwelder et al. 1987) (n 5
8; Fig. 9,A andB), or by long-term depression (LTD) of the
recurrent synapses (Bains et al. 1999; Cummings et al. 1996;
Lisman et al. 1989) (n 5 4; Fig. 10, A and B). All three
methods of decreasing the synaptic strength increased the mean
and variance of the burst interval. These changes were well-fit

FIG. 4. The mean vs. variance of the interburst interval.A: interval between
CA3 network discharges vs. Ko

1 (—). The level of neuronal excitability alters
the interval. B: intervals from the experiment shown inB are normally
distributed for each level of Ko

1. —, fit normal distributions.C: variance of the
discharge intervals shown inB andC increase with the 3rd power of the mean
(—: variance5 0.0073 mean3.3).

FIG. 5. The survival function has the same relationship between the mean
and the variance as the CA3 burst interval distribution.A: plot of Eq. 1, the
cumulative probability of recovery from depression at a single synapse. The
rate of recovery (time derivative ofEq. 1) is maximal for small time intervals.
Time is plotted as multiples of the time constantt. B: plot of survival function
(5 1 2 cumulative probability distribution;Eq. 3) for a population ofn 5 100
and the values ofK noted in the figure.C: the mean and variance of the
probability density of the survival function (derived by differentiation from the
cumulative probability distributions shown inB) change in a manner similar to
the network discharge probability density (Fig. 4B).
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by Eq. 3(— in Figs. 8,A andB; 9, A andB; and 10,A andB).
The fit values ofN andK are shown in Figs. 8C, 9C, and 10C.

Baclofen and DNQX both decreased the average synaptic
strength and thus decreasedN, the number of synapses capable
of participating in burst initiation. These agents had different
effects onK, however. One way to interpret the differential
effect onK is in terms of the effects of baclofen and DNQX on
inter-burst depression. Depression should be similar at the end
of a burst for both agents due to the degree of facilitation of
release during a burst (Selig et al. 1999). However, between
bursts baclofen decreases the probability of release (Debanne
et al. 1996) and thus the degree of ongoing depression from
spontaneous EPSCs; thus the network may be more able to
respond to an initiating EPSP, which would be reflected in
decreased values ofK.

Neuronal excitability was altered by changing Ko
1 (Fig. 11,

A andB; n 5 7). Decreasing the network excitability produced
a corresponding decrease in the size of the pool of synapses
that were capable of initiating a burst and increased the fraction
of the pool that needed to recover (Fig. 11B). When network
excitability is increased, bursts are more likely to be initiated at
shorter interburst intervals (Fig. 11,A andB) when the degree
of synaptic recovery is less complete. This decreased recovery
should be reflected in the burst duration, as is the case for
evoked bursts (Fig. 7). Figure 11C plots the duration of spon-
taneous bursts versus the interval since the last burst for the
experiment in which Ko

1 was varied. The burst duration in-

creases with a time constant of 6 s, close to the rate of synaptic
recovery measured from the EPSC rates (Fig. 6B). There is no
relationship between spontaneous burst length and interburst
interval for any given Ko

1 (Fig. 11C, insets). This indicates that
recovery from depression is the timing mechanism for burst
intervals: if burst duration were determined by the degree of
synaptic recovery, but an independent timing mechanism (such
as dissipation of inhibition) determined burst intervals, then for
any given experimental condition the burst duration versus
interval plots (Fig. 11C, insets) would show the same relation-
ship between burst interval and duration as do the indepen-
dently timed evoked bursts in Fig. 7,A andB.

FIG. 6. Synaptic recovery assayed by spontaneous synaptic activity.A: an
example of excitatory postsynaptic currents (EPSCs) recorded between net-
work discharges at a holding potential of260 mV after induction of discharges
by a single tetanization. Clusters of EPSCs occur near the start of a network
discharge (Traub and Dingledine 1990). Afterhyperpolarizations were antag-
onized by 20mM norepinephrine in these experiments (Staley et al. 1998), and
GABAA receptors were blocked with 100mM picrotoxin. B: the frequency of
EPSCs is plotted vs. the time elapsed since the end of the last discharge. —,
a fit of Eq. 1 to the initial 12 s of data witht 5 6 s. The EPSC frequency
becomes unpredictable at intervals closer to the average discharge interval,
which was 20 s in this experiment. EPSCs recorded at a potential of260 mV
after induction of CA3 discharges using a tetanic stimulation.C: the charge
transfer (area) of the EPSCs plotted inB shows a greater increase with time
than the EPSC frequency, consistent with action potential-dependent amplifi-
cation [the increase in EPSC amplitude is not due to postburst changes in
dendritic space clamp (Staley and Mody 1992) because input resistance re-
turned to within 95% of preburst baseline within 3 s after a burst,n 5 3 cells
(Robinson and Deadwyler 1981; Staley et al. 1998)].

