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Interactive systems that interact with and learn from user behavior are ubiqui-

tous today. Machine learning algorithms are core components of such systems.

In this thesis, we will study how we can re-use logged user behavior data to

evaluate interactive systems and train their machine learned components in a

principled way. The core message of the thesis is

• Using simple techniques from causal inference, we can improve popular

machine learning algorithms so that they interact reliably.

• These improvements are effective and scalable, and complement current

algorithmic and modeling advances in machine learning.

• They open further avenues for research in Counterfactual Evaluation and

Learning to ensure machine learned components interact reliably with

users and with each other.

This thesis explores two fundamental tasks — evaluation and training of in-

teractive systems. Solving evaluation and training tasks using logged data is

an exercise in counterfactual reasoning. So we will first review concepts from

causal inference for counterfactual reasoning, assignment mechanisms, statisti-

cal estimation and learning theory. The thesis then contains two parts.

In the first part, we will study scenarios where unknown assignment mech-

anisms underlie the logged data we collect. These scenarios often arise in



learning-to-rank and learning-to-recommend applications. We will view these

applications through the lens of causal inference and modularize the problem of

building a good ranking engine or recommender system into two components

— first, infer a plausible assignment mechanism and second, reliably learn to

rank or recommend assuming this mechanism was active when collecting data.

The second part of the thesis focuses on scenarios where we collect logged

data from past interventions. We will formalize these scenarios as batch learning

from logged contextual bandit feedback. We will first develop better off-policy

estimators for evaluating online user-centric metrics in information retrieval ap-

plications. In subsequent chapters, we will study the bias-variance trade-off

when learning from logged interventions. This study will yield new learning

principles, algorithms and insights into the design of statistical estimators for

counterfactual learning.

The thesis outlines a few principles, tools, datasets and software that hope-

fully prove to be useful to you as you build your interactive learning system.
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CHAPTER 1

INTRODUCTION

Interactive systems — i.e., systems that interact with and learn from user be-

havior — are ubiquitous today (e.g., in digital services like search, e-commerce

and online entertainment) and will be more pervasive with the advent of cyber-

physical systems like smart homes and self-driving cars. Consequently, we col-

lect petabytes of user interaction data as a by-product of operating these systems

and use it to personalize and evaluate new interactive systems.

Building an interactive system is hard, and requires good decision-making

under uncertainty. Therefore machine learning algorithms — e.g., learning to

rank for information retrieval and collaborative filtering for recommendations

— are core components of these systems. The current practice for training and

evaluating these algorithms is plagued by an expensive trial and error cycle.

For evaluation, the industry standard is to deploy new systems in weeks-long

randomized controlled experiments [60]. For training directly from user inter-

actions, the current state of the art explore-exploit algorithms demand interac-

tive experimental control over the actions of a system to decide under uncer-

tainty effectively [14]. Alternatively, interactive systems are also designed with

offline supervised machine learned components. Evaluation and training us-

ing these offline machine learning algorithms require supervised judgments. A

small fraction of the collected user interaction data is, hence, annotated with su-

pervised judgments at great cost for training such algorithms. In this thesis, we

will explore some tools that achieve the goal of combining the realism of work-

ing with online user-centric evaluation metrics with the convenience of offline

machine learning experimentation, by re-using logged user interaction data.
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Our goal is challenging because the data we collect does not directly answer

the questions we ask. The collected data contains records of user interactions

with a prior system. The questions we typically ask are “How might a new ver-

sion of the system interact with our users?” or “How can we make the system

better?”. As a concrete example, imagine we are building a game recommen-

dation engine for an online retailer like Steam1. Every time Alice logs on to the

recommendation engine, we want to recommend a game she might enjoy. If she

enjoys the recommendation, she might then buy the game. We gain revenue

when our users buy games. The data we collect during such interactions con-

tains records of games we recommended and the games our users purchased. A

question we may ask is “How should we improve the recommendation policy

to get more revenue?”.

We can effectively benchmark the revenue accrued under our existing rec-

ommendation policy by using the collected data. However, to understand how

to improve our recommender system, we ideally want to know “Will Alice en-

joy this other recommendation we can make?”. We would like answers to such

questions without actually making every possible recommendation to Alice and

seeing how she responds. Beyond understanding Alice’s individual prefer-

ences, we need a generalizable policy that can recommend effectively across

our entire user population every time they log on to our service. Since a suc-

cessful recommendation system also typically receives a large volume of traffic,

we need scalable learning algorithms that produce good fast generalizable poli-

cies by directly using collected user interactions.

The dominant approach for developing such interaction policies today views

the problem of learning to interact as a prediction problem — “Can we predict

1https://store.steampowered.com/
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the correct action to take during any user interaction?”. Framing the problem

this way, and with access to data annotated with correct actions, we can then em-

ploy supervised machine learning algorithms to engineer good policies. We will

frame the problem differently and try to understand “What are the outcomes of

acting according to different policies?”. These are fundamentally counterfac-

tual (“What If?”) questions. Re-using logged interactions to answer such ques-

tions requires a causal understanding of the mechanisms that shape the data

we collect from interactive systems. We will focus on two specific counterfac-

tual questions — how to evaluate and how to train interactive systems — and

address how these underlying mechanisms may confound the answers to our

questions. Individual chapters study these questions in several different appli-

cations. Throughout the thesis, we will see two themes. First, any advances we

make in answering the evaluation question transfers neatly into improvements

for the training problem. Second, all the algorithms that we develop build on

well-understood standard machine learning algorithms. So improvements in

the properties (e.g., computational efficiency) of these standard algorithms also

carry over when training interactive systems.

1.1 Organization and Contributions

We will first review concepts from causal inference, Monte Carlo estimation

and empirical process theory in Chapter 2. We will describe the problem of

estimating user-centric metrics as an instance of Monte Carlo estimation (Sec-

tion 2.1) and review techniques like importance sampling [58] to estimate them

(Section 2.2). This review will help us understand statistical properties of esti-

mators that rely on randomization and sampling distributions. These estima-
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tors are closely related to propensity scoring techniques [95] in causal estima-

tion and missing data imputation. Section 2.3 will make this connection more

explicit. The potential outcomes framework [85, 96] for causal inference will

be fundamental in framing our counterfactual questions and drawing unbiased

conclusions. Section 2.3 will also clarify the role of randomization in assignment

mechanisms when evaluating quantities under counterfactual distributions. For

instance, even if we do not know “Will Alice enjoy this other recommendation

we can make?” we can still estimate the average effect on revenue when switch-

ing to a different interaction policy if we have some controlled randomized rec-

ommendations and subsequent user purchases data! Techniques from causal

inference will allow us to bridge the discrepancy between the data-generating

distributions and the counterfactual distributions we wish to study. We will

finally review seminal work in the learning theory of an algorithm called Struc-

tural Risk Minimization [125] (Section 2.4). Statistical learning theory guaran-

tees that this algorithm will yield good generalization performance even when

only having access to samples drawn from a data distribution for training. This

guarantee is remarkable — even if we do not know the distribution of users log-

ging on to our game recommendation engine, we can guarantee the quality of

trained models evaluated under this distribution. All our learning algorithms

will build on this learning principle and carefully trade-off bias against variance

during statistical learning. Putting causal inference and statistical learning the-

ory together, we can hope to answer counterfactual questions using only logged

user interactions.

When re-using logged data, it will be useful to consider two scenarios sepa-

rately; the thesis is divided into two parts studying each of these scenarios. In

the first part, we will study scenarios where unknown assignment mechanisms
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underlie the logged data we collect (“Observational Feedback”). These scenar-

ios arise when building ranking algorithms and recommender systems using

user volunteered feedback. We will view these applications through the lens of

causal inference and modularize the problem of building a good recommender

system (Chapter 3) or ranking engine (Chapter 4) into two components — first,

infer a plausible assignment mechanism and second, reliably learn to rank or

recommend assuming this mechanism was active when collecting data.

We will visit the classic collaborative filtering learning model in Chapter 3.

This model underlies a very popular algorithm [39] that can recommend an in-

ventory of items to a population of users. Users sometimes provide ratings for

items they consume. Can we use these ratings to build a good recommender? In

Chapter 3 we will see that the answer is “Yes we can!” — if we understand the

confounding from users’ rating behavior (e.g. users may be more likely to pro-

vide ratings for popular items) when learning a recommendation policy. I con-

ceptualized the potential outcomes model for recommendations and derived

the resulting algorithms with Thorsten Joachims and Tobias Schnabel. Assisted

by Tobias Schnabel and Ashudeep Singh, I contributed the experimental results

reported in Chapter 3. Ashudeep ran the generative modeling baselines we

compared against, and Tobias provided an independent implementation of our

logistic regression propensity models to serve as a diagnostic.

We will then turn to Learning-to-rank (LTR) algorithms [78] (e.g., for pre-

senting search results) in Chapter 4. Can we reliably use implicit feedback

from user behavior on search results as a training signal for LTR algorithms?

Again we will see that we should carefully reason about confounding effects

from users’ clicking behavior (e.g. users exhibit presentation and positions bi-
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ases when clicking on top-ranked results) if we want to reliably rank search

results. I conceptualized the potential outcomes model for search rankings with

Thorsten Joachims, and conducted the real-world experiment on a live search

engine reported in Chapter 4.

In the second part of the thesis, we will study the framework of Batch Learn-

ing from logged contextual Bandit Feedback (BLBF) [8, 113]. This framework

is useful to reason about learning problems with access to interventional data

(“Logged Interventional Feedback”). In Chapter 5 we will evaluate online user-

centric metrics for real-world interactive systems using offline log data (also

called off-policy estimation). We will find that all known off-policy estimators

have undesirable behavior — either they make very few assumptions and re-

quire infeasible amounts of data to give accurate estimates, or they make very

strong assumptions and give uncontrollably wrong answers in practice. We will

develop an estimator in Chapter 5 that strikes a good balance between these ex-

tremes. I developed the estimator and its bias analysis jointly with Miroslav

Dudı́k, Akshay Krishnamurthy, Alekh Agarwal and John Langford, and I con-

tributed the semi-synthetic evaluation and optimization experiments reported

in Chapter 5.

In Chapter 6 we will discover that counterfactual learning using off-policy

estimators often fails for the same reasons that importance sampling can some-

times fail. We will revisit Structural Risk Minimization [125] and derive a new

learning principle that remains robust by reasoning about the variance of off-

policy estimators. We will then find that all known learning methods in these

settings are vulnerable to a new kind of overfitting, called propensity overfit-

ting [116]. Chapter 7 remedies this issue by employing the self-normalized im-
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portance sampling estimator (reviewed in Section 2.2) and empirically demon-

strates its resistance to propensity overfitting. I conceptualized the learning

principles and algorithms jointly with Thorsten Joachims, and contributed all

the experiments reported in Chapters 6 and 7. These chapters contribute a

careful analysis of a bias-variance trade-off in BLBF problems and reveal new

learning principles, algorithms and insights for designing off-policy estimators.

Chapter 8 includes pointers to collections of datasets, software and addi-

tional reading material for counterfactual analysis in learning systems. And

Chapter 9 concludes the thesis with directions for future work.

1.2 Experiment Methodology

When experimenting with our proposed techniques, we will use two conceptu-

ally distinct experiment setups. The first is real-world performance — “Do of-

fline computed metrics agree with online performance after deploying systems

in practice?” and “Does offline learning find good models that reliably interact

when deployed?”. The second is performance in semi-synthetic experiments

— these experiments help us understand the limits of our proposed techniques

and discover avenues for improvement, To setup semi-synthetic experiments,

in the applications we study, annotated datasets were collected at great cost

for use with standard supervised machine learning algorithms. In the game

recommendation example, these annotations will tell us “Will Alice enjoy this

recommendation?” for every possible recommendation we can make. We can

construct realistic simulations using this data by withholding information about

counterfactual recommendations.
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CHAPTER 2

BACKGROUND

2.1 Schematic of Interactive Systems

Interactive systems have a characteristic interaction loop illustrated by the car-

toon in Figure 2.1. Consider the video game recommendation example of Chap-

ter 1. Alice issues a command (or query, topic, user, context, stimulus) to the

system — denoted x, requesting a game recommendation. The system responds

with an action (or prediction, document, recommendation, result, response) —

denoted y, suggesting a new game. Alice then interacts with this response (e.g.,

she may hover over the snippet, click-through to read more about the game,

buy it or abandon everything and seek out pictures of cats instead). The system

can measure some of her behavior — denoted by δ, encoding her feedback.

Figure 2.1: Interaction schematic of interactive systems.

This x 7→ y 7→ δ schematic occurs naturally in many applications that extend

beyond interactive systems. In this thesis, we will study systems that interact in
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contextual bandit scenarios (Chapters 5, 6, 7), collaborative filtering for recom-

mendations (Chapter 3) and systems that learn to rank (Chapter 4). Contextual

bandit settings are a general framework for decision-making under uncertainty.

x is a context (or side-information) that the environment provides to a decision-

maker, y is an action the decision-maker takes and δ is the reward that the envi-

ronment reveals for taking action y in context x. In recommendation settings x

is a user, y is an item and δ denotes a rating (e.g., star rating, “like”) that the user

voluntarily provided for the item. In learning to rank x is a query submitted

by a user, y is a ranking of search results and δ is a measure of ranking quality

derived from the user’s response (e.g., clicks on search results).

The data we collect in all these applications (e.g., (x, y, δ) triplets logged dur-

ing system operation) have many things in common. x and y are instances from

a large universe of possible X and Y respectively. Crucially we only get to ob-

serve δ for the (x, y) pair during an interaction — not the δ’s for every possible

pair in the universe X × Y. We will typically assume that δ is stochastically dis-

tributed δ ∼ Pr(· | x, y). This assumption precludes adversarial settings (e.g.,

spammers who want to confuse the learning system). We typically do not know

the mechanisms that generate the x we see (e.g., “Why does Alice want a strat-

egy game in Figure 2.1?”) and assume that they come from some fixed but

(typically) unknown distribution x ∼ Pr(X). In some cases — like collaborative

filtering (Chapter 3) — we will know Pr(X) by construction. There are two cat-

egories of mechanisms that generate y (see Section 2.3). In the first category,

we are completely in control of generating y for x. This category is the “con-

trolled setting” (known assignment mechanism). In the second category, we do

not know the mechanisms that generated the y in our collected data, but we still

want to re-use this data to build a system that responds well. This category is the
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“observational setting” (unknown assignment mechanism). We will tackle the

observational setting by inferring an assignment mechanism and behaving “as

if” we were in the controlled setting. When we are studying systems that deter-

ministically respond to x, we will typically denote such systems by S , y = S (x).

We will quickly discover the importance of randomization when navigating a

universe of unknown δ’s (see Section 2.3). This discovery motivates the study

of systems that randomize their responses. We denote such systems by π and

say that they are operating according to a policy y ∼ π(x).

If the feedback δ is encoded as a number, we can summarize the quality of

a system by a number too. Encoding feedback as a number is not the focus of

this thesis, recent surveys [44, Chapter 3] and papers [35, 60] explore this topic

in detail. The quality of a system is

V(S ) =

∫
Eδ∼Pr(·|x,S (x)) [δ] Pr(x)dx, V(π) =

∫ ∫
Eδ∼Pr(·|x,y) [δ] π(y | x) Pr(x)dydx.

(2.1)

This observation motivates the Monte Carlo estimation approach: simply de-

ploy the systems S or π. During their operation, they collect samples x ∼ Pr(X),

y = S (x) or y ∼ π(x) respectively, and their feedback δ. So it is “as if” we have

a random sample to estimate the expectations in Equation (2.1). This is called

On-Policy evaluation.

V̂(S ) = V̂(π) =
1
n

n∑
i=1

δi. (2.2)

The challenge, of course, is to evaluate and train systems (deterministic re-

sponders S or stochastic policies π) not by repeatedly deploying variants (trial-

and-error) but by re-using already collected data (x, y, δ). Evaluating and train-

ing interactive systems with logged data is hard! The logging system influences

the data we collect and we never directly see counterfactual outcomes for oper-
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ating a new interaction policy.

A Note on Notation: In some applications we will have a clear interpretation

of δ as a loss (i.e., systems should respond in such a way that δ is small). In

such cases, we will replace V(S ) | V(π) by R(S ) | R(π) to denote the decision-

theoretic risk of deploying S | π respectively. We will reserve n to denote the

size of collected data samples and the subscript ∗i to index into this sample (e.g.,

(xi, yi, δi)). Often we will deal with composite structured objects as responses.

We will reserve boldface y to denote them and re-define y to refer to sub-parts

of these structures. We will use subscript ∗ j (e.g., y = y j to refer to a document

in a ranking of search results) to index these sub-parts. We will drop subscripts

E∗∗ when it is clear what we are taking expectations over. We will reserve the

term “interventions” to describe interactions where the logging system actively

randomized its actions.

2.2 Importance Sampling for Monte Carlo Estimation

We recap classic results in importance sampling [58, 86] here. For a detailed

overview see the source material [86, Chapter 9] and the references therein.

Suppose we have the ability to sample a random variable y from a distribu-

tion Q(Y) and we wish to estimate the expected value of a scalar-valued function

δ(y) under a distribution P(Y); V B Ey∼P(Y)
[
δ(y)

]
. Q(·) is called the sampling dis-

tribution, P(·) is the target distribution. Assume that V exists.
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If Q(y) > 0 whenever δ(y)P(y) , 0,

Ey∼Q

[
δ(y)

P(y)
Q(y)

]
=

∫
δ(y)P(y)dy = V.

This equation motivates the importance sampling estimator which uses a sam-

ple yi
i.i.d.
∼ Q,

V̂Q =
1
n

n∑
i=1

δ(yi)
P(yi)
Q(yi)

.

The ratios P(y)/Q(y) are called importance weights or likelihood ratios. This

estimate is unbiased if Q has sufficient support (i.e., δ(y)P(y) , 0⇒ Q(y) > 0).

E{yi}

[
V̂Q

]
= V.

We can estimate the empirical variance of V̂Q as

σ̂2
Q =

1
n

n∑
i=1

(
δ(yi)

P(yi)
Q(yi)

− V̂Q

)2

The sampling distribution Q∗ that minimizes the variance of the importance

sampling estimate σ2
Q [58] is Q∗(y) ∝ |δ(y)| P(y) (except in trivial situations where

Ey∼P[|δ(y)|] = 0). Additionally, if we have a Q with a guarantee that the likelihood

ratios P(y)
Q(y) ≤ c, then we can assert that σ2

Q ≤ c · σ2
P.

The self-normalized importance sampling estimator [121] is an attractive al-

ternative when we can only compute unnormalized versions of P̃(y) = αP(y)

and Q̃(y) = βQ(y).

V̂S N
Q =

∑n
i=1 δ(yi)P(yi)/Q(yi)∑n

i=1 P(yi)/Q(yi)
.

Note that this estimate is computable using P̃(y)/Q̃(y) as likelihood ratios. The

self-normalized estimator is typically biased for finite samples {yi} and requires

a stronger condition for asymptotic consistency. If P(y) > 0⇒ Q(y) > 0, then

Pr( lim
n→∞

V̂S N
Q = V) = 1.

12



Figure 2.2: Importance sampling with P and Q having full support. The square
represents the universe of possible Y, circles represent samples yi ∼ Q. Their
radius scales with the likelihood ratio P(yi)/Q(yi). Colors reflect the observed
value of δ(yi). Importance sampling is especially useful when the red regions of
Y are important for correctly estimating V = EP[δ].

The variance-optimal sampling distribution Q∗S N for use with self-normalized

estimators is Q∗S N ∝ |δ(y) − V | P(y) [41]. We cannot drive the variance of the self-

normalized estimator to zero by choosing ever better sampling distributions.

This estimator is still desirable because it is equivariant: V̂S N
Q is exact when δ(y) is

a constant. The vanilla estimator of Equation (2.2) however does not guarantee

that Ê
[
δ(y) + C

]
= Ê

[
δ(y)

]
+ C.

Diagnostics: Importance sampling can fail when the number of collected sam-

ples n is not sufficient to counteract the variability in likelihood ratios P(y)/Q(y).

One simple diagnostic uses the fact that Ey∼Q
[
P(y)/Q(y)

]
= 1 to detect whether

T̂Q B
1
n

n∑
i=1

P(yi)/Q(yi) ' 1.

Another diagnostic is the effective sample size.

ne f f =
n2T̂ 2

Q∑n
i=1 P(yi)2/Q(yi)2 .

Instead of ne f f we can also estimate the variance σ̂2
Q as a diagnostic. If σ̂2

Q is very

large it can mean that importance sampling has failed. However, this variance
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estimate uses the same weights that the estimate used. A bad variance estimate

can subsequently mask situations where importance sampling failed. All these

diagnostics are agnostic to δ(y). For a function-specific check [33], consider

ne f f
δ =

1∑n
i=1 wi(δ)2 , wi(δ) =

|δ(yi)| P(yi)/Q(yi)∑n
j=1

∣∣∣δ(y j)
∣∣∣ P(y j)/Q(y j)

.

If this effective sample size ne f f
δ is too small, then importance sampling has failed

for estimating V = EP[δ]. However, these diagnostics cannot reliably detect

whether Q (and the sample {yi}) has sufficient support over all important regions

that matter for estimating V .

Figure 2.3: Failure mode when using importance sampling, especially likely to
occur in “What if” simulations. If the target distribution P′ is very different from
the sampling distribution Q, one of the importance weights can be vastly larger
than all the others. Although we collected n samples, we are estimating V with
actually just one sample.

These diagnostics are critical when importance sampling is used to conduct

“What if” simulations [121, 2] as illustrated in Figure 2.3. In these simulations

we use the same samples {yi} drawn from Q to estimate E
[
δ(y)

]
under many

possible distributions {P}. This procedure can work well when the distributions

in {P} are all small “perturbations” around Q. However if one of the P′(y) ∈ {P} is

too different from Q, then importance sampling can fail (one of the diagnostics

above will hopefully detect this). In Chapter 6 we will employ the σ̂2
Q diagnostic
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to detect such cases because of its compatibility with statistical learning theory

(see Section 2.4). We will additionally use the T̂Q diagnostic in Chapter 7 to

remedy new kinds of overfitting in counterfactual learning.

2.3 Potential Outcomes Framework for Causal Inference

We recap key elements of the Neyman-Rubin causal model (also called the Po-

tential Outcomes Framework) [85, 96] here. For a detailed overview see recent

books [50, 94, 77] and their references.

Recall the classic story of survivorship bias [126]. American airplanes were

returning after engagements in Europe in World War 2, with non-uniform dam-

age — there were more bullet holes in the fuselage and hardly any in the engine

compartment. Military officers considered improving the plane designs by rein-

forcing the places where the planes were getting more damage (e.g., fuselage).

Wald countered that armor should go where the bullet holes are not (the engine

compartment). The reason planes were coming back with fewer hits to the en-

gine is that planes that got hit in the engine were lethally damaged and not able

to return. This phenomenon created a missing data problem confounded by

survivorship bias and Wald’s insight was to ask “Where are the missing holes?”

The Potential Outcomes Framework provides a formal model to reason

about cause-effect (add armor, save planes) relationships. We will review [32]

the definitions of causal effects, understand the role of randomization and see

how the framework extends the logic of randomization to observationally col-

lected data. Consider a binary treatment y = {0, 1} (e.g., administer a placebo

y = 0, versus administer a drug y = 1). An individual in a population has two
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potential outcomes {δ0, δ1}, one for each treatment. We can typically only ob-

serve one of these outcomes when the individual receives a specific treatment

— the unobserved one is the counterfactual outcome. The Individual Causal Ef-

fect (ICE) is δ1 − δ0. ICE may differ across a population, so we typically study

the population average of ICE — Average Treatment Effect (ATE).

ATE = E [δ1 − δ0] = E [δ1] − E [δ0] .

Given the heterogeneity of individual effects, we may also want to study aver-

age treatment effects restricted to some sub-populations of individuals. Let x

denote some subset of observable covariates of an individual (e.g., the individ-

ual’s demographic). The Conditional Average Treatment Effect (CATE) is

CATE = E [δ1 − δ0 | X = x] .

There are many other treatment effects we could study (e.g., Average Treatment

Effect on the Treated). We will focus on estimating ATE — the techniques can

be co-opted in a straightforward manner for estimating other averages. A core

assumption that underlies many population-level aggregates is SUTVA (Stable

Unit Treatment Value Assumption). Intuitively the outcomes {δ0, δ1} for one in-

dividual should not depend on how other people are being treated. SUTVA lets

us relate the expectations above to sample averages computed using the data

we collect analogous to Equation (2.2).

The Fundamental Problem of Causal Inference [46] is that we can never di-

rectly observe a treatment effect since it requires both potential outcomes for an

individual. We can however compute

V = E
[
δ1 | y = 1

]
− E

[
δ0 | y = 0

]
.

We can ensure that V is an unbiased and consistent estimate of ATE using ran-
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domization! To see this, a sufficient condition for unbiasedness is

E
[
δ1 | y = 1

]
= E

[
δ1 | y = 0

]
= E [δ1] ,

E
[
δ0 | y = 0

]
= E

[
δ0 | y = 1

]
= E [δ0] .

This condition can be achieved simply by randomly assigning individuals in our

population to be treated (y = 1) or untreated (y = 0). Situations where we can

perform such a random assignment is called the Controlled Assignment setting.

Uniform random assignment can often be prohibitive (e.g., trials for a drug that

is a priori likely to be lethal to a sub-population). In such cases, we can use non-

uniform randomization with a probabilistic assignment mechanism Pr(y | x) > 0.

A propensity score π(x) B Pr(y = 1 | x) is the probability of an individual getting

assigned to a treatment conditional on their observable covariates. The Horvitz-

Thompson estimator [47] uses these propensities to estimate treatment effects as

V̂ =
1
n

n∑
i=1

δi

(
1{yi = 1}

Pr(y = 1 | xi)
−

1{yi = 0}
Pr(y = 0 | xi)

)
. (2.3)

Closely related to the Controlled Assignment setting is the Off-Policy setting.

In this setting, we cannot arbitrarily control assignment mechanisms to sculpt

the data we collect. However, we know the assignment mechanism Pr(y | x) > 0

that was active during data collection. We can still estimate causal effects using

Equation (2.3) in this setting. The second part of the thesis (Chapters 5, 6 and

7) will employ Equation (2.3) to re-use data collected through interventions in

this Off-Policy setting. In particular, we will see ways to improve Equation (2.3)

in Chapter 5 for very high-dimensional treatments y.

Often we have data that was collected from an unknown treatment regime.

This setting, where we cannot directly manipulate treatment assignment or even

know the underlying assignment mechanism, is called the Observational setting.
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In such cases, we can use propensity matching or propensity weighting (a gen-

eralization of matching) methods. We will focus on one kind of weighting —

Inverse Propensity Weighting — because of its similarity to Equation (2.3).

Suppose we know the propensities π(x) B Pr(y = 1 | x) of an individual

getting assigned to a treatment. Observe that y y x | π(x). To reliably estimate

causal effects from observational data, we must make an additional assumption:

unconfoundedness

{δ0, δ1} y y | x. ⇒ {δ0, δ1} y y | π(x).

When we have unconfoundedness, we can estimate a propensity π̂(y | x) using

observed (xi, yi, δi) data, and use these propensity estimates in Equation (2.3).

Such a strategy is, however, vulnerable to misspecification of the propensity

model. We will introduce propensity models for rankings (Chapter 4) and rec-

ommendations (Chapter 3), and study the effect of misspecification in detail.

Causal Estimation in all three settings — Controlled, Observational and Off-

Policy — is closely related to missing data problems. After all, the essence of

causal inference is a missing data problem and the techniques discussed above

allow us to circumvent the missing potential (counterfactual) outcomes.

2.4 Learning Theory for Structural Risk Minimization

We recap the key results of Structural Risk Minimization [124] here. For a de-

tailed overview see the source material [125, 124] and their references.

In statistical learning, the data we get is (xi, y∗i ) i.i.d.
∼ Pr(X × Y) where Pr(X ×

Y) is a fixed unknown joint distribution over x (inputs) and y∗ (labels). We
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additionally have a bounded loss function ∆(y∗, y) : |∆(·, ·)| ≤ M, that can return

the loss for any possible prediction y we make when the true label is y∗. The

goal of learning is to pick a “good” function h ∈ H that can map inputs to labels

h : X 7→ Y. The risk of a function h is

R(h) =

∫
∆(y∗, h(x)) Pr(x, y∗)d(x, y∗).

R(h) is not computable since it requires knowledge of Pr(X × Y). The goal of

learning is to pick a ĥ using training data samples (xi, y∗i )n
i=1 such that R(ĥ) is

close to the minimal risk minh∈H R(h). Consider the empirical risk

R̂(h) =
1
n

n∑
i=1

∆(y∗i , h(xi)).

Consider a hypothesis classH with a finite VC-dimension N1

Theorem. With probability at least 1 − η, for all h ∈ H simultaneously,

R(h) ≤ R̂(h) +
Mε

2

1 +

√
1 +

4R̂(h)
Mε

 (2.4)

where ε B
4
n

[
N

(
1 + ln

2n
N

)
− ln η

]
.

This bound tells us that Empirical Risk Minimization (ERM) — i.e., select

ĥERM B argminh∈H R̂(h) — is a consistent learning strategy because the second

term of Equation (2.4) vanishes when n/N is large. However, the bound can be

very loose when the number of samples n is small compared to N .

The Structural Risk Minimization (SRM) principle suggests a trade-off be-

tween lowering R̂(h) and the complexity of h, to guard against overfitting to

1Intuitively VC-dimension indicates the “capacity” of H to contain an h that can fit each
arbitrary pattern we could see in the training data. See the source material [124, 1] and their
references for a formal treatment.
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the training data. It implements this trade-off when given a hierarchy of func-

tion sets H0 ⊂ H1 ⊂ H2 . . . in the hypothesis space each with finite VC-

dimensionN0 < N1 < . . . to pick ĥ. SRM computes the empirical risk minimizers

C = {ĥ0 ∈ H0, ĥ1 ∈ H1, . . .} and evaluates the bound in Equation (2.4) for every

h ∈ C to return the minimizer of the bound. Remarkably, for any Pr(X × Y), the

SRM method converges to the best possible solution with probability 1 [124].

SRM requires the ability to compute the VC-dimension of a hypothesis class

H j efficiently and to perform ERM within each H j. For the first step, we have

good characterizations for the capacity of linear function classes; for the sec-

ond step, we have powerful algorithms that can implement ERM within such

classes. We will exploit these results in Chapters 6 and 7 when developing

learning principles for Batch Learning from Bandit Feedback (BLBF).
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Part I

Learning from Observational

Feedback
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CHAPTER 3

BUILDING RECOMMENDER SYSTEMS USING CAUSAL INFERENCE

3.1 Chapter Notes

This chapter describes joint work with Tobias Schnabel, Ashudeep Singh, Navin

Chandak and Thorsten Joachims. It is a lightly edited version of a conference

publication [101].

We interpret recommending items to users as treatment assignments in

causal studies (Section 2.3). Learning recommenders using user-volunteered

ratings for items is then essentially causal estimation in the observational set-

ting. Recalling the x 7→ y 7→ δ schematic of Section 2.1, δ is known for some

user-item pairs (x, y) — the challenge is to understand the process that deter-

mines which (x, y, δ) are observed. The ratings we do not see are Missing Not

at Random (MNAR). For instance, users may be more likely to volunteer a rat-

ing for an item they like. So we introduce propensity estimation models for

user-volunteered datasets and reason about causal effects despite MNAR rat-

ings. Our approach naturally fits into classic collaborative filtering algorithms

for learning recommenders [6] and can be more broadly applied whenever the

learning objectives behave like average treatment effects. Theoretically, we char-

acterize the modeling bias when propensity models are misspecified. We dis-

cover an interesting new bias-variance trade-off when employing propensity

models in learning algorithms. Our algorithm is the first principled discrimina-

tive model that achieves state of the art rating prediction performance in both

real world and semi-synthetic datasets.
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3.2 Introduction

Virtually all data for training recommender systems is subject to selection bi-

ases. For example, in a movie recommendation system users typically watch

and rate those movies that they like, and rarely rate movies that they do not

like [89]. Similarly, when an ad-placement system recommends ads, it shows

ads that it believes to be of interest to the user, but will less frequently display

other ads. Having observations be conditioned on the effect we would like to

optimize (e.g. the star rating, the probability of a click, etc.) leads to data that

is Missing Not At Random (MNAR) [77]. This phenomenon creates a widely-

recognized challenge for evaluating recommender systems [79, 84].

We develop an approach to evaluate and train recommender systems that

remedies selection biases in a principled, practical and highly effective way.

Viewing recommendation from a causal inference perspective, we argue that

exposing a user to an item in a recommendation system is an intervention anal-

ogous to exposing a patient to treatments in a medical study. In both cases, the

goal is to accurately estimate the effect of new interventions (e.g. a new treat-

ment policy or a new set of recommendations) despite incomplete and biased

data due to self-selection or experimenter bias. By connecting recommenda-

tion to causal inference from experimental and observational data, we derive

a principled framework for unbiased evaluation and learning of recommender

systems under selection biases.

The main contribution of this chapter is four-fold. First, we show how

estimating the quality of a recommendation system can be approached with

propensity weighting techniques commonly used in causal inference [50],
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complete-case analysis [77] and other problems [25, 9, 111]. In particular, we de-

rive unbiased estimators for a wide range of performance measures (e.g. MSE,

MAE, DCG). Second, with these estimators in hand, we propose an Empiri-

cal Risk Minimization (ERM) framework for learning recommendation systems

under selection bias, for which we derive generalization error bounds. Third,

we use the ERM framework to derive a matrix factorization method that can

account for selection bias while remaining conceptually simple and highly scal-

able. Fourth, we explore methods to estimate propensities in observational set-

tings where selection bias is due to self-selection by the users, and we character-

ize the robustness of the framework against misspecified propensities.

We validate our conceptual and theoretical contributions in an extensive

empirical evaluation. For the task of evaluating recommender systems, we

show that our performance estimators can be orders-of-magnitude more ac-

curate than standard estimators commonly used in the past [6]. For the task

of learning recommender systems, we show that our new matrix factorization

method substantially outperforms methods that ignore selection bias, as well as

existing state-of-the-art methods that perform joint-likelihood inference under

MNAR data [40]. Such performance is especially promising given the concep-

tual simplicity and scalability of our approach compared to joint-likelihood in-

ference. We provide an implementation of our method and a new benchmark

dataset online1.
1https://www.cs.cornell.edu/∼schnabts/mnar/
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3.3 Related Work

Past work that explicitly dealt with the MNAR nature of recommendation data

approached the problem as missing-data imputation based on the joint likeli-

hood of the missing data model and the rating model [80, 79, 40]. This approach

has led to sophisticated and highly complex methods to deal with MNAR rat-

ings. We take a fundamentally different approach that treats both models sepa-

rately, making our approach modular and scalable. Furthermore, our approach

is robust to misspecification of the rating model, and we characterize how the

overall learning process degrades gracefully under a misspecified missing data

model. We empirically compare against the state-of-the-art joint likelihood

model [40] in this chapter.

