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ABSTRACT

vMultilevel atomicityq , a new correctness criteria for database concurrency control, is defined. It

weakens the usual notion of serializability by permitting controlled interleaving among transactions. It

appears to be especially suitable for applications in which the set of transactions has a natural

hierarchical structure based on the hierarchical structure of an organization. A characterization for

multilevel atomicity, in terms of absence of cycles in a dependency relation among transaction steps,

is given. Some remarks are made concerning implementation.
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1. Introduction

Popular models for database concurrency control [RSL, BG] are based on a set of "entities",

either centralized or else distribuled among the nodes of a network. These entities are accessed by

users of the database through "transactions", which are certain sequences of steps involving the

individual entities. The steps are grouped into transactions for at least three distinct purposes. First,

a transaction is used as a logical unit: it describes a self-contained task within which local state

information can persist; thus, the results of earlier steps can be recorded so as to affect the later steps

of the same transaction. Second, a transaction is used to define atomicity: all of the steps of a

transaction form a logical atomic unit in the sense that it should appear to users of the database that

all of these steps are carried out consecutively, without any intervening steps of other transactions.

This requirement that transactions appear to be atomic is called "serializability" in the literature

[EGI.T,RSL,BGI and has been widely accepted as an important correctness criterion for databases.

Third, a transaction is used as a unit of recovery: either all of the steps of a transaction should be

carried out, or none of them should; thus, if a transaction cannot be completed, its initial steps must

be "undone" in some way.

While the same unit is generally used for all three purposes, I think it is more appropriate to use

different units. In particular, the logical unit (henceforth called the "transaction") should be as large

as possible, for maximum transaction expressiveness. It transactions are long, then the usual

requirement of serializability of transactions is so strong that it excludes efficient implementation of

many application databases. Therefore, another mechanism must be superimposed on the

transaction mechanism, in order to define atomicity. The unit of atomicity should be as small as

possible, for maximum concurrency. The unit of recovery could be anywhere in between; one would

probably not want to roll back very long transactions, but might want to roll back beyond a unit of

atomicity.

In this paper, I consider the simultaneous use of a large logical unit and a smaller unit of atomicity.

I imagine a database world in which processing is carried out by very long, possibly even infinite

transactions. Each transaction can rely on its memory of previous processing to determine its later

processing. From time to time, a transaction reaches a "breakpoint" where other transactions are

permitted to interleave. When a transaction resumes processing after a breakpoint, it can recall its

activities prior to the breakpoint.

Application databases are modelled here as gentralizd, concurrent systems of transactions and

entities. Application databases exist at a purely logical level. Thus. it is appropriate to regard them as

centralized even though they are to be "implemented" by a distributed system. The steps of different

application database transactions might be allowed to interleave in various ways; the set of allowable

' .
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interleavings is determined by the application represented. at one extreme, it might be specified that

all allowable interleavings be serializable; this amounts to requiring that the application database be a

centralized jii database. At the other extreme, the interleavings might be unconstrained. In a

banking database, a transfer transaction might consist of a withdrawal step followed by a deposit

step. In order to obtain fast performance, the withdrawals and deposits of different transfers might be

allowed to interleave arbitrarily, even though the users of the banking database are thereby presented

with a view of the account balances which includes the possibility of money being "in transit" from

one account to another. I don't think that this interleaving represents an inconvenience to be

remedied when technology advances further: rather, this interleaving represents the appropriate

activity for this application. In between the two extremes, there are many other reasonable

possibilities.

A framework is required for describing sets of allowable interleavings, Such a framework should

specify interleavings in a way which is suitable for use by a concurrency control algorithm. At the

same time, the sets of interleavings which can be specified should include the allowable interleavings

for important application databases such as those for banking.

As a first approximation to a specification method, we might associate with each transaction its

"atomicity", formally described by a set of "breakpoints" between different sets of consecutive steps.

Steps not separated by a breakpoint would always be required to occur atomically, (at least from the

point of view of the system users). As a special case of this definition, if there are no breakpoints for

any transaction except at the beginning and end, then this requirement is simply the usual
requirement of serializability. As another special case, if there are always breakpoints between every

pair of steps of each transaction, then this requirement allows arbitrary interleaving. In addition,

many intermediate cases are possible.

However, this definition is not sufficiently general to express all commonly-used constraints on

interleavings. For example, consider a banking system with transfer transactions as described above.

Transfers might be allowed to interleave arbitrarily with each other. However. one might also want to

have another type of transaction, an "audit transaction" [FGL], which reads all of the account

balances and returns their total. This audit transaction should probably not be allowed to interrupt a

transfer transaction between the withdrawal and deposit steps, for then the audit would miss counting

the money in transit. That is, the entire transfer transaction should be atomic with respect to the
entire audit transaction. Thus, the same transfer transaction should have one set of breakpoints with

respect to other transfers, and another set with respect to audit transactions.

This example is representative of a fairly general phenomenon: it might be appropriate for a

transaction to have different sets of breakpoints with respect to different other transactions. That is,
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each transaction might allow different "views" of its activity to different other transactions. Thus, a

natural specification for allowable interleavings might be in terms of the "relative atomicity" of each

transaction with respect to each other transaction, rather than just in terms of each transaction's

(absolute) "atomicity".

In this paper, a formal definition is given for a type of relative atomicity, called "multilevel

atomicity". This definition is probably not general enough to describe all conceivable interesting sets

of interleavings. However, it is quite adequate for many applications, and appears especially suited

for describing activities of hierarchical organizations. A virtue of this definition is that any set of

interleavings thus defined has a simple characterization, in terms of absence of cycles in a particular

dependency relation among transaction steps. This characterization ought to be useful in the design

of concurrency control algorithms for multilevel atomicity.