FIG. 7. Synaptic recovery assayed by evoked network discharges.A: com-
parison of the recovery rate assayed by evoked CA3 burst length vs. the
cumulative probability of a spontaneous burst. The degree of synaptic recovery
was assayed by the length of a burst evoked at various time intervals after a
spontaneous burst (●), and fit toEq. 1 (—; t 5 1.2 s). The synaptic recovery
assayed in this way was essentially complete when the probability of a
spontaneous CA3 burst (E) was still minimal.B: the time course of synaptic
recovery approaches the cumulative probability of spontaneous burst intervals
as the stimulus strength is decreased. Synaptic recovery was assayed by the
duration of evoked bursts as inA. ●, duration of bursts evoked at random
intervals following the last burst by a large stimulus. Line fit to large stimulus
data usingEq. 1, t 5 500 ms. , duration of bursts evoked at random intervals
following the last burst by a smaller stimulus.z z z , SEs. The SE for the smaller
stimulus is maximal on the rising portion of the curve due to the mixture of
burst initiation failures and successes. Small stimulus burst lengths were fit
using a polynomial, because neitherEq. 1nor 3 was appropriate to fit evoked
burst lengths with failures.E, cumulative probability of intervals between
spontaneous bursts. —,Eq. 3fit to the interval data withK 5 10,n 5 11. (The
stimulation protocol cannot be accurately extended to intervals that overlap
with the spontaneous burst interval because under such conditions a second
spontaneous burst may occur in the interval between the initial burst and the
evoked burst, resulting in additional synaptic depression.)
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D I S C U S S I O N

We conclude that a under a variety of experimental condi-
tions, the temporal pattern of CA3 network output can be
accurately fit using a pool of exponentially relaxing pacemak-
ers. The time constant describing the relaxation of these pace-
makers is the same as the time constant describing the recovery
of recurrent collateral synapses from activity-induced depres-
sion. Long and short-term determinants of synaptic strength
and the level of network excitability affect the distribution of
CA3 interburst intervals as predicted if these manipulations
affected the total number of synapses in the pacemaking pool
(i.e., N, the synapses capable of participating in burst initia-
tion), and the number of synapses in the pacemaking pool that
must recover before another spontaneous burst is possible (K).

Physiological significance of the fit parameters

In the experiment illustrated in Fig. 7B, the calculated num-
ber of synapses capable of initiating a burst discharge is 11. If
these 11 synapses could be selectively blocked, bursts might
continue, but at a somewhat lower frequency. This is because
N can only be determined for a specific experimental condition
and does not reflect the number of intact recurrent collateral

connections in the slice except perhaps as a limit at maximal
excitability (Fig. 11,B andC). Further,N may not represent the
very strongest synapses or those with the highest probability of
release: ongoing transmitter release during the interburst inter-
val (Fig. 6A) re-depresses the synapses that release transmitter
too far in advance of burst initiation. These synapses could be
stronger or have a higher probability of release than theN
synapses that actually participate in burst initiation.

K, the number of synapses that need to recover to initiate a
burst, also changes with experimental conditions. Immediately
after a burst, synapses are depressed and excitability is corre-
spondingly low, soK is large. For example in Fig. 7B, most
smaller stimuli failed to initiate bursts for the first second after
a spontaneous burst. This indicates that during the first second
after a burst time interval,K was larger than the number of
synapses activated by the smaller stimulus. As synapses re-
cover and excitability increases, the number of synapses that
are needed to initiate a burst decreases, so the smaller stimulus
became sufficient to initiate a burst. It is important to note in
terms of the assumptions underlying the derivation ofEq. 3
that this decrease inK is complete by the time a spontaneous
burst is likely (in Fig. 7, the postburst time interval at which
small stimuli trigger bursts as efficiently as large stimuli is
shorter than the shortest spontaneous interburst interval). This
result is not an artifact of the choice of stimulus sizes because

FIG. 8. The probability of network output is changed when synaptic
strength is decreased by low concentrations of an AMPA antagonist. Synaptic
strength was altered by decreasing the postsynaptic receptor availability with
6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX).A: the cumulative burst
interval probability is plotted for control conditions (8.5 mM Ko

1), during bath
application of 0.2mM DNQX and during application of 0.4mM DNQX. B: the
corresponding probability densities for the data shown inA. — in A andB are
best fits ofEq. 3 to the data.C: the fit values ofK and N vs. the DNQX
concentration.