Related but different from the problem we consider is the issue of recom-

mending using positive feedback alone [48, 74]. Related to this setting are also

alternative approaches to learning with MNAR data which aim to avoid the

problem by considering performance measures less affected by selection bias

under mild assumptions [107, 108, 75]. One can view item popularity heuristic

in a recall estimator [108] as a proxy for propensity in our framework. Similar

to our work, weighted matrix factorization methods have been developed be-

fore [107, 108, 48], but with weighting schemes that are either heuristic or need

to be tuned via cross-validation. In contrast, our weighted matrix factorization

method enjoys rigorous learning guarantees in an ERM framework.

Propensity-based approaches have been widely used in causal inference

from observational studies [50], as well as in complete-case analysis for miss-

ing data [77, 104] and in survey sampling [120]. However, their use in matrix
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Figure 3.1: Movie-Lovers toy example. Top row: true rating matrix ∆, propen-
sity matrix P, observation indicator matrix O. Bottom row: two rating prediction
matrices ∆̂1 and ∆̂2, and intervention indicator matrix ∆̂3.

completion is new to our knowledge. Weighting approaches are also widely

used in domain adaptation and covariate shift, where data from one source is

used to train for a different problem [49, 9, 111]. We will draw upon this work,

especially the learning theory of weighting approaches [25, 24].

3.4 Unbiased Performance Estimation for Recommendation

Consider a toy example adapted from Steck’s Movie-Lovers example [107] to

illustrate the disastrous effect that selection bias can have on conventional eval-

uation using a test set of held-out ratings. Denote with x ∈ {1, . . .X} the users

and with y ∈ {1, . . .Y} the movies. Figure 3.1 shows the matrix of true ratings

∆ ∈ RX×Y for our toy example, where a subset of users are “horror lovers” who

rate all horror movies 5 stars and all romance movies 1 star. Similarly, there is

a subset of “romance lovers” who rate just the opposite way. However, both
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groups give drama movies 3 stars. The binary matrix O ∈ {0, 1}X×Y in Fig-

ure 3.1 shows for which movies the users provided their rating to the system,

[Ox,y = 1] ⇔ [∆x,y observed]. Our toy example shows a strong correlation be-

tween liking and rating a movie, and the matrix P describes the marginal prob-

abilities Px,y = Pr(Ox,y = 1) with which each rating is revealed. For this data,

consider the following two evaluation tasks.

3.4.1 Task 1: Estimating Rating Prediction Accuracy

For the first task, we want to evaluate how well a predicted rating matrix ∆̂

reflects the true ratings in ∆. We can write standard evaluation measures like

Mean Absolute Error (MAE) or Mean Squared Error (MSE) as:

R(∆̂) =
1
X · Y

X∑
x=1

Y∑
y=1

δx,y(∆, ∆̂), (3.1)

for an appropriately chosen δx,y(∆, ∆̂).

MAE: δx,y(∆, ∆̂) = |∆x,y − ∆̂x,y|, (3.2)

MSE: δx,y(∆, ∆̂) = (∆x,y − ∆̂x,y)2, (3.3)

Accuracy: δx,y(∆, ∆̂) = 1{∆̂x,y = ∆x,y}. (3.4)

Since ∆ is only partially known, the conventional practice is to estimate R(∆̂)

using the average over only the observed entries,

R̂naive(∆̂) =
1

|{(x, y) : Ox,y = 1}|

∑
(x,y):Ox,y=1

δx,y(∆, ∆̂). (3.5)

We call this the naı̈ve estimator, and its naı̈vety leads to a gross misjudgment for

the ∆̂1 and ∆̂2 given in Figure 3.1. Even though ∆̂1 is clearly better than ∆̂2 by any

reasonable measure of performance, R̂naive will reliably claim that ∆̂2 has better
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MAE than ∆̂1. This error is due to selection bias since 1-star ratings are under-

represented in the observed data and δx,y is correlated with ∆x,y. More generally,

under selection bias, R̂naive is a biased estimate of the true performance R [109]:

EO

[
R̂naive(∆̂)

]
, R(∆̂). (3.6)

Before we design an improved estimator to replace R̂naive, let’s turn to a related

evaluation task.

3.4.2 Task 2: Estimating Recommendation Quality

Instead of evaluating the accuracy of predicted ratings, we may want to evalu-

ate the quality of a particular recommendation more directly. To this effect, let’s

redefine ∆̂ to now encode recommendations as a binary matrix analogous to O,

where [∆̂x,y = 1]⇔ [y is recommended to x], limited to a budget of k recommen-

dations per user. An example is ∆̂3 in Figure 3.1. A reasonable way to measure

the quality of a recommendation is the Cumulative Gain (CG) that the user de-

rives from the recommended movies, which we define as the average star-rating

of the recommended movies in our toy example2. We can again write CG in the

form of Equation (3.1) with

CG: δx,y(∆, ∆̂) = (Y/k)∆̂x,y · ∆x,y. (3.7)

However, unless users have watched all movies in ∆̂, we cannot compute CG

directly via Equation (3.1). Hence, we must answer the counterfactual ques-

tion: “How well would our users have enjoyed themselves (in terms of CG), if

they had followed our recommendations ∆̂ instead of watching (and rating) the

2More realistically, ∆ would contain quality scores derived from indicators like “clicked” and
“watched the movie to the end”.
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movies indicated in O?”. Note that rankings of recommendations are similar to

the set-based recommendation described above, and measures like Discounted

Cumulative Gain (DCG), DCG@k, Precision@k, and others [3, 132] also fit in this

setting. Let the values of ∆̂ in each row define the predicted ranking, then

DCG: δx,y(∆, ∆̂) = (Y/ log(rank(∆̂x,y)))∆x,y, (3.8)

Precision@k: δx,y(∆, ∆̂) = (Y/k)∆x,y · 1{rank(∆̂x,y) ≤ k}. (3.9)

One approach, similar in spirit to condensed DCG [99], is to use the naı̈ve es-

timator from Equation (3.5) again. However, this and similar estimators are

biased for R(∆̂) [89, 109].

To get unbiased estimates of recommendation quality despite missing obser-

vations, consider the following connection to estimating the average treatment

effect of a given policy in causal inference, that was already explored in the

contextual bandit setting [72, 30]. If we think of a recommendation as an inter-

vention analogous to treating a patient with a specific drug, in both settings we

want to estimate the effect of a new treatment policy (e.g. give drug A to women

and drug B to men, or new recommendations ∆̂). The challenge in both cases

is that we have only partial knowledge of how much certain patients (users)

benefited from certain treatments (recommended items) (i.e., ∆x,y with Ox,y = 1),

while the vast majority of potential outcomes in ∆ is unobserved.

3.4.3 Propensity-Scored Performance Estimators

The key to handling selection bias in both of the tasks mentioned above lies

in understanding the process that generates the observation pattern in O. This

process is typically called the Assignment Mechanism in causal inference [50] or
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the Missing Data Mechanism in missing data analysis [77]. We differentiate the

following two settings:

Experimental Setting. In this setting, the assignment mechanism is under the

control of the recommendation system. An example is an ad-placement

system that controls which ads to show to which user.

Observational Setting. In this setting, the users are part of the assignment

mechanism that generates O. An example is an online streaming service

for movies, where users self-select the movies they watch and rate.

In this chapter, we assume that the assignment mechanism is probabilistic,

meaning that the marginal probability Px,y = Pr(Ox,y = 1) of observing an en-

try ∆x,y is non-zero for all user/item pairs. This assumption ensures that, in

principle, every element of ∆ could be observed, even though any particular

collection of observed ratings O reveals only a small subset. We refer to Px,y as

the propensity of observing ∆x,y. In the experimental setting, we know the matrix

P of all propensities, since we have implemented the assignment mechanism.

In the observational setting, we will need to estimate P from the observed matrix

O. We defer the discussion of propensity estimation to Section 3.6, and focus on

the experimental setting first.

IPS Estimator: The Inverse-Propensity-Scoring (IPS) estimator [120, 77, 50],

which applies equally to the task of rating prediction evaluation as to the task

of recommendation quality estimation, is defined as,

R̂IPS (∆̂ | P) =
1
X · Y

∑
(x,y):Ox,y=1

δx,y(∆, ∆̂)
Px,y

. (3.10)

Unlike the naive estimator R̂naive, the IPS estimator is unbiased for any proba-

bilistic assignment mechanism. Note that the IPS estimator only requires the
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marginal probabilities Px,y and unbiasedness is not affected by dependencies

within O:

EO

[
R̂IPS (∆̂ | P)

]
=

1
X · Y

∑
x

∑
y

EOx,y

δx,y(∆, ∆̂)
Px,y

Ox,y


=

1
X · Y

∑
x

∑
y

δx,y(∆, ∆̂) = R(∆̂). (3.11)

However, to characterize the variability of the IPS estimator, we assume

that observations are independent given P, which corresponds to a multivariate

Bernoulli model where each Ox,y is a biased coin flip with probability Px,y. The

following proposition (proof in Appendix A.1) provides some intuition about

how the accuracy of the IPS estimator changes as the propensities become more

“non-uniform”.

Proposition 1 (Tail Bound for IPS Estimator). For any given ∆, let P be the inde-

pendent Bernoulli probabilities of observing each entry of ∆. For any ∆̂, with probability

1 − η, the IPS estimator R̂IPS (∆̂ | P) does not deviate from the true R(∆̂) by more than:

∣∣∣R̂IPS (∆̂ | P) − R(∆̂)
∣∣∣ ≤ 1
X · Y

√√√
log 2

η

2

∑
x,y

ρ2
x,y,

where ρx,y =
δx,y(∆,∆̂)

Px,y
if Px,y < 1, and ρx,y = 0 otherwise.

To illustrate this bound, consider the case of uniform propensities Px,y = p.

Under uniform propensities, n =
∑

Px,y = pXY elements of ∆ are revealed in

expectation. In this case, the bound is O(1/(p
√
XY)). If the Px,y are non-uniform,

the bound can be much larger even if the expected number of revealed elements,∑
Px,y is n. We are paying for the unbiasedness of IPS with variability, and we

will evaluate whether this price is well spent throughout the chapter.
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SNIPS Estimator: One technique that can reduce variability is the use of con-

trol variates [86]. For instance, we know that EO

[∑
(x,y):Ox,y=1

1
Px,y

]
= X · Y. This

observation yields the Self-Normalized IPS (SNIPS) estimator [121, 116]

R̂S NIPS (∆̂ | P) =

∑
(x,y):Ox,y=1

δx,y(∆,∆̂)
Px,y∑

(x,y):Ox,y=1
1

Px,y

. (3.12)

The SNIPS estimator often has lower variance than the IPS estimator but has a

small bias [42].

3.4.4 Empirical Illustration of Estimators

To illustrate the effectiveness of the proposed estimators we conducted an ex-

periment on the semi-synthetic ML100K dataset described in Section 3.7.2. For

this dataset, ∆ is completely known so that we can compute true performance

via Equation (3.1). We chose the probability Px,y of observing a rating ∆x,y to

mimic the observed marginal rating distribution in the original ML100K dataset

(see Section 3.7.2) such that, on average, 5% of the ∆ matrix was revealed.

MAE

True IPS SNIPS Naı̈ve

REC ONES 0.102 0.102 ± 0.007 0.102 ± 0.007 0.011 ± 0.001
REC FOURS 0.026 0.026 ± 0.000 0.026 ± 0.000 0.173 ± 0.001

ROTATE 2.579 2.581 ± 0.031 2.579 ± 0.012 1.168 ± 0.003
SKEWED 1.306 1.304 ± 0.012 1.304 ± 0.009 0.912 ± 0.002

COARSENED 1.320 1.314 ± 0.015 1.318 ± 0.005 0.387 ± 0.002

Table 3.1: Mean and standard deviation of the Naı̈ve, IPS, and SNIPS estimators
compared to true MAE for five predicted rating matrices on a semi-synthetic
experiment on the ML100K dataset (see Section 3.7.2 for details).

Table 3.1 shows the results for estimating rating prediction accuracy via

MAE and Table 3.2 shows the results for evaluating recommendation quality
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DCG@50

True IPS SNIPS Naı̈ve

REC ONES 30.76 30.64 ± 0.75 30.66 ± 0.74 153.07 ± 2.13
REC FOURS 52.00 51.98 ± 0.41 52.08 ± 0.58 313.48 ± 2.36

ROTATE 12.90 13.00 ± 0.85 12.99 ± 0.83 1.38 ± 0.09
SKEWED 24.59 24.55 ± 0.92 24.58 ± 0.93 54.87 ± 1.03

COARSENED 46.45 46.45 ± 0.53 46.44 ± 0.70 293.27 ± 1.99

Table 3.2: Mean and standard deviation of the Naı̈ve, IPS, and SNIPS estimators
compared to true DCG@50 for five recommender systems on a semi-synthetic
experiment on the ML100K dataset (see Section 3.7.2 for details).

via DCG@50 for the following five prediction matrices ∆̂i. Let |∆ = r| be the

number of r-star ratings in ∆.

REC ONES: ∆̂ is identical to the true rating matrix ∆ except that we flip |{(x, y) :

∆x,y = 5}| randomly selected true ratings of 1 to 5. This procedure ensures

half of the predicted fives are true fives, and half are true ones.

REC FOURS: Same as REC ONES, but flipping 4-star ratings instead.

ROTATE: For each predicted rating ∆̂x,y = ∆x,y − 1 when ∆x,y ≥ 2, and ∆̂x,y = 5

when ∆x,y = 1.

SKEWED: Predictions ∆̂x,y are sampled from a normal distribution centered at

∆x,y, ∆̂x,y ∼ N(∆̂raw
x,y |µ = ∆x,y, σ =

6−∆x,y

2 ) and clipped to the interval [0, 6].

COARSENED: If the true rating ∆x,y ≤ 3, then ∆̂x,y = 3. Otherwise ∆̂x,y = 4.

Rankings for DCG@50 were created by sorting items according to ∆̂i for each

user. In Table 3.1 and Table 3.2, we report the average and standard deviation of

estimates over 50 samples of O from P. We see that the mean IPS estimate per-

fectly matches the true performance for both MAE and DCG@50 as expected.

The bias of SNIPS is negligible as well. The naı̈ve estimator is severely biased,

and its estimated MAE incorrectly ranks the prediction matrices ∆̂i (e.g. it ranks
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the performance of REC ONES higher than REC FOURS). The standard devi-

ation of IPS and SNIPS is substantially smaller than the bias that Naı̈ve incurs.

Furthermore, SNIPS manages to reduce the standard deviation of IPS for MAE

but not for DCG. We will empirically study these estimators more comprehen-

sively in Section 3.7.

3.5 Propensity-Scored Recommendation Learning

We will now use the unbiased estimators from Section 3.4.3 in an Empirical

Risk Minimization (ERM) framework for learning, prove generalization error

bounds and derive a matrix factorization method for rating prediction.

3.5.1 ERM for Recommendation with Propensities

Empirical Risk Minimization underlies many successful learning algorithms

like SVMs [26], Boosting [100], and Deep Learning [7]. Weighted ERM ap-

proaches have been effective for cost-sensitive classification, domain adaptation

and covariate shift [137, 9, 111]. We adapt ERM to our setting by realizing that

Equation (3.1) corresponds to an expected loss (i.e. risk) over the data gener-

ating process Pr(O | P). Given a sample from Pr(O | P), the IPS estimator from

Equation (3.10) is the Empirical Risk R̂(∆̂) that estimates R(∆̂) for any ∆̂.

Definition 1 (Propensity-Scored ERM for Recommendation). Given training ob-

servations O from ∆ with marginal propensities P, given a hypothesis space H of pre-
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dictors ∆̂, and given a loss function δx,y(∆, ∆̂), ERM selects the ∆̂ ∈ H that optimizes:

∆̂ERM = argmin
∆̂∈H

{
R̂IPS (∆̂ | P)

}
. (3.13)

Using the SNIPS estimator does not change the argmin minimizer. To illus-

trate the validity of the propensity-scored ERM approach, we state the following

generalization error bound (proof in Appendix A.2) which follows analogous

proofs for generalization in domain adaptation [24]. We consider only finite H

for the sake of exposition.

Theorem 1 (Propensity-Scored ERM Generalization Error Bound). For any finite

hypothesis space of predictions H = {∆̂1, . . . ∆̂|H|} and loss 0 ≤ δx,y(∆, ∆̂) ≤ M, the true

risk R(∆̂ERM) of the empirical risk minimizer ∆̂ERM from H using the IPS estimator,

given training observations O from ∆ with independent Bernoulli propensities P, is

bounded with probability 1 − η by:

R(∆̂ERM) ≤ R̂IPS (∆̂ERM | P) +
M
X · Y

√
log (2|H|/η)

2

√∑
x,y

1
P2

x,y
. (3.14)

3.5.2 Propensity-Scored Matrix Factorization

We now use propensity-scored ERM to derive a matrix factorization method for

the problem of rating prediction. Assume a standard rank-d-restricted and `2-

regularized matrix factorization model ∆̂x,y = vT
x wy + ax + by + c with a user, item

and global offsets as our hypothesis space H . Under this model, propensity-

scored ERM leads to the following training objective:

argmin
V,W,A

[ ∑
(x,y):Ox,y=1

δx,y(∆,VT W + A)
Px,y

+ λ
(
‖V‖2F + ‖W‖2F

) ]
(3.15)
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where A encodes the offset terms and ∆̂ERM = VT W + A. Except for the propen-

sities Px,y that act as weights for each loss term, the training objective is identi-

cal to the standard incomplete matrix factorization objective [62, 107, 48] with

MSE (using Equation (3.3)) or MAE (using Equation (3.2)). So, we can readily

draw upon existing optimization algorithms that can efficiently solve the train-

ing problem at scale [38, 133]. For our experiments, we use limited-memory

BFGS [16] on a single machine. Our implementation is available online3.

Conventional incomplete matrix factorization is a special case of Equa-

tion (3.15) for MCAR (Missing Completely At Random) data, i.e., all propen-

sities Px,y are equal. Solving this training objective for other δx,y that are non-

smooth and non-differentiable is more challenging, but possible avenues ex-

ist [54, 20]. Finally, note that other recommendation methods (e.g. max-margin

approaches [130], non-negative factorization [76]) can be adapted to propensity

scoring as well.

3.6 Propensity Estimation for Observational Data

We now turn to the Observational Setting where propensities need to be esti-

mated. One might be worried that we need to perfectly reconstruct all propensi-

ties for effective learning. However, as we will show, we merely need estimated

propensities that are “better” than the naı̈ve assumption of observations being

revealed uniformly, i.e., P = |{(x, y) : Ox,y = 1}|/ (X · Y) for all users and items.

The following characterizes “better” propensities in terms of the bias they in-

duce and their effect on the variability of the learning process.
3https://www.cs.cornell.edu/∼schnabts/mnar/
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Lemma 2 (Bias of IPS Estimator under Inaccurate Propensities). Let P be the

marginal probabilities of observing an entry of the rating matrix ∆, and let P̂ be the

estimated propensities such that P̂x,y > 0 for all x, y. The bias of the IPS estimator

Equation (3.10) using P̂ is:

bias
(
R̂IPS (∆̂ | P̂)

)
= EO

[
R̂IPS (∆̂ | P̂)

]
− R(∆̂) =

∑
x,y

δx,y(∆, ∆̂)
X · Y

1 − Px,y

P̂x,y

 . (3.16)

In addition to bias, the following generalization error bound (proof in Ap-

pendix A.4) characterizes the overall impact of the estimated propensities on

the learning process.

Theorem 3 (Propensity-Scored ERM Generalization Error Bound under Inaccu-

rate Propensities). For any finite hypothesis space of predictions H = {∆̂1, . . . ∆̂|H|},

the transductive prediction error of the empirical risk minimizer ∆̂ERM, using the IPS

estimator with estimated propensities P̂ (P̂x,y > 0) and given training observations O

from ∆ with independent Bernoulli propensities P, is bounded by:

R(∆̂ERM) ≤ R̂IPS (∆̂ERM | P̂) +
M
X · Y

∑
x,y

∣∣∣∣∣∣1 − Px,y

P̂x,y

∣∣∣∣∣∣
+

M
X · Y

√
log (2|H|/η)

2

√∑
x,y

1
P̂2

x,y

. (3.17)

The bound shows a bias-variance trade-off that does not occur in conven-

tional ERM. In particular, the bound suggests that it may be beneficial to overes-

timate small propensities, if this reduces variability more than it increases bias.
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3.6.1 Propensity Estimation Models.

Recall that our goal is to estimate the probabilities Px,y with which ratings for

user x and item y will be observed. In general, the propensities

Px,y = Pr(Ox,y = 1 | f, fhid,∆) (3.18)

can depend on some observable features f (e.g., the predicted rating that accom-

panied the item when it was displayed to the user), unobservable features fhid

(e.g., whether the item was recommended by a friend), and the ratings ∆. It

is reasonable to assume that Ox,y is independent of the new predictions ∆̂ (and

therefore independent of δx,y) once we take the observable features into account.

The following outlines two simple propensity estimation methods, but there are

several other techniques [83] to cater to domain-specific needs.

Propensity Estimation via Naive Bayes: The first method estimates the

propensity Pr(Ox,y|f, fhid,∆) by assuming that dependencies between covariates

f, fhid and other ratings ∆x′,y′ are negligible. Equation (3.18) then reduces to

Pr(Ox,y | ∆x,y), similar to the CPT-v missing data model [79]. We can treat ∆x,y

as observed, since we only need the propensities for observed entries to com-

pute IPS and SNIPS. This yields the Naı̈ve Bayes propensity estimator:

Pr(Ox,y = 1 | ∆x,y = r) =
Pr(∆x,y = r | Ox,y = 1) Pr(Ox,y = 1)

Pr(∆x,y = r)
. (3.19)

By the Naı̈ve Bayes independence assumptions, Pr(Ox,y = 1) = Pr(O = 1), where

we dropped the subscripts to reflect that parameters are tied across all x and y.

Maximum likelihood estimate of this parameter is simply

P̂r(O = 1) =
|{(x, y) : Ox,y = 1}|

X · Y
.
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Similarly, Pr(∆x,y = r | Ox,y = 1) = Pr(∆ = r | O = 1) and

P̂r(∆ = r | O = 1) =
|{(x, y) : Ox,y = 1 ∧ ∆x,y = r|

{(x, y) : Ox,y = 1}|
.

Finally, Pr(∆x,y = r) = Pr(∆ = r) due to parameter sharing from the independence

assumptions. To estimate these r parameters Pr(∆ = r), the proportion of differ-

ent rating values in ∆, we need a small sample of MCAR (Missing Completely

At Random) data that is not biased by the observation mechanism P.

Propensity Estimation via Logistic Regression The second propensity esti-

mation approach we explore (which does not require a sample of MCAR data)

is based on logistic regression and is commonly used in causal inference [94].

It also starts from Equation (3.18) but aims to find model parameters φ such

that O becomes independent of unobserved fhid and ∆, i.e., Pr(Ox,y | f, fhid,∆) =

Pr(Ox,y | f, φ). The main modeling assumption is that there exists a φ = (α, β, γ)

such that Px,y = σ
(
αT fx,y + βx + γy

)
. Here, fx,y is a vector encoding all observable

information about a user-item pair (e.g., user demographics, whether an item

had a promotional offer, etc.), and σ(·) is the sigmoid function. βx and γy are

per-user and per-item offsets.

3.7 Empirical Evaluation

We first conduct semi-synthetic experiments to explore the empirical perfor-

mance and robustness of the proposed methods in both the experimental and

the observational setting. Then, we compare against the state-of-the-art joint

likelihood method for MNAR data [40] on real-world datasets.
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3.7.1 Experiment Setup

In all experiments, we perform model selection for the `2 regularization param-

eter λ and the rank of the factorization d via cross-validation as follows. We

randomly split the observed MNAR ratings into k folds (k = 4 in all experi-

ments), training on k − 1 and evaluating on the remaining one using the IPS

estimator. Reflecting this additional split requires scaling the propensities in the

training folds by k−1
k and those in the validation fold by 1

k . The hyper-parameters

with the best validation set performance are then used to retrain the factoriza-

tion model on all MNAR data. We report performance on the MCAR test set for

real-world datasets or using Equation (3.1) for our semi-synthetic dataset.

3.7.2 How Does Sampling Bias Affect Evaluation?

First, we evaluate how different observation models impact the accuracy of

performance estimates. We compare the Naı̈ve estimator of Equation (3.5) for

MSE, MAE and DCG with their propensity weighted analogs, IPS using Equa-

tion (3.10) and SNIPS using Equation (3.12) respectively. Since this experiment

requires experimental control of sampling bias, we created a semi-synthetic

dataset and observation model.

ML100K Dataset: The ML100K dataset4 provides 100K MNAR ratings for

1683 movies by 944 users. To allow ground-truth evaluation against a fully

known rating matrix, we complete these partial ratings using standard matrix

factorization. The completed matrix, however, gives unrealistically high ratings

4http://grouplens.org/datasets/movielens/
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to almost all movies. We, therefore, adjust ratings for the final ∆ to match a more

realistic rating distribution [79]
[
p1, p2, p3, p4, p5

]
for ratings 1 to 5 as follows: we

assign the bottom p1 fraction of the entries by value in the completed matrix

a rating of 1, and the next p2 fraction of entries by value a rating of 2, and so

on. We chose hyper-parameters (rank d and `2 regularization λ) by using a 90-

10 train-test split of the 100K ratings and picking the ones that maximized the

accuracy of the completed matrix on the test set.

ML100K Observation Model: If the underlying rating is 4 or 5, the propensity

for observing the rating is equal to k. For ratings r < 4, the corresponding

propensity is kα4−r. For each α, we set k so that the expected number of ratings

we observe is 5% of the entire matrix. By varying α > 0, we vary the MNAR

effect: α = 1 is missing uniformly at random (MCAR), while α→ 0 only reveals

4 and 5 rated items. Note that α = 0.25 gives a marginal distribution of observed

ratings that resembles the marginals on ML100K ([0.06, 0.11, 0.27, 0.35, 0.21] in

ML100K versus [0.06, 0.10, 0.25, 0.42, 0.17] in our model).

Results: Table 3.1 and Table 3.2, described in Section 3.4.4, shows the esti-

mated MAE and DCG@50, respectively, when α = 0.25. Next, we vary the

severity of the sampling bias by changing α ∈ (0, 1]. Figure 3.2 reports how

accurately (in terms of root mean squared estimation error (RMSE)) each esti-

mator predicts the true MSE and DCG respectively. These results are for the

Experimental Setting where propensities are known. They are averages over

the five prediction matrices ∆̂i given in Section 3.4.4 and across 50 trials. Shaded

regions indicate a 95% confidence interval.

Over most of the range of α, in particular for the realistic value of α = 0.25,
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Figure 3.2: RMSE of rating prediction and recommendation quality estimators
in the experimental setting as the observed ratings exhibit varying degrees of
selection bias.

the IPS and SNIPS estimators are orders-of-magnitude more accurate than the

Naı̈ve estimator. Even for severely low choices of α (i.e. very severe selection bi-

ases), the gain due to bias reduction of IPS and SNIPS still outweighs the added

variability compared to Naı̈ve. When α = 1 (MCAR), SNIPS is algebraically

equivalent to Naı̈ve, while IPS pays a small penalty due to increased variabil-

ity from propensity weighting. For MSE, SNIPS consistently reduces estimation

error over IPS, while both are tied for DCG.

3.7.3 How Does Sampling Bias Affect Learning?

Now we explore whether these gains in risk estimation accuracy translate into

improved learning via ERM, again in the Experimental Setting. Using the same

semi-synthetic ML100K dataset and observation model as in Section 3.7.2, we

compare our matrix factorization MF-IPS with the traditional unweighted ma-

trix factorization MF-Naı̈ve. Both methods use the same factorization model

with separate λ selected via cross-validation and d = 20. The results are plotted
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in Figure 3.3 (left), where shaded regions indicate 95% confidence intervals over

30 trials. The propensity weighted matrix factorization MF-IPS consistently out-

performs standard matrix factorization in terms of MSE. We also conducted ex-

periments for MAE, with similar results.
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Figure 3.3: Prediction error (MSE) of matrix factorization methods as the ob-
served ratings exhibit varying degrees of selection bias (left) and as propensity
estimation quality degrades (right).

3.7.4 Do Inaccurate Propensities Destroy Reliable Evaluation

and Learning?

We now switch from the Experimental Setting to the Observational Setting,

where propensities need to be estimated. To explore robustness to propensity

estimates of varying accuracy, we use the ML100K data and observation model

with α = 0.25. To generate increasingly bad propensity estimates, we use the

Naive Bayes model from Section 3.6.1, but vary the size of the MCAR sample

for estimating the marginal ratings Pr(∆ = r) via the Laplace estimator,

P̂r(∆ = r) =
1 + |(x, y) ∈MCAR : ∆x,y = r|

5 + |MCAR|
.
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Figure 3.4: RMSE of IPS and SNIPS as propensity estimates degrade. IPS with
true propensities and Naı̈ve are plotted as a reference.

Figure 3.4 shows how the quality of the propensity estimates impacts eval-

uation using the same setup as in Section 3.7.2. Under no condition do the IPS

and SNIPS estimator perform worse than Naive. Interestingly, IPS-NB with es-

timated propensities can perform even better than IPS-KNOWN with known

propensities, as can be seen for MSE. This effect is known, partly because the

estimated propensities can provide an effect akin to stratification [43, 131].

Figure 3.3 (right) shows how learning performance is affected by inaccurate

propensities using the same setup as in Section 3.7.3. We compare the MSE pre-

diction error of MF-IPS-NB with estimated propensities to that of MF-Naı̈ve and

MF-IPS with known propensities. The shaded area shows the 95% confidence

interval over 30 trials. Again, we see that MF-IPS-NB outperforms MF-Naı̈ve

even for severely degraded propensity estimates, demonstrating the robustness

of the approach.
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3.7.5 Performance on Real-World Data

Our final experiment studies performance on real-world datasets. We use the

following two datasets, which both have a separate test set where users were

asked to rate a uniformly drawn sample of items.

Yahoo! R3 Dataset: This dataset5 [79] contains ratings of songs by users. The

MNAR training set provides over 300K ratings for songs that were self-selected

by 15400 users. The test set contains ratings by a subset of 5400 users who were

asked to rate 10 randomly chosen songs. For this data, we estimate propensities

via Naı̈ve Bayes. As an MCAR sample for eliciting the marginal rating distri-

bution, we set aside 5% of the test set and report results only on the remaining

95% test set.

Coat Shopping Dataset: We collected a new dataset6 simulating MNAR data

of customers shopping for a coat in an online store. The training data was

generated by giving Amazon Mechanical Turkers a simple web shop interface

with facets and paging. They were asked to find the coat in the store that they

wanted to buy the most. Afterward, they had to rate 24 of the coats they ex-

plored (self-selected) and 16 randomly picked ones on a five-point scale. The

dataset contains ratings from 290 Turkers on an inventory of 300 items. The

self-selected ratings are the training set, and the uniformly selected ratings are

the test set. We learn propensities via logistic regression based on user covari-

ates (gender, age group, location, and fashion-awareness) and item covariates

(gender, coat type, color, and “was it promoted by the interface?”). A standard

5http://webscope.sandbox.yahoo.com/
6https://www.cs.cornell.edu/∼schnabts/mnar/
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regularized logistic regression implemented using scikit-learn [87] was trained

using all pairs of user and item covariates as features and cross-validated to

optimize log-likelihood of the self-selected observations.

YAHOO COAT

MAE MSE MAE MSE

MF-IPS 0.810 0.989 0.860 1.093
MF-Naı̈ve 1.154 1.891 0.920 1.202

HL MNAR 1.177 2.175 0.884 1.214
HL MAR 1.179 2.166 0.892 1.220

Table 3.3: Test set MAE and MSE for rating prediction models trained using our
proposed approach (MF-IPS), conventional matrix factorization (MF-Naı̈ve) and
the state-of-the-art generative models with two different priors (HL [40]) on the
Yahoo and Coat datasets.

Results: Table 3.3 shows that our propensity-scored matrix factorization MF-

IPS with learned propensities substantially and significantly outperforms the

conventional matrix factorization approach, as well as the Bayesian imputation

models [40], abbreviated as HL-MNAR and HL-MAR (paired t-test, p < 0.001

for all comparisons). This conclusion holds for both MAE and MSE. Further-

more, the performance of MF-IPS beats the best published results for the Yahoo

dataset in terms of MSE (1.115) and is close in terms of MAE (0.770) (the CTP-v

model [79] has better performance [40]). For MF-IPS and MF-Naı̈ve all hyper-

parameters (i.e., λ ∈ {10−6, . . . 1} and d ∈ {5, 10, 20, 40}) were chosen by cross-

validation. For the HL baselines, we explored d ∈ {5, 10, 20, 40} using software

provided by the authors7 and report the best performance on the test set (run-

ning a cross-validation sweep was computationally prohibitive). Our metrics

for HL on the Yahoo dataset closely match their reported performance [40].

7https://bitbucket.org/jmh233/missingdataicml2014
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Compared to the complex generative HL models, we conclude that our dis-

criminative MF-IPS performs robustly and efficiently on real-world data. We

conjecture that this strength is a result of not requiring any generative assump-

tions about the validity of the rating model. Furthermore, note that there are

several promising directions for further improving performance, like propen-

sity clipping [110], doubly-robust estimation [30, 31], and the use of improved

methods for propensity estimation [83].

3.8 Conclusions and Future Work

We proposed an efficient and robust approach to handling selection bias in the

evaluation and training of recommender systems based on propensity scoring.

The approach is a discriminative alternative to existing joint-likelihood meth-

ods which are generative. It, therefore, inherits many of the advantages (e.g.,

efficiency, predictive performance, no need for latent variables, fewer model-

ing assumptions) of discriminative methods. The modularity of the approach

— separating the estimation of the assignment model from the rating model —

also makes it very practical. In particular, any conditional probability estimation

method can be plugged in as the propensity estimator, and we conjecture that

many existing rating models can be retrofit with propensity weighting without

sacrificing scalability.
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CHAPTER 4

LEARNING TO RANK USING IMPLICIT FEEDBACK FROM USERS

4.1 Chapter Notes

This chapter describes joint work with Thorsten Joachims and Tobias Schnabel.

It is a lightly edited version of a conference publication [57].