Other researchers [L,GLPTG,CJ have also noted that the usual notion of serializability needs to

be weakened. In particular, (G] contains interesting preliminary work on specification and

concurrency control design, for certain non-serializable interteavings. In fact, the multilevel atomicity

of this paper is a generalization of the two-level atomicity described in [G) under the designation
"compatibility sets".

" The bank transfer- audit example is explored in [L,FGL]. The solution presented in [FGLJ has the

particularly pleasant property that the audit does not stop transactions in progress.

The organization of the rest of the paper is as follows. In Section 2, some examples are given of

the sorts of applications for which multilevel atomicity is suited. In Section 3, a formal model is given

for application databases. In Section 4, multilevel atomicity is defined. In Section 5, the

characterization theorem is stated and proved. Section 6 contains discussion of the possible uses of

the characterization theorem for concurrency control design. Section 7 contains discussion, of the

relationship of multilevel atomicity to the "nested transaction" model of [M,R,LS,Ly].

Much work remains to be done, in designing and evaluating concurrency control algorithms for

multilevel atomicity. It remains to see whether new concurrency control algorithms which achieve

multilevel atomicity can be made to operate much more efficiently than existing concurrency control

algorithms which achieve serializability. It also remains to determine whether these weaker notions

than serializability are useful for describing the constraints required for real-world database

applications.

41
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2. Examples

Definitions and claims will be illustrated with examples. Many of the illustrations will be derived

from the following applications.

AnDilcation 1: Banklna

This example expands on the scenarios described in the Introduction.
The database for the Big Bucks Bank consists of individual accounts. Bank
customers are permitted to manipulate their own accounts in the usual ways.
They are also permitted restricted access to the accounts of others (say, to
deposit money). As an additional complication for this example, customers
are grouped into families, each of which shares control of a common set of
accounts. Frequently, a family member will move money between family
accounts. Transfers of money from the accounts of one family to the
accounts of another family are also fairly common; they are often contingent
upon some condition involving the amount of money in one of the originating
accounts, or else involving the total amount of money in all the accounts of
the originating family. Occasionally, the bank wishes to take a complete audit
ol the contents of all accounts, perhaps using the result to enter a calculated
interest amount into a special account. Also, creditors frequently require an
audit of the contents of all the accounts of particular families.

The interleaving constraints are very strong for the bank audit: it should
N' be atomic with respect to all the other transactions, and conversely. The

interleaving constraints for credit audits and customer transactions are much
less severe: tor example. as long as the total of the accounts of any particular
family is "correct" (e.g., no money is in the process of being moved from one
family account to another), it should be fine for any creditor or customer
transaction to obtain access to that family's accounts. Finally, the interleaving
constraints for customer transactions from customers in the same family are
even less severe (perhaps nonexistent). Presumably, family members trust
each other enough to allow arbitrary interleaving of accesses to individual
accounts (or can te prevailed upon to do so by having to pay less for
arbitrarily.interleaved service).

It might sometimes be the case that there are some precise database consistency requirements which

can be used to determine which interleavings are allowable. For example, the condition that a

particular family's total be a correct representation of its assets, might be used above to determine

where certain interleavings can occur. More usually, however, I expect that such data consistency

constraints will be imprecisely understood, very complicated to state, and very difficult to check. I

prefer to shift emphasis to the transactions themselves rather than the data. When several

transactions are allowed to interleave to a particular degree, I assume it is because they share

sufficient understanding of their permitted activities to be willing to allow each other access to some

of their partial results. The exact nature of this shared understanding is highly dependent on the

semantics of the application.

I _ _ _ _ _ _ __ _ _ _ _ _ _
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AoDlication 2: Computer-Aided Design

Utopian Planning, Inc. is an organization which develops detailed plans for
design of small cities. The organization consists of a large number of
specialized experts: architects, plumbers, traffic engineers, electrical
planners, residential-industrial zoning planners, pollution experts, energy
elficiency experts and landscape planners, to name a few. Since there are a
large number of experts in some of the categories, these categories are often
further subdivided into teams. There is also a public relations department,
which has the job of describing the plans to customers intending to build
small cities.

Utopian's database for each city consists of the latest plan for that city. All
the experts are constantly making changes appropriate to their specialties.
These changes interact in very complicated ways. The public relations
department requires "snapshots" which describe some reasonable recent
version of the plans, satisfying some loosely-defined notion of consistency.

Interleaving requirements here are strongest for the snapshots vs. the
changes: it is preferred that snapshots be atomic with respect to all changes,
and vice versa. Among the changes, a large amount of interleaving is allowed;
each group of experts expects that the version of the plans on which it begins
its work satisfies some minimal consistency constraints required by all the
groups of experts. However, this version need not be "sufficiently consistent"
to show to customers. Experts within a common specialty share a large body
of knowledge about their specialty. Therefore, by agreeing to respect certain
consistency constraints appropriate to their specialty, they can permit their
changes to interleave to a high degree. Experts within the same team share,
in addition to knowledge about their specialty, knowledge about the team's
workinq methods and habits. On this basis. changes made by members of the
same team are permitted to interleave to an extremely high degree.

In this example, data-determined consistency constraints would be especially difficult to describe.