FIG. 9. The probability of network output is changed by decreasing the
probability of transmitter release with baclofen.A: the cumulative burst inter-
val probability is plotted for control conditions (8.5 mM Ko

1), during bath
application of 1mM baclofen and during application of 2mM baclofen.B: the
corresponding probability densities for the data shown inA. — in A andB are
best fits ofEq. 3 to the data.C: the fit values ofK and N vs. the baclofen
concentration.
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Miles and Wong obtained similar results with single-cell stim-
ulation (Miles and Wong 1983).

The tendency ofK to change in the same direction asN
(Figs. 8–11 and 12A) may seem counterintuitive. As network
excitability increases, more synapses are capable of initiating a
burst, soN increases; it seems that with increasing excitability
there should be a corresponding decrease in the number of
synapses needed to initiate a burst (K). The fraction of syn-
apses in the initiating pool that need to recover does indeed
decrease with increasing excitability (Fig. 12B). However, the
absolute number of synapses required increases due to the
increase in the size of the initiating network of synapses.

There are many potential biological correlates ofN andK.
For instance, the decay of inhibitory conductances is a candi-
date determinant of burst probability (Traub and Miles 1991).
Because blocking these conductances does not alter burst prob-
ability significantly, we favor the idea that synaptic depression
terminates bursts and recovery from depression limits the prob-
ability of burst initiation (Staley et al. 1998). The large impact
of small alterations of synaptic strength on the burst probability
(Figs. 8–10) (Bains et al. 1999) supports the idea that recovery
from synaptic depression is an important determinant of the
probability of network discharge (modeled in Tabak et al.
2000; Tsodyks et al. 2000). For instance, if a pacemaker

current was the sole determinant of burst timing, altering
synaptic strength should have a more significant effect on burst
duration (as in Fig. 7) (see also Staley et al. 1998) rather than
the interval between bursts (Fig. 11C, insets).

How EPSP amplitude, resting membrane potential (RMP),
and action potential threshold influenceN andK is unknown.
Understanding the number of coincident EPSPs that are nec-
essary to trigger an action potential would clarify burst initia-
tion, but this will require a more detailed knowledge of den-
dritic EPSP algebra (Magee et al. 1998). Such information
would help elucidate how postsynaptic inhibition by increasing
the number of EPSPs required to initiate an action potential
(Miles et al. 1996) modulates the probability of synchronous
network activity.

Limitations

The binomial analysis is based on the related assumptions
that the outcome of any one trial does not depend on the others,
that the probability of success (p1) is the same for allN trials
and that all trials are identical. Trials here correspond to the
burst probability for each time increment. Because the number
of active neurons in one time interval affects the number of

FIG. 10. The probability of network output is changed by long-term de-
pression (LTD), the strength of the recurrent collateral synapses. LTD was
induced by application of 40mM of the competitiveN-methyl-D-aspartate
(NMDA) antagonist,D,L-APV during spontaneous CA3 bursting that had been
induced by tetanization (Bains et al. 1999; Cummings et al. 1996; Lisman
1989).A: the cumulative burst interval probability is plotted before and after
LTD. B: the corresponding probability densities for the data shown inA. — in
A andB are best fits ofEq. 3 to the data.C: the fit values ofK andN before
and after LTD.

FIG. 11. Effect of network excitability on burst probability.A: Eq. 3(—) fit
to the network output intervals plotted in Fig. 4,A andB. B: the values ofN
andK for the fits shown inA. The pool size (N) varies from a few dozen to
several thousand, and the number required to recover (K) varies from.90 to
,20% ofN. C: the rate of synaptic recovery can be estimated from the duration
of the spontaneous bursts (plotted inA) vs. the interburst interval.Insets: there
is no relationship between the interburst interval and the spontaneous burst
length for any single level of excitability. The highest (10.5 mM Ko

1) and
lowest (4.5 mM Ko

1) network excitabilities are shown.
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active neurons in the next, trial-to-trial independence implies
that in this modelN does not represent the number of sponta-
neously active neurons (Butts et al. 1999). The assumption that
p1 is identical for all trials is strictly true only as a population
average because the rate of recovery of individual synapses
may vary (Stevens and Wesseling 1998). The assumption that
all trials are identical implies that any combination ofK or N
synapses can initiate bursts. However, there may be circuits in
which some synapses are more important than others, which
would violate this assumption.