We develop a potential outcomes model to understand users’ behaviors on

search rankings. The aim is to exploit randomness in user actions as a cheap

alternative to randomizing rankings for off-policy learning as done in Chap-

ter 5. In the x 7→ y 7→ δ schematic of Section 2.1, y is now a ranking of

search results, and we do not have interventional data — this is the observa-

tional setting for causal estimation. δ is a known loss function that decom-

poses into per-document values (e.g., rank-discounted click positions). How-

ever, we cannot intervene to collect per-document values (e.g., we cannot force

a user to examine a result and observe whether they decide to click or skip it)

nor do we know the mechanisms that shape the collected data (e.g., “Why did

Alice click a particular result?”). We again treat this as a missing data prob-

lem: no-click situations for results in a ranking are confounded by the fact that

users are less likely even to examine low-ranked results. We re-use standard

click models (see survey [23]) as propensity estimators and show how to incor-

porate them in traditional Learning-to-Rank algorithms [52]. Empirically we

show substantially improved ranking performance in both the real world (on

the https://arxiv.org/ search engine) and semi-synthetic experiments.
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4.2 Introduction

Batch training of retrieval systems requires annotated test collections that take

substantial effort and cost to amass. While economically feasible for Web Search,

eliciting relevance annotations from experts is infeasible or impossible for most

other ranking applications (e.g., personal collection search, intranet search). For

these applications, implicit feedback from user behavior is an attractive source

of data. Unfortunately, existing approaches for Learning-to-Rank (LTR) from

implicit feedback — and clicks on search results in particular — have several

limitations or drawbacks.

First, the naı̈ve approach of treating a click|no-click as a positive|negative

relevance judgment is severely biased. In particular, the order of presentation

has a strong influence on where users click [56]. This presentation bias leads

to an incomplete and skewed sample of relevance judgments that is far from

uniform, thus leading to biased data for learning-to-rank algorithms.

Second, treating clicks as preferences between clicked and skipped docu-

ments has been found to be accurate [52, 56], but it can only infer preferences

that oppose the presented order. This approach again leads to severely biased

data, and learning algorithms trained with these preferences tend to reverse the

presented order unless additional heuristics are used [52].

Third, probabilistic click models have been used to model how users pro-

duce clicks (a recent survey [23] summarizes these models), and they can take

position and context biases into account. By estimating latent parameters of

these generative click models, one can infer the relevance of a given document

for a given query. However, inferring reliable relevance judgments typically re-
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quires that the same query is seen multiple times, which is unrealistic in many

retrieval settings (e.g., personal collection search) and for tail queries.

Fourth, allowing the LTR algorithm to randomize what is presented to the

user, like in online learning algorithms [92, 45] and batch learning from bandit

feedback (BLBF) [113] can overcome the problem of bias in click data in a prin-

cipled manner. However, requiring that rankings be actively perturbed during

system operation, whenever we collect training data, decreases ranking quality

and, therefore, incurs a cost compared to observational data collection.

In this chapter, we present a theoretically principled and empirically effec-

tive approach for learning from implicit observational feedback that can over-

come the limitations outlined above. By drawing on counterfactual estima-

tion techniques from causal inference [50], we first develop an unbiased esti-

mator for evaluating ranking performance using biased feedback data. Based

on this estimator, we propose a propensity weighted Empirical Risk Minimiza-

tion (ERM) approach to LTR, which we implement efficiently in a new learn-

ing method we call Propensity SVM-Rank. While our approach uses a click

model, the click model is merely used to assign propensities to clicked results in

hindsight, not to extract aggregate relevance judgments. Hence, our Propensity

SVM-Rank does not require queries to repeat, making it applicable to a large

range of ranking scenarios. Finally, our methods can use observational data,

and we do not require that the system randomizes rankings during data col-

lection, except optionally for a small pilot experiment to efficiently estimate the

propensity model.

When developing our approach, we provide theoretical justification for each

step, leading to a rigorous end-to-end approach that does not make unspecified
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assumptions or employs heuristics. This development provides a principled ba-

sis for further improving components of the approach (e.g., the click propensity

model, the ranking performance measure, the learning algorithm). We present

an extensive empirical evaluation testing the limits of the approach on synthetic

click data, finding that it performs robustly over a large range of bias, noise and

misspecification levels. Furthermore, we field our method in a real-world appli-

cation on an operational search engine, finding that it is robust in practice and

manages to improve retrieval performance substantially.

4.3 Related Work

There are two groups of approaches for handling biases in implicit feedback

for learning-to-rank. The first group assumes the feedback collection step is

fixed and tries to interpret the observational data so as to minimize bias effects.

Approaches in the second group intervene during feedback collection, trying to

present rankings that will lead to less biased feedback data overall.

Approaches in the first group commonly assume some model of user behav-

ior to explain away bias effects. For example, in a cascade model [27], users are

assumed to sequentially go down a ranking and click on a document if it is rel-

evant. Clicks, under this model, let us learn preferences between skipped and

clicked documents. Learning from these relative preferences lowers the impact

of some biases [52]. Other click models [27, 21, 11, 23] have been proposed, and

are trained to maximize log-likelihood of observed clicks. In these click mod-

eling approaches, performance on downstream learning-to-rank algorithms is

merely an afterthought. In contrast, we separate click propensity estimation
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and learning-to-rank in a principled way, and we optimize for ranking perfor-

mance directly. Our framework allows us to plug-in more sophisticated user

models in place of the simple click models we use in this work.

The key technique used by approaches in the second group to obtain more

reliable click data are randomized experiments. For instance, randomizing doc-

uments across all ranks lets us learn unbiased relevances for each document,

and swapping adjacent pairs of documents [92] lets us learn pairwise prefer-

ences reliably. Similarly, randomized interleaving can detect preferences be-

tween different rankers reliably [19]. Different from online learning via ban-

dit algorithms and interleaving [135, 103], batch learning from bandit feedback

(BLBF) [113] still uses randomization during feedback collection, and then per-

forms offline learning (we will study this in detail in Chapter 6). We can in-

terpret our problem formulation as being half way between the BLBF setting

and learning-to-rank from editorial judgments. In BLBF settings, the loss func-

tion is unknown, and we make no assumptions about the loss function. When

learning from editorial judgments, components of a search ranking are fully la-

beled, and the loss function is given. In the current setting, we know the form

of the loss function, but labels for only some parts of the ranking are revealed.

All approaches that use randomization suffer from two limitations. First, ran-

domization typically degrades ranking quality during data collection; second,

deploying non-deterministic ranking functions introduces bookkeeping over-

head. In this chapter, the system can be deterministic and we merely exploit

and model stochasticity in user behavior. Moreover, our framework allows (but

does not require) the use of randomized data collection to mitigate biases and

to lower estimator variance.
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Our approach uses inverse propensity scoring (IPS), originally employed in

survey sampling [47] and causal inference from observational studies [95], but

more recently also in whole page optimization [129] and recommender evalu-

ation [72, 101]. We use randomized interventions to estimate propensities in a

position discount model. This intervention scheme has precedent — rather than

using uniform ranking randomization [128] (with its high performance impact)

or swapping adjacent pairs [27], we swap documents in different ranks to the

top position [65]. See Section 4.6.3 for details.

Finally, our approach is similar in spirit to recent work [128] where propen-

sity weighting is used to correct for selection bias when discarding queries with-

out clicks during learning-to-rank. The key insight of our work is to recognize

that inverse propensity scoring can be employed much more powerfully, to ac-

count for position bias, trust bias, contextual effects, document popularity etc.

using appropriate click models to estimate the propensity of each click rather

than the propensity for a query to receive a click [128].

4.4 Full-Information Learning to Rank

Before we derive our approach for LTR from biased implicit feedback, we first

review the conventional problem of LTR from editorial judgments. In conven-

tional LTR, we are given a sample X of i.i.d. queries xi ∼ Pr(x) for which we

assume the relevances rel(x, y) of all documents y are known. Since all rele-

vances are assumed to be known, we call this the Full-Information Setting. The

relevances can be used to compute the loss δ(y | x) (e.g., negative DCG) of any

ranking y for query x. Aggregating the losses of individual rankings by taking
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the expectation over the query distribution, we can define the overall risk of a

ranking system S that returns rankings S (x) as

R(S ) =

∫
δ(S (x) | x)d Pr(x). (4.1)

The goal of learning is to find a ranking function S ∈ S that minimizes R(S )

for the query distribution Pr(x). Since R(S ) cannot be computed directly, it is

typically estimated via the empirical risk

R̂(S ) =
1
|X|

∑
xi∈X

δ(S (xi) | xi).

A common learning strategy is Empirical Risk Minimization (ERM) [124], which

corresponds to picking the system Ŝ ∈ S that optimizes the empirical risk

Ŝ = argmin
S∈S

{
R̂(S )

}
,

possibly subject to some regularization to control overfitting. There are sev-

eral LTR algorithms that follow this approach (a recent survey [78] summarizes

these approaches), and we use SVM-Rank [52] as a representative algorithm in

this chapter.

The relevances rel(x, y) are typically elicited via expert judgments. Apart

from being expensive and often infeasible (e.g., in personal collection search),

expert judgments come with at least two other limitations. First, since it is

clearly impossible to get explicit judgments for all documents, pooling tech-

niques [106] are used such that only the most promising documents are judged.

While cutting down on judging effort, this introduces an undesired pooling bias

because all unjudged documents are typically assumed to be irrelevant. The

second limitation is that expert judgments rel(x, y) have to be aggregated over

all intents that underlie the same query string, and it can be challenging for a

judge to conjecture a distribution of intents to assign an appropriate rel(x, y).
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4.5 Partial-Information Learning to Rank

Learning from implicit feedback has the potential to overcome the limitations of

full-information LTR mentioned above. By drawing the training signal directly

from the user, it naturally reflects the user’s intent, since each user acts upon

their relevance judgment subject to their specific context and information need.

It is, therefore, more appropriate to talk about query instances xi that include

contextual information about the user, instead of query strings x. For a given

query instance xi, we denote with ri(y) the user-specific relevance of result y for

query instance xi. One may argue that what expert assessors try to capture with

rel(x, y) is the mean of the relevances ri(y) over all the query instances that share

the query string, so, using implicit feedback for learning can remove a lot of

guesswork about what the distribution of users meant by a query.

However, when using implicit feedback as a relevance signal, unobserved

feedback is an even greater problem than missing judgments in the pooling set-

ting. In particular, implicit feedback is distorted by presentation bias, and it is

not missing completely at random [77]. To nevertheless derive well-founded

learning algorithms, we adopt the following counterfactual model.

For concreteness and simplicity, assume that relevances are binary, ri(y) ∈

{0, 1}, and our performance measure of interest is the sum of the ranks of the

relevant results

δ(y | xi, ri) =
∑
y∈y

rank(y | y) · ri(y). (4.2)

Analogous to Equation (4.1), we can define the risk of a system as

R(S ) =

∫
δ(S (x) | x, r)d Pr(x, r). (4.3)
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In our counterfactual model, there exists a true vector of relevances ri for each in-

coming query instance (xi, ri) ∼ Pr(x, r). However, only a part of these relevances

is observed for each query instance, while typically most remain unobserved. In

particular, given a presented ranking ȳi we are more likely to observe the rel-

evance signals (e.g., clicks) for the top-ranked results than for results ranked

lower down the list. Let oi denote the binary vector indicating which relevance

values were revealed, oi ∼ Pr(o | xi, ȳi, ri). For each element of oi, denote with

Q(oi(y) = 1 | xi, ȳi, ri) the marginal probability of observing the relevance ri(y) of

result y for query xi, if the user was presented the ranking ȳi. We refer to this

probability value as the propensity of the observation. We will discuss how oi

and Q can be obtained in Section 4.6.

Using this counterfactual modeling setup, we can get an unbiased estimate

of δ(y | xi, ri) for any new ranking y (typically different from the presented rank-

ing ȳi) via the inverse propensity scoring (IPS) estimator [47, 95, 50]

δ̂IPS (y | xi, ri, oi) =
∑

y:oi(y)=1

rank(y | y) · ri(y)
Q(oi(y) = 1 | xi, ȳi, ri)

=
∑

y:oi(y)=1∧
ri(y)=1

rank(y | y)
Q(oi(y) = 1 | xi, ȳi, ri)

.

This is an unbiased estimate of δ(y | xi, ri) for any y, if Q(oi(y) = 1 | xi, ȳi, ri) > 0

for all y that are relevant ri(y) = 1 (but not necessarily for the irrelevant y).

Eoi

[
δ̂IPS (y | xi, ȳi, oi)

]
= Eoi

 ∑
y:oi(y)=1

rank(y | y) · ri(y)
Q(oi(y) = 1 | xi, ȳi, ri)


=

∑
y∈y

Eoi

[
oi(y) · rank(y | y) · ri(y)
Q(oi(y) = 1 | xi, ȳi, ri)

]
(4.4)

=
∑
y∈y

Q(oi(y) = 1 | xi, ȳi, ri) · rank(y | y) · ri(y)
Q(oi(y) = 1 | xi, ȳi, ri)

=
∑
y∈y

rank(y | y)ri(y) (4.5)

= δ(y | xi, ri).
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Equation (4.4) comes from linearity of expectation, and Equation (4.5) uses

Q(oi(y) = 1 | xi, ȳi, ri) > 0.

An interesting property of δ̂IPS (y | xi, ȳi, oi) is that only those results y with

[oi(y) = 1 ∧ ri(y) = 1] (i.e. clicked results, as we will see later) contribute to

the estimate. We therefore only need the propensities Q(oi(y) = 1 | xi, ȳi, ri)

for relevant results. Since we will eventually need to estimate the propensities

Q(oi(y) = 1 | xi, ȳi, ri), an additional requirement for making δ̂IPS (y | xi, ȳi, oi)

computable while remaining unbiased is that the propensities only depend on

observable information (i.e., unconfoundedness [50]).

To define the empirical risk to optimize during learning, we begin by collect-

ing a sample of n query instances xi, recording the partially-revealed relevances

ri as indicated by oi, and the propensities Q(oi(y) = 1 | xi, ȳi, ri) for the observed

relevant results in the ranking ȳi presented by the system. Then, the empirical

risk of a system is simply the IPS estimates averaged over query instances:

R̂IPS (S ) =
1
n

n∑
i=1

∑
y:oi(y)=1∧

ri(y)=1

rank(y | S (xi))
Q(oi(y) = 1 | xi, ȳi, ri)

. (4.6)

Since δ̂IPS (y | xi, ȳi, oi) is unbiased for each query instance, the aggregate R̂IPS (S )

is also unbiased for R(S ) from Equation (4.3),

E[R̂IPS (S )] = R(S ).

Furthermore, it is easy to verify that R̂IPS (S ) converges to the true R(S ) under

mild additional conditions (i.e., propensities bounded away from 0) as we in-

crease the sample size n of query instances. To see this, observe that R̂IPS (S ) is

the mean of bounded random variables and the central limit theorem applies.

So, we can perform ERM using this propensity weighted empirical risk,

Ŝ = argmin
S∈S

{
R̂IPS (S )

}
.
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Finally, using standard results from statistical learning theory [124], asymptotic

consistency of the empirical risk paired with capacity control implies consis-

tency also for ERM. In intuitive terms, this means that given enough training

data, the learning algorithm is guaranteed to find the best system in S.

4.6 Feedback Propensity Models

In Section 4.5, we showed that the relevance signal ri, the observation pattern oi,

and the propensities of the observations Q(oi(y) = 1 | xi, ȳi, ri) are the key com-

ponents for unbiased LTR from biased observational feedback. We now outline

how these quantities can be elicited and modeled in a typical search-engine ap-

plication. However, the general framework of Section 4.5 extends beyond this

particular application, and beyond the particular feedback model below.

4.6.1 Position-Based Propensity Model

Search engine click logs provide a sample of query instances xi, the presented

ranking ȳi and a (sparse) click-vector where each ci(y) ∈ {0, 1} indicates whether

result y was clicked or not. To derive propensities of observed clicks, we will

employ a click propensity model. For simplicity, we consider a straightforward

examination model [93], where a click on a search result depends on the proba-

bility that a user examines a result (i.e., ei(y)) and then decides to click on it (i.e.,

ci(y)) in the following way:

Pr(ei(y) = 1 | rank(y | ȳi)) · Pr(ci(y) = 1 | ri(y), ei(y) = 1).
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In this model, examination depends only on the rank of y in ȳi. So, Pr(ei(y) =

1 | rank(y | ȳi)) can be represented by a vector of examination probabilities pr,

one for each rank r. These examination probabilities can model presentation

bias documented in eye-tracking studies [56], where users are more likely to see

results at the top of the ranking than those further down.

For the probability of click on an examined result Pr(ci(y) = 1 | ri(y), ei(y) = 1),

we first consider the simplest model where clicking is a deterministic noise-free

function of the users private relevance assessment ri(y). Under this model, users

click if and only if the result is examined and relevant (ci(y) = 1 ↔ [ei(y) =

1 ∧ ri(y) = 1]). This means that for examined results (i.e., ei(y) = 1), clicking is

synonymous with relevance (ei(y) = 1 → [ci(y) = ri(y)]). Furthermore, it means

that we observe the value of ri(y) perfectly when ei(y) = 1 (ei(y) = 1 → oi(y) = 1).

Moreover, we gain no knowledge of the true ri(y) when a result is not examined

(ei(y) = 0 → oi(y) = 0). Therefore, examination equals observation and Q(oi(y) |

xi, ȳi, ri) ≡ Pr(ei(y) | rank(y | ȳi)).

Using these equivalences, we can simplify the IPS estimator from Equa-

tion (4.6) by substituting pr as the propensities and by using ci(y) = 1 ↔ [oi(y) =

1 ∧ ri(y) = 1]

R̂IPS (S ) =
1
n

n∑
i=1

∑
y:ci(y)=1

rank(y | S (xi))
prank(y|ȳi)

. (4.7)

R̂IPS (S ) is an unbiased estimate of R(S ) under the position-based propensity

model if pr > 0 for all ranks. While absence of a click does not imply that the

result is not relevant (i.e., ci(y) = 0 9 ri(y) = 0), the IPS estimator has the nice

property that such explicit negative judgments are not needed to compute an

unbiased estimate of R(S ) for the loss in Equation (4.2). Similarly, while absence

of a click leaves us unsure about whether the result was examined (i.e., ei(y) =?),
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the IPS estimator only needs to know the indicators oi(y) = 1 for results that are

also relevant (i.e., clicked results).

Finally, note the conceptual difference in how we use this standard examina-

tion model compared to most prior work. We do not try to estimate an average

relevance rating rel(x, y) by taking repeat instances of the same query x, but we

use the model as a propensity estimator to de-bias individual observed user

judgments ri(y) to be used directly in ERM.

4.6.2 Incorporating Click Noise

In Section 4.6.1, we assumed that clicks reveal the user’s true ri in a noise-free

way. This assumption is clearly unrealistic. In addition to the stochasticity in the

examination distribution Pr(ei(y) = 1 | rank(y | ȳi)), we now also consider noise

in the distribution that generates the clicks. In particular, we no longer require

that a relevant result is clicked with probability 1, and an irrelevant result is

clicked with probability 0, but instead, for 1 ≥ ε+ > ε− ≥ 0,

Pr(ci(y) = 1 | ri(y) = 1, oi(y) = 1) = ε+,

Pr(ci(y) = 1 | ri(y) = 0, oi(y) = 1) = ε−.

The first line means that users click on a relevant result only with probability ε+,

while the second line means that users may erroneously click on an irrelevant

result with probability ε−. An alternative and equivalent way of thinking about

click noise is that users still click deterministically as in the previous section,

but based on a corrupted version r̃i of ri. This viewpoint tells us that all the

reasoning regarding observation (examination) events oi and their propensities

pr still holds and that we still have that ci(y) = 1→ oi(y) = 1. What does change,
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though, is that we no longer observe the “correct” ri(y) but instead get feedback

according to the noise-corrupted version r̃i(y). What happens to our learning

process if we estimate risk using Equation (4.7), but now with r̃i?

Fortunately, the noise does not affect ERM’s ability to find the best ranking

system given enough data. While using noisy clicks leads to biased empirical

risk estimates for the true ri (i.e., E[R̂IPS (S )] , R(S )), in expectation this bias is

order preserving for R(S ) such that the risk minimizer remains the same.

E[R̂IPS (S 1)] > E[R̂IPS (S 2)]

⇔ Ex,r,ȳ

EoEc|o

 ∑
y:c(y)=1

rank(y | S 1(x)) − rank(y | S 2(x))
prank(y|ȳ)


 >0

⇔ Ex,r

∑
y

Pr(c(y) = 1 | o(y) = 1, r(y))∆rank(y | x)

 > 0

⇔ Ex,r

∑
y

∆rank(y | x) · (ε+r(y) + ε−(1 − r(y)))

 > 0

⇔ Ex,r

∑
y

∆rank(y | x) · ((ε+ − ε−)r(y) + ε−)

 > 0

∗ ⇔ Ex,r

∑
y

∆rank(y | x) · (ε+ − ε−)r(y)

 > 0

⇔ Ex,r

∑
y

∆rank(y | x) · r(y)

 > 0

⇔ R(S 1) > R(S 2),

where ∆rank(y | x) is short for rank(y | S 1(x)) − rank(y | S 2(x)) and we use the fact

that ε−
∑

y∈ȳ ∆rank(y | x) = 0 in the step marked ∗. This implies that our propen-

sity weighted ERM is a consistent approach for finding a ranking function with

the best true R(S ),

Ŝ = argmin
S∈S

{R(S )}

= argmin
S∈S

{
E[R̂IPS (S )]

}
, (4.8)
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even when the objective is corrupted by click noise as specified above.

4.6.3 Propensity Estimation

As the last step of defining the click propensity model, we need to address the

question of how to estimate its parameters (i.e. the vector of examination prob-

abilities pr) for a particular search engine. The following shows that we can

get estimates using data from a simple intervention [65] but without the strong

negative impact of presenting uniformly random results to some users [128].

First, note that it suffices to estimate the pr up to some positive multiplicative

constant, since any such constant does not change how the IPS estimator of

Equation (4.7) orders different systems. We therefore merely need to estimate

how much pr changes relative to pk for some “landmark” rank k. This suggests

the following experimental intervention for estimating pr: before presenting the

ranking to the user, swap the result at rank k with the result at rank r. If we

denote with y′ the results originally in rank k, our click model before and after

the intervention indicates that

Pr(ci(y′) = 1 | no-swap) = pk · Pr(ci(y′) = 1 | ei(y′) = 1)

Pr(ci(y′) = 1 | swap-k-and-r) = pr · Pr(ci(y′) = 1 | ei(y′) = 1)

where

Pr(ci(y′) = 1 | ei(y′) = 1)

=
∑

v∈{0,1}

Pr(ci(y′) = 1 | ri(y′) = v, ei(y′) = 1) · Pr(ri(y′) = v)

is constant regardless of the intervention. This observation means that the click-

through rates Pr(ci(y′) = 1 | swap-k-and-r), which we can estimate from the in-
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tervention data, are proportional to the parameters pr for any r. By performing

swaps between rank k and other ranks r, we can estimate all the pr parameters.

This swap-intervention experiment has a much lower adverse impact on sys-

tem performance than uniform randomization, which was proposed for a dif-

ferent propensity estimation problem [128], and careful consideration of which

rank k to choose can further reduce the impact of the swap experiment. From

a practical perspective, it may also be unnecessary to estimate pr for each rank

separately. Instead, one may want to interpolate between estimates at well-

chosen ranks or employ smoothing. Finally, note that the intervention only

needs to be applied to a small subset of the data used for fitting the click propen-

sity model, while the actual data used for training the ERM learning algorithm

does not require any interventions.

4.6.4 Alternative Feedback Propensity Models

The click propensity model we defined above is arguably one of the simplest

models one can employ for propensity modeling in LTR, and there is broad

scope for extensions.

First, one could extend the model by incorporating other biases, for exam-

ple, trust bias [56] which affects perceived relevance of a result based on its

position in the ranking. This can be captured by conditioning click probabilities

also on the position Pr(ci(y′) = 1 | ri(y′), ei(y′) = 1, rank(y | ȳi)). We have already

explored that the model can be extended to include trust bias, and the inter-

vention proposed in Section 4.6.3 continues to yield good propensity estimates

for this extension. Furthermore, it is possible to model saliency biases [136] by
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replacing the pr with a regression function.

Second, we conjecture that a wide range of other click models (e.g., cascade

model [27] and others [27, 21, 11, 23]) can be adapted as propensity models. The

main requirement is that we can compute marginal click probabilities for the

clicked documents in hindsight, which may be feasible for many other models.

Third, we may be able to define and train new types of click models. In

particular, for our propensity ERM approach we only need the propensities

Q(oi(y) = 1 | xi, ȳi, ri) for observed and relevant documents to evaluate the IPS

estimator, but not for irrelevant documents. This can be substantially easier

than a full generative model of how people reveal relevance judgments through

implicit feedback. In particular, this model can condition on all the revealed rel-

evances ri(y j) in hindsight, and it does not need to treat them as latent variables.

Finally, the ERM learning approach is not limited to binary click feedback,

but applies to a large range of feedback settings. For example, the feedback may

be explicit star ratings in a movie recommendation system, and the propensities

may be the results of self-selection by the users, as we saw in Chapter 3. In

such an explicit feedback setting, oi is fully known, which simplifies propensity

estimation substantially.

4.7 Propensity Weighted SVM-Rank

We now derive a concrete learning method that implements the propensity

weighted LTR principle from Section 4.5. It is based on SVM-Rank [52, 55],

but we conjecture that propensity weighted versions of other LTR methods can
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be derived as well.

Consider a dataset of n examples of the following form. For each query-

(clicked)result pair (x j, y j) that is clicked, we compute the propensity qi =

Q(oi(y) = 1 | xi, ȳi, ri) of the click according to our click propensity model. We

also record the candidate set Y j of all results for query x j. Typically, Y j contains a

few hundred documents — selected by a stage-one ranker [127] — that we aim

to rerank. Note that each click generates a separate training example, even if

multiple clicks occur for the same query.

Given this propensity-scored click data, we define Propensity SVM-Rank as

a generalization of conventional SVM-Rank. Propensity SVM-Rank learns a lin-

ear scoring function pred(x, y) = wT f(x, y) that can be used for ranking results,

where w is a weight vector, and f(x, y) is a feature vector that describes the match

between query x and result y.

Propensity SVM-Rank optimizes the following objective,

ŵ = argmin
w,ξ

1
2

wT w +
C
n

n∑
j=1

1
q j

∑
y∈Y j

ξ jy

s.t. ∀y ∈ Y1 \ {y1} : wT [f(x1, y1) − f(x1, y)] ≥ 1 − ξ1y

...

∀y ∈ Yn \ {yn} : wT [f(xn, yn) − f(xn, y)] ≥ 1 − ξny

∀ j∀y : ξ jy ≥ 0.

C is a regularization parameter that is typically selected via cross-validation.

The training objective optimizes an upper bound on the regularized IPS esti-

mated empirical risk of Equation (4.7) since each line of constraints corresponds
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to the rank of a relevant document (minus 1). In particular, for any feasible (w, ξ)

rank(yi | y) − 1 =
∑
y,yi

1{wT [f(xi, y) − f(xi, yi)] > 0}

≤
∑
y,yi

max(1 − wT [f(xi, yi) − f(xi, y)], 0)

≤
∑
y,yi

ξiy.

We can solve this type of Quadratic Program efficiently via a one-slack for-

mulation [55], and we are using a modified SVM-Rank that incorporates IPS

weights 1/q j. The latest version of SVM-Rank1 includes these modifications.

In the empirical evaluation, we compare against the naı̈ve application of

SVM-Rank, which minimizes the rank of the clicked documents while ignor-

ing presentation bias. In particular, Naı̈ve SVM-Rank sets all the qi uniformly to

the same constant (e.g., 1).

4.8 Empirical Evaluation

We take a two-pronged approach to evaluating our approach empirically. First,

we use synthetically generated click data to explore the behavior of our methods

over the whole spectrum of presentation bias severity, click noise, and propen-

sity misspecification. Second, we explore the real-world applicability of our

approach by evaluating on an operational search engine using real click-logs

from live traffic.
1http://www.joachims.org/svm light/svm rank.html
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4.8.1 Synthetic Data Experiments

To be able to explore the full spectrum of biases and noise, we conducted ex-

periments using click data derived from the Yahoo Learning to Rank Challenge

corpus (set 1) [18]. This corpus contains a large number of manually judged

queries on a five-point relevance scale, where we binarized relevance by as-

signing ri(y) = 1 to all documents that got rated 3 and 4, and ri(y) = 0 for rat-

ings 0, 1, 2. We adopt the train, validation and test splits that are pre-defined

in the corpus. This means that queries in the three sets are disjoint, and we

never train on any data from queries in the test set. To have a gold standard

for reporting test-set performance, we measure performance on the binarized

full-information ratings using Equation (4.2).

To generate click data from this full-information dataset of ratings, we first

trained a standard Ranking SVM using 1% of the full-information training data

to get a ranking function S 0. We employ S 0 as the “Production Ranker”, and

it is used to “present” rankings ȳ when generating the click data. We gener-

ate clicks using the rankings ȳ and ground-truth binarized relevances from the

Yahoo dataset according to the following process. Depending on whether we

are generating a training or a validation sample of click data, we first randomly

draw a query x from the respective full-information dataset. For this query, we

compute ȳ = S 0(x) and generate clicks based on the model from Section 4.6.

Whenever a click is generated, we record a training example with its associated

propensity Q(o(y) = 1 | x, ȳ, r). We model presentation bias via

Q(o(y) = 1 | x, ȳ, r) = prank(y|ȳ) =

(
1

rank(y | ȳ)

)η
. (4.9)

The parameter η lets us control the severity of the presentation bias. We also

introduce noise into the clicks according to the model described in Section 4.6.
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When not mentioned otherwise, we use η = 1, ε− = 0.1, and ε+ = 1, which leads

to click data where about 33% of the clicks are noisy clicks on irrelevant results

and where the result at rank 10 has a 10% probability of being examined. We

explore other bias profiles and noise levels in following experiments.

In all experiments, we select any parameters (e.g., C) of the learning methods

via cross-validation on a validation set. The validation set is generated using the

same click model as the training set, but using the queries in the validation fold

of the Yahoo! dataset. For Propensity SVM-Rank, we always use the (unclipped)

IPS estimator Equation (4.7) to estimate validation set performance. Keeping

with the proportions of the original Yahoo data, the validation set size is always

about 15% the size of the training set.

The primary baseline we compare against is a naı̈ve application of SVM-

Rank that simply ignores the bias in the click data. We call this method Naı̈ve

SVM-Rank. It is equivalent to a standard ranking SVM [52] but is most easily ex-

plained as equivalent to Propensity SVM-Rank with all q j set to 1. Analogously,

we use the corresponding naı̈ve version of Equation (4.7) with propensities set

to 1 to estimate validation set performance for Naı̈ve SVM-Rank.

4.8.2 How Does Ranking Performance Scale With Training

Data?

We first explore how the test-set ranking performance changes as we provide

more click data to the learning algorithm. The resulting learning curves are

given in Figure 4.1, and the performance of S 0 is plotted as a baseline. The
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Figure 4.1: The test set performance in terms of Equation (4.2) for Propensity
SVM-Rank with and without clipping compared to SVM-Rank naı̈vely ignoring
the bias in clicks (η = 1, ε− = 0.1). The skyline is a Ranking SVM trained on
all data without noise in the full-information setting, and the baseline is the
production ranker S 0.

click data has presentation bias according to Equation (4.2) with η = 1 and noise

ε− = 0.1. For small datasets, results are averaged over 5 draws of the click data.

With increasing amounts of click data, Propensity SVM-Rank approaches the

skyline performance of the full-information SVM-Rank trained on the complete

training set of manual ratings without noise. This behavior is in stark contrast

to Naı̈ve SVM-Rank which fails to account for the bias in the data and does not

reach this level of performance. Furthermore, Naı̈ve SVM-Rank cannot make

effective use of additional data, and its learning curve is essentially flat. This

behavior is consistent with the theoretical insight that estimation error in Naı̈ve
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SVM-Rank’s empirical risk R̂(S ) is dominated by asymptotic bias due to biased

clicks, which does not decrease with more data and leads to suboptimal learn-

ing. The unbiased risk estimate R̂IPS (S ) of Propensity SVM-Rank, however, has

estimation error only due to finite sample variance, which is decreased by more

data and leads to consistent learning.

While unbiasedness is an important property when click data is plenty, the

increased variance of R̂IPS (S ) can be a drawback for small datasets. This weak-

ness can be seen in Figure 4.1, where Naı̈ve SVM-Rank outperforms Propensity

SVM-Rank for small datasets. We can remedy such behavior using techniques

like “propensity clipping” [110], where small propensities are clipped to some

threshold value τ to trade bias for variance.

R̂CIPS (S ) =
1
n

∑
xi

∑
y∈S (xi)

rank(y | S (xi)) · ri(y)
max{τ,Q(oi(y) = 1 | xi, ȳi, ri)}

.

Figure 4.1 shows the learning curve of Propensity SVM-Rank with clipping,

cross-validating both the clipping threshold τ and C. Clipping indeed improves

performance for small datasets. While τ = 1 is equivalent to Naı̈ve SVM-Rank,

the validation set is too small (and hence, the finite sample error of the valida-

tion performance estimate too high) to reliably select this model in every run. In

practice, however, we expect click data to be plentiful such that lack of training

data is unlikely to be a persistent issue.

4.8.3 How Much Presentation Bias Can Be Tolerated?

We now vary the severity of the presentation bias via η to understand its impact

on Propensity SVM-Rank. Figure 4.2 shows that inverse propensity weighting is

beneficial whenever substantial bias exists. Furthermore, increasing the amount
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Figure 4.2: The test set performance for Propensity SVM-Rank and Naı̈ve SVM-
Rank as presentation bias becomes more severe in terms of η (n = 45K and
n = 225K. No click-noise was simulated.

of training data by a factor of 5 leads to further improvement for the Propensity

SVM-Rank, while the added training data has no effect on Naı̈ve SVM-Rank.

This phenomenon is consistent with our arguments from Section 4.5 — more

training data does not help when bias dominates estimation error, but it can re-

duce estimation error from variance in the unbiased risk estimate of Propensity

SVM-Rank.

4.8.4 How Does Propensity SVM-Rank Handle Click Noise?

Figure 4.3 shows that Propensity SVM-Rank also enjoys a substantial advantage

when it comes to noise. When increasing the noise level in terms of ε− from
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Figure 4.3: The test set performance for Propensity SVM-Rank and Naı̈ve SVM-
Rank as the noise level increases in terms of ε− (n = 170K and n = 850K, η = 1).