Nevertheless, it might be easy to describe which groups of transactions "trust each other" to respect

appropriate consistency constraints. Note that I have not even described any structure for the

database in this example. This structure is extremely complex, and is not required for the approach

taken in this paper.

.1.
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3. Application Databases

In this section, we define precise notions of "transaction" and "application database".

Application databases consist of a set of transactions together with a set of "correct" interleavings

for executions of those transactions. A notion of "equivalence" for transaction executions is defined:

two executions are equivalent provided they look the same to each transaction and to each entity In

the database. The "correctable" executions are defined to be those which are equivalent to correct

executions.

3.1. A Model for Asynchronous Parallel Processes

Application databases will be formalized using a variant of the model of [LF] for asynchronous

parallel computation.

The basic entities of the model are ocesss (nondeterministic automata) and vria.es.

Processes have states (including start states and possibly also final states). while variables take on

yalues. An atomic execution step of a process involves accessing one variable and possibly changing

the process' state or the variable's value or both. A system of processes is a set of processes, with

certain of its variables designated as internal and others as external. Internal variables are to be used

only by the given system, and come equipped with particular initial values. External variables are

assumed to be accessiblc to some "environment" (e.g., other processes or users) which can change

the values between steps of the given system.

The computation of a system of processes is described by a set of exe ins. Each execution is

a (finite or infinite) totally ordered set of steps which the system could perform when interleaved with

appropriate actions by the environment. Each execution is composed of steps of the processes of the

system.

For any execution e of a system of process, the dependency partial order, :e5, of the steps of e is

defined as follows. For every pair of steps, a, P, in e, let a <e P if a precedes P in e and either

(i) a and , involve the same process,

or (i) a and ,8 access the same variable.

In this paper, I generalize [LF] slightly by allowing executions to be arbitrary totally ordered sets.

Therefore, I require the technical assumption that each step in an execution e has only finitely many

:5e predecessors. The consistency requirements for executions are as follows. Each Internal

variable starts with its initial value; each execution step involving a process, p, begins with p in the

same state which p had at the end of the previous step involving p; each execution step accessing an

_As
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internal variable, x, begins with x having the same value which x had at the end of the previous step

accessing x.

I relax the definition of "execution" in [LF] in one further way, by removing the assumption of

fairness. That is, I do not require here that each process continue to take steps until it reaches a final

state.

If e is an execution of a system, S. of processes, then every total ordering of the steps of e which Is

consistent with <e is also an execution of S, having the same sequence of values for each variable

and the same sequence of states for each process. We say that two executions, e and e', of S are

eauivalent if <e is identical to <,

3.2. Transactions, Application Databases, Correct and Correctable Executions

My notion of an application database is a centralized, concurrent system consisting of

4ransactions acting on entities, together with a set of correct interleavings of the steps of those

transactions. this is modelled very directly in the model of Subsection 3.1: tansactions are simply

formalized as processes, while entities are formalized as variables. More precisely, an apolication

dA ae (S,C) consists of a system S of processes, where all variables of S are internal (i.e., internal

to the system), together with a subset C of the executions of S. The processes are called transactions,

while the variables are called entities. The elements of C are called corr executions. The

assumption that the variables are internal says that the entities are only accessed via the transactions.

This definition gives a very general notion of an application database. The (indivisible) steps of

transactions are arbitrary accesses to entities, not necessarily just reading or writing steps (although

these two types of steps are permissible special cases). Transactions can branch conditionally: for

example, based on the values encountered for certain entities, they might access different entities at

later steps. This model of a transaction is general enough to include most others in the literature. It

also includes some other notions usually regarded as somewhat different from ordinary transactions:

The "transactions with revoking actions" in [G] are a particular type of nondeterministic transaction

in the present model.

If (S,C) is an application database and e is an execution of S, we say that e is corr ctable provided

e is equivalent to some e' E C.

o -



If C is the set of serial executions of the transaction system [EGLT], then
the correctable executions are just the usual serializable executions.

NOM
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4. Multilevel Atomicity

4.1. Motivation

One would like to be able to define particular application databases and have a (centralized or

distributed) system able to "implement" them. That is, the system should "simulate" (in some sense

which I will not specify) only correctable executions for the transactions. For arbitrary choices of C,

this task could be very difficult.

For the case where C is the set of serial executions, concurrency control theory provides help. A

basic theorem [EGLT, BG] characterizes the serializable executions as those having an absence of

cycles in a certain relation describing dependencies among transactions. Thus, one can insure

serializability by explicitly preventing unwanted cycles (using such devices as two-phase locking

[EGLT] and timestamps [LI).

In this section, I restrict the form of C so that a similar cycle-free characterization can be obtained.

The particular method of restriction I use is to group transactions into nested classes. Those which

are more closely related in the nesting structure will be permitted to interleave at a finer level of

atomicity. This structure has the advantage that it allows breakpoint specifications for each

transaction to be given solely in terms of nesting level. Nested classes are appropriate for describing

the examples given in Section 2, and other examples which model activities of hierarchical

organizations.

4.2. Coherent Relations

The definitions of this subsection are presented at an abstract level (using sets and partial orders)

because they will be used to prove a general combinatorial lemma in Subsection 5.1.

A kinl, w, for a set X assigns an equivalence relation w(i) to each i, 1 <i<k, in such a way that:

a. ir(1) consists of exactly one equivalence class,

b. ir(k) consists of singleton equivalence classes, and

c. each ir(i) is a refinement of its predecessor, w(i-1).

If x,x' E X, then level,(x,x') denotes the largest i for which (x,x') E w(i).

Thus, pairs with higher-numbered levels are more closely related.