This analysis assumes that variation in burst timing is a
consequence of variation in the recovery probability ofK
synapses; the variation in the time required for the recovered
synapses to initiate a burst is neglected. If the time between
recovery and burst initiation is substantial, it would lead to an
inaccurate estimate ofK (e.g., Fig. 2A). The frequency of
EPSCs (Fig. 6) and action potentials (Cohen and Miles 2000)
in the intervals between bursts suggests that adequate stimuli
for burst initiation are continuously present. The similarity in
the variance in CA3 burst initiation failures when a known
population of synapses is activated (Miles and Wong 1983)
(Fig. 7B) versus the variance of spontaneous intervals (e.g.,
Fig. 7,A andB) also suggests that synaptic recovery is the main
source of variation, but this needs to be studied systematically.
For instance,Eq. 1 could be modified to a more general
expression of the probability of achieving sufficient interburst
synaptic strength, where synaptic strength is the product of the
degree of depression, the baseline probability of release, and
the postsynaptic effect. The last two terms can be combined as
a term multiplyingEq. 1: Ao 3 (1 –e –t/t). Then if synapses are
substantially weakened either pre- or postsynaptically, full
recovery ofp1 would still leave the probability of achieving
full synaptic strength at,1 (Fig. 1,middle) becauseAo would
be,1; under those conditions, much longer interburst intervals
can be accommodated, but at the cost of another fitted variable.
Verification would require dual recordings of synaptically con-
nected pyramidal cells to ascertainAo.

We have not considered variations int, the time constant for

recovery from synaptic depression at a single synapse, as an
explanation for burst timing. Althought clearly affectsEqs.
1–3 (Fig. 2C), t was fixed at 8 s for two reasons. First, we
wished to limit the number of free variables in the fits. Second,
the manipulations shown in Figs. 9–11 affect burst interval but
do not affectt (e.g., Fig. 6D of Staley et al. 1998). However,
other experimental manipulations, such as alterations of cal-
cium homeostasis in the synaptic terminal, might affectt
(Dittman et al. 2000; Stevens and Wesseling 1999).

The information provided by this model, the burst probabil-
ity as a function of time, is much more limited than information
provided by models that describe the activity of every cell in
the network (Traub and Miles 1991) or the spatial distribution
of network activity (Butts et al. 1999). The limited predictions
of this model allow the number of free parameters to be limited
to the experimentally determined synaptic recovery rate and
the fit parametersN and K. More detailed network models
should provide additional insights into relationship of network
behavior and the degree of synaptic depression and recovery as
well as the most accurate physiological correlates of these
parameters.

Definitive proof of the depression recovery model of burst
timing requires measurement and manipulation ofN andK to
test whether the manipulations affect burst timing asEq. 3
predicts. This could be approached qualitatively by sectioning
the CA3 network and comparing burst interval distribution to
the size of the remaining network (Miles et al. 1984). This
issue might be studied quantitatively in autaptic cell cultures,
where high degrees of synaptic positive feedback produce
discharge patterns similar to CA3 bursts (Segal and Furshpan
1990). In the autaptic preparation, the number and activity of
feedback synapses can be quantified (Prange and Murphy
1999) and manipulated (Liu et al. 2000).

Comparison to “recovering pacemaker current” model

Pacemaker currents such asIH have been proposed to un-
derlie several oscillatory network behaviors (McCormick and
Pape 1990). This model of burst timing could also be described
by Eq. 3: if the pacemaker conductance was inactivated by the
membrane depolarization that occurred during the CA3 burst
and if the conductance recovered from inactivation with first-
order kinetics during the interburst interval, thenN could
represent the pool of pacemaking neurons, andK could repre-
sent the subset that needed to have their pacemaking conduc-
tances reach a particular threshold of de-inactivation to trigger
a burst discharge.