0 up to 0.3 (resulting in click data where 59.8% of all clicks are on irrelevant

documents), Propensity SVM-Rank increasingly outperforms Naı̈ve SVM-Rank.

Moreover, the unbiasedness of the empirical risk estimate allows Propensity

SVM-Rank to benefit from more data. We defer further study of click-noise

models (e.g., ε+ < 1 under our noise model in Section 4.6.2) to future work.

4.8.5 How Does Propensity SVM-Rank Perform With

Inaccurate Propensities?

So far all experiments have assumed that Propensity SVM-Rank has access to ac-

curate propensities. In practice, however, propensities need to be estimated and
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Figure 4.4: The test set performance for Propensity SVM-Rank and Naive SVM-
Rank as propensities are misspecified (true η = 1, n = 170K, ε− = 0.1).

are subject to model misspecification. We now evaluate how robust Propensity

SVM-Rank is to misspecified propensities. Figure 4.4 shows the performance of

Propensity SVM-Rank when the training data is generated with η = 1, but the

propensities used by Propensity SVM-Rank are misspecified using the η given

in the x-axis of the plot. The plot shows that even misspecified propensities can

give a substantial improvement over naı̈vely ignoring the bias, as long as the

misspecification is “conservative” — i.e., overestimating small propensities is

tolerable (which happens when η < 1), but underestimating small propensities

can be harmful (which occurs when η > 1). This observation is consistent with

theory, and clipping is one particular way of overestimating small propensities

that can even improve performance. Overall, we conclude that even a mediocre

propensity model can improve over the naı̈ve approach — after all, the naı̈ve
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approach can be thought of as a particularly poor propensity model that implic-

itly assumes no presentation bias and uniform propensities.

4.8.6 Real-World Experiment

We now examine the performance of Propensity SVM-rank when learning a

new ranking function for the Arxiv Full-Text Search2 based on real-world click

logs from this system. The search engine uses a linear scoring function as out-

lined in Section 4.7. Query-document features f(x, y) are represented by a 1000-

dimensional vector, and the production ranker used for collecting training clicks

employs a hand-crafted [92] weight vector w (denoted Prod). Observed clicks

on rankings served by this ranker over a period of 21 days provide implicit

feedback data for LTR as outlined in Section 4.7.

To estimate the propensity model, we consider the simple position-based

model of Section 4.6.1, and we collect new click data via randomized interven-

tions for 7 days as outlined in Section 4.6.3 with landmark rank k = 1. Be-

fore presenting the ranking, we take the top-ranked document and swap it with

the document at a uniformly at random chosen rank j ∈ {1, . . . 21}. The ratio

of observed click-through rates (CTR) on the formerly top-ranked document

now at position j versus its CTR at position 1 gives a noisy estimate of p j/p1

in the position-based click model. We additionally smooth these estimates by

interpolating with the overall observed CTR at position j (normalized so that

CTR@1 = 1). This procedure yields pr that approximately decay with rank r

with the smallest pr ' 0.12. For r > 21, we impute pr = p21.

2http://search.arxiv.org:8081/
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Propensity SVM-Rank
Interleaving Experiment wins loses ties
against Prod 87 48 83
against Naı̈ve SVM-Rank 95 60 102

Table 4.1: Per-query balanced interleaving [53] results for detecting relative per-
formance between the hand-crafted production ranker used for click data col-
lection (Prod), Naı̈ve SVM-Rank and Propensity SVM-Rank.

We partition the click logs into a train-validation split: the first 16 days are

the train set and provide 5437 click-events for SVM-rank, while the remaining

5 days are the validation set with 1755 click events. The hyper-parameter C is

picked via cross-validation. Analogous to Section 4.8.1, we use the IPS estimator

for Propensity SVM-Rank, and naive estimator with Q(o(y) = 1 | x, ȳ, r) = 1 for

Naı̈ve SVM-Rank. With the best hyper-parameter settings, we re-train on all 21

days worth of data to derive the final weight vectors for either method.

We fielded these learned weight vectors in two online interleaving experi-

ments [19], the first comparing Propensity SVM-Rank against Prod and the sec-

ond comparing Propensity SVM-Rank against Naı̈ve SVM-Rank. The results

are summarized in Table 4.1. We find that Propensity SVM-Rank significantly

outperforms the hand-crafted production ranker that was used to collect the

click data for training (two-tailed binomial sign test p = 0.001 with relative risk

0.71 compared to null hypothesis). Furthermore, Propensity SVM-Rank simi-

larly outperforms Naı̈ve SVM-Rank, demonstrating that even a simple propen-

sity model provides benefits on real-world data (two-tailed binomial sign test

p = 0.006 with relative risk 0.77 compared to null hypothesis). Note that Propen-

sity SVM-Rank not only significantly, but also substantially outperforms both

other rankers in terms of effect size — and the synthetic data experiments sug-

gest that additional training data will further increase its advantage.
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4.9 Conclusions and Future Work

This chapter introduced a principled approach for learning-to-rank under bi-

ased feedback data. Drawing on counterfactual modeling techniques from

causal inference, we presented a theoretically sound Empirical Risk Minimiza-

tion framework for LTR. We instantiated this framework with a Propensity

Weighted Ranking SVM, and provided extensive empirical evidence that the

resulting learning method is robust to selection biases, noise and model mis-

specification. Furthermore, our real-world experiments on a live search engine

showed that the approach leads to substantial retrieval improvements, without

any heuristic or manual interventions in the learning process.

Beyond the specific learning methods and propensity models we proposed,

our work may have an even bigger impact through its theoretical contribution

to developing the general counterfactual model for LTR, thus articulating the

key components necessary for LTR under biased feedback. First, the insight

that propensity estimates are crucial for ERM learning opens a wide area of re-

search on designing better propensity models. Second, the theory demonstrates

that LTR methods should optimize propensity weighted ERM objectives, rais-

ing the question of which other learning methods beyond the Ranking SVM can

be adapted to the Propensity ERM approach. Third, we conjecture that propen-

sity weighted ERM approaches can also be developed for pointwise and listwise

LTR methods.

Beyond learning from implicit feedback, propensity-weighted ERM tech-

niques may prove useful even for optimizing offline IR metrics on manually

annotated test collections. First, they can eliminate pooling bias, since the use
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of sampling during judgment elicitation puts us in a controlled setting where

propensities are known by design. Second, propensities estimated via click

models can enable click-based IR metrics like click-DCG to better correlate with

the test set DCG in manually annotated test collections.
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Part II

Learning from Logged

Interventional Feedback
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CHAPTER 5

BETTER ESTIMATORS FOR SLATE RECOMMENDATION

5.1 Chapter Notes

This chapter describes joint work with Akshay Krishnamurthy, Alekh Agarwal,

Miroslav Dudı́k, John Langford, Damien Jose and Imed Zitouni. It is a lightly

edited version of a workshop paper [118].

We estimate online metrics (e.g., revenue in the game recommendation ex-

ample of Section 2.1) in situations where y is a combinatorial structure (recall

the x 7→ y 7→ δ schematic). Rankings of documents in IR (Chapter 4) is a special

case of combinatorial y. This problem is an instance of causal estimation in the

Off Policy setting (Section 2.3). Unlike Chapter 4, δ does not have a known or ob-

servable decomposition over y (e.g., the time it takes Alice to find and purchase

a game in a carousel of recommendations is not any observable decomposition

of per-recommendation values). Nevertheless, we reason about decompositions

of y to construct an off-policy estimator. Remarkably we prove that this estima-

tor is unbiased if there exists any (even unknown, unobservable, non-unique)

decomposition of δ at all. We then employ this estimator to learn a ranking sys-

tem using the classic Pointwise Learning-to-Rank (LTR) approach (see LTR sur-

vey [78]). Theoretically, we characterize the sample complexity (i.e., the number

of samples needed to estimate to a certain accuracy) of our estimator. Empiri-

cally we see the first demonstration of high quality off policy estimation in both

the real world and semi-synthetic combinatorial settings.
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5.2 Introduction

In recommendation systems for e-commerce, online advertising, search or news,

we would like to use the data collected during operation to test new content-

serving algorithms (called policies) along metrics such as revenue and num-

ber of clicks [12, 71]. This task is called off-policy evaluation and standard ap-

proaches, namely inverse propensity scores (IPS) [47, 30], require unrealistically

large amounts of past data to evaluate whole-page metrics that depend on mul-

tiple recommended items, such as when showing ranked lists. Therefore, the in-

dustry standard for evaluating new policies is to simply deploy them in weeks-

long A/B tests [60]. Replacing or supplementing A/B tests with accurate off-

policy evaluation, running in seconds instead of weeks, would revolutionize

the process of developing better recommendation systems. For instance, we

could perform automatic policy optimization (i.e., learn a policy that scores well

on whole-page metrics), a task which is currently plagued with bias and an ex-

pensive trial-and-error cycle.

The data we collect in these recommendation applications provides only par-

tial information, which is formalized as contextual bandits [5, 30, 66]. We study a

combinatorial generalization of contextual bandits, where for each context a pol-

icy selects a list, called a slate, consisting of component actions. In web search,

the context is the search query augmented with a user profile, the slate is the

search results page consisting of a list of retrieved documents, and actions are

the individual documents. Example metrics are page-level measures such as

time-to-success, NDCG or more general measures of user satisfaction.

The key challenge in off-policy evaluation and optimization is the fact that
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a new policy, called the target policy, recommends different slates than those

with recorded metrics in our logs. Without structural assumptions on the re-

lationship between slates and observed metrics, we can only hope to evaluate

the target policy if its chosen slates occur in the logged past data with a de-

cent probability. Unfortunately, the number of possible slates is combinatorially

large, e.g., when recommending ` of m items, there are mΩ(`) ordered sets, so

the likelihood of even one match in past data with a target policy is miniscule,

leading to a complete breakdown of fully general techniques such as IPS.

To overcome this limitation, some authors [12, 113] restrict their logging and

target policies to a parameterized stochastic policy class. Others assume spe-

cific parametric (e.g., linear) models relating the observed metrics to the features

describing a slate [4, 98, 34, 22, 90]. Another paradigm, called semi-bandits, as-

sumes that the slate-level metric is a linear combination of observed action-level

metrics [59, 63].

We seek to evaluate arbitrary policies, while avoiding strong assumptions

about user behavior, as in parametric bandits, or the nature of feedback, as in

semi-bandits. We relax restrictions of both parametric and semi-bandits. Like

semi-bandits, we assume that the slate-level metric is a sum of action-level met-

rics that depend on the context, the action, and the position on the slate, but not

on the other actions in the slate. Unlike semi-bandits, these per-action metrics

are unobserved by the decision maker. This model also means that the slate-level

metric is linearly related to the unknown vector listing all the per-action metrics

in each position. However, this vector of per-action metric values can depend

arbitrarily on each context, which precludes fitting a single linear model of re-

wards (with dimensionality independent of the number of contexts) as usually
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done in linear bandits.

This chapter outlines the following contributions:

1. The additive decomposition assumption (ADA): an assumption about the

feedback structure in combinatorial contextual bandits, which generalizes

contextual, linear, and semi-bandits.

2. The pseudoinverse estimator (PI) for off-policy evaluation: a general purpose

estimator (using linear bandit machinery) for any stochastic logging pol-

icy, unbiased under ADA. The number of logged samples needed for eval-

uation with error ε when choosing ` out of m items is typically O(`m/ε2)

— an exponential gain over the mΩ(`) complexity of other unbiased esti-

mators. We provide distribution-dependent bounds based on the overlap

between logging and target policies.

3. Experiments on a real-world search ranking dataset: The strong perfor-

mance of the PI estimator provides, to our knowledge, the first demon-

stration of high quality off-policy evaluation of whole-page metrics, com-

prehensively outperforming prior baselines (see Figure 5.1).

4. Off-policy optimization: We provide a simple procedure for learning to

rank (L2R) using the PI estimator. Our procedure tunes L2R models

directly to online metrics by leveraging pointwise supervised L2R ap-

proaches, without requiring pointwise feedback.

Without contexts, several authors have studied a similar linear dependence

of the reward on action-level metrics [28, 98]. Their approaches compete with

the best fixed slate, whereas we focus on evaluating arbitrary context-dependent

policies. While they also use the pseudoinverse estimator in their analysis (e.g.,
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Figure 5.1: Off-policy evaluation results for two whole-page user satisfaction
metrics on proprietary search engine data is reported. Average RMSE over 50
runs on a log-log scale. Our method (pseudoinverse or PI) achieves the best
performance for moderate data sizes. The unbiased IPS method suffers high
variance, and direct modeling (DM) suffers high bias. ONPOLICY is the expen-
sive alternative of deploying the policy. Improvements of PI are significant, with
p-values in text. Details in Section 5.6.3.

Dani, Hayes and Kakade introduce it in Lemma 3.2 [28]), its role is different.

They construct specific distributions to optimize the explore-exploit trade-off,

while we provide guarantees for off-policy evaluation with arbitrary logging

distributions, requiring a very different analysis and conclusions.

5.3 Setting and Notation

In combinatorial contextual bandits, a decision maker repeatedly interacts with

the environment as follows:

1. The decision maker observes a context x drawn from a distribution Pr(X)

over some space X;

2. Based on the context, the decision maker chooses a slate y = (y1, . . . y`) con-

sisting of actions y j, where a position j is called a slot, the number of slots
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is `, actions at position j come from some space Y j(x), and the slate y is

chosen from a set of allowed slates Y(x) ⊆ Y1(x) × · · · × Y`(x);

3. Given the context and slate, the environment draws a reward δ ∈ [−1, 1]

from a distribution Pr(∆ | x, y). Rewards in different rounds are indepen-

dent, conditioned on contexts and slates.

The context space X can be infinite, but the set of actions is of finite size. For

simplicity, we assume |Y j(x)| = m j for all contexts x ∈ X and define m B max j m j

as the maximum number of actions per slot. The goal of the decision maker is

to maximize the reward.

The decision maker is modeled as a stochastic policy π that specifies a condi-

tional distribution π(y | x) (a deterministic policy is a special case). The value of

policy π, denoted V(π), is defined as the expected reward when following π:

V(π) B ExEy∼π(·|x)Eδ∼Pr(·|x,y) [δ] .

To simplify derivations, we extend the conditional distribution π into a dis-

tribution over triples (x, y, δ) as π(x, y, δ) B Pr(δ | x, y)π(y | x) Pr(x). With this

shorthand, we have V(π) = Eπ[δ].

To finish this section, we introduce notation for the expected reward for a

context and slate, called the slate value, and denote as V(x, y) B Eδ∼Pr(·|x,y)[δ].

Example 1 (Cartesian product). Consider whole-page optimization of a news

portal where the reward is the whole-page advertising revenue. The context x

is the user profile; the slate is the news portal page with slots corresponding to

news sections or topics,1 and actions are the news articles. It is natural to assume
1For simplicity, we do not discuss the more general setting of showing multiple articles in

each news section.
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that each article can only appear in one of the sections, so that Y j(x) ∩ Yk(x) = ∅

if j , k. The set of valid slates is the Cartesian product Y(x) =
∏

j≤` Y j(x). The

number of valid slates is exponential in `, namely, |Y(x)| =
∏

j≤` m j.

Example 2 (Ranking). Consider information retrieval in web search. Here the

context x is the user query along with user profile, time of day, etc. Actions

correspond to search items (such as web pages). The policy chooses ` of m items,

where the set Y(x) of m items for a context x is selected from a large corpus by a

fixed filtering step (e.g., a database query). We have Y j(x) = Y(x) for all j ≤ `, but

the allowed slates Y(x) have no repeated actions. The slots j ≤ ` correspond to

positions on the search results page. The number of valid slates is exponential

in ` since |Y(x)| = m!/(m − `)! = mΩ(`). A reward could be the negative time-

to-success, i.e., negative of the time taken by the user to find a relevant item,

typically capped at some threshold if nothing relevant is found.

5.4 Off-Policy Evaluation and Optimization

In the off-policy setting, we have access to the logged data (x1, y1, δ1), . . . (xn, yn, δn)

collected using a past policy π0, called the logging policy. Off-policy evaluation is

the task of estimating the value of a new policy π, called the target policy, using

the logged data. Off-policy optimization is the harder task of finding a policy π̂

that improves upon the performance of π0 and achieves a large reward. We

mostly focus on off-policy evaluation and show how to use it as a subroutine

for off-policy optimization in Section 5.6.2.

There are two standard approaches for off-policy evaluation. The direct

method (DM) partitions the logged data and uses one subset to train a model
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δ̂(x, y) to predict the expected reward for a given context and slate. V(π) is then

estimated on the remaining data as

V̂DM(π) = 1
n

∑n
i=1

∑
y∈Y(xi) δ̂(xi, y)π(y | xi). (5.1)

The sum over y in Equation (5.1) can be estimated with a small sample (for

stochastic π) and simplifies to a single y for deterministic π. The direct method

is frequently biased because the reward model δ̂(x, y) is typically misspecified.

The second approach, which is provably unbiased (under modest assump-

tions), is the inverse propensity score (IPS) estimator [47]. The IPS estimator

reweights the logged data according to ratios of slate probabilities under the

target and logging policy. It has two common variants:

V̂IPS(π) = 1
n

∑n
i=1 δi ·

π(yi |xi)
π0(yi |xi)

, V̂wIPS(π) =
∑n

i=1 δi ·
π(yi |xi)
π0(yi |xi)

/ (∑n
i=1

π(yi |xi)
π0(yi |xi)

)
. (5.2)

The two estimators differ only in their normalizer. The IPS estimator is un-

biased, whereas the weighted IPS (wIPS) is only asymptotically unbiased, but

usually achieves smaller error due to smaller variance. Unfortunately, the vari-

ance of both estimators grows linearly with the magnitude of π(y | x)/π0(y | x),

which can be as bad as Ω(|Y(x)|). This is prohibitive when |Y(x)| = mΩ(`).

5.5 Our Approach and Assumptions

To reason about slates, we consider vectors in R`m whose components are in-

dexed by pairs ( j, y) of slots and possible actions in them. A slate is then de-

scribed by an indicator vector 1y ∈ R
`m whose entry at position ( j, y) is equal to 1

if the slate y has action y in the slot j, i.e., 1{y j = y}.

86



At the foundation of our approach is an assumption relating the slate value

to its component actions:

Assumption 1 (ADA). A combinatorial contextual bandit problem satisfies the

additive decomposition assumption (ADA) if for each context x ∈ X there exists a

(possibly unknown) intrinsic reward vector φx ∈ R
`m such that the slate value

decomposes as V(x, y) = 1T
yφx =

∑`
j=1φx( j, y j).

ADA only posits the existence of intrinsic rewards, not their observability.

This assumption distinguishes it from semi-bandits where {φx( j, y j)}`j=1 can be

observed for the y j’s chosen by π0 in context x.

The slate value is described by a linear relationship between 1y and the un-

known “parameters” φx, but we do not require that φx be easy to fit from fea-

tures describing contexts and actions, which is the key departure from the direct

method and parametric bandits.

While ADA rules out some kinds of interactions among different actions on a

slate,2 its ability to vary intrinsic rewards arbitrarily across contexts can capture

many common metrics in information retrieval, such as the normalized discounted

cumulative gain (NDCG) [15], a common reward metric in web ranking:

Example 3 (NDCG). For a given slate y we first define DCG:

DCG(x, y) B
∑`

j=1
2rel(x,y j)−1
log2( j+1) ,

where rel(x, y) ≥ 0 is the relevance of document y on query x. We de-

fine NDCG(x, y) B DCG(x, y)/DCG?(x) where DCG?(x) = maxy∈Y(x) DCG(x, y),

so NDCG takes values in [0, 1]. Thus, NDCG satisfies ADA with φx( j, y) =(
2rel(x,y) − 1

) / (
DCG?(x) log2( j + 1)

)
.

2 We discuss limitations of ADA and directions to overcome them in Section 5.7.
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In addition to ADA, we also make the standard assumption that the logging

policy puts a non-zero probability on all slates that can be potentially chosen by

the target policy. This assumption is also required for the unbiasedness of IPS.

Otherwise, off-policy evaluation is impossible [65].

Assumption 2 (ABS). The off-policy evaluation problem satisfies the absolute

continuity assumption if π0(y | x) > 0 whenever π(y | x) > 0 with probability one

over x ∼ Pr(X).

5.5.1 The Pseudoinverse Estimator

Our estimator uses certain moments of the logging policy π0, called marginal

values and denoted θπ0,x ∈ R
`m, and their empirical estimates called marginal

rewards and denoted θ̂i ∈ R
`m:

θπ0,x B Eπ0[δ1y | x] and θ̂i B δi1yi .

Recall that π0 is viewed here as a distribution over triples (x, y, δ). In words,

the components θπ0,x( j, y) accumulate the rewards only when the policy π0

chooses a slate y with y j = y. The random variable θ̂i estimates θπ0,x at xi by

the observed reward for the slate yi displayed for xi in our logs. The key in-

sight is that the marginal value θπ0,x( j, y) provides an indirect view of φx( j, y),

occluded by the effect of actions in slots k , j. Specifically, from ADA and the

definition of θπ0,x, we obtain

θπ0,x( j, y) = π0(y j = y | x)φx( j, y) +
∑
k, j

∑
y′∈Yk(x)

π0(y j = y, yk = y′ | x)φx(k, y′). (5.3)
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Equation (5.3) represents a linear relationship between θπ0,x and φx, which is

concisely described by a matrix Γπ0,x ∈ R
`m×`m, with

Γπ0,x( j, y; k, y′) B



π0(y j = y | x) if j = k and y = y′,

π0(y j = y, yk = y′ | x) if j , k,

0 otherwise.

Thus, θπ0,x = Γπ0,xφx. If Γπ0,x was invertible, we could write φx = Γ−1
π0,xθπ0,x

and use ADA to obtain V(x, y) = 1T
y Γ−1

π0,xθπ0,x. We could then replace θπ0,xi by its

unbiased estimate θ̂i to get an unbiased estimate of V(xi, y). In reality, Γπ0,x is

not invertible. However, it turns out that the above strategy still works, we just

need to replace the inverse by the pseudoinverse: 3

Theorem 4. If ADA holds and π0(y | x) > 0, then V(x, y) = 1T
y Γ†π0,xθπ0,x.

This strategy gives rise to the pseudoinverse estimator (PI):

V̂PI(π) =
1
n

n∑
i=1

∑
y∈Y(xi)

π(y | xi)1T
y Γ†π0,xi

θ̂i =
1
n

n∑
i=1

δi · qT
π,xi

Γ†π0,xi
1yi . (5.4)

In Equation (5.4), we have expanded the definition of θ̂i and introduced the no-

tation qπ,x for the expected slate indicator under π conditioned on x, qπ,x B Eπ[1y |

x]. The sum over y required to obtain qπ,xi in Equation (5.4) can be estimated with

a small sample for stochastic π and simplifies to a single y for deterministic π,

analogous to the direct method.

Theorem 4 immediately yields the unbiasedness of V̂PI:

3 A variant of Theorem 4 is proved in a different context by Dani, Hayes, and Kakade [28].
Our proof, alongside proofs of all other statements in this chapter, is in Appendix B.
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Theorem 5. If ADA and ABS hold, then the estimator V̂PI is unbiased, i.e., Eπn
0
[V̂PI] =

V(π), where the expectation is over the n logged examples sampled i.i.d. from π0.

To better motivate the PI estimator and its suitability for off-policy evalua-

tion, we now present some examples where the estimator can be further simpli-

fied and takes intuitive forms. We begin by showing that it can be viewed as a

direct extension of IPS to combinatorial settings.

Example 4 (PI when ` = 1). When the slate consists of a single slot, the policies

recommend a single action chosen from some set Y(x) for a context x. In this

case, PI coincides with IPS since

Γπ0,x = diag
(
π0(y | x)

)
y∈Y(x), Γ†π0,x = diag

(
1/π0(y | x)

)
y∈Y(x), and qπ,x =

(
π(y | x)

)
y∈Y(x).

Our second example considers a self-evaluation setting, where π = π0 and

highlights that PI is maximally data efficient in this extreme.

Example 5 (PI when π = π0). When the target policy coincides with the logging

policy, the estimator simplifies to the average of rewards: V̂PI(π) = 1
n

∑n
i=1 δi (see

Appendix B.3). For ` = 1, this follows from the previous example, but it is

non-trivial to show for ` ≥ 2.

Finally, we take two particular structured action sets discussed in Example 1

and 2. In both cases, we simplify the PI estimator to highlight the sources of

improvement over the vanilla IPS estimator.

Example 6 (PI for a Cartesian product with uniform logging). The PI estimator

for the Cartesian product slate space when π0 is uniform simplifies to

V̂PI(π) = 1
n

∑n
i=1 δi ·

(∑`
j=1

π(yi j |xi)
1/m j

− ` + 1
)
,
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by Proposition 5 in Appendix B.4.1. Note that unlike IPS, which divides by

probabilities of whole slates, the PI estimator only divides by probabilities of

actions appearing in individual slots. Thus, the magnitude of each term of the

outer summation is only O(`m), whereas the IPS terms are mΩ(`).

Example 7 (PI for rankings with ` = m and uniform logging). In this case, the PI

estimator equals

V̂PI(π) = 1
n

∑n
i=1 δi ·

(∑`
j=1

π(yi j |xi)
1/(m−1) − m + 2

)
,

by Proposition 6 in Appendix B.4.1. Individual terms are O(`m) = O(m2).

5.5.2 Deviation Analysis

We have shown that the pseudoinverse estimator is unbiased given ADA and

have also given examples when it improves exponentially over IPS, the ex-

isting state-of-the-art for off-policy evaluation. We next derive a distribution-

dependent bound on the finite sample error and use it to obtain an exponential

improvement over IPS for a broader class of logging distributions.

Our deviation bound is obtained by an application of Bernstein’s inequal-

ity, which requires bounding the variance and range of the terms appearing in

Equation (5.4), namely δi · qT
π,xi

Γ†π0,xi1yi . We bound their variance and range, re-

spectively, by the following distribution-dependent quantities:

σ2 B Ex

[
qT
π,xΓ

†
π0,xqπ,x

]
, ρ B sup

x
sup

y:π0(y|x)>0

∣∣∣qT
π,xΓ

†
π0,x1y

∣∣∣ . (5.5)
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The quantity σ2 bounds the variance whereas ρ bounds the range. They capture

the “average” and “worst-case” mismatch between the logging and target pol-

icy. They equal one when π = π0 (see Appendix B.3), and in general, yield the

following deviation bound:

Theorem 6. Assume that ADA and ABS hold, and let σ2 and ρ be defined as in Equa-

tion (5.5). Then, for any η ∈ (0, 1), with probability at least 1 − η,

∣∣∣V̂PI(π) − V(π)
∣∣∣ ≤ √

2σ2 ln(2/η)
n

+
2(ρ + 1) ln(2/η)

3n
.

Observe that this finite sample bound is structurally different from the re-

gret bounds developed for combinatorial bandits. The bound incorporates the

extent of overlap between π and π0 so that we have a higher confidence in our

estimates when the logging and evaluation policies are similar — these charac-

terizations are important for off-policy evaluation.

In Appendix B.4, Proposition 4, we show that σ2 ≤ ρ, so to bound V̂PI, it

suffices to bound ρ. While this leads to less precise bounds in general, it is a

natural choice since ρ is often significantly easier to bound than σ2, often in a

distribution-agnostic manner. We next show such a bound for a broad class of

logging policies defined as follows:

Definition 2. Let ν denote the uniform policy, that is, ν(y | x) = 1/|Y(x)| and let π be

an arbitrary stochastic policy. We say that the policy πκ is κ-uniform for some κ ∈ (0, 1]

if for all contexts x, actions y, y′, we have

πκ(y | x) = κν(y | x) + (1 − κ)π(y | x).

For the Cartesian product slate space, this means that πκ(y j = y, yk = y′ |

x) ≥ κ/(m jmk) for j , k. For rankings, πκ(y j = y, yk = y′ | x) ≥ κ/(m(m − 1))
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for j , k. These lower bounds on the entries of Γπ0,x will prove to be very

useful when deriving finite sample bounds. The κ-uniform definition captures

ε-greedy policies which are a popular class of logging policies [14] in practice.

Proposition 2. Assume that valid slates form a Cartesian product space as in Exam-

ple 1 or are rankings as in Example 2. Then for any κ-uniform logging policy, we have

ρ ≤ κ−1`m.

Thus, using the fact that σ2 ≤ ρ, Proposition 2 and Theorem 6 yield

|V̂PI(π) − V(π)| ≤ O
( √

κ−1`m/n
)
, or equivalently O(κ−1`m/η2) logging samples are

needed to achieve accuracy η.

5.6 Experiments

We now empirically evaluate the performance of the pseudoinverse estimator in

the ranking scenario of Example 2. We first show that our approach compares

favorably to baselines in a semi-synthetic evaluation on a public data set un-

der the NDCG metric, which satisfies ADA as discussed in Example 3. On the

same data, we further use the pseudoinverse estimator for off-policy optimization,

that is, to learn ranking policies, competing against a supervised baseline that

uses more information. Finally, we demonstrate substantial improvements on

proprietary data from search engine logs for two user satisfaction metrics used

in practice: time-to-success and utility rate, which are a priori unlikely to satisfy

ADA. More detailed results are deferred to Appendices B.5, B.6, and B.7.
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5.6.1 Semi-Synthetic Evaluation

Our semi-synthetic evaluation uses labeled data from the LETOR4.0 MQ2008

dataset [91] to create a contextual bandit problem. Queries provide the contexts

x and actions y are the available documents. The dataset contains 784 queries,

5—121 documents per query and relevance labels rel(x, y) ∈ {0, 1, 2} for each

query-document pair. Each pair (x, y) has a 47-dimensional feature vector f(x, y),

which can be partitioned into title features ftitle, and body features fbody.

To derive a logging policy and a distinct target policy, we first train two lasso

regression models, called predtitle and predbody, to predict relevances from ftitle and

fbody, respectively. To create the logged data queries x are sampled uniformly,

and the set Y(x) consists of top m documents according to predtitle. The logging

policy π0 samples from a multinomial distribution over documents in Y(x), pa-

rameterized by α ≥ 0: pα(y | x) ∝ exp(α · predtitle(x, y)). Slates are constructed

slot-by-slot, sampling without replacement according to pα. Choosing α ∈ [0,∞)

interpolates between uniformly random and deterministic logging. Our target

policy π selects the top ` documents according to predbody to sequentially popu-

late the slate. The slate reward is the NDCG metric defined in Example 3.

We compare our estimator PI with the direct method (DM) and weighted

IPS (wIPS, see Equation (5.2)), which out-performed IPS. Our implementation

of DM concatenates per-slot features f(x, y) to produce a slate-level feature vec-

tor f(x, y), training a reward predictor on the first n/2 examples and evaluating

π using Equation (5.1) on the other n/2 examples. We experimented with regres-

sion trees, ridge and lasso regression for DM, and always report results for the

choice with the smallest RMSE at n = 106 examples. We also include an aspira-

tional baseline, ONPOLICY. This “skyline” corresponds to deploying the target
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policy as in an A/B test and returning the average of observed rewards [60].

This approach is the expensive alternative we wish to avoid. We plot the root

mean square error (RMSE) of the estimators as a function of increasing data size

over at least 20 independent runs.
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Figure 5.2: RMSE of different off-policy value estimators under uniform log-
ging (α = 0) and non-uniform logging (α = 10) for three different slate recom-
mendation problems.

In Figure 5.2, the first two plots study the RMSE of estimators for two choices

of m and `, given the uniform logging policy π0 ≡ ν (i.e., α = 0). In both cases, the

pseudoinverse estimator outperforms wIPS by a factor of 10 or more with high

statistical significance, p < 10−8 for both plots and all n. The pseudoinverse es-

timator eventually also outperforms the biased DM with statistical significance,

with p ≤ 7.3 × 10−4 for both plots at n ≥ 600K. The cross-over point occurs fairly

early (n ≈ 10K) for the smaller slate space, but is one order larger (n ≈ 100K)

for the biggest slate space. Note that DM’s performance can deteriorate with

more data because it optimizes the fit to the reward distribution of π0, which is

different from that of π.

As expected, ONPOLICY performs the best, requiring between 10x and 100x

less data. However, ONPOLICY requires fixing the target policy π for each data

collection, while off-policy methods like PI take advantage of massive amounts

of logged data to evaluate arbitrary policies. As an aside, since the user feedback
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in these experiments is simulated, we can also simulate semi-bandit feedback

(which reveals the intrinsic reward of each shown action) for off-policy evalu-

ation. This simulation is a purely hypothetical baseline: with only page-level

feedback, one cannot implement a semi-bandit solution. We compare against

this hypothetical baseline in Appendix B.6.

In Figure 5.2 (right panel), we study the effect of the overlap between the

logging and target policies, by taking α = 10, which results in a better alignment

between the logging and target policies. While the RMSE of the pseudoinverse

estimator is largely unchanged, both wIPS and DM show some improvement.

wIPS enjoys a smaller variance due to a lower range of importance weights,

while DM enjoys a lower bias due to closer training and target distributions.

PI continues to be statistically better than wIPS, with p ≤ 10−8 for all n, and

eventually also better than DM, with p ≤ 4.4 × 10−4 starting at n ≥ 200K. See

Appendices B.5 and B.6 for more results and the complete set of p-values.

5.6.2 Semi-Synthetic Policy Optimization

We now show how to use the pseudoinverse estimator for off-policy optimiza-

tion. We leverage pointwise learning to rank (L2R) algorithms, which learn a

scoring function for query-document pairs by fitting to relevance labels. We call

this the supervised approach, as it requires relevance labels.

Instead of requiring relevance labels, we use the pseudoinverse estimator to

convert page-level reward into per-slot reward components — the estimates of

φx( j, a) — and these become our targets for regression. Thus, the pseudoinverse

estimator enables pointwise L2R even without relevance labels. Given a contextual
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bandit dataset {(xi, yi, δi)}i≤n collected by the logging policy π0, we begin by creat-

ing the estimates of φxi : φ̂i = Γ†π0,xiθ̂i, turning the i-th contextual bandit example

into `m regression examples. The trained regression model is used to create a

slate, starting with the highest scoring slot-action pair, and continuing greedily

(excluding the pairs with the already chosen slots or actions).

We used the MQ2008 dataset from Section 5.6.1 and created a contextual ban-

dit problem with 5 slots and 20 candidate documents, with a uniformly random

logging policy. We chose a standard 5-fold split and always trained on ban-

dit data from 4 folds and evaluated using the supervised data on the fifth. We

compare our approach, titled PI-OPT, against the supervised approach, trained

to predict the gains, equal to 2rel(x,y) − 1, computed using annotated relevance

judgments in the training fold (we found that predicting raw relevances was

inferior). Both PI-OPT and SUP train regression trees. We observe that PI-OPT

is consistently competitive with SUP after seeing about 1K samples containing

slate-level feedback, and gets a test NDCG of 0.450 at 1K samples, 0.451 at 10K

samples, and 0.456 at 100K samples. SUP achieves a test NDCG of 0.453 by us-

ing approximately 12K annotated relevance judgments. We posit that PI-OPT is

competitive with SUP because it optimizes the target metric directly, while SUP

uses an imperfect target surrogate. See Appendix B.7 for detailed results.