We will consider cases where X is a set of transactions, as in the following two examples.

i _ _ _ _ _.. .. . .-_... . _
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Examole (Banking):

The set X consists of customer transactions, bank audit transactions and
creditor transactions. A 4-nest describes the rele sant relationships among
transactions. W(1) relates all the transactions. w(2) relates all customer and
creditor transactions and places each bank audit transaction in a singleton
class. v(3) refines w(2) by relating only those customer transactions
belonging to a common family. v(4) consists entirely of singleton classes.

Examole (Computer-Aided Design):

The set X consists of snapshot transactions and modification transactions.
A 5-nest describes the important relationships. w(1) relates all the
transactions. w(2) groups all modification transactions together and all
snapshot transactions together. w(3) refines w(2) by relating only those
modification transactions belonging to a common specialty, and v(4) refines
w(3) by relating only those belonging to a common team. Finally, w(5)
consists of singleton classes.

Next, I describe sets of bteakpoints within a totally ordered set, one set of breakpoints for each of

several "levels", in such a way that the higher level sets of breakpoints always include the lower level

sets. The totally ordered set should be thought of as the set of steps of some execution of a particular

transaction.

If (X, <) is a total order, then an equivalence relation, _, on X is said to be a < - segmentation

provided that a =- and a < y :5/ together imply a -. That is, each equivalence class is a

segment consisting of consecutive elements of X.

Breakpoints will be described formally by describing the segments between the breakpoints, as

follows. Once again, a k-nest (this time for the steps of the transaction) is useful. If (X, <) is a total

order, then a k-level breakooint descriotion, B, for (X, <) is a k-nest for X such that each B(i) Is a < -

segmentation.

.xtamole (Banking):

Let the elements of (X, <) be w1, IW2 ' tw 3' 8 62' in < order. Then 8 given
as follows is a 4-level breakpoint description for (X. :5):

B(1)'s only class is (wV W 2 ' W3- 61.82).

B(2)'s classes are (w1' "W2' "'3) and (8V 8 '

B(3)'s classes are (w (W2}' (w3 ) (5) and (6), and

B(4)'s classes are {w d}' (t'2, ( 3} (' ) and (82).

Intuitively, w i. d 2' W 31 61, 62 might represent the sequence of steps of a

, .4,.
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particular execution of a funds-transfer transaction. Steps o,, W2 and w
represent withdrawals from accounts belonging to the family originating the
transaction. The amounts obtained by these withdrawals depend on the
amounts which are discovered to be in the accounts. Steps 8, and 8
represent deposits to two arbitrary other accounts (say, a fuel-bill account and
an entertainment account). The amounts deposited in the two accounts might
depend on the amount discovered to be already in the first account. B(1) and
B(4) just represent the extreme cases of atomicity. 13(2) represents the
breakpoint (between w3 and S,) where other customer and creditor
transactions (but not bank audit transactions) are permitted to interleave.
B(3) represents the breakpoints permitted for other transactions of the same
family as the given funds.transfer transaction.

Next, I want to describe sets of breakpoints for all the transactions in a given set. If T is a set (to

be thought of as a set of transactions), then a k-level interleavino soecification, 5, for T is a collection

of triples (Xt, <t Bt), one for each t E T, where {(Xt, <t): t E T) is a collection of disjoint totally ordered

sets (to be thought of as the sets of steps of particular executions of all the transactions in T) and

each Bt is a k-level breakpoint description for (Xt, 5t).

Example (Banking):

Let T = {t1, t2, t]. For each t i, let (Xtt, ,)be the sequence il, w, 6)'

Si i2, and let Bt be defined analogously to the previous example:

Bti(1)'s only class is {wil, Wi2' WW i 1 8i2'

Bt-(2)'s classes are {w,,, i2, W,3) and { ail, 8i2), etc.

7dnen 5 = ((Xt,, Br B: t C T) is a 4-level interleaving specification for T.

Intuitively, tV, t2 and t, represent different funds-transfer transactions,
which might be from the same or different families. 5 gives both a sequence of
steps and a breakpoint description for each of t, t2, t3 . This combination of
descriptions is intended to be used to help define how t , 1t2 and t13 are
permitted to interleave. (Of course. in order to define the permissible
interleavings, we must also know which of t1, t2 and t3 are from common
families.)

Next, I define an important condition for a relation, R, on U{Xt: t E T). I want to express the fact

that R preserves all of the individual <, orderings and also respects the restrictions expressed by the

given collection of breakpoint descriptions. In most cases of interest, R will be a partial order.

Let w be a k-nest for T, 5 = {(Xt, :t' Bt): t E T) a k-level interleaving specification for T, R a

relation on U(Xt: t E T). Then R is crent for w and 5 provided the following two conditions hold.
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(a) R contains each partial order <

(b) Assume level (t,t') a i.

Assume a, a' E X, and a <' and (a, a') E Bt(i).

Assume It E x..

If (a, P) E R, then (a',ll) E R.

Intuitively, this latter condition says the following. If a step, $, of one transaction follows (in R) a

step, a, of another transaction, t, then / also follows any other step, a', of t which follows a but
precedes any breakpoints of the appropriate level. Note that the breakpoints are defined solely in

terms of the nesting level for the two transactions.

ExamRle:

Let k = 3, T = {t1, t2, t3) and let w(2)'s classes be (t1 , t2) and It3 ). (W(1)

and r(3) are uniquely determined.) For each ti E T, let (Xt , <t) be the
sequence all, ai2' a i3' a,4, and let Bti(2)'s classes be {all, a 2 and 0 akid

(B1i(1) and Bt1 (3) are uniquely determined.)