A disadvantage of the “recovery to noisy threshold” model
when applied to pacemaking neurons is that the recovery of the
whole cell pacemaker conductance should not be probabilistic
because whole cell recovery is the average of the recovery of
a very large number of stochastically recovering channel pro-
teins. Thus the trick of equating a recovery rate to a probability
(Eq. 1) is not as easy to support for neurons as it is for
individual synapses, which are known to behave in a stochastic
manner (Fatt and Katz 1952). A physiological disadvantage of
IH as a pacemaking conductance is thatIH has a net inhibitory
effect in hippocampal pyramidal cells (Magee 1998) and thus
is not well suited to initiate CA3 bursts; further, CA3 bursts

FIG. 12. Relationship between the size of the initiating pool of synapses
(N), the number of synapses required to recover to initiate a network output
(K), and the probability of network output.A: the range of values ofN andK
computed for the experiments shown in Figs. 8–11: DNQX (ƒ), baclofen (E),
LTD (}), and Ko

1 (●). The average ratio ofK to N was 0.556 0.19.B: the
fraction of the pool required to recover to initiate a burst (K/N) increases as the
probability of network output decreases (increased interval between network
outputs, corresponding to decreased network excitability). Pooled data from
the experiments shown in Figs. 8–11; symbols as inA. — fit by Eq. 1with t 5
8 s.
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proceed normally afterIH is blocked (Xiong and Stringer
1999).

Instead of a pacemaking conductance, the rate-limiting re-
covery process that sets the CA3 interburst interval might be
the de-inactivation of a voltage-dependent depolarizing mem-
brane conductance to a particular threshold value. Examples
might be dendritic conductances that amplify EPSPs, such as
the dendritic sodium conductance or low-threshold calcium
conductance (Magee et al. 1998). If the threshold to which the
conductance needed to recover varied from burst to burst, then
the binomial distribution used inEqs. 2and 3 might be re-
placed by a normal distribution that describes the average value
and standard deviation of this probabilistic threshold. As
shown in Fig. 13, the recovery of a membrane conductance to
a noisy threshold also fits the data.

A physiological disadvantage of the recovery to noisy
threshold model is that there are no known pacemaking or
voltage-dependent depolarizing conductances that have an in-
activation recovery time constant in the range (;8 s at 35°C)
that fits the interburst interval data (Magee 1998; Mickus et al.
1999), although it is conceivable that second-messenger regu-
lation of a pacemaker conductance might have the appropriate
kinetics. Further, manipulation of the known candidate con-
ductances does not produce the expected effects on burst
intervals. For example, blockingIA negates most of the effects
of dendritic sodium current inactivation (Colbert et al. 1997),
but the intervals between CA3 bursts induced by theIA antag-
onist 4AP are similar to those induced by other means (Traub
and Miles 1991). A conceptual disadvantage of the recovery to
noisy threshold model is that the threshold to which the con-
ductance must recover to trigger a burst is described by a mean
and SD that have no easily testable physiological interpretation
(Fig. 13).

Although both models can be equally well fit to the burst
interval distributions, we favor the synaptic recovery model.
This model is based on measured recovery synaptic rates that
are consistent with the interburst intervals, and this model is
based on more readily quantifiable parameters that can be
subjected to experimental testing.

Implications

An important result of this analysis is that spontaneous
transmitter release, which appears to be noise at a single

synapse (McCormick 1999; Staley 1999), has a central role in
signaling the recovery from depression and driving network
output. Thus linking synaptic properties to network behavior is
not only important for understanding neural networks but also
for understanding the significance of the synaptic properties.

Many neuronal oscillators use membrane conductances for
positive and negative feedback. In the bursting CA3 network,
positive and negative feedback is provided by depressing re-
current collateral synapses. Thus a network of depressing pos-
itive feedback synapses can comprise a distributed synaptic
clock (O’Donovan and Rinzel 1997; Tabak et al. 2000; Tso-
dyks et al. 2000). Such an oscillator contains no pacemaker
cells but rather pacemaker synapses that can be tuned by
long-term alterations in synaptic strength (Bains et al. 1999;
King et al. 1999) (Fig. 10) and synaptic input (Fig. 7B).

One prediction of this analysis is that the smallest increment
in burst probability is effected by the gain or loss of a single
initiating synapse. AsN approachesK (Figs. 8–10), this should
be reflected in quantized values of the observed means and
variances of the burst interval as synaptic strength is varied.
For example, when burst probability is already low, further
small decreases in synaptic strength produce a complete ces-
sation of bursting instead of a proportional decrease in the burst
frequency (Bains et al. 1999).

The distribution of the intervals between the bursts of a
periodically discharging neural network provides information
about the level of network excitability and the number of
initiating positive feedback synapses. This method can be
readily applied to less accessible networks. For example, this
analysis would allow an estimation of the amount of positive
feedback in an epileptic focus (Lytton et al. 1998; Prince 1999)
based on the temporal distribution of electroencepholographic
interictal discharges, which might help predict the risk of
spontaneous seizures.
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