5.6.3 Real-World Experiments

We finally evaluate all methods using logs collected from a popular search en-

gine. The dataset consists of search queries, for which the logging policy ran-

domly (non-uniformly) chooses a slate of size ` = 5 from a small pre-filtered set
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of documents of size m ≤ 8. After preprocessing, there are 77 unique queries and

22K total examples, meaning that for each query, we have logged impressions

for many of the candidate slates. To control the query distribution (Pr(X)) in

our experiment, we generate a larger dataset by bootstrap sampling, repeatedly

choosing a query uniformly at random and a slate uniformly at random from

those shown for this query. Hence, the conditional probability of any slate for a

given query matches the frequencies in the original data.

We consider two page-level metrics: time-to-success (TTS) and UTILI-

TYRATE. TTS measures the number of seconds between presenting the results

and the first satisfied click from the user, defined as any click for which the

user stays on the linked page for a sufficiently long duration. TTS values are

capped and scaled to [0, 1]. UTILITYRATE is a more complex page-level metric

of a user’s satisfaction. It captures the interaction of a user with the page as a

timeline of events (such as clicks) and their durations. The events are classified

as revealing a positive or negative utility to the user, and their contribution is

proportional to their duration. UTILITYRATE takes values in [−1, 1].

We evaluate a target policy based on a logistic regression classifier that was

trained to predict clicks and uses these predicted probabilities to score slates.

We restrict the target policy to pick among the slates in our logs, so we know

the ground truth slate-level reward by design. Since we know the query dis-

tribution, we can calculate the target policy’s value V(π) exactly, and measure

RMSE relative to this true value.

We compare our estimator (PI) with three baselines similar to those from

Section 5.6.1: DM, IPS, and ONPOLICY. DM uses regression trees over roughly

20K slate-level features.
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Figure 5.1 from Section 5.2 shows that PI provides a consistent multiplicative

improvement in RMSE over IPS, which suffers due to high variance. Starting at

moderate sample sizes, PI also outperforms DM, which suffers due to substan-

tial bias. For TTS, the gains over IPS are significant with p ≤ 3.7 × 10−5 after 2K

samples and for DM with p ≤ 1.5 × 10−3 after 20K samples. For UTILITYRATE,

the improvements on IPS are significant with p < 10−8 at 60K examples, and

over DM with p ≤ 4.3× 10−7 after 20K examples. The complete set of p-values is

in Appendix B.5.

5.7 Conclusions and Future Work

In this chapter, we have introduced a new assumption (ADA), a new estimator

(PI) that exploits this assumption, and demonstrated their significant theoretical

and practical merits.

In our experiments, we saw examples of bias-variance trade-off with off-

policy estimators. At small sample sizes, the pseudoinverse estimator still has

a non-trivial variance. In these regimes, the biased direct method can often be

practically useful due to its low variance (if its bias is sufficiently small). Such

well-performing albeit biased estimators can be incorporated into the pseudoin-

verse estimator via the doubly-robust approach [30, 31].

Experiments with real-world data in Section 5.6.3 demonstrate that even

when ADA does not hold, the estimators based on ADA can still be applied

and tend to be superior to alternatives. We view ADA similarly to the IID as-

sumption: while it is probably often violated in practice, it leads to practical

algorithms that remain robust under misspecification. Similarly to the IID as-

99



sumption, we are not aware of ways for easily testing whether ADA holds.

One promising approach to relax ADA is to posit a decomposition over pairs

(or tuples) of slots to capture higher-order interactions such as diversity. More

generally, one could replace slate spaces by arbitrary compact convex sets, as

done in linear bandits. In these settings, the pseudoinverse estimator could still

be applied, but a refined sample-complexity analysis remains open.
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CHAPTER 6

BATCH LEARNING FROM LOGGED BANDIT FEEDBACK

6.1 Chapter Notes

This chapter describes joint work with Thorsten Joachims. It is a lightly edited

combination of a journal article [113], a conference publication [115] and a work-

shop paper [114].

Recall the x 7→ y 7→ δ schematic. In this chapter, we make no assumptions

about the structure of δ. We focus on the Off-Policy setting (see Section 2.3).

We formalize the data collected through x 7→ y 7→ δ interactions as logged con-

textual bandit feedback. The goal is to build a general learning machine (see

Section 2.4) that can find good interaction policies using logged bandit data —

Batch Learning from Bandit Feedback (BLBF). We derive new data-dependent

variance regularizers for use with classic learning algorithms [64, 122]. Theo-

retically, we prove generalization error bounds of these variance-regularized al-

gorithms analogous to Structural Risk Minimization (Section 2.4). Empirically

we show in semi-synthetic experiments (following the methodology sketched

in Section 1.2) that variance regularization allows these new algorithms to im-

prove their performance in off-policy learning substantially.

6.2 Introduction

Log data is one of the most ubiquitous forms of data available, as it can be

recorded from a variety of systems (e.g., search engines, recommender systems,
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ad placement) at little cost. The interaction logs of such systems typically con-

tain a record of the input to the system (e.g., features describing the user), the

prediction made by the system (e.g., a recommended list of news articles) and

the feedback (e.g., the number of ranked articles the user read) [71]. The feed-

back, however, provides only partial information — “bandit feedback” — lim-

ited to the particular prediction shown by the system. The feedback for all the

other predictions the system could have made is typically not known. This miss-

ing information makes learning from log data fundamentally different from su-

pervised learning, where “labels” (e.g., the best ranking of news articles for that

user) together with a loss function provide full-information feedback.

In this chapter, we address the problem of learning from logged bandit feed-

back. Unlike the well-studied problem of online learning from bandit feed-

back [17], Batch Learning with Bandit Feedback (BLBF) does not require inter-

active experimental control over the system. Furthermore, it enables the reuse

of existing data and offline cross-validation techniques for model selection (e.g.,

“which features to use?”, “which learning algorithm to use?”, etc.).

To design algorithms for batch learning from bandit feedback, counterfactual

estimators [12] of a system’s performance can be used to estimate how other

systems would have performed if they had been in control of choosing predic-

tions. Such estimators have been developed recently for the off-policy evalua-

tion problem [31, 72, 70], where data collected from the interaction logs of one

interactive system is used to evaluate another system. Learning in such a set-

ting is closely related to the problem of off-policy reinforcement learning [112]

— we would like to know how well a new system (policy) would perform if it

had been used in the past.
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Our approach to counterfactual learning centers around the insight that, to

perform robust learning, it is not sufficient to have just an unbiased estima-

tor of the off-policy system’s performance. We must also reason about how the

variances of these estimators differ across the hypothesis space, and pick the hy-

pothesis that has the best possible guarantee (tightest conservative bound) for

its performance. We first prove generalization error bounds for a stochastic hy-

pothesis family using an empirical Bernstein argument [82]. These bounds com-

plement recent approaches to deriving confidence intervals for counterfactual

estimators [12, 119]. By relating the generalization error to the empirical sam-

ple variance of different hypotheses, we can effectively penalize the hypothe-

ses with large variance during training using a data-dependant regularizer. In

analogy to Structural Risk Minimization for full-information feedback [124], the

constructive nature of these bounds suggests a general principle — Counterfac-

tual Risk Minimization (CRM) — for designing methods for BLBF.

Using the CRM principle, we derive a new learning algorithm — Policy Op-

timizer for Exponential Models (POEM) — for structured output prediction.

The training objective is decomposed using repeated variance linearization, and

optimizing it using AdaGrad [29] yields a fast and efficient algorithm. We eval-

uate POEM on several multi-label classification problems, verify that its em-

pirical performance supports the theory, and demonstrates substantial gain in

generalization performance over the state-of-the-art. We then use POEM in a

real-world experiment for learning a high precision classifier for information

retrieval using logged click data.

The remainder of this chapter is structured as follows. We review existing

approaches in Section 6.3. The learning setting is detailed in Section 6.4 and con-
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trasted with supervised learning. In Section 6.5, we derive the Counterfactual

Risk Minimization learning principle and provide a rule of thumb for setting

hyper-parameters. In Section 6.6, we instantiate the CRM principle for struc-

tured output prediction using exponential models and construct an efficient

decomposition of the objective for stochastic optimization. Empirical evalua-

tions are reported in Section 6.7, and a real-world application is described in

Section 6.8. We conclude with future directions and discussion in Section 6.9.

6.3 Related Work

Existing approaches for batch learning from logged bandit feedback fall into

two categories. The first approach is to reduce the problem to supervised learn-

ing. In principle, since the logs give us an incomplete view of the feedback

for different predictions, one could first use regression to estimate a feedback

oracle for unseen predictions, and then use any supervised learning algorithm

using this feedback oracle. Such a two-stage approach is known not to general-

ize well [8]. More sophisticated techniques using the Offset Tree algorithm [8]

allow us to perform batch learning when the space of possible predictions is

small. In contrast, our approach generalizes structured output prediction, with

exponentially-large prediction spaces. In experiments, we apply our approach

to multi-label classification problems. When the number of labels is K, the num-

ber of possible predictions is 2K . A direct application of the Offset tree algorithm

requires O(2K) space and only guarantees regret O((2K − 1)r) where r is the “re-

gret” of an underlying binary classifier. Our approach directly tackles the prob-

lem using popular structured prediction models, with computation and space

complexity that mirrors these supervised structured prediction algorithms.
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The second approach to batch learning from bandit feedback uses propen-

sity scoring [95] to derive unbiased estimators from the interaction logs [12].

These estimators are used for a small set of candidate policies, and the best

candidate is picked via exhaustive search. In contrast, our approach can be op-

timized via gradient descent, over hypothesis families (of infinite size) that are

equally as expressive as those used in supervised learning. In particular, we

build on recent work that develops confidence bounds for counterfactual esti-

mators [12, 119] using empirical Bernstein bounds. Our key insight is that these

confidence intervals are not merely observable but can be efficiently optimized

during training. Other recent bounds derived from Renyi divergences [24] can

analogously be co-opted in our approach to counterfactual learning.

Our approach builds on counterfactual estimators that have been developed

for off-policy evaluation. The inverse propensity scoring approach can work

well when we have a good model of the historical algorithm [110, 70, 73], and

doubly robust estimators [31, 30] are even more effective when we addition-

ally have a good model of the feedback. In our work, we focus on the inverse

propensity scoring estimator, but the results we derive also hold for the doubly

robust estimators.

In the current work, we concentrate on the case where the historical algo-

rithm was a stationary, stochastic policy. Techniques like exploration scaveng-

ing [65] and bootstrapping [81] allow us to perform counterfactual evaluation

even when the historical algorithm was deterministic or adaptive.

Our strategy of picking the hypothesis with the tightest conservative bound

on performance mimics similar successful approaches in other problems like

supervised learning [124], risk averse multi-armed bandits [36], regret minimiz-
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ing contextual bandits [66] and reinforcement learning [37]. Beyond the prob-

lem of batch learning from bandit feedback, our approach can have implica-

tions for several applications that require learning from logged bandit feedback

data: warm-starting multi-armed bandits [105] and contextual bandits [110],

pre-selecting retrieval functions for search engines [45], policy evaluation for

contextual bandits [72], and reinforcement learning [119] to name a few.

6.4 Learning Setting: Batch Learning from Bandit Feedback

Consider a structured output prediction problem that takes as input x ∈ X and

outputs a prediction y ∈ Y. For example, in multi-label document classification,

x could be a news article and y a bit vector indicating the labels assigned to this

article. The inputs are assumed drawn from a fixed but unknown distribution

Pr(X), x i.i.d.
∼ Pr(X). Consider a hypothesis space H of stochastic policies. A hy-

pothesis π(Y | x) ∈ H defines a probability distribution over the output space

Y and the hypothesis makes predictions by sampling, y ∼ π(Y | x). Note that

this definition also includes deterministic hypotheses, where the distributions

assign probability 1 to a single y. For notational convenience, denote π(· | x) by

π(x), and the probability assigned to a particular y as π(y | x). We will abuse

notation slightly and use (x, y) ∼ π to refer to samples drawn from the joint dis-

tribution, x ∼ Pr(X), y ∼ π(Y | x). When it is evident from the context, we will

drop (x, y) ∼ π and simply write π.

In interactive learning systems, we only observe feedback δ(x, y) for the y

sampled from π(x). In this work, feedback δ : X×Y 7→ R is a cardinal loss that is

only observed at the sampled data points. Small values for δ(x, y) indicate user
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satisfaction with y for x, while large values indicate dissatisfaction. The setting

extends naturally to noisy losses, where we think of individual feedbacks δ ∼

Pr(· | x, y) as conditioned on the input x and presented output y. All subsequent

results hold with δ(x, y) B Eδ∼Pr(·|x,y)[δ].

The expected loss — called risk — of a hypothesis R(π) is defined as,

R(π) = Ex∼Pr(X)Ey∼π(x)
[
δ(x, y)

]
= Eπ

[
δ(x, y)

]
.

The goal of the system is to minimize risk, or equivalently, maximize expected

user satisfaction. The aim of learning is to find a hypothesis π̂ ∈ H that has

minimum risk.

We wish to re-use the interaction logs of these systems for batch learning.

Assume that its historical algorithm acted according to a stationary policy π0(x)

(also called logging policy). The data collected from this system is

D = {(x1, y1, δ1), . . . (xn, yn, δn)},

where yi ∼ π0(xi) and δi ≡ δ(xi, yi) (or δi ∼ Pr(· | xi, yi) in the noisy feedback case).

Sampling Bias: D cannot be used to estimate R(π) for a new hypothesis π us-

ing the estimator typically used in supervised learning. We ideally need either

full information about δ(xi, ·) or need samples y ∼ π(xi) to directly estimate R(π).

This observation explains why, in practice, model selection over a small set of

candidate systems is typically done via A/B tests, where the candidates are de-

ployed to collect new data sampled according to y ∼ π(x) for each hypothesis π.

A relative comparison of the assumptions, hypotheses, and principles used in

supervised learning versus our learning setting is outlined in Table 6.1. Funda-

mentally, batch learning with bandit feedback is hard because D is both biased
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(predictions favored by the historical algorithm will be over-represented) and

incomplete (feedback for other predictions will not be available) for learning.

Supervised Batch w/bandit
Distribution (x, y∗) ∼ Pr(X ×Y) x ∼ Pr(X), y ∼ π0(x)
DataD {xi, y∗i} {xi, yi, δi, pi}

Hypothesis y = S (x) y ∼ π(Y | x)
Loss ∆(y∗, ·) known δ(x, ·) unknown

Objective: argmin R̂(S ) + C · Reg(S ) R̂M(π) + C · Reg(π) + λ ·

√
ˆV ar(π)

n

Table 6.1: Comparison of assumptions, hypotheses and learning principles for
supervised learning and Batch Learning from Bandit Feedback (BLBF).

6.5 Learning Principle: Counterfactual Risk Minimization

The distribution mismatch between π0 and any hypothesis π ∈ H can be ad-

dressed using importance sampling, which corrects the sampling bias [86] as:

R(π) = Eπ
[
δ(x, y)

]
= Eπ0

[
δ(x, y)

π(y | x)
π0(y | x)

]
.

This equation motivates the propensity scoring approach [95] in causal infer-

ence. During the operation of the logging policy, we keep track of the propen-

sity, p ≡ π0(y | xi) of π0 to generate y. From these propensity-augmented logs

D = {(x1, y1, δ1, p1), . . . (xn, yn, δn, pn)},

where pi ≡ π0(yi | xi), we can derive an unbiased estimate of R(π) via Monte

Carlo approximation,

R̂(π) =
1
n

n∑
i=1

δi
π(yi | xi)

pi
. (6.1)

At first thought, one may think that directly estimating R̂(π) over π ∈ H and

picking the empirical minimizer is a valid learning strategy. Unfortunately,

there are several pitfalls.
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First, this strategy is not invariant to additive transformations of the loss

and will give degenerate results if the loss is not appropriately scaled. In Sec-

tion 6.5.3, we develop the intuition for why this is so and derive the optimal

scaling of δ. For now, assume that ∀x,∀y, δ(x, y) ∈ [−1, 0].

Second, this estimator has unbounded variance, since pi ' 0 in D can cause

R̂(π) to be arbitrarily far away from the true risk R(π). This drawback can be

fixed by “clipping” the importance sampling weights [51, 110, 12, 24]

RM(π) = Eπ0

[
δ(x, y) min

{
M,

π(y | x)
π0y | x

}]
,

R̂M(π) =
1
n

n∑
i=1

δi min
{

M,
π(yi | xi)

pi

}
. (6.2)

M ≥ 1 is a hyper-parameter chosen to trade-off bias and variance in the estimate,

where smaller values of M induce larger bias in the estimate. Optimizing R̂M(π)

through exhaustive enumeration over H yields the Inverse Propensity Scoring

(IPS) training objective

π̂IPS = argmin
π∈H

{
R̂M(π)

}
. (6.3)

This objective captures the essence of previous offline policy optimization ap-

proaches [12, 110]. These approaches differ from Equation (6.3) in the specific

way the importance sampling weights are clipped, the choice of H and frame

the optimization problem as a maximization of counterfactual rewards as op-

posed to minimization of counterfactual risk.

Third, importance sampling typically estimates R̂M(π) of different hypothe-

ses π ∈ H with vastly different variances. Consider two hypotheses π1 and π2,

where π1 is very similar to π0, but where π2 samples predictions y that were not

well explored by π0. Importance sampling gives us low-variance estimates for

R̂M(π1), but highly variable estimates for R̂M(π2). Intuitively, if we can develop
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variance-sensitive confidence bounds over the hypothesis space, optimizing a

conservative confidence bound should find a π whose R(π) will not be much

worse, with high probability.

6.5.1 Generalization Error Bound

A standard analysis [124] would give a bound that is agnostic to the variance

introduced by importance sampling. Following our intuition above, we derive

a higher order bound that includes the variance term using empirical Bernstein

bounds [82]. To develop such a generalization error bound, we first need a

concept of capacity for stochastic hypothesis classes. Our strategy is to define

an auxiliary deterministic function class FH for H and directly use covering

numbers for FH conditioned on sampleD to characterize the capacity ofH . We

start by defining the auxiliary deterministic function class FH .

Definition 3. For any stochastic classH , define an auxiliary function class FH = { fπ :

X ×Y 7→ [0, 1]}. Each π ∈ H corresponds to a function fπ ∈ FH ,

fπ(x, y) = 1 +
δ(x, y)

M
min

{
M,

π(y | x)
π0y | x

}
. (6.4)

Based on this auxiliary function class FH , we will study the convergence of

R̂M(π)→ RM(π). A key insight is the following relationship between π and fπ.

Lemma 7. For any stochastic hypothesis π, the clipped risk RM(π) and the expected

value of fπ under the data generating distribution are related as

Eπ0

[
fπ(x, y)

]
= 1 +

RM(π)
M

. (6.5)
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Proof. Note that fπ is a deterministic and bounded function. From the definition

of fπ and by linearity of expectation,

Eπ0

[
fπ(x, y)

]
= Eπ0

[
1 +

δ(x, y)
M

min
{

M,
π(y | x)
π0y | x

}]
= 1 +

1
M
Eπ0

[
δ(x, y) min

{
M,

π(y | x)
π0y | x

}]
= 1 +

RM(π)
M

.

�

As a consequence of Lemma 7, we can use classic notions of capacity for FH

to reason about the convergence of R̂M(π) → RM(π). Recall the covering number

N∞(ε,F , n) for a function class F .1 Define an ε−cover N(ε, A, ‖ · ‖∞) for a set

A ⊆ Rn to be the size of the smallest cardinality subset A0 ⊆ A such that A is

contained in the union of balls of radius ε centered at points in A0, in the metric

induced by ‖ · ‖∞. The covering number is,

N∞(ε,F , n) = sup
(xi,yi)∈(X×Y)n

N(ε,F ({(xi, yi)}), ‖ · ‖∞),

where F ({(xi, yi)}) is the function class conditioned on sample {(xi, yi)},

F ({(xi, yi)}) = {( f (x1, y1), . . . f (xn, yn)) : f ∈ F }.

Our measure of the capacity of our stochastic classH to “fit” a sample of size n

shall be N∞( 1
n ,FH , 2n).

For a compact notation, define the random variable zπ ≡ δ(x, y) min
{
M, π(y|x)

π0(y|x)

}
with mean zπ = RM(π). The sample D contains n i.i.d. random variables zπi ≡

1Recent texts [1, 82] and their references provide an excellent overview of covering numbers.

111



δi min{M, π(yi |xi)
pi
}. Define the sample mean and variance of zπi

ẑπ ≡
1
n

n∑
i=1

zπi = R̂M(π),

ˆV ar(zπ) ≡
1

n − 1

n∑
i=1

(zπi − ẑπ)2.

Theorem 8. With probability at least 1 − η in the random vector (x1, y1) . . . (xn, yn) i.i.d.
∼

π0, with observed losses δ1, . . . δn, for n ≥ 16 and a stochastic hypothesis space H with

capacity N∞( 1
n ,FH , 2n),

∀π ∈ H :R(π) ≤ R̂M(π) +

√
18

ˆV ar(zπ)QH (n, η)
n

+ M
15QH (n, η)

n − 1
,

where QH (n, η) ≡ log(
10 · N∞(1

n ,FH , 2n)
η

), 0 < η < 1.

The proof of Theorem 8 is provided in Appendix C.1.

6.5.2 CRM Principle

The generalization error bound from Theorem 8 is constructive in the sense

that it motivates a general principle for designing machine learning methods

for batch learning from bandit feedback. In particular, a learning algorithm fol-

lowing this principle should optimize the estimate R̂M(π) as well as the empirical

standard deviation, where the latter serves as a data-dependent regularizer.

p̂i
CRM

= argmin
π∈H

R̂M(π) + λ

√
ˆV ar(zπ)

n

 . (6.6)

M ≥ 1 and λ ≥ 0 are regularization hyper-parameters. When λ = 0, we re-

cover the Inverse Propensity Scoring objective of Equation (6.3). In analogy
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to Structural Risk Minimization [124], we call this principle Counterfactual Risk

Minimization, since both pick the hypothesis with the tightest upper bound on

the true risk R(π).

6.5.3 Conservative Loss Scaling

When performing supervised learning with true labels y∗ and a loss function

∆(y∗, ·), empirical risk minimization using the standard estimator is invariant

to additive translation and multiplicative (by a positive constant) scaling of ∆.

Bandit learning with the risk estimators R̂(π) and R̂M(π), however, crucially re-

quires δ(·, ·) ∈ [−1, 0].

Consider, for example, the case of δ(·, ·) ≥ 0. The training objectives in Equa-

tion (6.3) (IPS) and Equation (6.6) (CRM) become degenerate! A hypothesis

π ∈ H that completely avoids the sample D (i.e. ∀i = 1, . . . n, π(yi | xi) = 0)

trivially achieves the best possible R̂M(π) (= 0) with 0 empirical variance. This

degeneracy arises partially because when δ(·, ·) ≥ 0, the objectives optimize a

lower bound on R(π), whereas what we need is an upper bound.

For any bounded loss δ(·, ·) ∈ [5,4], we have, ∀x

Ey∼π(x)
[
δ(x, y)

]
≤ 4 + Ey∼π0 x

[
(δ(x, y) − 4) min

{
M,

π(y | x)
π0(y | x)

}]
.

Since the optimization objectives in Equation (6.3) and Equation (6.6) are unaf-

fected by a constant positive scale factor (e.g., 4−5), we should transform δ 7→ δ′

to derive a conservative training objective,

δ′ ≡ {δ − 4}/{4 − 5}.
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Such a transformation captures the following assumption: for an input x ∈ D,

if a new hypothesis π , π0 samples an unexplored y not seen in D, in the worst

case it will incur a loss of 4. This assumption is clearly very conservative, and

we foresee future work that relaxes this using additional assumptions about

δ(·, ·) and Y.

6.5.4 Selecting Hyper-Parameters

We propose selecting the hyper-parameters M ≥ 1 and λ ≥ 0 via cross valida-

tion. However, we must be careful not to set M too small or λ too big. The

estimated risk R̂M(π) ∈ [−M, 0], while the variance penalty
√

ˆV ar(zπ)
n ∈

[
0, M

2
√

n

]
. If

M is too small, all the importance sampling weights will be clipped, and all hy-

potheses will have the same biased estimate of risk MR̂M(π0). Similarly, if λ � 0,

a hypothesis π ∈ H that completely avoids D (i.e. ∀i = 1, . . . n, π(yi | xi) = 0)

has R̂M(π) (= 0) with 0 empirical variance. So, it will achieve the best possible

training objective of 0. As a rule of thumb, we can calibrate M and λ so that, for

some π ∈ H , the estimator is unbiased, and the objective is non-trivially nega-

tive. When π0 ∈ H , M ' max{pi}/min{pi} and λ :
{

R̂M(π0) + λ

√
ˆV ar(zπ0 )

n

}
< 0 are

natural choices.

6.5.5 When Is Counterfactual Learning Possible?

The bounds in Theorem 8 are with respect to the randomness in π0. Known im-

possibility results for counterfactual evaluation using π0 [65] also apply to coun-

terfactual learning. In particular, if π0 was deterministic, or even stochastic but
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without full support over Y, it is easy to engineer examples involving the un-

explored y ∈ Y that guarantee sub-optimal learning even as |D| → ∞. Similarly,

lower bounds for learning under covariate shift [24] also apply to counterfac-

tual learning. Finally, a stochastic π0 with heavier tails need not always allow

more effective learning. From importance sampling theory [86], what matters is

how well π0 explores the regions of Y with favorable losses.

6.6 Learning Algorithm: POEM

We now use the CRM principle to derive an efficient algorithm for structured

output prediction using linear rules. Classic learning methods for structured

output prediction based on full-information feedback, like structured support

vector machines [122] and conditional random fields [64], predict using

S sup
w (x) = argmax

y∈Y

{
wT f(x, y)

}
, (6.7)

where w is a d-dimensional weight vector, and f(x, y) is a d-dimensional joint

feature map. For example, in multi-label document classification, for a news

article x and a possible assignment of labels y represented as a bit vector, f(x, y)

could simply be a concatenation x ⊗ y of the bag-of-words features of the docu-

ment (x), one copy for each of the assigned labels in y. Several efficient inference

algorithms have been developed to solve Equation (6.7).

The POEM algorithm we derive uses the same parameterization of the

hypothesis space as in Equation (6.7). However, it considers the following

expanded class of Stochastic Soft-max Rules based on this parameterization,

which contains the deterministic rule in Equation (6.7) as a limiting case.
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6.6.1 Stochastic Soft-max Rules

Consider the following stochastic familyHlin, parametrized by w. A hypothesis

πw(x) ∈ Hlin samples y from the distribution

πw(y | x) = exp(wT f(x, y))/Z(x).

Z(x) =
∑

y′∈Y exp(wT f(x, y′)) is the partition function. This distribution is the “soft-

max” variant of the “hard-max” rules from Equation (6.7). Additionally, for a

temperature multiplier α > 1,w 7→ αw induces a more “peaked” distribution παw

that preserves the modes of πw, and is a “more deterministic” variant of πw.

πw lies in the exponential family of distributions, and has a simple gradient,

∇πw(y | x) = πw(y | x)
{
f(x, y) − Ey′∼πw(x)

[
f(x, y′)

]}
.

This observation allows us to implement the CRM principle of Equation (6.6) by

using gradient descent to search through Hlin tractably. This search procedure

is the core of the Policy Optimizer for Exponential Models (POEM) algorithm.

6.6.2 POEM Training Objective

Consider a bandit structured output data setD = {(x1, y1, δ1, p1), . . . (xn, yn, δn, pn)}.

In multi-label document classification, this data could be collected from an inter-

active labeling system, where each y indicates the labels predicted by the system

for a document x. The feedback δ(x, y) could be how many labels (but not which

ones) were correct. To perform learning, first we scale the losses as outlined in

Section 6.5.3. Next, instantiating the CRM principle of Equation (6.6) for Hlin,

(using notation analogous to that in Theorem 8, adapted for Hlin), yields the

POEM training objective.
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ŵ = argmin
w∈Rd

ẑw + λ

√
ˆV ar(zw)

n
, (6.8)

with zw
i ≡ δi min{M,

exp(wT f(xi, yi))
pi · Z(xi)

},

ẑw ≡
1
n

n∑
i=1

zw
i,

ˆV ar(zw) ≡
1

n − 1

n∑
i=1

(zw
i − ẑw)2.

While the objective in Equation (6.8) is not convex in w (even for λ = 0), we find

that batch and stochastic gradient descent find ŵ that have good generalization

error (e.g., L-BFGS [16] out of the box). The key subroutine that enables us to

perform efficient gradient descent is a tractable way to compute zw
i and ∇w(zw

i)

— both depend on Z(xi).

∇w(zw
i) =


0 if exp(wT f(xi,yi))

pi·Z(xi)
≥ M

zw
i
{
f(xi, yi) −

∑
y′
[
f(xi, y′)

exp(wT f(xi,y′))
Z(xi)

]}
otherwise.

(6.9)

For the special case when f(x, y) = x ⊗ y, where y is a bit vector ∈ {0, 1}`, Z(x)

has a simple decomposition.

exp(wT f(x, y)) =
∏̀
j=1

exp(y jwT
j x),

Z(x) =
∏̀
j=1

(1 + exp(wT
j x)),

where ` is the length of the bit vector representation of y. For the general case,

several approximation schemes have been developed to handle Z(x) for super-

vised training of graphical models and we can directly co-opt these for batch

learning under bandit feedback as well.

117



6.6.3 POEM Iterated Variance Majorization Algorithm

We could use standard batch gradient descent methods to minimize the POEM

training objective. In particular, prior work [134, 68] has established theoreti-

cally sound modifications to L-BFGS for non-smooth non-convex optimization.

The following develops a stochastic method that can be much faster.

At first glance, the POEM training objective in Equation (6.8), specifically

the variance term resists stochastic gradient optimization in the presented form.

To remove this obstacle, we now develop a Majorization-Minimization scheme,

similar in spirit to recent approaches to multi-class SVMs [123] that can be

shown to converge to a local optimum of the POEM training objective. In par-

ticular, we will show how to decompose
√

ˆV ar(zw) as a sum of differentiable

functions (e.g.,
∑

i zw
i or

∑
i{zw

i}2) so that we can optimize the overall training

objective at scale using stochastic gradient descent.

Proposition 3. For any w0 such that ˆV ar(zw0) > 0,√
ˆV ar(zw) ≤ Aw0

n∑
i=1

zw
i + Bw0

n∑
i=1

{zw
i}2 + Cw0

= G(w; w0).

Aw0 ≡
− ˆzw0

(n − 1)
√

ˆV ar(zw0)
,

Bw0 ≡
1

2(n − 1)
√

ˆV ar(zw0)
,

Cw0 ≡
n{ ˆzw0}

2

2(n − 1)
√

ˆV ar(zw0)
+

√
ˆV ar(zw0)

2
.

Proposition 3 is proved in Appendix C.2.
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Iteratively minimizing wt+1 = argminw G(w; wt) ensures that the sequence of

iterates w1, . . .wt+1 are successive minimizers of
√

ˆV ar(zw). Hence, during an

epoch t, POEM proceeds by sampling uniformly (xi, yi, δi, pi) ∼ D, computing

zw
i,∇zw

i and, for learning rate η, updating

w← w − η{∇zw
i + λ

√
n(Awt∇zw

i + 2Bwtzw
i∇zw

i)}.

After each epoch, wt+1 ← w, and iterated minimization proceeds until conver-

gence (e.g. by monitoring performance on a validation set using Equation (6.1)).

The full algorithm is summarized as Algorithm 1. Software implementing

POEM is available at http://www.cs.cornell.edu/˜adith/POEM/ for

download, as is all the code and data needed to run each of the experiments re-

ported in Section 6.7. Standalone implementations of POEM tuned for scalable

performance for bandit multi-class problems (and wrappers to handle several

other problem types) is also available at http://www.cs.cornell.edu/

˜adith/Criteo/.

6.7 Empirical Evaluation

We now empirically evaluate the prediction performance and computational

efficiency of POEM on a broad range of scenarios. To be able to control these ex-

periments effectively, we derive bandit feedback from existing full-information

data sets. As the learning task, we consider multi-label classification with input

x ∈ Rp and prediction y ∈ {0, 1}`. Popular supervised algorithms that solve this

problem include Structured SVMs [122] and Conditional Random Fields [64].

In the simplest case, CRF essentially performs logistic regression for each of

the ` labels independently. As outlined in Section 6.6, we use a joint feature
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Algorithm 1 POEM pseudocode. An alternative version can use separate sam-
plers for estimating zw

i and {zw
i}2 on Line 24.

1: procedure LOSSGRADIENT(Ds, w) . Returns zw
i,∇w(zw

i) for i ∈ Ds

2: for (xi, yi, δi, pi) ∈ Ds do
3: zi ← zw

i.
4: gi ← ∇w(zw

i). . Equation (6.9)
return ~z, ~g.

5: procedure ABC(D, w, λ) . Returns Aw, Bw,Cw from Proposition (3)
6: ~z, ~g← LossGradient(D,w).
7: R←

∑
i zi/n.

8: V ←
√∑

i(zi − R)2/(n − 1).
9: A← 1 − λ

√
nR

(n−1)V .
10: B← λ

2(n−1)V
√

n .

11: C ← λV
2
√

n +
λ
√

nR2

2(n−1)V .
return A, B,C.

12: procedure SGD(D, λ, µ) . L2 regularizer µ
13: w← [0]d. . Initial param
14: h← [1]d. . AdaGrad history
15: while True do
16: ShuffleD.
17: A, B,C ← ABC(D,w, λ).
18: forDs ⊂ D do . Mini-batch |Ds| = b
19: ~z, ~g← LossGradient(Ds,w).
20: z =

∑
i zi/b.

21: g =
∑

i gi/b.
22: hi ← hi + gi

2.
23: ji ← gi/

√
hi.

24: ~∇ ← A~j + 2µw + 2Bz~j.
25: if ‖~∇‖ ' 0 then return w. . Gradient norm convergence
26: if z > avg. validation z then return w. . Progressive validation
27: w← w − η~∇. . Step size η

map: f(x, y) = x⊗ y. We conducted experiments on different multi-label datasets

collected from the LibSVM repository2, with different ranges for p (features), `

(labels) and n (samples) represented as summarized in Table 6.2.