Let R1 be the transitive closure of all the <ti plus the pairs (a12 a22)'

(a22' 0l3)' (al4' 031) and (a24, a33). Then R1 is a coherent partial order.

Let R2 be the transitive closure of all the <, i plus the pairs (ail, 02), (a 21,

O3)' (all, o31) and (02,,1 a33). Then P2 is a non-coherent partial order.

Let R3 be constructed similarly to R2, except with (,31, a,,) in place of
(a. 031). Then R3  a non-coherent partial order.

If a given relation R is not coherent, it is sometimes useful to consider the smallest coherent

relation containing R. This can be defined as follows. Given a set T. a k-nest v for T, a k-level

interleaving specification . - {(XI, :<1, Bt): t E T) for T and a relation R on U{Xt: t E T) containing all

the --,, define the coherent closu of R with respect to w and 5 to be the relation obtained from R by

closing under condition (b) of the coherence definition.

Exumpe

In the previous example, the coherent closure of RI s R1 itself. The
coherent closure of R2 is just the partial order R . The coherent closure, R4 ,

t ,.
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of R3 is not a partial order, however. (Since (a3 1 , a ,) C R4, it follows that
(aW,a1 1 )E R4. We know (a11, a22) E R4 . Since (a21 - a33) E R4 , it fillows that
(a22, a33) E R4. Hence, R4 contains a cycle.)

It is easy to see that R is extendable to a coherent partial order if and only if the coherent closure

of R is a partial order.

4.3. Definition of Multilevel Atomicity

In contrast to the preceding subsection, the definitions of this subsection deal explicitly with a

system S of transactions. I use the abstract definitions in the preceding section to help describe sets

of allowable execution sequences. Intuitively, transactions are grouped in nested classes so that for

each t, the set of places where a transaction V can interrupt t is determined solely by the smallest

class containing both t and t'. Moreover, smaller classes determine at least all of the breakpoints

determined by containing classes (and possibly more). This says that transactions which are grouped

in a common small class might have many relative breakpoints (i.e. can interleave a great deal), while

transactions which are only grouped in a common large class might have fewer relative breakpoints

(i.e. cannot interleave very much).

For each pair of transactions t and t', I must describe the places at which t is permitted to be

interrupted by steps of V. Since the transactions need not be straight-line programs, but can branch

in complicated ways. I am forced to describe separately the places at which each different execution,

e, of t can be interrupted by steps of t'.

A klevel breakpoint sgecification, 5, for a system, S, of transactions is a family, {Bt* : t is a

transaction of S, e an execution of t, where each Bt,e is a k-level breakpoint description for the steps

of e, totally ordered according to their occurrence in e. (Formally, the elements of the ordered set of

steps are pairs (ia,), where ai is the ith step of e.)

A k-nest, v, for the transactions of a system S, and a k-level breakpoint specification, S, for S can

be used in a straightforward way to define an application database. Namely, for any execution e of S,

define a k.level interleaving specification L.) = ((Xt , -5t, Bt): t E T) by letting T be the set of

transactions appearing in e, e, be the execution of t occurring as a subsequence of e, X, be the set of

steps of t occurring in e ,. --, be the order ;n which those steps occur in e, and Bt be B, E S. (%,e) is

just the natural interleaving specification which is derived from the particular execution e using the

given k-level breakpoint description 61. An execution e of S is Mu[liLlatomic for w and S provided

the total ordering of steps in e is coherent for v and 5( ,e). Let Cf %2 denote the set of executions

which are multilevel atomic for wv and S. Then the application database of interest is (S, C(u',' )).

Thus, we use the multilevel atomic executions as the "correct" executions. In Section 5, we will
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develop a characterization of the corresponding "correctable" executions. Note that "multilevel

atomic" generalizes "serial", as follows.

If k=2, then r(1) relates all transactions, while w(2) only relates
transactions to themselves. There is only one possible breakpoint
specification 1A. Namely. for each t and e, B.,(t) groups all steps together,
while Bt.,(2) divides the steps into singleton sets. In this case, the multilevel
atomic executions are just the serial executions.

Exa ple:

The reader is referred to [G] for treatment of a special case of our
definition corresponding to k = 3, where Bt.e(2) consists of single steps, for all t
and e. That is, transactions in a common v(2) class can interleave arbitrarily,
but transactions not in a common w(2) class must be serialized with respect to
each other. The "mullilevel" definition of this paper also allows intermediate
degrees of interleaving as well as the two extremes represented in [G].

Examole (Banking):

Let the set of transactions be T U A, where T = {t, t2, t3} is a set of
transfers and A = (a) consists of a single bank audit. Let wt be the 4-nest with
ir(2) = (t1 , t2 , t3 ,{a) and f(3) = (ta)t2},{t), {al.

Consider tV. for example. t1 is intended to withdraw $100 from the
combined accounts A, B and C, and deposit the withdrawn amount in D and
E. The precise behavior of t1 depends on the amounts encountered in the
various accounts. t, will examine A, B and C sequentially, attempting to
obtain $100 as soon as possible. If ti is able to obtain $100 from A alone or
from just A and B, then t1 need not access the remaining accounts. If t1
accesses all three accounts and succeeds in obtaining less than $100, t1 will
proceed to 1) and E with the lesser amount. t1 tries to leave D with at least
$125: any available money over $125 will be deposited in E.