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html
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Name p(# features) `(# labels) ntrain ntest

Scene 294 6 1211 1196
Yeast 103 14 1500 917
TMC 30438 22 21519 7077
LYRL 47236 4 23149 781265

Table 6.2: Corpus statistics for different multi-label datasets from the LibSVM
repository. LYRL was post-processed so that only top-level categories were
treated as labels.

Experiment Methodology: We employ the Supervised 7→ Bandit conver-

sion [66, 8] method. Here, we take a supervised data set

D∗ = {(x1, y∗1) . . . (xn, y∗n)},

and simulate a bandit feedback data set from a logging policy π0 by sampling

yi ∼ π0xi and collecting feedback δi ≡ ∆(y∗i, yi). Feedback for all other possible

actions ∆(y∗i, ·) is withheld. In principle, we could use any arbitrary stochastic

policy as π0. We choose a CRF trained on 5% of D∗ as π0 using default hyper-

parameters since they provide probability distributions amenable to sampling.

In all the multi-label experiments, ∆(y∗, y) is the Hamming loss between the su-

pervised label y∗ versus the sampled label y for input x. Hamming loss is just

the number of incorrectly assigned labels (adding both false positives and false

negatives). To create bandit feedback D = {(xi, yi, δi, pi ≡ π0(yi | xi))}, we take

four passes through D∗ and sample labels from π0. Note that each supervised

label is worth ' |Y| = 2` bandit feedback labels. We can explore different learn-

ing strategies (e.g., IPS, CRM, etc.) on D and obtain learned weight vectors

wips,wcrm, etc. On the supervised test set, we then report the expected loss per

instance R = 1
ntest

∑
i Ey∼πw(xi)∆(y∗i, y) and compare the generalization error (R) of

these learning strategies.
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Baselines and Learning Methods: The expected Hamming loss of π0 is the

baseline to beat. The lower the loss, the better it is. The naı̈ve, variance-agnostic

approach to counterfactual learning [12, 110] can be generalized to handle para-

metric multi-label classification by optimizing Equation (6.8) with λ = 0. We

optimize it either using L-BFGS (IPS(B)) or stochastic optimization (IPS(S)).

POEM(S) uses our Iterative-Majorization approach to variance regularization

as outlined in Section 6.6.3, while POEM(B) is an L-BFGS variant. Finally, we

report results from a supervised CRF trained on all of D∗ as a skyline, despite

its unfair advantage of having access to the full-information examples.

We keep aside 25% of D as a validation set — we use the unbiased counter-

factual estimator from Equation (6.1) for selecting hyper-parameters. λ = cλ∗,

where λ∗ is the calibration factor from Section 6.5.4 and c ∈ {10−6, . . . 1} in mul-

tiples of 10. The clipping constant M is similarly set to the ratio of the 90%ile

to the 10%ile propensity score observed in the training set of D. The reported

results are not sensitive to this choice of M, any reasonably large clipping con-

stant suffices (e.g. even a simple, problem independent choice of M = 100 works

well). When optimizing any objective over w, we always begin the optimization

from w = 0, which is equivalent to πw = Uniform(Y). We use mini-batch Ada-

Grad [29] with batch size b = 100 and step size η = 1 to adapt our learning

rates for the stochastic approaches and use progressive validation [10] and gra-

dient norms to detect convergence. Finally, the entire experiment set-up is run

10 times (i.e. π0 trained on randomly chosen 5% subsets, D re-created, and test

set performance of different approaches collected) and we report the averaged

test set expected error across runs.
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6.7.1 Does Variance Regularization Improve Generalization?

R Scene Yeast TMC LYRL
π0 1.543 5.547 3.445 1.463
IPS(B) 1.193 4.635 2.808 0.921
POEM(B) 1.168 4.480 2.197 0.918
IPS(S) 1.519 4.614 3.023 1.118
POEM(S) 1.143 4.517 2.522 0.996
CRF 0.659 2.822 1.189 0.222

Table 6.3: Test set Hamming loss, R for different approaches to multi-label clas-
sification on different data sets, averaged over 10 runs. POEM is significantly
better than IPS on each data set and each optimization variant (one-tailed paired
difference t-test at a significance level of 0.05).

Results are reported in Table 6.3. We statistically test the performance of

POEM against IPS (batch variants are paired together, and the stochastic vari-

ants are paired together) using a one-tailed paired difference t-test at a signifi-

cance level of 0.05 across 10 runs of the experiment, and find POEM to be sig-

nificantly better than IPS on each data set and each optimization variant. On all

datasets, POEM learns a model that is substantially better than π0. This outcome

suggests that the CRM principle is practically useful for designing learning al-

gorithms, and that variance regularization is indeed beneficial.

6.7.2 How Computationally Efficient Is POEM?

Table 6.4 shows the time taken (in CPU seconds) to run each method on

each data set, averaged over different validation runs when performing hyper-

parameter grid search. Some of the timing results are skewed by outliers, e.g.,

when under very weak regularization, CRFs tend to take longer to converge.

However, it is still clear that the stochastic variants are able to recover good pa-
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Time(s) Scene Yeast TMC LYRL
IPS(B) 2.58 47.61 136.34 21.01
IPS(S) 1.65 2.86 49.12 13.66
POEM(B) 75.20 94.16 949.95 561.12
POEM(S) 4.71 5.02 276.13 120.09
CRF 4.86 3.28 99.18 62.93

Table 6.4: Average time in seconds for each validation run for different ap-
proaches to multi-label classification. CRF is implemented by scikit-learn [87].
On all data sets, stochastic approaches are much faster than batch gradients.

rameter settings in a fraction of the time of batch L-BFGS optimization, and this

is even more pronounced when the number of labels grows — the run-time in

such problem instances is dominated by computation of Z(x).

6.7.3 Can Deterministic Predictions from Learned Stochastic

Policies Generalize Well?

For the policies learned by POEM as shown in Table 6.3, Table 6.5 reports the

averaged performance of the deterministic predictor derived from them. For

a learned weight vector w, this simply amounts to applying Equation (6.7). In

practice, this method of generating predictions can be substantially faster than

sampling since computing the argmax does not require computation of the parti-

tion function Z(x) which can be expensive in structured output prediction. From

Table 6.5, we see that the loss of the deterministic predictor is typically not far

from the loss of the stochastic policy, and often better.
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R Scene Yeast TMC LYRL
POEM(S) 1.143 4.517 2.522 0.996
POEM(S)map 1.143 4.065 2.299 0.880

Table 6.5: Mean Hamming loss of MAP predictions from the policies learned
in Table 6.3. POEMmap is significantly better than POEM on all data sets except
Scene (one-sided paired difference t-test, significance level 0.05).
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Figure 6.1: Generalization performance of POEM(S) as a function of n on the
Yeast dataset.

6.7.4 How Does Generalization Improve With Dataset Size?

As we collect more data under π0, our generalization error bound indicates that

prediction performance should eventually approach that of the optimal model

in the hypothesis space. We can simulate n → ∞ by replaying the training

data multiple times, collecting samples y ∼ π(x). In the limit, we would ob-

serve every possible y in the bandit feedback data set, since π0(x) has a non-

zero probability of exploring each prediction y. However, the learning rate
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may be slow, since the exponential model family has very thin tails, and hence

may not be an ideal logging distribution to explore well. Holding all other de-

tails of the experiment setup fixed, we vary the number of times we replayed

the training set (ReplayCount) to collect samples from π0 and report the perfor-

mance of POEM(S) on the Yeast dataset in Figure 6.1. As expected, the per-

formance of POEM improves with increasing sample size. Note that even with

ReplayCount = 28, POEM(S) is learning from much less information than the

CRF, where each supervised label conveys 214 bandit label feedbacks.

6.7.5 How Does Quality of the Logging Policy Affect Learning?

In this experiment, we change the fraction of the training set β · ntrain that was

used to train the logging policy — and as β is increased, the quality of π0 im-

proves. Intuitively, there’s a trade-off: better π0 probably samples correct pre-

dictions more often and so produces a higher quality D to learn from, but it

should also be harder to beat π0.

We vary β from 1% to 100% while keeping all other conditions identical to the

original experiment setup in Figure 6.2. Note that results in other experiments

correspond to β = 5%. We find that POEM(S) is able to find a hypothesis at least

as good as π0 consistently. Moreover, even D collected from a poor quality π0

(0.5 ≤ β ≤ 0.2) allows POEM(S) to learn an improved policy efficiently.
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Figure 6.2: The performance of POEM(S) on the Yeast dataset as π0 is improved.
The fraction β of the supervised training set used to train π0 is varied to control
the quality of π0. π0 performance does not reach CRF when β = 1 because we do
not tune hyper-parameters, and we report its expected loss, not the loss of its
Maximum A Posteriori prediction.

6.7.6 How Does Stochasticity of the Logging Policy Affect

Learning?

Finally, the theory suggests that counterfactual learning is only possible when

π0 is sufficiently stochastic (the generalization bounds of Theorem 8 hold with

high probability in the samples drawn from π0). Does CRM degrade gracefully

when this assumption is violated? We test this by introducing the temperature

multiplier w 7→ αw, α > 0 (as discussed in Section 6.6) into the logging policy.

For π0 = πw, we scale w 7→ αw, to derive a “less stochastic” variant of π0, and

generate D ∼ παw. We report the performance of POEM(S) on the LYRL data

set in Figure 6.3 as we change α ∈ [0.5, . . . , 32], compared against π0, and the
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deterministic predictor — π0 map — derived from π0. So long as there is some

minimum amount of stochasticity in π0, POEM(S) is still able to find a w that

improves upon π0 and π0 map. The margin of improvement is typically greater

when π0 is more stochastic. Even when π0 is barely stochastic (α ≥ 24), perfor-

mance of POEM(S) simply recovers π0 map, suggesting that the CRM principle

indeed achieves robust learning.

2−1 20 21 22 23 24 25

1

1.2

1.4

1.6

α

R

π0

POEM(S)
π0 map

Figure 6.3: The performance of POEM(S) on the LYRL data set as π0 becomes
less stochastic. For α ≥ 25, π0 ≡ π0 map (within machine precision).

We observe the same trends (Figure 6.1, Figure 6.2 and Figure 6.3) across

all data sets and optimization variants. They also remain unchanged when we

include `2-regularization (analogous to supervised CRFs to capture the capacity

ofHlin to overfit the training data).
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6.8 Real-World Application

We now demonstrate how POEM (and in general the CRM principle) can be

instantiated effectively in real world settings. Bloomberg3, the financial and

media company in New York, had the following challenging retrieval problem:

the task was to train a high-precision classifier that could reliably pick the best

answer doc∗ (or none, if none answered the query) from a pool of candidate

answers Y(x) for query x, where Y(x) was generated by an existing high-recall

retrieval function. The challenge lay in collecting supervised labeled data that

could be used to train this high-precision classifier.

Before we started our experiment with POEM, an existing high-precision

classifier was already in operation. It was trained using a few labeled exam-

ples (x,doc∗), but scaling up the system to achieve improved accuracy appeared

challenging given the cost of acquiring new (x,doc∗) pairs that mimicked what

the system saw during its operation. However, it was possible to collect logs of

the system, where each entry contained a query x and the features f(x,doc) de-

scribing each candidate answer doc ∈ Y(x). The high-precision classifier could

be modeled as a logistic regression classifier with weights w and a threshold τ.

Each candidate was scored using w, pred(doc) = wT f(x,doc). If the highest scor-

ing candidate pred(doc∗) ≥ τ, it was selected as the answer and otherwise the

system abstained.

This existing system could easily be adapted to provide D as needed by

POEM. For each x, a dummy doc0 ∈ Y(x) is added to the candidate pool

to model abstention. During the operation of the system, answers are sam-

pled according to exp(α·pred(doc))
Z(x) . Z(x) is the partition function to ensure this is a

3https://www.bloomberg.com/
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valid sampling distribution, Z(x) =
∑

doc∈Y(x)∪doc0
exp(α · pred(doc)). Abstention

is modeled by the fact that doc0 is sampled with probability proportional to

exp(α · pred(doc0)). α is a temperature constant so that the system can be tuned

to sample abstentions at roughly the same rate as its deterministic counterpart.

Finally, the end-result feedback (δ ∈ {thumbs-up,thumbs-down}) was logged

and provided bandit feedback for the presented answer.

This data set was much easier to collect during the system run compared

to annotating each x in the logs with the best possible doc∗ that would have

answered the query. We argue that this is a general, practical, alternative ap-

proach to training retrieval systems: use any strategy with a very high recall to

construct Y, then use the parameters w estimated using the CRM principle to

search through this Y and find a precise answer.

On a small pilot study, we acquired D with ' 4000 (x,doc, exp(α·pred(doc))
Z(x) , δ)

tuples in the training set and ' 500 tuples in the validation and test sets. We

verified that the existing high-precision classifier was statistically significantly

better than random baselines for the problem. POEM(S) is trained on this log

data by performing gradient descent with w initialized to w0 = 0 and validating

λ = cλ∗, c ∈
[
10−6, . . . 1

]
as described in Section 6.5.4 and Section 6.7. POEM(S)

found a ŵ that improved δ feedback over the existing system by over 30%, as

estimated using the unbiased counterfactual estimator of Equation (6.1) on the

test set. Without using the variance regularizer, the IPS(S) found a ŵ that de-

graded the system performance by 3.5% estimated counterfactually in the same

way. This shows that POEM and the CRM principle can bring potential benefit

even in binary-feedback multi-class classification settings where classic super-

vised learning approaches lack available data.
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6.9 Conclusions and Future Work

Counterfactual risk minimization serves as a robust principle for designing al-

gorithms that can learn from a batch of bandit feedback interactions. The key

insight for CRM is to expand the classical notion of a hypothesis class to include

stochastic policies, reason about variance in the risk estimator, and derive a gen-

eralization error bound over this hypothesis space. The practical take away is a

simple, data-dependent regularizer that guarantees robust learning. Following

the CRM principle, we developed the POEM (Policy Optimizer for Exponential

Models) learning algorithm for structured output prediction. POEM can opti-

mize over rich policy families (exponential models corresponding to soft-max

linear rules in supervised learning), and deal with massive output spaces as

efficiently as classical supervised methods.

The CRM principle more generally applies to supervised learning with non-

differentiable losses, since the objective does not require the gradient of the

loss function. We also foresee extensions of the algorithm to handle ordinal or

co-active feedback models for δ(·, ·), and extensions of the generalization error

bound to include adaptive or deterministic π0, etc.
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CHAPTER 7

THE SELF-NORMALIZED ESTIMATOR FOR COUNTERFACTUAL

LEARNING

7.1 Chapter Notes

This chapter describes joint work with Thorsten Joachims. It is a lightly edited

version of a conference publication [116].

We will continue to study the Batch Learning from Bandit Feedback (BLBF)

setting [8, 113] that was introduced in Chapter 6. The conventional counterfac-

tual risk estimator used in prior works on BLBF exhibits severe anomalies that

can lead to degeneracies when used in ERM. In particular, the estimator exhibits

a new form of Propensity Overfitting that causes severely biased risk estimates

for the ERM minimizer. By introducing multiplicative control variates, we will

replace this risk estimator with a Self-Normalized Risk Estimator that provably

avoids these degeneracies. Empirical evaluation in semi-synthetic experiments

(following the methodology sketched in Section 1.2) confirms that the desirable

theoretical properties of the Self-Normalized Risk Estimator translate into im-

proved generalization performance and robustness.

7.2 Related work

All the estimators we study in this chapter are instances of importance sam-

pling for Monte Carlo approximation and can be traced back to “What-If sim-

ulations” [121]. We additionally show that importance sampling can overfit
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in hitherto unforeseen ways with the capacity of the hypothesis space during

counterfactual learning. We call this new overfitting Propensity Overfitting.

Classic variance reduction techniques for importance sampling are also use-

ful for counterfactual evaluation and learning. For instance, importance weights

can be “clipped” [51] to trade-off bias against variance in the estimators [12].

Additive control variates give rise to regression estimators [73] and doubly ro-

bust estimators [31, 30]. Our proposal uses multiplicative control variates. These

are widely used in financial applications [13] and policy iteration for reinforce-

ment learning [102]. In particular, we study the self-normalized estimator [121]

which is superior to the vanilla estimator when fluctuations in the weights dom-

inate the variance [42]. We additionally show that the self-normalized estimator

neatly addresses propensity overfitting.

7.3 The Propensity Overfitting Problem

The CRM objective of Equation (6.6) penalizes those π ∈ H that are “far” from

the logging policy π0 (as measured by their empirical variance ˆV ar(zπ)). We can

intuitively understand this penalty as a safeguard against overfitting. However,

overfitting in BLBF is more nuanced than in conventional supervised learning.

In particular, the unbiased risk estimator of Equation (6.1) has two anomalies.

Even if δ(·, ·) ∈ [5,4], the value of R̂(π) estimated on a finite sample need not

lie in that range. Furthermore, if δ(·, ·) is translated by a constant δ(·, ·) + C,

R(π) becomes R(π) + C by linearity of expectation — but the unbiased estimator

on a finite sample need not equal R̂(π) + C. In short, this risk estimator is not

equivariant [42]. The various thresholding schemes for importance sampling [51,
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110, 12, 24] only exacerbate this effect. These anomalies leave us vulnerable to a

peculiar kind of overfitting, as we see in the following example.

Example 8. For the input space of integers X = {1, . . . k} and the output space

Y = {1, . . . k}, define

δ(x, y) =


−2 if y = x

−1 otherwise.

The hypothesis spaceH is the set of all deterministic functions S : X 7→ Y.

πS (y | x) =


1 if S (x) = y

0 otherwise.

Data is drawn uniformly, x ∼ Uniform(X) and π0(Y | x) = Uniform(Y) for all x.

The hypothesis π∗ with minimum true risk is πS ∗ with S ∗(x) = x, which has risk

R(π∗) = −2.

When drawing a training sample D = ((x1, y1, δ1, p1), . . . (xn, yn, δn, pn)), let us

first consider the special case where all xi in the sample are distinct. This case is

quite likely if n is small relative to k. In this caseH contains a hypothesis πoverfit,

which assigns S (xi) = yi for all i. This hypothesis has the following empirical

risk as estimated by Equation (6.1):

R̂(πoverfit) =
1
n

n∑
i=1

δi
πoverfit(yi | xi)

pi
=

1
n

n∑
i=1

δi
1

1/k
≤

1
n

n∑
i=1

−1
1

1/k
= −k.

Clearly this risk estimate shows severe overfitting since it can be arbitrarily

lower than the true risk R(π∗) = −2 of the best hypothesis π∗ with appropri-

ately chosen k (or, more generally, the choice of π0). This situation is in stark

contrast to overfitting in full-information supervised learning, where at least

the overfitted risk is bounded by the lower range of the loss function. Note that
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the empirical risk R̂(π∗) of π∗ concentrates around −2. ERM will, hence, select

πoverfit over π∗.

Even if we are not in the special case of having a sample with all distinct xi,

this type of overfitting still exists. In particular, if there are only ` distinct xi in

D, then there still exists a πoverfit with R̂(πoverfit) ≤ −k `
n . Finally, note that this type

of overfitting behavior is not an artifact of this example. Section 7.6 shows that

this behavior is ubiquitous in all the datasets we explored.

Maybe this problem could be avoided by transforming the loss? For exam-

ple, suppose we translate the loss by adding 2 to δ so that now all loss val-

ues become non-negative. This transformation results in the new loss function

δ′(x, y) taking values 0 and 1. In conventional supervised learning an additive

translation of the loss does not change the empirical risk minimizer. Suppose

we draw a sample D in which not all possible values y for xi are observed for

all xi in the sample (again, such a sample is likely for sufficiently large k). Now

there are many hypotheses πoverfit′ that predict one of the unobserved y for each

xi, basically avoiding the training data.

R̂(πoverfit′) =
1
n

n∑
i=1

δi
πoverfit′(yi | xi)

pi
=

1
n

n∑
i=1

δi
0

1/k
= 0.

Again we are faced with overfitting since many overfit hypotheses are indistin-

guishable from the true risk minimizer π∗ with true risk R(π∗) = 0 and empirical

risk R̂(π∗) = 0.

These examples indicate that this overfitting occurs regardless of how the

loss is transformed. Intuitively, this type of overfitting occurs since the risk es-

timate according to Equation (6.1) can be minimized not only by putting large

probability mass π(y | x) on the examples with low loss δ(x, y), but by maximiz-
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ing (for δ ≤ 0) or alternatively, minimizing (for δ ≥ 0) the sum of the weights

T̂ (π) =
1
n

n∑
i=1

π(yi | xi)
pi

. (7.1)

For this reason, we call this type of overfitting Propensity Overfitting. This over-

fitting is in stark contrast to overfitting in supervised learning, which we call

Loss Overfitting. Intuitively, Loss Overfitting occurs because the capacity of H

fits spurious patterns of low δ in the data. In Propensity Overfitting, the capacity

inH allows overfitting the propensities — for positive δ, hypotheses that avoid

D are selected; for negative δ, hypotheses that over-representD are selected.

The variance regularization of CRM combats both Loss Overfitting and

Propensity Overfitting by optimizing a more informed generalization error

bound. However, the empirical variance estimate is also affected by Propensity

Overfitting — especially for positive losses. Can we avoid Propensity Overfit-

ting more directly?

7.4 Control Variates and the Self-Normalized Estimator

To avoid Propensity Overfitting, we must first detect when and where it is oc-

curring. For this, we draw on diagnostic tools used in importance sampling [86].

Note that for any π ∈ H , the sum of propensity weights T̂ (π) from Equation (7.1)

always has expected value 1 under the conditions required for the unbiased

estimator of Equation (6.1).

E
[
T̂ (π)

]
=

1
n

n∑
i=1

∫
π(yi | xi)
π0(yi | xi)

π0(yi | xi) Pr(xi)dyidxi =
1
n

n∑
i=1

∫
1 Pr(xi)dxi = 1. (7.2)

This observation means that we can identify hypotheses that suffer from

Propensity Overfitting based on how far T̂ (π) deviates from its expected value
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of 1. Since π(y|x)
π0(y|x) is likely correlated with δ(x, y) π(y|x)

π0(y|x) , a large deviation in T̂ (π)

suggests a large deviation in R̂(π) and consequently a bad risk estimate.

How can we use the knowledge that ∀π ∈ H : E
[
T̂ (π)

]
= 1 to avoid de-

generate risk estimates in a principled way? While one could use concentration

inequalities to explicitly detect and eliminate overfit hypotheses based on T̂ (π),

we use control variates to derive an improved risk estimator that directly incor-

porates this knowledge.

Control Variates: Control variates — random variables whose expectation

is known — are a classic tool used to reduce the variance of Monte Carlo

approximations [86]. Let U(Y) be a control variate with known expectation

EY [U(Y)] = u , 0, and let EY [V(Y)] be an expectation that we would like to es-

timate based on independent samples of Y . Employing U(Y) as a multiplicative

control variate, EY [V(Y)] =
E[V(Y)]
E[U(Y)]u. This observation motivates the estimator

V̂S N =

∑n
i=1 V(Yi)∑n
i=1 U(Yi)

u, (7.3)

which is called the Self-Normalized estimator in the importance sampling litera-

ture [121, 61, 97]. This estimator has substantially lower variance if V(Y) and

U(Y) are correlated [42].

Self-Normalized Risk Estimator: Let us use T (π) as a control variate when

estimating R(π), yielding

R̂S N(π) =

∑n
i=1 δi

π(yi |xi)
pi∑n

i=1
π(yi |xi)

pi

. (7.4)

Hesterberg reports that this estimator tends to be more accurate than the un-

biased estimator of Equation (6.1) when fluctuations in the sampling weights

dominate the fluctuations in δ(x, y) [42].
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Observe that the estimate is just a convex combination of the δi observed

in the sample. If δ(·, ·) is now translated by a constant δ(·, ·) + C, both the true

risk R(π) and the finite sample estimate R̂S N(π) get shifted by C. Hence R̂S N(π)

is equivariant, unlike R̂(π) [42]. Moreover, R̂S N(π) is always bounded within the

range of δ. So the overfitted risk due to ERM will now be bounded by the lower

range of the loss, analogous to full-information supervised learning.

Finally, while the self-normalized risk estimator is not unbiased (E
[

R̂S N (π)
T̂ (π)

]
,

R(π)
E[T̂ (π)] in general), it is strongly consistent and approaches the desired expecta-

tion when n is large.

Theorem 9. Let D be drawn (xi, yi, δi, pi)
i.i.d.
∼ π0, from a π0 that has full support over

Y for all x. Then,

∀π ∈ H : Pr( lim
n→∞

R̂S N(π) = R(π)) = 1.

Proof. The numerator of R̂S N(π) in Equation (7.4) are i.i.d. observations with

mean R(π). Strong law of large numbers gives Pr(limn→∞
1
n

∑n
i=1 δi

π(yi |xi)
pi

= R(π)) =

1. Similarly, the denominator has i.i.d. observations with mean 1. So, the

strong law of large numbers implies Pr(limn→∞
1
n

∑n
i=1

π(yi |xi)
pi

= 1) = 1. Hence,

Pr(limn→∞ R̂S N(π) = R(π)) = 1. �

In summary, the self-normalized risk estimator R̂S N(π) in Equation (7.4) re-

solves all the problems of the unbiased estimator R̂(π) from Equation (6.1) iden-

tified in Section 7.3.
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7.5 Learning Method: Norm-POEM

We now derive a learning algorithm, called Norm-POEM (Normalized Policy

Optimizer for Exponential Models), for structured output prediction. The al-

gorithm is analogous to POEM [113] in its choice of hypothesis space and its

application of the CRM principle, but it replaces the conventional estimator of

Equation (6.1) with the self-normalized estimator of Equation (7.4).

Hypothesis Space: Norm-POEM follows prior work [113, 64] and learns

stochastic linear rules πw ∈ Hlin parametrized by w that operate on a d-

dimensional joint feature map f(x, y).

πw(y | x) = exp(wT f(x, y))/Z(x).

Z(x) =
∑

y′∈Y exp(wT f(x, y′)) is the partition function.

Empirical Variance Estimate: To instantiate the CRM objective from Equa-

tion (6.6), we need an empirical variance estimate ˆV ar(R̂S N(π)) for the self-

normalized risk estimator. We use an approximate variance estimate [97, Sec-

tion 4.3] for the ratio estimator of Equation (7.3). Using the Normal approxima-

tion argument [86, Equation 9.9],

ˆV ar(R̂S N(π)) =

∑n
i=1(δi − R̂S N(π))2(π(yi |xi)

pi
)2

(
∑n

i=1
π(yi |xi)

pi
)2

. (7.5)

Using the delta method to approximate the variance [61] yields the same for-

mula. To invoke asymptotic normality of the estimator (and indeed, for reli-

able importance sampling estimates), we require the true variance of the self-

normalized estimator V ar(R̂S N(π)) to exist. We can guarantee this by threshold-

ing the importance weights, analogous to R̂M(π) of Equation (6.2).
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The benefits of the self-normalized estimator come at a computational cost.

The risk estimator of POEM had a simpler empirical variance formula which

could be approximated by Taylor expansion and optimized using stochastic

gradient descent. The variance of Equation (7.5) does not admit stochastic op-

timization. Surprisingly, in our experiments in Section 7.6, we find that the

improved robustness of Norm-POEM permits fast convergence during training

even without stochastic optimization.

Training Objective of Norm-POEM. The objective is now derived by sub-

stituting the self-normalized risk estimator of Equation (7.4) and its sample

variance estimate from Equation (7.5) into the CRM objective Equation (6.6)

for the hypothesis space Hlin. By design, πw lies in the exponential family of

distributions. So, the gradient of the resulting objective can be tractably com-

puted whenever the partition function Z(x) is tractable. Doing so yields a non-

convex objective in the parameters w which we optimize using L-BFGS [16].

The choice of L-BFGS for non-convex and non-smooth optimization is well sup-

ported [68, 134]. Analogous to POEM, the hyper-parameters M (clipping to

prevent unbounded variance) and λ (strength of variance regularization) can

be calibrated via counterfactual evaluation (using either the vanilla IPS esti-

mate of Equation (6.1) or the self-normalized estimate of Equation (7.4)) on

a held-out validation set. In summary, the per-iteration cost of optimizing

the Norm-POEM objective has the same complexity as the per-iteration cost

of POEM with L-BFGS. It requires the same set of hyper-parameters. More-

over, it can be done tractably whenever the corresponding supervised CRF

can be learned efficiently. Software implementing Norm-POEM is available at

http://www.cs.cornell.edu/˜adith/POEM/.
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7.6 Experiments

We will now empirically verify if the self-normalized estimator as used in

Norm-POEM can indeed guard against propensity overfitting and attain robust

generalization performance. The experiment setup is identical to Section 6.7

of Chapter 6. POEM uses the CRM principle instantiated with the unbiased

estimator of Equation (6.1) while Norm-POEM uses the self-normalized estima-

tor of Equation (7.4). We report performance of BLBF approaches without `2-

regularization here; we observed Norm-POEM dominated POEM even when

both methods had their `2-regularizers cross-validated. Since the choice of opti-

mization method could be a confounder, we use L-BFGS for all methods and ex-

periments. We used a more fine-grained grid of hyper-parameter choices than

Section 6.7 — λ (variance regularization) and M (clipping constant) for BLBF

approaches, and `2-regularization for the skyline CRF that performs supervised

learning on the full-information training set.

7.6.1 What is the Generalization Performance of Norm-POEM?

The key question is whether the appealing theoretical properties of the self-

normalized estimator lead to better generalization performance. In Table 7.1,

we report the test set loss for Norm-POEM and POEM averaged over 10 runs.

On each run, π0 has different performance (trained on random 5% subsets), but

Norm-POEM consistently beats POEM. The setup is identical to Section 6.7.1,

the tiny differences in performance of CRF compared to Table 6.3 is due to

hyper-parameter selection over a more fine-grained grid of choices. Variabil-

ity in POEM and Norm-POEM arises from the different quality of π0 in each
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trial of the experiment.

R Scene Yeast TMC LYRL
π0 1.511 5.577 3.442 1.459
POEM 1.200 4.520 2.152 0.914
Norm-POEM 1.045 3.876 2.072 0.799
CRF 0.657 2.830 1.187 0.222

Table 7.1: The test set Hamming loss for BLBF approaches averaged over 10
runs. Norm-POEM significantly outperforms POEM on all four datasets (one-
tailed paired difference t-test at a significance level of 0.05).

7.6.2 How Does Generalization of Norm-POEM Improve With

Dataset Size?

The plot below Figure 7.1 shows how generalization performance improves

with more training data for a single run of the experiment on the Yeast dataset.

We achieve this by varying the number of times we replay the training set to

collect samples from π0 (ReplayCount), analogous to Section 6.7.4. Norm-POEM

consistently outperforms POEM for all training sample sizes.

7.6.3 Does Norm-POEM Avoid Propensity Overfitting?

While the previous results indicate that Norm-POEM achieves good perfor-

mance, it remains to be verified that this improved performance is indeed due

to improved control over Propensity Overfitting. Table 7.2 (left) shows the av-

erage T̂ (π̂) for the hypothesis π̂ selected by each approach. Indeed, T̂ (π̂) is close

to its known expectation of 1 for Norm-POEM, while it is severely biased for

POEM. Furthermore, the value of T̂ (π̂) depends heavily on how the losses δ
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Figure 7.1: Test set Hamming loss for various BLBF approaches as n→ ∞ on the
Yeast dataset. All approaches will converge to CRF performance in the limit,
but the rate of convergence is slow since π0 is thin-tailed.

are translated for POEM, as predicted by theory. As anticipated by our earlier

observation that the self-normalized estimator is equivariant, Norm-POEM is

unaffected by translations of δ. Table 7.2 (right) shows that the same goes for

the prediction error on the test set. Norm-POEM is consistently good while

POEM fails catastrophically (for instance, on the TMC dataset, POEM is worse

than random guessing).

7.6.4 Is CRM Variance Regularization Still Necessary?

It may be possible that the improved self-normalized estimator no longer re-

quires variance regularization. The loss of the unregularized estimator is re-

ported (Norm-IPS) in Table 7.3. We see that variance regularization still helps.
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T̂ (π̂) R(π̂)
Scene Yeast TMC LYRL Scene Yeast TMC LYRL

POEM-δ+ 0.274 0.028 0.000 0.175 2.059 5.441 17.305 2.399
POEM-δ− 1.782 5.352 2.802 1.230 1.200 4.520 2.152 0.914
NPOEM-δ+ 0.981 0.840 0.941 0.945 1.058 3.881 2.079 0.799
NPOEM-δ− 0.981 0.821 0.938 0.945 1.045 3.876 2.072 0.799

Table 7.2: Mean of the unclipped importance weights T̂ (π̂) (left) and test set
Hamming loss R (right), averaged over 10 runs for POEM and Norm-POEM
(NPOEM). δ+ and δ− indicate whether the loss was translated to be always pos-
itive or always negative.

R Scene Yeast TMC LYRL
Norm-IPS 1.072 3.905 3.609 0.806
Norm-POEM 1.045 3.876 2.072 0.799

Table 7.3: The test set Hamming loss for Norm-POEM and the variance agnos-
tic Norm-IPS averaged over the same 10 runs as Table 7.1. On Scene, TMC and
LYRL, Norm-POEM is significantly better than Norm-IPS (one-tailed paired dif-
ference t-test at a significance level of 0.05).

7.6.5 How Computationally Efficient Is Norm-POEM?

The empirical runtime of Norm-POEM is surprisingly faster than POEM. Even

though normalization increases the per-iteration computation cost, optimiza-

tion tends to converge in fewer iterations than for POEM. We find that POEM

picks a hypothesis with large ‖w‖, attempting to assign a probability of 1 to

all training points with negative losses. However, Norm-POEM converges to a

much shorter ‖w‖. The loss of an instance relative to others in sampleD governs

how Norm-POEM tries to fit it. This behavior is another nice consequence of the

fact that the overfitted risk of R̂S N(π) is bounded and small. Overall, the runtime
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of Norm-POEM is on the same order of magnitude as that of a full-information

CRF as reported in Table 7.4. Norm-POEM has runtime that is competitive with

the runtimes reported for POEM with stochastic optimization [113] (see Sec-

tion 6.7.2) while providing substantially better generalization performance.

Time(s) Scene Yeast TMC LYRL
POEM 78.69 98.65 716.51 617.30
Norm-POEM 7.28 10.15 227.88 142.50
CRF 4.94 3.43 89.24 72.34

Table 7.4: Time in seconds averaged across validation runs. CRF is implemented
by scikit-learn [87].

We observe the same trends for Norm-POEM when different properties of π0

are varied (e.g. stochasticity and quality), as reported for POEM in Section 6.7.5

and Section 6.7.6.

7.7 Real-World Experiment

A large media company, based in New York, wanted to introduce a new facet

containing news articles in their search results. They wanted to personalize

the placement of this facet on the results page so as to engage their users with

relevant, high-quality content. Recall the x 7→ y 7→ δ schematic of Section 2.1. In

this application, x encodes contextual factors like the user, the ranking of search

results, the contents of the news facet, etc. The action y denotes what position

the newsbox is inserted into (see Figure 7.2). The feedback δ is a particular whole

page metric called Mean Reciprocal Rank (MRR) that takes values in [0, 1]. The

goal is to design a policy π : x 7→ y that achieves high MRR, or equivalently, a

low 1 −MRR.
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Figure 7.2: Illustrating the Newsbox placement problem. We wish to insert the
news facet at a “good” location on a search results page. So, we want to tune
the placement engine to use contextual factors (e.g., the user, news contents,
etc.) to place the newsbox at one of the candidate positions so as to improve
user engagement with the results.

The search team engineered a rule-based πRULE that scored all candidate po-

sitions to decide where to insert the newsbox, and developed randomized vari-

ants of πRULE:

π0(Position p) ∝ exp
(
α · πRULE(Position p)

)
,

using a specific temperature hyper-parameter α > 0. By simply deploying π0,

they collected log data that was suitable for BLBF with Norm-POEM. A scal-

able but approximate version of Norm-POEM was trained on this data, and the

resulting policies were evaluated using Equation (6.1). Figure 7.3 shows 100

repetitions of this experiment and reports the average 1 − MRR performance

of the learned policies (POEM) as well as the empirical standard deviation. The
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performance of the old rule-based policy is plotted (RULE) as a baseline. On av-

erage, the policy learned using Norm-POEM performs significantly better than

the rule-based policy. The Norm-POEM results appear to have a much larger

variance than the rule-based policy. The figure on the right shows the perfor-

mance of Norm-POEM relative to πRULE for each of the 100 repetitions. There

are positive improvements on 98 out of 100 datasets. The search team conjec-

tured that the logging policy π0 is very different from the one learned by Norm-

POEM, and the variance of off-policy estimates should be greatly reduced when

the new Norm-POEM policies are deployed.
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Figure 7.3: The average 1 − MRR of the placement policy learned by Norm-
POEM and the rule-based πRULE on 100 random datasets logged by π0 are plotted
in a side-by-side boxplot.

The key take away of these experiments is that it is possible to do controlled

randomization without a massive impact on the current system, and the result-

ing logged datasetis valuable because it enables counterfactual learning.
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7.8 Conclusions

We identify the problem of propensity overfitting when using the conventional

unbiased risk estimator for ERM in batch learning from bandit feedback. To

remedy this problem, we propose the use of a multiplicative control variate that

leads to the self-normalized risk estimator. This estimator provably avoids the

anomalies of the conventional estimator. Deriving a new learning algorithm

called Norm-POEM based on the CRM principle using the new estimator, we

show that this algorithm has significantly better generalization performance.
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CHAPTER 8

RESOURCES

This chapter collects additional reading material, datasets, and software for

counterfactual evaluation and learning. These resources were either referenced

in the thesis, used in experiments, or developed during my research.

8.1 Datasets

Building and deploying interactive systems in real-world settings can be chal-

lenging. The datasets below allow us to conduct research in counterfactual eval-

uation and learning techniques without requiring access to real-world deploy-

ments. Of course the success of any technique we discover using these datasets

is ultimately governed by their performance in a real-world interactive system.

Several datasets were collected for training supervised learning algorithms

in interactive scenarios. These datasets can be used for semi-synthetic simula-

tions following the methodology sketched in Section 1.2 — see Chapters 4, 5

and 6 for concrete examples. Some of these datasets are:

• LETOR datasets [91] These datasets contain query-document rele-

vances and features describing query-document pairs. These datasets

are useful for setting up learning-to-rank and off-policy simulations; see

Chapters 4 and 5.

• LibSVM repository for multi-label datasets Multi-class and multi-label

classification are more traditional supervised learning problems. It is still

possible to experiment with these datasets using the Supervised 7→ Bandit
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methodology[66, 8]; see Chapters 6 and 7.

Some datasets were collected directly in an interactive setting. To ensure

that there are no unobserved confounders, they come with test sets that were

collected using uniform randomization.

• Yahoo! R3 [79] Users volunteered ratings for songs. In the test set, they

were also assigned songs uniformly at random to rate.

• Yahoo! R6 [72] The Yahoo! front page module uniformly randomized

news recommendations for 10 days. User clicks were recorded as feed-

back.

• Coat Shopping [101] We created this dataset by first creating an online

catalog of coats. Amazon Mechanical Turkers browsed through this cat-

alog and provided ratings for coats they would like to buy. The Turkers

were also assigned uniformly randomly chosen items to be rated.

We also released the Criteo dataset [67] which has records of user interac-

tions with display ads on the web. The interactions are modeled well as a

contextual combinatorial bandit feedback (see Chapter 5) and the logging sys-

tem employed non-uniform randomization with carefully logged propensities.

Hence this dataset enables direct off-policy causal estimation on a large scale.

We also have logged features describing user contexts, displayed banners of ads

and features for all candidate ads considered for display by the logging system.

Hence, this dataset contains sufficient information for off-policy learning [67].
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8.2 Software

There are a few BLBF algorithms and implementations that are available online.

• Vowpal Wabbit This implements several algorithms for BLBF at scale

by streaming data through an online learner.

• POEM Our implementation of POEM [113] and Norm-POEM [116] is

also online. They are batch algorithms for structured prediction and are

bottlenecked by the speed of CRFs [64] for comparable supervised struc-

tured prediction tasks. A more scalable stand-alone implementation ac-

companies the Criteo dataset.

• The latest version of SVM-rank [52, 57] incorporates the propensity

weighting we introduced in Chapter 4.

• Our implementation of propensity-weighted matrix factorization (intro-

duced in Chapter 3) is also available online This algorithm implements

collaborative filtering at scale to recommend items to users by training on

MNAR ratings.

Finally, we demonstrated several off-policy estimators on a toy recommen-

dation example [117] This demonstration contains implementations of sev-

eral off policy estimators (including our contributions in Chapter 5) and BLBF

learning algorithms.
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8.3 Additional Reading Material

Two tutorials cover off policy evaluation and learning techniques with a focus

on interactive systems.

• Tutorial on Counterfactual Evaluation and Learning for Search, Recom-

mendation and Ad Placement [117].

• Tutorial on Offline Evaluation and Optimization for Interactive Sys-

tems [69].

Also, Bottou et al [12] provide a gentle introduction to confounding effects

that arise when optimizing learning models in interactive systems.
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CHAPTER 9

CONCLUSION

We related several applications involving interactive systems to causal esti-

mation and inference. We introduced a counterfactual model for information

retrieval (Chapter 4), viewed recommendations by collaborative filtering sys-

tems as interventions (Chapter 3) and extensively explored off-policy problems

in a stylized model called Batch Learning from Bandit Feedback — BLBF (Chap-

ters 5, 6 and 7).

Departing from the standard machine learning view of each of these appli-

cations and instead formalizing a counterfactual model proved useful in each

case. Using techniques for observational studies, we were able to learn recom-

mender systems (Chapter 3) and ranking models (Chapter 4) without requiring

active randomization of a deployed system. By studying the statistical proper-

ties of off-policy estimation problems, we designed new off-policy estimators

(Chapter 5) and new learning algorithms (Chapters 6 and 7) for Batch Learning

from Bandit Feedback (BLBF).

In each application, we found that the techniques motivated by a counterfac-

tual view of the problem naturally complemented algorithms developed from

a standard machine learning view. This view allowed us to incorporate causal

reasoning in several popular machine learning algorithms that are widely used

in practice today. In Chapter 5 we combined the PI estimator for the off-policy

slate recommendation problem with classic pointwise learning-to-rank algo-

rithms to derive a ranking algorithm. In Chapter 4 we saw that traditional pair-

wise learning-to-rank algorithms could be naturally coupled with propensity

modeling. In Chapter 3 we showed how inverse propensity weighting perfectly
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complements standard weighted matrix factorization approaches to the rating

prediction problem. Chapters 6 and 7 used linear structured predictors from

supervised learning to efficiently implement the Counterfactual Risk Minimiza-

tion (CRM) principle.

This thesis contributed techniques that advance the state-of-the-art for eval-

uating and training interactive systems. The current practice for training and

evaluating these systems either does not re-use the logged data collected from

historical systems or requires manual annotations to employ conventional su-

pervised learning. Online A/B testing (for evaluation) and explore-exploit ban-

dit algorithms (for learning) essentially ignore the vast amounts of user feed-

back we collected from earlier systems. The techniques explored in this thesis

enable “offline” A/B testing, and warm-starting bandit algorithms so that they

interact more reliably. Evaluation and training using offline machine learning

algorithms require supervised judgments. The techniques we studied allow us

to train variants of these algorithms using logged user feedback directly.

9.1 Future Work

Answering evaluation (“How good is a new system?”) and training (“Find the

best new system”) questions directly using logged data is an exercise in coun-

terfactual reasoning and we saw two broad approaches to answer such ques-

tions. The first (“Model the world”) models user behavior and directly answers

“How would the user react to a new action?”; The second (“Model the bias”)

models the confounding factors in collected data to draw unbiased and reliable

counterfactual estimates in aggregate. Modeling users (“Model the world”) is a

powerful approach to answering counterfactual questions about their behavior.
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However, user models are typically misspecified and can sometimes be overkill

for getting reliable estimates for evaluating and learning good interaction poli-

cies. Model-free (“Model the bias”) methods are founded on Monte Carlo esti-

mation and directly address the policy evaluation problem. However, by being

agnostic to user behavior and dealing with population-level aggregates, they are

often limited in the kinds of off-policy inferences they can reliably perform. By

being flexible about combining and applying these approaches in practice, we

can achieve tractable solutions and gain new insight. For instance, model-based

methods (“model the world”) typically use a machine-learned model trained on

some data as a user or environment model. “Model the bias” reasoning tells us

that we must not simply think of this machine-learned model as a black-box,

but we should also account for confounding factors in its training data.

There is much work that can be done to develop these approaches further.

These avenues for future research can be grouped into four inter-related research

thrusts — theoretical, algorithmic, learning methods, and deployment.

Learning Methods We have developed counterfactual learning methods for

specific applications and a recipe to derive other methods using the Counter-

factual Risk Minimization principle. Preliminary results indicate that recent

advances in deep learning are compatible with this recipe. Can we develop a

repertoire of counterfactual learning methods (e.g., ensembles, trees, etc.)?

Theory We still lack a complete understanding of what properties are im-

portant for counterfactual estimation. Beyond statistical properties like bias

and variance of estimators, optimization properties can become crucial when

they are employed in counterfactual learning. How do we best pick the
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bias-variance-optimization trade-offs when designing counterfactual estimators?

Moreover, in several applications, we need to estimate propensities. How

should we estimate them, and how should we subsequently use them? For

example, in econometrics, matching propensities were found to be more robust

to estimation errors than IPS and its variants.

We saw several examples of combinatorial structured actions or treatments

y throughout the thesis; practical systems also typically have multi-dimensional

feedback δ as measures of their performance. Can we exploit the structure of y

and δ in novel ways to design better estimators?

Algorithms The counterfactual learning algorithms we have developed so far

rely on efficient implementations of closely related supervised ML algorithms.

Can we derive efficient training algorithms without this dependence? Also, can

we develop general-purpose optimization techniques (like stochastic gradient

descent) that are compatible with broad classes of counterfactual estimators?

Finally, can we develop software that makes counterfactual techniques equally

easy to apply in practice as supervised learning algorithms?

Focussing more narrowly on the use of data-dependent regularizers, POEM

(Chapter 6) showed that empirical variance regularization is crucial for counter-

factual learning in BLBF settings. Can we find similar risk-sensitive regularizers

for the more general problem of off-policy reinforcement learning?

Deployment Success in developing counterfactual methods should be mea-

sured by their impact on industrial practice – when practitioners rely less on

trial and error with online A/B tests and instead use these techniques. What,
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and how much, should be logged during system operation to enable subsequent

counterfactual analysis?

The concluding message of this thesis is: by imbuing current machine learn-

ing practice with causal reasoning, we elevate their principled application be-

yond prediction to intervene reliably in interactive systems.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

A.1 Proof of Proposition 1

Proposition (Tail Bound for IPS Estimator). For any given ∆, let P be the indepen-

dent Bernoulli probabilities of observing each entry of ∆. For any ∆̂, with probability

1 − η, the IPS estimator R̂IPS (∆̂ | P) does not deviate from the true R(∆̂) by more than:

∣∣∣R̂IPS (∆̂ | P) − R(∆̂)
∣∣∣ ≤ 1
X · Y

√√√
log 2

η

2

∑
x,y

ρ2
x,y,

where ρx,y =
δx,y(∆,∆̂)

Px,y
if Px,y < 1, and ρx,y = 0 otherwise.

Proof. Hoeffding’s inequality states that for independent bounded random vari-

ables Z1, ...,ZN that take values in intervals of sizes ρ1, ..., ρN with probability 1

and for any ε > 0

Pr


∣∣∣∣∣∣∣∑k

Zk − E

∑
k

Zk


∣∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp
(
−2ε2∑

k ρ
2
k

)
.

Let N = X · Y, and let 1 ≤ k ≤ N iterate over every pair (x, y). Defining

Pr
(
Zk =

δx,y(∆,∆̂)
Px,y

)
= Px,y and Pr (Zk = 0) = 1 − Px,y relates Hoeffding’s inequality

to the IPS estimator and its expectation, which equals R(∆̂) as shown in Equa-

tion (3.11). This yields

Pr
(∣∣∣R̂IPS (∆̂ | P) − R(∆̂)

∣∣∣ ≥ ε) ≤ 2 exp
(
−2ε2X2 · Y2∑

x,y ρ
2
x,y

)
,

where ρx,y is defined as in the statement of the proposition. Solving for ε com-

pletes the proof. �
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A.2 Proof of Theorem 1

Theorem (Propensity-Scored ERM Generalization Error Bound). For any finite

hypothesis space of predictions H = {∆̂1, . . . ∆̂|H|} and loss 0 ≤ δx,y(∆, ∆̂) ≤ M, the true

risk R(∆̂ERM) of the empirical risk minimizer ∆̂ERM from H using the IPS estimator,

given training observations O from ∆ with independent Bernoulli propensities P, is

bounded with probability 1 − η by:

R(∆̂ERM) ≤ R̂IPS (∆̂ERM | P) +
M
X · Y

√
log (2|H|/η)

2

√∑
x,y

1
P2

x,y
.

Proof. Making a uniform convergence argument via Hoeffding’s inequality and

union bound yields:

Pr
(∣∣∣R(∆̂ERM) − R̂IPS (∆̂ERM | P)

∣∣∣ ≤ ε) ≥ 1 − η

⇐ Pr
(
max

∆̂i

∣∣∣R(∆̂i) − R̂IPS (∆̂i | P)
∣∣∣ ≤ ε) ≥ 1 − η

⇔ Pr

∨
∆̂i

∣∣∣R(∆̂i) − R̂IPS (∆̂i | P)
∣∣∣ ≥ ε < η

⇐

|H|∑
i=1

Pr
(∣∣∣R(∆̂i) − R̂IPS (∆̂i | P)

∣∣∣ ≥ ε) < η
⇐ |H| · 2 exp

 −2ε2

M2

X2·Y2

∑
x,y

1
P2

x,y

 < η
Solving the last line for ε yields the desired result. �

A.3 Proof of Lemma 2

Lemma (Bias of IPS Estimator under Inaccurate Propensities). Let P be the

marginal probabilities of observing an entry of the rating matrix ∆, and let P̂ be the
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estimated propensities such that P̂x,y > 0 for all x, y. The bias of the IPS estimator

Equation (3.10) using P̂ is:

bias
(
R̂IPS (∆̂ | P̂)

)
= EO

[
R̂IPS (∆̂ | P̂)

]
− R(∆̂) =

∑
x,y

δx,y(∆, ∆̂)
X · Y

1 − Px,y

P̂x,y

 . (A.1)

Proof. Expanding both terms in the definition of bias yields

R(∆̂) =
1
X · Y

∑
x,y

δx,y(∆, ∆̂), (A.2)

EO

[
R̂IPS (∆̂ | P̂)

]
=

1
X · Y

∑
x,y

Px,y

P̂x,y
δx,y(∆, ∆̂). (A.3)

Rest follows after subtracting line Equation (A.2) from Equation (A.3). �

A.4 Proof of Theorem 3

Theorem. For any finite hypothesis space of predictions H = {∆̂1, . . . ∆̂|H|}, the trans-

ductive prediction error of the empirical risk minimizer ∆̂ERM, using the IPS estimator

with estimated propensities P̂ (P̂x,y > 0) and given training observations O from ∆ with

independent Bernoulli propensities P, is bounded by:

R(∆̂ERM) ≤ R̂IPS (∆̂ERM | P̂) +
M
X · Y

∑
x,y

∣∣∣∣∣∣1 − Px,y

P̂x,y

∣∣∣∣∣∣
+

M
X · Y

√
log (2|H|/η)

2

√∑
x,y

1
P̂2

x,y

. (A.4)
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Proof. First, notice that we can write

R(∆̂ERM) = R(∆̂ERM) − EO

[
R̂IPS (∆̂ERM | P̂)

]
+ EO

[
R̂IPS (∆̂ERM | P̂)

]
= bias

(
R̂IPS (∆̂ERM | P̂)

)
+ EO

[
R̂IPS (∆̂ERM | P̂)

]
≤

M
X · Y

∑
x,y

∣∣∣∣∣∣1 − Px,y

P̂x,y

∣∣∣∣∣∣ + EO

[
R̂IPS (∆̂ERM | P̂)

]
which follows from Lemma 2.

We are left to bound the following

Pr
(∣∣∣∣R̂IPS (∆̂ERM | P̂) − EO

[
R̂IPS (∆̂ERM | P̂)

]∣∣∣∣ ≤ ε)
≥ 1 − η

⇐ |H| · 2 exp

 −2ε2

M2

X2·Y2

∑
x,y

1
P̂2

x,y

 < η.
The intermediate steps here are analogous to the steps in the proof of Theorem 1

in Appendix A.2. Rearranging the terms gives the stated results. �

A.5 Propensity Estimation via Logistic Regression

In contrast to other discriminative models, logistic regression offers some at-

tractive properties for propensity estimation. For the logistic propensity model,

observe that at optimality of the Maximum Likelihood estimate, the following

two equations hold:

∀y :
∑

x

Ox,y =
∑

x

P̂x,y (A.5)

∀x :
∑

y

Ox,y =
∑

y

P̂x,y. (A.6)

In other words, the logistic propensity model is able to learn well-calibrated

marginal probabilities.
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Proof. The log-likelihood function of the entire model after simplification is:

L(O | f, φ) =
∑

(x,y):Ox,y=1

[
αT fx,y + βx + γy

]
−

∑
x,y

log
[
1 + exp

(
αT fx,y + βx + γy

)]
.

(A.7)

The gradient for bias term βx (analogously for γy) for item y is given as

∂L

∂βx
=

∑
y

Ox,y −
∑

y

P̂x,y. (A.8)

Solving the gradient for zero yields
∑

y Ox,y −
∑

y P̂x,y. Doing this for each βx and

γy yields the stated result. �
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

B.1 Proofs of Theorem 4 and Theorem 5

Claim 1. Γπ0,x = Eπ0[1y1T
y | x].

Proof. Consider the matrix 1y1T
y . Its element in the row indexed ( j, y) and column

indexed (k, y′) equals

1{y j = y, yk = y′} =



1{y j = y} if j = k and a = a′,

1{y j = y, yk = y′} if j , k,

0 otherwise.

The claim follows by taking a conditional expectation with respect to π0. �

Proof of Theorem 4. Fix one x. Recall from Section 5.5.1 that

V(x, y) = 1T
yφx.

Let N = |supp π0(· | x)| be the size of the support of π0(· | x) and let M ∈ {0, 1}N×m`

denote the binary matrix with rows 1T
y for each y ∈ supp µ(· | x). Thus Mφx is the

vector enumerating V(x, y) over y for which π0(y | x) > 0. Let Null(M) denote the

null space of M and Π be the projection on Null(M). Let φ?
x = (I − Π)φx. Then

clearly, Mφx = Mφ?
x , and hence, for any y ∈ supp π0(· | x),

V(x, y) = 1T
yφ

?
x . (B.1)
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We will now show that φ?
x = Γ†π0,xθπ0,x, which will complete the proof. Recall

from Section 5.5.1 that

θπ0,x = Γπ0,xφx. (B.2)

Next note that Γπ0,x is symmetric positive semidefinite by Claim 1, so

Null(Γπ0,x) = {v : vT Γπ0,xv = 0} = {v : 1T
y v = 0 for all y ∈ supp π0(· | x)} = Null(M)

where the first step follows by positive semi definiteness of Γπ0,x, the second

step is from the expansion of Γπ0,x as in Claim 1, and the final step from the

definition of M. Since Null(Γπ0,x) = Null(M), we have from Equation (B.2) that

θx = Γπ0,xφ
?
x . Importantly, this also implies φ?

x ⊥ Null(Γπ0,x). From the definition

of pseudoinverse,

Γ†π0,xθx = φ?
x .

This proves Theorem 4, since for any y with π0(y | x) > 0, we argued that V(x, y) =

1T
yφ

?
x = 1T

y Γ†π0,xθx. �

Proof of Theorem 5. Note that it suffices to analyze the expectation of a single

term (due to linearity of expectation) in the estimator, that is

∑
y∈Y(xi)

π(y | xi)1T
y Γ†π0,xi

θ̂i.

First note that E(yi,δi)∼π0(·,·|xi)

[
θ̂i

]
= θxi , because

E(yi,δi)∼π0(·,·|xi)

[
θ̂i( j, y)

]
= E(yi,δi)∼π0(·,·|xi)

[
δi1{y j = y}

]
= θxi( j, y).

The remainder follows by Theorem 4:
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E

 ∑
y∈Y(xi)

π(y | xi)1T
y Γ†π0,xi

θ̂i

 = Exi∼Pr(X)

 ∑
y∈Y(xi)

π(y | xi)1T
y Γ†π0,xi

E(yi,δi)∼π0(·,·|xi)
[
θ̂i

]
= Exi∼Pr(X)

 ∑
y∈Y(xi)

π(y | xi)1T
y Γ†π0,xi

θxi


= Exi∼Pr(X)

 ∑
y∈Y(xi)

π(y | xi)V(xi, y)

 = V(π). �

B.2 Proof of Theorem 6

Proof. The proof applies Bernstein’s inequality to the centered sum
n∑

i=1

[
qT
π,xi

Γ†π0,xi
θ̂i − V(π)

]
.

The fact that this quantity is centered is directly from Theorem 5. We must

compute both the second moment and the range to apply Bernstein’s inequality.

By independence of the n samples, we can focus on just one term, so we will

drop the subscript i. First, bound the variance:

V ar
[
qT
π,xΓ

†
π0,xθ̂

]
≤ Eπ0

[(
qT
π,xΓ

†
π0,xθ̂

)2
]

= Eπ0

[(
qT
π,xΓ

†
π0,xδ1y

)2
]

≤ Eπ0

[(
qT
π,xΓ

†
π0,x1y

)2
]

= Ex∼Pr(X)

[
qT
π,xΓ

†
π0,xEy∼π0(·|x)

[
1y1T

y

]
Γ†π0,xqπ,x

]
= Ex∼Pr(X)

[
qT
π,xΓ

†
π0,xΓπ0,xΓ

†
π0,xqπ,x

]
= Ex∼Pr(X)

[
qT
π,xΓ

†
π0,xqπ,x

]
= σ2.

Thus the per-term variance is at most σ2. We now bound the range, again

focusing on one term,
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∣∣∣qT
π,xΓ

†
π0,xθ̂ − V(π)

∣∣∣ ≤ ∣∣∣qT
π,xΓ

†
π0,xθ̂

∣∣∣ + 1

=
∣∣∣qT
π,xΓ

†
π0,xδ1y

∣∣∣ + 1

≤
∣∣∣qT
π,xΓ

†
π0,x1y

∣∣∣ + 1

≤ ρ + 1.

The first line here is the triangle inequality, coupled with the fact that since

rewards are bounded in [−1, 1], so is V(π). The second line is from the definition

of θ̂, while the third follows because δ ∈ [−1, 1]. The final line follows from the

definition of ρ.

Now, we may apply Bernstein’s inequality, which says that for any η ∈ (0, 1),

with probability at least 1 − η,∣∣∣∣∣∣∣
n∑

i=1

[
qT
π,xi

Γ†π0,xi
θ̂i − V(π)

]∣∣∣∣∣∣∣ ≤ √
2nσ2 ln(2/η) +

2(ρ + 1) ln(2/η)
3

.

The theorem follows by dividing by n. �

B.3 Pseudoinverse Estimator when Logging Policy and Target

Policy Coincide

In this section we show that when the target policy coincides with logging (i.e.,

π = π0), we have σ2 = ρ = 1, i.e., the bound of Theorem 6 is independent of the

number of actions and slots. Indeed, in Claim 3 we will see that the estimator

actually simplifies to taking an empirical average of rewards which are bounded

in [−1, 1]. Before proving Claim 3 we prove one supporting claim:
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Claim 2. For any policy π0 and x, we have qT
π0,xΓ

†
π0,x1y = 1 for all y ∈ supp π0(· | x).

Proof. To simplify the exposition, write q and Γ instead of a more verbose qπ0,x

and Γπ0,x. The bulk of the proof is in deriving an explicit expression for Γ†.

We begin by expressing Γ in a suitable basis. Since Γ is the matrix of second

moments and q is the vector of first moments of 1y, Γ can be written as

Γ = V + qqT

where V is the covariance matrix of 1y, i.e., V B Ey∼π0(·|x)

[
(1y − q)(1y − q)T

]
. As-

sume that the rank of V is r and consider the eigenvalue decomposition of V

V =

r∑
i=1

λiuiuT
i = UΛUT ,

where λi > 0 and vectors ui are orthonormal; we have grouped the eigenvalues

into the diagonal matrix Λ B diag(λ1, . . . λr) and eigenvectors into the matrix

U B (u1 u2 . . . ur).

We next argue that q < Range(V). To see this, note that the all-ones-vector 1

is in the null space of V because, for any valid slate y, we have 1T
y 1 = ` and thus

also for the convex combination q we have qT 1 = `, which means that

1T V1 = Ey∼π0(·|x)

[
1T (1y − q)(1y − q)T 1

]
= 0.

Now, since 1 ⊥ Range(V) and qT 1 = `, we have that q < Range(V). In particu-

lar, we can write q in the form

q =

r∑
i=1

βiui + αn =

(
U n

) βα
 (B.3)

where α , 0 and n ∈ Null(V) is a unit vector. Note that n ⊥ ui since ui ⊥ Null(V).

Thus, the second moment matrix Γ can be written as

167



Γ = V + qqT =

(
U n

) Λ + ββT αβ

αβT α2


(
U n

)T

. (B.4)

Let Q ∈ R(r+1)×(r+1) denote the middle matrix in Equation (B.4):

Q B

Λ + ββT αβ

αβT α2

 . (B.5)

This matrix is a representation of Γ with respect to the basis {u1, . . .ur,n}.

Since q < Range(V), the rank of Γ and that of Q is r + 1. Thus, Q is invertible and

Γ† =

(
U n

)
Q−1

(
U n

)T

. (B.6)

To obtain Q−1, we use the following identity [88]:

A11 A12

A21 A22


−1

=

 M−1 −M−1A12A−1
22

−A−1
22 A21M−1 A−1

22 A21M−1A12A−1
22 + A−1

22

 , (B.7)

where M B A11 − A12A−1
22 A21 is the Schur complement of A22. The identity of

Equation (B.7) holds whenever A22 and its Schur complement M are both in-

vertible. In Equation (B.5), we have A22 = α2 > 0 and

M = (Λ + ββT ) − (αβ)α−2(αβT ) = Λ,

so Equation (B.7) can be applied to obtain Q−1:
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Q−1 =

Λ + ββT αβ

αβT α2


−1

=

 Λ−1 −Λ−1(αβ)α−2

−α−2(αβT )Λ−1 α−2(αβT )Λ−1(αβ)α−2 + α−2


=

 Λ−1 −α−1Λ−1β

−α−1βTΛ−1 α−2(1 + βTΛ−1β)

 . (B.8)

Next, we will evaluate Γ†q, using the factorizations in Equations (B.6)

and (B.3), and substituting Equation (B.8) for Q−1:

Γ†q =

(
U n

)
Q−1

(
U n

)T (
U n

) βα


=

(
U n

)
Q−1

βα


=

(
U n

)  Λ−1β − Λ−1β

−α−1βTΛ−1β + α−1(1 + βTΛ−1β)


=

(
U n

)  0

α−1


= α−1n.

To finish the proof, we consider any y ∈ supp π0(· | x) and consider the de-

composition of 1y in the basis {u1, . . .ur,n}. First, (1y − q) ⊥ Null(V) since

Null(V)= {v :Ey∼π0(·|x)

[(
(1y−q)T v

)2
]
=0}= {v : (1y − q)T v=0 for all y∈supp π0(· | x)}.

Thus, (1y − q) ∈ Range(V). Therefore, we obtain

qT Γ†π0,x1y = α−1nT 1y = α−1nT (1y − q) + α−1nT q = 0 + α−1α = 1,
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where the third equality follows because (1y − q) ⊥ n and the decomposition in

Equation (B.3) shows that nT q = α. �

Claim 3. If π = π0 then σ2 = ρ = 1 and V̂PI(π) = V̂PI(π0) = 1
n

∑n
i=1 δi.

Proof. From Claim 2

qT
π0,xΓ

†
π0,xqπ0,x = Ey∼π0(·|x)[qT

π0,xΓ
†
π0,x1y] = 1.

Taking expectation over x then yieldsσ2 = 1. Equally, ρ = 1 follows immediately

from plugging Claim 2 into the definition of ρ. The final statement of Claim 3

follows by applying Claim 2 to a single term of V̂PI(π0):

qT
π0,xi

Γ†π0,xi
δi1yi = δi. �

B.4 Proof of Proposition 2

For a given logging policy π0 and context x, let

ρ̄π0,x B sup
y∈supp π0(·|x)

1T
y Γ†π0,x1y.

This quantity can be viewed as a norm of Γ†π0,x with respect to the set of slates

chosen by π0 with non-zero probability. It can be used to bound σ2 and ρ, and

thus to bound an error of V̂PI:

Proposition 4. For any logging policy π0 and target policy π that is absolutely contin-

uous with respect to π0, we have

σ2 ≤ ρ ≤ sup
x
ρ̄π0,x.
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Proof. Recall that

σ2 = Ex∼Pr(X)

[
qT
π,xΓ

†
π0,xqπ,x

]
, ρ = sup

x
sup

y∈supp π0(·|x)

∣∣∣qT
π,xΓ

†
π0,x1y

∣∣∣ .
To see that σ2 ≤ ρ note that

qT
π,xΓ

†
π0,xqπ,x = Ey∼π(·|x)

[
qT
π,xΓ

†
π0,x1y

]
≤ ρ

where the last inequality follows by the absolute continuity of π with respect to

π0. It remains to show that ρ ≤ supx ρ̄π0,x.

First, by positive semi-definiteness of Γ†π0,x and from the definition of ρ̄π0,x,

we have that for any slates y, y′ ∈ supp π0(· | x) and any z ∈ {−1, 1}

z1T
y′Γ
†
π0,x1y ≤

1T
y Γ†π0,x1y + 1T

y′Γ
†
π0,x1y′

2
≤ max{1T

y Γ†π0,x1y, 1
T
y′Γ
†
π0,x1y′} ≤ ρ̄π0,x.

Therefore, for any π absolutely continuous with respect to π0 and any y ∈

supp π0(· | x), we have∣∣∣qT
π,xΓ

†
π0,x1y

∣∣∣ = max
z∈{−1,1}

Ey′∼π(·|x)

[
z1T

y′Γ
†
π0,x1y

]
≤ ρ̄π0,x.

Taking a supremum over x and y ∈ supp π0(· | x), we obtain ρ ≤ supx ρ̄π0,x. �

We next derive bounds on ρ̄π0,x for uniformly-random policies in the ranking

and cartesian product examples. Then we prove a translation theorem, which

allows translating of the bound for uniform distribution into a bound for κ-

uniform distributions. Finally, we put these results together to prove Proposi-

tion 2.

B.4.1 Bounds for Uniform Distributions

Let 1 j ∈ R
`m be the vector that is all-ones on the actions in the j-th position and

zeros elsewhere. Similarly, let 1y ∈ R
`m be the vector that is all-ones on the action
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y in all positions and zeros elsewhere. Finally, let 1 ∈ R`m be the all-ones vector.

We also use I j = diag(1 j) to denote the diagonal matrix with all-ones on the

actions in the j-th position and zeros elsewhere.

Proposition 5. Consider the product slate space where Y(x) = Y1(x) × · · · × Y`(x) with

|Y j(x)| = m j. Let ν be the uniform exploration policy, i.e., ν(y | x) = 1/|Y(x)|. Then

ρ̄ν,x =
∑

j m j − ` + 1 and

Γ†ν,x =
∑̀
j=1

(
m jI j − 1 j1T

j

)
+

∑̀
j=1

1
m j


−2 ∑

j,k

1 j1k

m jmk
.

For any policy π, any y ∈ Y(x), and any δ ∈ [−1, 1] we then have

qT
π,xΓ

†
ν,xδ1y = δ ·

∑̀
j=1

π(y j | x)
1/m j

− ` + 1

 . (B.9)

Proof. Throughout the proof we will write Γ instead of the more verbose Γν,x

and similarly ρ̄ instead of ρ̄ν,x. We will construct an explicit eigendecomposition

of Γ, which will immediately yield Γ†. The remaining statements will follow by

a direct calculation. From the definition of Γ, we obtain

Γ =
∑̀
j=1

I j

m j
+

∑
j,k

1 j1T
k

m jmk
−

∑
j

1 j1T
j

m2
j

. (B.10)

Let v =
∑

j 1 j/m j so that the second term on the right-hand side of Equa-

tion (B.10) corresponds to vvT . Thus, we can write

Γ = ‖v‖22 ·
vvT

‖v‖22
+

∑̀
j=1

1
m j

I j −
1 j1T

j

m j

 . (B.11)

We argue that this constitutes an eigendecomposition. Let P j B I j − 1 j1T
j /m j

denote the terms appearing in the sum on the right-hand side of Equation (B.11).
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Note that P j’s are projection matrices, i.e., their eigenvalues are in {0, 1}. More-

over, their ranges are orthogonal to each other, because Range(P j) is a subset of

the span of the coordinates corresponding to the slot j. Finally, note that v is

orthogonal to all of the ranges, because

vT P jv = vT I jv − (vT 1 j)2/m j = 1/m j − 1/m j = 0.