Thus, t1 has many possible execution sequences. Two are described
below.

e,: Access A, see $20, leave $0.
Access B, see $150, leave $70.
Access D, see $20, leave $120.

02: Access A, see $0, leave $0.
Access B, see $15, leave $0.
Access C, see $70, leave $0.
Access D. see $110, leave $125.
Access E, see $30, leave $100.

Ul
-- , I =, _,_ | I I
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Let {Bte: t T U A, e an execution for t be the 4. level breakpoint
specification for T U A defined as described In the banking examples inSubsection 4.2. For example, Bt,21(2) has class (wit W2' W ' {81'

where w 1 W 2 ' W3' 81' 82 represent the five steps of e2' in sequence. (For
all transfers, BIe(2) groups withdrawal steps together and deposit steps
together.) Bt,e (3) consists of singleton classes.

Now, for each t, fix a corresponding execution e, with steps .. i, w

ai2" Fix an execution e of a with steps a1, , a2, a3. If the following i an
execution (i.e., if the successive values of entities match up properly), then It
is multilevel atomic for w and S:

31' WWI Il W21' to 22- W 12' 831' 8321 2 11' 822' 2' all a

12' 21 *3

I 

S

-b~'* - *
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5. Characterization Theorem

In the previous section, a particular style of definition for C, the set of correct sequences, was

given. One would like a centralized or distributed processing system to "simulate" only correctable

executions. (As I have previously mentioned, I will not be precise about the definition of
"simulation".) In this section, a characterization theorem is proved for correctable executions. This

theorem is analogous to the absence-of-cycles characterization for serializability [EGLT].

5.1. A Combinatorial Lemma

In this subsection, I state a combinatorial lemma which will be used in the next section to derive a

necessary and sufficient condition for correctability (equivalence with multilevel atomicity). The

lemma requires only the abstract definitions in Subsection 4.2.

For this subsection, let T be a fixed set, let w be a fixed k-nest for T, and let 3 = ((Xt, -<t, Bd: tET}

be a fixed k-level interleaving specification for T. Let "coherent" mean "coherent for v and 3", and

write "level" for "level "

Lemma 1: If < is a coherent partial order, then there is a coherent total order <'
which contains <.

Proof: See Appendix.

Example:

Let R1 be the coherent partial order given in Subsection 4.2. Then there
are two coherent total orders containing R1, namely:

11l @12' 21' @22' 13' 14' @231' 24' 31' 32' @331 @34

and

a11l a12' a 21' a22' a23' a@241 013' 14' 31' 032a @331 a34'

5.2. The Theorem

The characterization result can now be stated. For this subsection, let S be a fixed set of

transactions, w a fixed k-nest for S, S a fixed k-level breakpoint specification for S. Let the "correct"

executions denote those in C(w,S) (i.e. the multilevel atomic executions), and the "correctable"

executions denote those which are equivalent to multilevel atomic executions.

Theorem 2: Let e be an execution of S. Then e is correctable if and only if the
coherent closure of with respect to w and 5('B,e) is a partial order.

Proof: First, assume e is correctable. This means that <e is extendable to a total
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order which is in C(w,i), i.e. which is coherent for v and S(%,e). Then surely the coherent
closure of --e which is the smallest coherent relation containing :5., must be acyclic.

Conversely, assume that the coherent closure of :5. with respect to w and J(%,e) is a
partial order. Then the lemma implies that there is a coherent (for v and 5(%,e)) total order
which includes the coherent closure of <,, and whiich therefore includes -5. Thus, e is

correctable.

Examole (Banking}:

Consider the last example of Subsection 4.3, where the transactions are t,
t2, t3 and a, and lix executions as before. Assume the accounts accessed are
as follows.

W 1: A w2,: A W31: a a, A

W12 : B W22: C W32 D a2 B

l: C 21 E 63 1: F a3: C

a 12 D a22 G a:32 H

If the following is an execution, then while it is not multilevel atomic for w
and 'A, it is correctable: w 11, w 31,  t21' ,,, a ,, 2' 422' 611 I ' a 21' 6221 W 3,
8 2 a31' 32

An equivalent multilevel atomic execution is the one given in Subsection
4.3.

On the other hand, if the following is an execution, then it is not
orrctable: 1 , 2  al 02 , a3, &312, W22' '32' 611' a21'a 31' 812' 822,
832.

The theorem can be used to verify both claims.

N - .4
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6. Concurrency Control

In this section, I discuss how a concurrency control mechanism might take advantage of some of

the preceding ideas. I want to design concui.ency controls which use the correctness condition

stated in the theorem of Section 5.

For definiteness, I use the "migrating transaction" model described in [RSL]. In this model,

entities of the database reside at nodes of a network of processors, and the transactions migrate from

entity to entity as necessary, executing some of their steps on different processors. In more detail, a

transaction t, with start state s, originates at a processor p. A message (p,t,s) is sent to the processor

owning the entity which t accesses when it is in state s. A processor receiving a message (p,t,s)
"performs" the indicated step by changing the value of the entity, updating t's state. and sending a
new message (p.t.s'), where s' is the new state. If s' is not a final state, the message is sent to the

processor owning the appropriate entity. If s' is a final state, the message is sent back to the

originator p. In this way, an execution e of the system of transactions is actually "performed" by the

processors. The total order of the execution is determined by real clock time.

I consider how to insure that any execution sequence e "performed" by the processors has a

dependency partial order <, whose coherent closure is a partial order.

It will be necessary to make an additional assumption about a breakpoint specification. Namely, in

order to be able to determine on-line the locations of breakpoints, it is necessary to assume a
"compatibility" condition: if two executions of a transaction share a common prefix e, then either

both executions have a breakpoint immediately after e, or neither does.

Assume that the concurrency control generates an execution e of S, and that the concurrency

control includes some priority scheme and rollback mechanism to insure that no initiated transaction

gets blocked indefinitely. (Such a scheme is not specified here.) I consider how to insure that the

coherent closure of <e is a partial order.

One possible strategy is cycle-detection, using the coherent closure of <, Namely, if the

concurrency control does not otherwise guarantee that <e is extendable to a coherent partial order,

the concurrency control might generate explicitly the edges of the coherent closure of <e' and check

for cycles. If a cycle is detected, a priority scheme can be used to determine which steps should be

rolled back. Presumably, fewer cycles would be detected using the multilevel atomicity definition than

if strict serializability were required, leading to fewer rollbacks.

Another approach is cycle prevention - guaranteeing that the coherent closure of ---- is a partial

order. One way of doing this might be to delay some steps, as follows.

'. 1

t-
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Let / be a step of any transaction t'. P first gets "scheduled", thereby locking its entity and

delaying V. P does not actually get "performed" until the following Is Insured. (Note that e refers to

the order in which steps actually get performed, not the order in which they are scheduled.) Let e.

denote the initial segment of e ending with step P. If a Is the last step- of some transaction t which

precedes P in the coherent closure of <e then a level(t, t') breakpoint immediately follows a in t's

execution subsequence of ep. (This can be accomplished by making f wait until suitable breakpoints

have been reached, assuming that the concurrency control uses a priority - rollback mechanism for

preventing blocking.)

If the property above is guaranteed, for each P, then the coherent closure of <, is consistent with

the total ordering of steps in e, so it must be a partial order.

Of course, there are still many difficulties involved in designing a priority, rollback scheme to

guarantee that no transactions block. Another, related difficulty In the design of a mechanism for

allowing transactions to commit: even though the concurrency control guarantees eventual

performance of all of the steps of a correct execution e, it does not necessarily follow that the

concurrency control can determine a particular point in time when each transaction can no longer

have any of its steps rolled back! This is apparently a greater difficulty for multilevel atomicity than it

N is for ordinary atomicity, since multilevel atomicity allows (even if there are only a finite number of

entities) an infinite chain of transactions t1 , t2, t3.... such that for each i, there are steps a of t, and P

of ti + , with P--e a. This means that it is quite plausible that a rollback of steps of t, +1 can cause a

rollback of steps of ti, and so on.

iU

IS
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7. Discussion

It is interesting to compare multilevel atomicity to the atomicity achieved by the "nested

transaction model" [M, R, Ly]. The latter model permits transactions to be nested, and then requires

serializability of transactions at every level, including the top level.

At first glance, it appears that the nested transaction model is incapable of describing the

interleavings considered in this paper. Indeed, this is the case if the atomicity units ("transactions" of

the nested transaction model) are constrained to be the same as the logical units ("transactions" of

this paper).

Example (Banking):

Let T be a set of transfer transactions, A a set of audit transactions. If
each element of T U A is modelled as a separate top-level transaction in the
nested transaction model, then elements of T are required to be serialized
with respect to each other.

However, the situation is different if the logical units and the units of atomicity are allowed to be

different. The nested "transactions" of the nested transaction model can be regarded as describing

the units of atomicity.

In order to distinguish these from the logical transactions, I will designate the former as "actions".

A (logical) transaction would be mapped into actions by means of a mapping which distorts the

transaction's structure.

Examole (Bankina:'

Let T = {t1. t4) be a set of transfers. where each transfer t. consists of
a withdrawal step wi followed by a deposit step Si. Let A = {a 1 , a,} be a set of
audits, where each audit ai. consists of a sequence aI .... ain of read-
account-balance steps. A nested action tree can be used to describe the
relevant nesting relationships between actions, for each multilevel atomic
execution. For example, the following tree:

/ n , -Wf o! . 0-..O • * ao,,,e

---------------------
_______ 2 ~z (11 g!; Ii 3 4 4 2 f2 tl~
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can be used to describe an execution in which transactions t1 and t2 are
combined to form a single action. The steps of the two transactions, WV a1
W 2 and 82 are all siblings as far as atomicity is concerned.

There are several possible ways in which 'V a 2' W2 and 8 2 might
interleave. Similarly, t3 and t4 are combined. (Note that the reorganization of
transactions into actions is not statically determined, but rather depends on
the particular execution.) With this reorganization, the nested transaction
model expresses exactly the proper atomicity requirements.

In a way similar to that described in the preceding example, any set of multilevel atomic

executions C(Qw, %) can be described by a corresponding collection of nested action trees. In each

such nested action tree, the following property holds. Enumerate the levels of the tree, with the root

at level 1. Then all steps appearing below any particular level i node in the tree belong to transactions

which are ir(i) - equivalent. Moreover, (if i > 1), these steps suffice to carry each of the transactions

involved to a level i-1 breakpoint. In this way, the nested action tree structure follows the k-nest

structure.

Although it is possible for the nested transaction model to describe multilevel atomicity, it is not

clear to what extent this fact is useful for implementing multilevel atomicity. There are several known

ways for implementing nested transactions, based on timestamps JR] or two-phase locking [M, LS].

Of course, these could be specialized to implement multilevel atomicity. However. I do not know

whether these specializations provide efficient implementations. This question is a topic for future

study.

The new programming language Argus [LS] is based on the nested transaction model. In that

language, the structure of user programs follows the nested action structure very closely. That is, the

logical unit and the unit of atomicity are the same. While I suspect that the nested transaction model

is adequate for describing atomicity, it seems to me that for modelling many situations of interest

(multilevel atomicity, conversations between transactions IRa]), it will be necessary for the logical

program structure to be different from the atomicity structure. Perhaps both logical structure and

atomicity are naturally described using nested structures, but the nestings used for those two

purposes might be different.

There are several areas remaining for future research. It remains to explore more applications in

which multilevel atomicity is a helpful descriptive tool. It remains to design detailed concurrency

controls based on this criterion, and use them to determine whether this generalization of

serializability can be exploited for increased efficiency. It remains to see whether implementation of

multilevel atomicity as a special case of the nested transaction model provides reasonable efficiency.

Most importantly and generally, it remains to Identify other situations in which It is useful to

I.S
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I distinguish the logical unit from the unit of atomicity (and from the unit of recovery).
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Aoendix: proof of the Combinatorial Lemma

Let <(1) denote <. A sequence of ; numbered 2 ... , k is carried out. Each stage, i, inserts

additional pairs into the ordering relation, yielding <:('). Then < is defined to be <(k) It is shown,

inductively on i, 1 <i <k, that (a) <'() is a coherent partial order, and (b) if a E X and ft E X1. ,a

level(tt') < i. then a and /3 are <(') comparable. Conditions (a) and (b) are trivially true for i = 1.

Conditions (a) and (b) for i = k clearly imply the needed result.

Stage i (2 <i <k).

Partition X = U{Xt: t E T) into segments, where each segment is an equivalence class of some

Bt(i.1).

A segment S is said to belong to an element t C T if S C X.

Define a directed graph G whose nodes are all the segments. G contains an edge from segment

Si to segment S2 exactly if there exist a E S VP9 S 2 with a <(")

Totally order the strongly connected components of G, 11< :2< .... so that G contains no edges

from any segment in Io to any segment in I', n < m. Then define <(') by adding to <(i1) all pairs

(a, ,8), where a C S 1 E Em/S2 E Jn, and m ( n.

END

I now prove the needed properties (a) and (b) for <(i) assuming that they hold for <(-l).

Lemma 3: <(') is a partial order.

Proof: There are no edges in <(') from a E S 1 E fm to 0 E S2 E I n, where n < m. Also,

all edges in <(') not in <(.1) go from a E S1 E to ft E S2 E ,f where m < n. Thus, there is

no cycle in <(') involving a new edge. Since <(.1) is a partial order, there are no cycles in
__.V).

£1
Lemma 4: <(') is coherent.

Proof: Assume level (t.t') = j. Assume a, a' E X and a <- a' and (a, a') E Btu).

Assume P3 E X,.. Assume a <__(i/3. I show that a' <(')/. The result is trivial if t = t', so

assume that t * t'.

Case(1.

By inductive hypothesis (a), 11.1) is coherent, which implies the needed result.

S1 - -
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Then a E S1 E o., P E S2 E 1,, for some m ( n.

Since a <(') /3 and _( contains 5(i1), it follows that 8 .1) a, so that a and /3 are

<(.1) incomparable. Then inductive hypothesis (b) implies that j (a level(t,t')) i - 1.

Thus, B,(j) C Bt(i. 1), so that (a, a') E Bt(i- 1). Therefore, a' E SI. The definition of .(5) then
insures the needed result.

Lemma 5: For each m, the following holds. If S, S' E 1m' S belongs to t and S' belongs
to t', then (t, t') E w(i).

Proof: If not, then some Im contains a cycle SO, S1 ..... S = So of segments such that

for each j, 0 < j :< 1-1, there exist a E S,, 3 E S+1, with a <(i.1) 8 and such that two of the
segments belong to w(i)- inequivalent elements of T.

Let S and S' be two distinct segments in this cycle, belonging to elements t and t'
respectively, where (i) (t, t') jw (i), and (ii) any segment S" following S and preceding S' in
the cycle belongs to some t" which is v(i) - equivalent to t. Then if a is the last (in the --t
ordering) element of S and ,3 is the last (in the <,, ordering) element of S', we claim that

a <(i-t) /. This is shown by induction on the number of segments following S and

preceding S' in the cycle.

Inductive Ste2. There exists a' E S such that a' .(.1) ,8', where /3' is the last step of

the cycle - successor of S. (This is by construction of the cycle and the fact that <(1)

contains all the total orderings of the individual transactions.) By inductive hypothesis (or

trivially, if S' itself is the cycle successor), it follows that 3' _5(i-1) /3. Thus, a' <(i-) /3. Now,

j = level (t,t') < i- 1, by assumption, so B(i- 1) C B(j). Since (a', a) E Bt(i- 1), it follows that

(W', a) E B1(j). Coherence of <(i.1) implies that a :50-1) P.

Applying this claim repeatedly around the cycle shows that there are two distinct

segments, S and S', such that a <('-) P3 and P <(1) a, where a and /3 are the last steps of
S and S' respectively. But this contradicts the assumption that <('1) is a partial order.

Lemma 8: It a E X and P E X., and level (t,t') < i, then a and P are _(. comparable.

Proof: By Lemma 5, t and t' do not have any segments in the same strongly connected

component 1m" Thus, a E S1 C Ym P E S2 E i , and m * n. But then 5(') is defined to

contain the pair (a, /3) if m < n, and to contain , ) if n ( m.
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