This shows that Equation (B.11) is an eigendecomposition of Γ, so

Γ† = ‖v‖−2
2 ·

vvT

‖v‖22
+

∑̀
j=1

m j

I j −
1 j1T

j

m j

 (B.12)

= ‖v‖−4
2 · vvT +

∑̀
j=1

(
m jI j − 1 j1T

j

)
=

∑̀
j=1

1
m j


−2 ∑

j,k

1 j1T
k

m jmk
+

∑̀
j=1

(
m jI j − 1 j1T

j

)
,

where the last equality follows from the definition of v. It remains to derive

ρ̄ and Equation (B.9). Both will follow by analyzing the expression 1T
y′Γ
†1y for

y, y′ ∈ Y(x). To begin, note that 1T
j 1y = 1 since any valid slate chooses exactly one

action in each position. Thus,

1T
y′Γ
†1y =

∑̀
j=1

1
m j


−2 ∑

j,k

(1T
y′1 j)(1T

k 1y)

m jmk
+

∑̀
j=1

(
m j1T

y′I j1y − (1T
y′1 j)(1T

j 1y)
)

=

∑̀
j=1

1
m j


−2 ∑

j,k

1
m jmk

+
∑̀
j=1

(
m j1{y′ j = y j} − 1

)
=

∑̀
j=1

1
m j


−2 ∑̀

j=1

1
m j


2

+
∑̀
j=1

1{y′ j = y j}

1/m j
− `

= 1 +
∑̀
j=1

1{y′ j = y j}

1/m j
− `.
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Now the value of ρ̄ follows by setting y′ = y, and Equation (B.9) follows by

taking an expectation over y′ ∼ π(· | x). �

Proposition 6. Consider the ranking setting where for each x there is a set Y(x) such

that Y j(x) = Y(x) and where all slates y ∈ Y(x)` without repetitions are legal. Let ν

denote the uniform exploration policy. If ` < m, then ρ̄ν,x = m` − ` + 1 and

Γ†ν,x =

(
1
`2 −

m − 1
m(m − `)

)
· 11T + (m − 1)I −

m − 1
m

∑
j

1 j1T
j +

m − 1
m − `

∑
y

1y1T
y ,

and for ` = m, we have ρ̄ν,x = m2 − 2m + 2 and

Γ†ν,x =
1
m
· 11T + (m − 1)I −

m − 1
m

∑
j

1 j1T
j −

m − 1
m

∑
y

1y1T
y .

For ` = m, we have for any policy π, any y ∈ Y(x), and any δ ∈ [−1, 1] that

qT
π,xΓ

†
ν,xδ1y = δ ·

∑̀
j=1

π(y j | x)
1/(m − 1)

− m + 2

 . (B.13)

Proof. Throughout the proof we will write Γ instead of the more verbose Γν,x.

Note that for ranking and the uniform distribution we have

Γ( j, y; k, y′) =



1
m if j = k and y = y′

1
m(m−1) if j , k and y , y′

0 otherwise.

Thus, for any z
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zT Γz =
∑

j,y

z2
j,y

m
+

1
m(m − 1)

∑
j,k,y,y′

z j,yzk,y′

=
1
m
‖z‖22 +

1
m(m − 1)

(zT 1)2 −
∑

j

(zT 1 j)2 −
∑

y

(zT 1y)2 + ‖z‖22


=

1
m(m − 1)

(zT 1)2 −
∑

j

(zT 1 j)2 −
∑

y

(zT 1y)2 + m‖z‖22

 . (B.14)

Let 1
J
∈ R` and 1

Y
∈ Rm be all-ones vectors in the respective spaces and

I
J
∈ R`×` and I

Y
∈ Rm×m be identity matrices in the respective spaces. We can

rewrite the quadratic form described by Γ as

m(m − 1)Γ = 11T −
∑

j

1 j1T
j −

∑
y

1y1T
y + mI

= (1J1T
J ) ⊗ (1

Y
1T
Y

) − IJ ⊗ (1
Y

1T
Y

) − (1J1T
J ) ⊗ I

Y
+ m · IJ ⊗ I

Y

= `m ·
1
J

1T
J

`
⊗

1
Y

1T
Y

m
− m · IJ ⊗

1
Y

1T
Y

m
− ` ·

1
J

1T
J

`
⊗ I
Y

+ m · IJ ⊗ I
Y

= `(m − 1) ·
1
J

1T
J

`
⊗

1
Y

1T
Y

m
− m · IJ ⊗

1
Y

1T
Y

m
− I
Y

 − ` · 1
J

1T
J

`
⊗

IY − 1
Y

1T
Y

m


= `(m − 1) ·

1
J

1T
J

`
⊗

1
Y

1T
Y

m

+ m ·

IJ − 1
J

1T
J

`

 ⊗ IY − 1
Y

1T
Y

m

 + (m − `) ·
1
J

1T
J

`
⊗

IY − 1
Y

1T
Y

m

 .
(B.15)

Next, we would like to argue that Equation (B.15) is an eigendecomposition.

For this, we just need to show that each of the three Kronecker products in

Equation (B.15) equals a projection matrix in R`m, and that the ranges of the

projection matrices are orthogonal. The first property follows, because if P1

and P2 are projection matrices then so is P1 ⊗ P2. The second property follows,
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because for P1,P′1 (square of the same dimension) and P2,P′2 (square of the same

dimension) such that either ranges of P1 and P′1 are orthogonal or ranges of P2

and P′2 are orthogonal, we obtain that the ranges of P1 ⊗ P2 and P′1 ⊗ P′2 are

orthogonal. To derive the pseudo-inverse, we distinguish two cases.

Case ` < m: We directly invert the eigenvalues in Equation (B.15) to obtain

Γ† =
m
`
·

1
J

1T
J

`
⊗

1
Y

1T
Y

m
+ (m − 1) ·

IJ − 1
J

1T
J

`

 ⊗ IY − 1
Y

1T
Y

m


+

m − 1
1 − `/m

·
1
J

1T
J

`
⊗

IY − 1
Y

1T
Y

m


=

1
`2 · 11T + (m − 1) ·

IJ +
1
J

1T
J

m − `

 ⊗ IY − 1
Y

1T
Y

m


=

(
1
`2 −

m − 1
m(m − `)

)
· 11T + (m − 1)I −

m − 1
m

∑
j

1 j1T
j +

m − 1
m − `

∑
y

1y1T
y .

Recall that Equation (B.15) involves m(m−1)Γ. To obtain ρ̄, we again evaluate

1T
y′Γ
†1y for any y ∈ Y(x). We write Ay for the set of actions appearing in y:

1T
y′Γ
†1y =

(
1
`2 −

m − 1
m(m − `)

)
· (1T

y′1)(1T 1y) + (m − 1)1T
y′1y −

m − 1
m

∑
j

(1T
y′1 j)(1T

j 1y)

+
m − 1
m − `

∑
y

(1T
y′1y)(1T

y 1y)

=

(
1
`2 −

m − 1
m(m − `)

)
· `2 +

∑
j

1{y′ j = y j}

1/(m − 1)
−

m − 1
m
· `

+
m − 1
m − `

∑
y

1{y ∈ Ay′}1{y ∈ Ay} (B.16)

= 1 −
(m − 1)(`2 + m` − `2)

m(m − `)
+

∑
j

1{y′ j = y j}

1/(m − 1)
+

m − 1
m − `

· |Ay′ ∩ Ay|

= 1 −
m − 1
m − `

· ` +
∑

j

1{y′ j = y j}

1/(m − 1)
+

m − 1
m − `

· |Ay ∩ Ay′ |,
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where Equation (B.16) follows because 1T 1y = ` and 1T
j 1y = 1 for any valid slate

y. By setting y′ = y, we obtain ρ̄ = 1 + `(m − 1) = m` − ` + 1.

Case ` = m: Again, we directly invert the eigenvalues in Equation (B.15):

Γ† =
1
`2 · 11T + (m − 1) ·

IJ − 1
J

1T
J

`

 ⊗ IY − 1
Y

1T
Y

m


=

1
m
· 11T + (m − 1)I −

m − 1
m

∑
j

1 j1T
j −

m − 1
m

∑
y

1y1T
y .

We finish the theorem by evaluating 1T
y′Γ
†1y:

1T
y′Γ
†1y =

1
m
· (1T

y′1)(1T 1y) + (m − 1)1T
y′1y −

m − 1
m

∑
j

(1T
y′1 j)(1T

j 1y)

−
m − 1

m

∑
y

(1T
y′1a)(1T

a 1y)

=
1
m
· m2 +

∑
j

1{y′ j = y j}

1/(m − 1)
−

m − 1
m
· m −

m − 1
m
· m

=
∑

j

1{y′ j = y j}

1/(m − 1)
− m + 2.

We obtain ρ̄ = m2 − 2m + 2 by setting y′ = y and Equation (B.13) by taking an

expectation over y′ ∼ π(· | x). �
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B.4.2 Translation Theorem and Proofs for Kappa-Uniform Dis-

tributions

In this section we derive bounds on ρ̄π0,x when π0 is not uniform, but only κ-

uniform. The main result is a translation theorem relating ρ̄µ,x to ρ̄ν,x for arbi-

trary µ and ν. This lets us translate the bounds for uniform distributions in

Appendix B.4.1 into bounds for κ-uniform distributions.

Theorem 10. Let µ be a κ-uniform policy and let ν denote the uniform stochastic policy.

Then

κρ̄µ,x ≤ ρ̄ν,x.

Proof of Proposition 2. The proposition follows by Proposition 4 with the ρ̄π0,x

bounded by Theorem 10, using the definition of κ-uniform distributions and

the values of ρ̄ν,x obtained in Propositions 5 and 6. �

B.5 The P-values for Plots in Figure 5.1 and Figure 5.2
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number of PI vs IPS PI vs DM
samples (n) TTS UTILITYRATE TTS UTILITYRATE

200 2.5 × 10−1 4.7 × 10−3 — —
600 3.8 × 10−2 1.6 × 10−3 — —

2 000 1.3 × 10−5 2.0 × 10−2 — —
6 000 3.7 × 10−5 2.0 × 10−2 — 1.8 × 10−2

20 000 1.2 × 10−5 1.9 × 10−2 1.5 × 10−3 4.3 × 10−7

60 000 4.5 × 10−6 < 10−8 8.1 × 10−4 < 10−8

Table B.1: The p-values of a t-test between PI and IPS, and PI and DM on search
engine data (Figure 5.1). Results where DM performs better than PI are omitted.

number of ` = 5, m = 20, α = 0 ` = 10, m = 20, α = 0 ` = 5, m = 20, α = 10
samples (n) PI vs wIPS PI vs DM PI vs wIPS PI vs DM PI vs wIPS PI vs DM

200 < 10−8 — < 10−8 — < 10−8 —
600 < 10−8 — < 10−8 — 1.0 × 10−8 —

2 000 < 10−8 — < 10−8 — < 10−8 —
6 000 < 10−8 — < 10−8 — < 10−8 —

20 000 < 10−8 7.3 × 10−2 < 10−8 — < 10−8 —
60 000 < 10−8 5.6 × 10−3 < 10−8 — < 10−8 —

200 000 < 10−8 6.0 × 10−5 < 10−8 6.1 × 10−2 < 10−8 4.4 × 10−4

600 000 < 10−8 < 10−8 < 10−8 7.3 × 10−4 < 10−8 7.5 × 10−5

Table B.2: The p-values of a t-test between PI and IPS, and PI and DM on semi-
synthetic data (Figure 5.2). Results where DM performs beats PI are omitted.
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B.6 Off-Policy Evaluation on Semi-Synthetic Data
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Figure B.1: RMSE of value estimators with increasing amounts of logged data
from a uniform logging policy. Policies rank ` = 5 out of m = 20 candidates.
Left: DM methods, Right: IPS estimators.

In Figure B.1, we compare the performance of several variants of estimators

in each family of baseline approaches (DM and IPS) plotted in Figure 5.2. For

the DM family of approaches, variants differ in their choice of regression pre-

dictor δ̂(x, y) that maps f(x, y) to V(x, y). f(x, y) is defined as the concatenation

of displayed document features (in order) f(x, y) for all these variants. Regres-

sion hyper-parameters are selected via five-fold cross-validation with each fold

containing disjoint queries.

1. DM-tree: δ̂(x, y) is predicted by a regression tree; maximum tree depth is

the only hyper-parameter that is tuned.

2. DM-ridge: δ̂(x, y) is implemented using ridge regression; `2-regularization

is cross-validated.

3. DM-lasso: δ̂(x, y) is implemented using lasso regression; `1-regularization

is cross-validated.
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For the IPS family, we compare standard inverse propensity scoring (IPS)

against the weighted variant (wIPS). As theory predicts, RMSE of IPS is worse

than that of wIPS since wIPS achieves a more favorable bias-variance trade-off.

102 103 104 105 106

Number of logged samples (n)

10−4

10−3

10−2

10−1

100

101

102

R
M

SE

PI (α = 0)
wIPS (α = 0)
PI (α = 1)
wIPS (α = 1)
PI (α = 10)
wIPS (α = 10)

5 slots, 20 actions per slot, PI vs. IPS

Figure B.2: RMSE curves for pseudoinverse estimator and wIPS. Policies rank
` = 10 out of m = 20 candidates. Overlap between logging and target policy is
controlled via α ∈ {0, 1, 10}.

Figure B.2 shows a relative comparison of the pseudoinverse estimators and

IPS estimators as the discrepancy between the logging policy and the target

policy is varied. The logging policy is as described in Section 5.6.1, parametrized

by α ≥ 0. α = 0 yields a uniform random logging policy and α→ ∞ corresponds

to a deterministic policy. As α is varied in {0, 1, 10}, PI remains stable while

wIPS improves — this improvement is because the target policy and predtitle

(the deterministic extreme of π0) overlap and the inverse propensity scores are
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better scaled and induce lower variance.
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Figure B.3: RMSE curves for semi-bandit approaches using the IPS estimator
per slot (SB) and the wIPS estimator per slot (wSB). The logging policy selects
slates uniformly at random. Policies rank ` = 5 out of m = 20 candidates.

Finally, we also compare to the hypothetical semi-bandit approach, which

uses more information than assumed by PI, IPS and DM. Semi-bandits assume

that intrinsic values φxi( j, yi j) are observed for j ≤ `. Given these values, as

defined in Example 3, i.e., φxi( j, yi j) =
(
2rel(xi,yi j) − 1

) /
log2( j + 1)DCG?(xi), the

estimator V̂wSB sums wIPS estimates across slots:

V̂wSB(π) B
∑̀
j=1

[ n∑
i=1

φxi( j, yi j) ·
π(yi j | xi)
π0(yi j | xi)

/( n∑
i=1

π(yi j | xi)
π0(yi j | xi)

)]
.

It is only asymptotically unbiased, but it outperforms the unbiased variant

based on standard IPS for each slot, as seen in Figure B.3.
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Figure B.4: RMSE curves under uniform logging (α = 0) and non-uniform log-
ging (α = 10) policies. This recreates Figure 5.2, but also including the hypothet-
ical semi-bandit (SB) approaches.

As Figure B.4 shows, the wSB approach requires somewhere between 4x and

10x less data than PI. So, in those cases when additional per-action feedback

which relates to the page-level reward according to the semi-bandit model is

available, this method is clearly preferred over PI. When the available feedback

does not obviously satisfy the semi-bandit model, however, this approach will

exhibit bias like the direct method. For instance, no obvious feedback of this

nature was available in the search engine data from Section 5.6.3 and hence we

could not evaluate the semi-bandits baseline in that setting.

B.7 Comparison of Pointwise Learning-to-Rank Approaches

for Off-Policy Optimization

Companion tables for Section 5.6.2 are provided in Table B.3, Table B.4 and

Table B.5. Supervised pointwise learning-to-rank (L2R) algorithms typically

regress to some monotone function of annotated relevance judgements rel(x, y).

Direct regression to rel(x, y) gives the SUP-Rel approach, while regressing to

2rel(x,y)−1 (which is well motivated by the fact that these methods are eventually
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trying to optimize NDCG) gives the SUP-Gain approach. Our PI-OPT approach

is outlined in Section 5.6.2.

We studied the behavior of PI-OPT for three different model classes: de-

cision tree regression, lasso and ridge regression. Since the MQ2008 dataset

was already divided into 5 folds, for each fold we used the validation fold to

tune hyper-parameters. After re-training on the train and validate folds, we re-

port the test fold NDCG. This procedure is repeated for 10 independent runs of

n = 105 samples collected from the uniform random logging policy. Recall that

SUP-Rel and SUP-Gain use approximately 12K annotated pairs. The average of

the test set NDCG per fold, and the macro-average over folds is reported.

We find that PI-OPT is able to compete and even outperform the best among

SUP-Rel and SUP-Gain. We find that the number of samples needed to achieve

parity is quite modest. Moreover, the variability across runs is negligible at

n = 105 (standard error in NDCG across 10 runs for each fold < 0.002).

Finally, in Figure B.5, we depict the performance of PI-OPT as a function of

increasing amount of logged samples.
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Fold Logger SUP-Rel SUP-Gain PI-OPT
1 0.273 0.455 0.461 0.473
2 0.285 0.426 0.427 0.421
3 0.289 0.415 0.420 0.426
4 0.273 0.470 0.469 0.469
5 0.259 0.480 0.489 0.492
Avg 0.276 0.449 0.453 0.456

Table B.3: Results of off-policy optimization using a decision tree regression
model class.

Fold Logger SUP-Rel SUP-Gain PI-OPT
1 0.273 0.466 0.459 0.467
2 0.285 0.427 0.427 0.413
3 0.289 0.425 0.423 0.413
4 0.273 0.468 0.462 0.484
5 0.259 0.492 0.486 0.517
Avg 0.276 0.456 0.451 0.459

Table B.4: Results of off-policy optimization when using lasso regression.

Fold Logger SUP-Rel SUP-Gain PI-OPT
1 0.273 0.456 0.455 0.451
2 0.285 0.418 0.416 0.418
3 0.289 0.418 0.417 0.413
4 0.273 0.460 0.457 0.454
5 0.259 0.487 0.486 0.476
Avg 0.276 0.448 0.446 0.442

Table B.5: Results of off-policy optimization when using ridge regression.
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Figure B.5: One trial of off-policy optimization with the decision tree model
class. Test set NDCG is plotted as a function of dataset size sampled from a
uniform random logging policy.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 6

C.1 Proof of Theorem 8

Theorem. With probability at least 1−η in the random vector (x1, y1) . . . (xn, yn) i.i.d.
∼ π0,

with observed losses δ1, . . . δn, for n ≥ 16 and a stochastic hypothesis space H with

capacity N∞( 1
n ,FH , 2n),

∀π ∈ H :R(π) ≤ R̂M(π) +

√
18

ˆV ar(zπ)QH (n, η)
n

+ M
15QH (n, η)

n − 1
,

where, QH (n, η) ≡ log(
10 · N∞(1

n ,FH , 2n)
η

), 0 < η < 1.

Proof. The proof follows from a direct application of empirical Bernstein bounds

derived by Maurer and Pontil (see Theorem 6 [82]) applied to the deterministic

function class FH . We sketch the main argument using symmetrization and

Rademacher variables here.

Define the random variable sπ = 1 + zπ
M with mean Eπ0 [sπ] and variance

V ar(sπ). Observe that Eπ0 [sπ] = 1 +
RM(π)

M from Lemma 7. Let sπi = 1 + zπi

M .

The sampleD essentially contains n i.i.d. observations of sπ. Let ŝπ and ˆV ar(sπ)

denote the empirical mean and variance of {sπi}ni=1 respectively. Observe that

ˆV ar(sπ) =
ˆV ar(zπ)
M2 . Abusing notation slightly, we will use boldface sπ to refer to

the sample {sπi}ni=1.

We begin with Bennet’s inequality. For s, {si}ni=1 i.i.d. bounded random vari-

ables in [0, 1] having mean E [s] and variance V ar(s), with probability at least
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1 − η in {si}ni=1 ≡ s,

E [s] − ŝ ≤

√
2V ar(s) log 1/η

n
+

log 1/η
3n

. (C.1)

Intuitively, Bennet’s inequality tells us that the estimate ŝ has lower accu-

racy if V ar(s) is high, which exactly captures our intuition about the variance

introduced by importance sampling when estimating the risk of a hypothesis

“far” from π0. However, the diameter of this confidence interval depends on

the unobservable V ar(s).

We now recite the empirical Bernstein bound (Theorem 11 [82]) that gives a

variance-sensitive bound with an observable confidence interval.

Under the same conditions as Bennet’s inequality Equation (C.1), let n ≥

2, ˆV ar(s) represent the empirical variance of {si}ni=1. With probability at least

1 − η,

E [s] − ŝ ≤

√
2 ˆV ar(s) log 2/η

n
+

7 log 2/η
3(n − 1)

. (C.2)

This follows from confidence bounds on the sample standard deviation√
ˆV ar(s) compared to the true standard deviation Es

[
ˆV ar(s)

]
. Based on this

bound, Maurer and Pontil [82] define two Lipschitz continuous functions, Φ,Ψ :

[0, 1]n × R+ → R.

Φ(s, t) = ŝ +

√
2 ˆV ar(s)t

n
+

7t
3(n − 1)

Ψ(s, t) = ŝ +

√
18 ˆV ar(s)t

n
+

11t
n − 1

.
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These functions are Lipschitz continuous,

Φ(s, t) − Φ(s′, t) ≤ (1 + 2

√
t
n

)‖s − s′‖∞

Ψ(s, t) − Ψ(s′, t) ≤ (1 + 6

√
t
n

)‖s − s′‖∞. (C.3)

The inequalities follow directly from
√

ˆV ar(s) −
√

ˆV ar(s′) ≤
√

2‖s − s′‖∞.

For the symmetrization argument, consider two sets of n samples D and D′

drawn from π0 according to the conditions of Theorem 8 and used to estimate

risk of a hypothesis π. This gives rise to two sets of n i.i.d. random variables

sπ and s′π. Also define the Rademacher variables σ1, . . . σn
i.i.d
∼ U{−1, 1}. Define

(σ, sπ, s′π) as the vector with ith co-ordinate set to sπi or s′πi as specified by σi.

(σ, sπ, s′π)i =


sπi if σi = 1

s′πi if σi = −1.

For a fixed π ∈ H and a fixed double sample sπ, s′π as described above,

Pr
σ

[
Φ((σ, sπ, s′π), t) ≥ Ψ((σ, sπ, s′π), t)

]
≤ 5e−t. (C.4)

This follows (see Lemma 14 [82]) by decomposing the event [Φ((σ, sπ, s′π), t)

≥ Ψ((σ, sπ, s′π), t)] as
[
Φ((σ, sπ, s′π), t) ≥ A

]
∧

[
A ≥ Ψ((σ, sπ, s′π), t)

]
where A uses the

true mean and variance of sπ. The probability of the first event can be bounded

using Bennet’s inequality from Equation (C.1), while the second event can be

bounded using the empirical Bernstein bound from Equation (C.2) and the con-

fidence bounds on the sample standard deviation
√

ˆV ar(s).

Set t = log 2
η

and consider t ≥ log 4 (i.e. η ≤ 1
2 ). Equation (C.2) implies, for any

π ∈ H ,

Pr(Φ(sπ, t) ≥ E [sπ]) ≥
1
2
. (C.5)
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Hence, for any ρ > 0,

Pr
D

(∃π ∈ H : E [sπ] > Ψ(sπ, t) + ρ) = ED

[
sup
π∈H

1{E [sπ] > Ψ(sπ, t) + ρ}

]
≤ ED

[
sup
π∈H

1{E [sπ] > Ψ(sπ, t) + ρ}

]
2 Pr(Φ(s′π, t) ≥ E

[
s′π

]
) Eq. (C.5)

= 2ED

[
sup
π∈H

ED′
[
1{E [sπ] > Ψ(sπ, t) + ρ ∧ Φ(s′π, t) ≥ E [sπ]}

]]
∵E [sπ]=E

[
s′π

]
≤ 2EDED′

[
sup
π∈H

1{E [sπ] > Ψ(sπ, t) + ρ ∧ Φ(s′π, t) ≥ E [sπ]}
]

≤ 2EDE|mathcalD′

[
sup
π∈H

1{Φ(s′π, t) > Ψ(sπ, t) + ρ}

]
= 2EσEDED′

[
sup
π∈H

1{Φ((σ, sπ, s′π), t) > Ψ((−σ, sπ, s′π), t) + ρ}

]
∵sπ, s

′
π are iid

≤ 2 sup
D,D′
Eσ

[
sup
π∈H

1{Φ((σ, sπ, s′π), t) > Ψ((−σ, sπ, s′π), t) + ρ}

]
= 2 sup

D,D′
Pr
σ

(∃π ∈ H : Φ((σ, sπ, s′π), t) > Ψ((−σ, sπ, s′π), t) + ρ).

For a fixed D,D′, consider the ε−cover of FH , FH 0. Denote the set of

stochastic policies that correspond to each fπ ∈ FH
0 by H0. We know that∣∣∣H0

∣∣∣ ≤ N∞(ε,FH , 2n) (by definition of the covering number, and since there is a

one-to-one mapping from π to fπ) and ∀π ∈ H ,∃π′ ∈ H0 such that ‖sπ − sπ′‖∞ ≤ ε

and ‖s′π − s′π′‖∞ ≤ ε (by definition of ε−cover). Instantiate ρ = ε(2 + 8
√

t
n ) and

suppose ∃π ∈ H such that Φ((σ, sπ, s′π), t) > Ψ((−σ, sπ, s′π), t) + ρ. Since Φ and Ψ

are Lipschitz continuous, as demonstrated in Equation (C.3), hence there must

exist a π′ ∈ H0 such that Φ((σ, sπ′ , s′π′), t) > Ψ((−σ, sπ′ , s′π′), t). Hence,

Pr
σ

(∃π ∈ H : Φ((σ, sπ, s′π), t) > Ψ((−σ, sπ, s′π), t) + ε(2 + 8

√
t
n

))

≤ Pr
σ

(∃π ∈ H0 : Φ((σ, sπ, s′π), t) > Ψ((−σ, sπ, s′π), t))

≤
∑
π∈H0

Pr
σ

(Φ((σ, sπ, s′π), t) > Ψ((−σ, sπ, s′π), t))

≤ 5e−tN∞(ε,FH , 2n) Equation (C.4) .
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In short,

Pr
D

(∃π ∈ H : E [sπ] > Ψ(sπ, t) + ε(2 + 8

√
t
n

)) ≤ 10e−tN∞(ε,FH , 2n).

Setting 10e−tN∞(ε,FH , 2n) = η we get tη = log 10N∞(ε,FH ,2n)
η

> 1. Moreover, 2(tη+1)
n ≤

2(tη+1)
n−1 ≤

4tη
n−1 and for n ≥ 16, 8

√
tη
n ≤ 2tη. Substituting ε = 1

n and simplifying,

Pr
D

(∃π ∈ H : E [sπ] > ŝπ +

√
18 ˆV ar(sπ)tη

n
+

15tη
n − 1

) ≤ η.

Finally, E [sπ] = 1 +
RM(π)

M , ŝπ = 1 + R̂Mπ
M and ˆV ar(sπ) =

ˆV ar(zπ)
M2 . Since δ(·, ·) ≤ 0,

hence R(π) ≤ RM(π). Putting it all together,

Pr
D

(∃π ∈ H : R(π) > R̂M(π) +

√
18 ˆV ar(zπ)tη

n
+

15Mtη
n − 1

) ≤ η.

�

C.2 Proof of Proposition 3

Proposition. For any w0 such that ˆV ar(zw0) > 0,√
ˆV ar(zw) ≤ Aw0

n∑
i=1

zw
i + Bw0

n∑
i=1

{zw
i}2 + Cw0

Aw0 ≡
− ˆzw0

(n − 1)
√

ˆV ar(zw0)
,

Bw0 ≡
1

2(n − 1)
√

ˆV ar(zw0)
,

Cw0 ≡
n{ ˆzw0}

2

2(n − 1)
√

ˆV ar(zw0)
+

√
ˆV ar(zw0)

2
.
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Proof. Consider a first order Taylor approximation of
√

ˆV ar(zw) around w0. Ob-

serve that
√
· is concave.√

ˆV ar(zw) ≤
√

ˆV ar(zw0) + ∇ζ
( √

ζ
)
|ζ= ˆV ar(zw0 ) ( ˆV ar(zw) − ˆV ar(zw0))

=

√
ˆV ar(zw0) +

ˆV ar(zw) − ˆV ar(zw0)

2
√

ˆV ar(zw0)

=

√
ˆV ar(zw0)

2
+

1

2
√

ˆV ar(zw0)

ˆV ar(zw)

=

√
ˆV ar(zw0)

2
+

∑n
i=1{zw

i}2

2(n − 1)
√

ˆV ar(zw0)
+

−n{ẑw}
2

2(n − 1)
√

ˆV ar(zw0)
.

Again Taylor approximate −{ẑw}
2, noting that −{·}2 is concave.

−{ẑw}
2 ≤ −{ ˆzw0}

2 + ∇ζ
(
−ζ2

)
|ζ= ˆzw0

(ẑw − ˆzw0)

= −{ ˆzw0}
2 + 2{ ˆzw0}

2 − 2 ˆzw0 ẑw

= { ˆzw0}
2 −

2 ˆzw0

n

n∑
i=1

zw
i.

Substituting above and re-arranging terms, we derive the proposition. �

192



APPENDIX D

OLD RESEARCH NOTES

I wrote a silly story in February 2014 to motivate, what we later called, the

BLBF problem setting and sketched some ideas for possible solutions. The story

is reproduced below. I implemented a Gaussian Process | Bayesian Optimiza-

tion style solution based on the sketched ideas, and it worked remarkably well

on toy problems. However, scalability was hopeless, and by April 2014 I imple-

mented POEM, which went on to dominate this approach. The reason behind

POEM’s rhyme (i.e., formal proofs for its performance) followed in June 2014. I

received an email from Thorsten Joachims on May 27, 2014. Subject:〈Link [82]〉.

Body: “I remembered this paper, in which you will find Theorem 4 particularly

interesting.” That one-liner has led to this 150+ page thesis!

D.1 Learning with Bandit Supervision

In an apocalyptic future, Google R© lies in shambles after numerous lawsuits and

counter-lawsuits. In the aftermath of these lawsuits, antitrust activists force

Google to reveal (appropriately anonymized of course) the logs they had main-

tained on every user on the planet. The courts ruled, “data recording user be-

havior may not be used as a competitive advantage, but any annotations and

transformations that Google did in-house remain its sole property”. The skeletal

remains of Google now guard their models, parameters, and curated data with

even greater secrecy.

In this landscape, several salvagers dredge through Google’s logs, hoping to

unlock the secrets of Life, the Universe, and EverythingTM and, of course, the
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secret to building a good search engine. Our protagonist in this tale is one such

salvager: the fledgling company νoogle, started by graduate students frustrated

by endless rounds of conference submissions and rejections.

The future may be apocalyptic, but the research industry is flourishing: con-

ferences abound, with a gazillion manuscript submissions and re-submissions.

The peer-reviewing process is, hence, stretched to the limit. Rather than bidding

for papers, reviewers log on to GMT (Google’s response to Microso f t R© CMTTM),

and search for submissions using keywords. GMT assigns them a manuscript,

and they can respond with a review and a confidence score. Rumor has it: these

confidence scores govern the promotion prospects of GMT’s developers.

νoogle want to build the next generation of conference management toolkits.

The core task: Reviewer inputs a query x, and the system should respond with

the best manuscript y for x. The erstwhile graduate students slogged for a week

and identified the best manuscripts for a handful of queries. Imagine their frus-

tration when they realized that this annotated data would barely do as a test set!

Creating a labeled training set was out of the question. In despair, they turned

to the GMT logs, hoping to find something they can use.

Indeed they did! Scattered through the logs were several instances of a user

issuing a query x, the manuscript that GMT in its infinite wisdom assigned, y,

and the Calibrated Confidence ScoreTM
δ(x, y). These scores were the de-biased and

normalized confidence ratings of a population of reviewers done with Google’s

patented transmogrifiers – clearly their data-scrubbing team overlooked these

scores when releasing the logs.

Chief Scientist Sir Models-A-Lot scanned these (x, y, δ(x, y)) triples, remark-
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ing, “Wow, these are the machinations of a remarkably intelligent contextual-

ized bandit. Look how it explores and exploits across sessions! If only we knew

the exact algorithm Google used, and the parameters for the online learning

model, we could simply replicate the model and deploy it.” He looked across

hopefully to his colleague, Dr. Data-Morph, but she shook her head. “Google

will never give us their models.”

They discussed their position and their options going forward. “We have

a model, parametrized by w, that takes in a reviewer’s query x and spits out

a manuscript y. The users of our system will generate queries x ∈ X, and we

can safely assume they are independent identical draws from some unknown

but fixed distribution Pr(X). Our system lacks the technological sophistication

of GMT’s Calibrated Confidence Score. And it is not an online learning system: we

build, and we deploy. If something catches fire, we rinse and repeat. Without

confidence scores, we rely on a binary feedback: if reviewers are happy with

their assignment, they will actually review the darn thing, and if they are not,

we will not hear a thing. The learning task is to find parameters w∗ that maxi-

mizes the expected happiness of our users. The challenge is to learn w∗ from the

data that we have: triples of (x, y, δ(x, y)).”

Dr. Data-Morph offered the following suggestion: “We have several learning

algorithms for our model which, when given a training set (x, y) containing the

best manuscript for each query, can find w∗ that generalizes from these to unseen

instances. Can we not transmogrify the triples data to this form? Collect all

instances of GMT exploring different alternatives y for the same query x, and

create a single instance (x, y∗) which has the best-observed score δ(x, y∗).”

“No no no, No no, No”, nodded Sir Models-A-Lot. “First, a technicality: this
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transformation ensures every query x occurs exactly once in the training data.

The actual Pr(X) may look nothing like a uniform distribution, and it is danger-

ous to argue about expected loss on training and test data when the expectations

are with respect to different distributions.”

“Second, we are relying too much on GMT having explored well for each

query x. What if, for a whole bunch of queries, the observed y have pitifully

low δ(x, y), and the best option actually lies elsewhere. We would be creating a

willfully misleading supervised dataset.”

“The triples dataset clearly indicates we are modeling the wrong thing. Let

us construct a model that models δ(x, y) directly: it is just a regression problem.

Given a query x and a manuscript y, it shall predict δ(x, y), and our scavenged

data is just what Goldilocks ordered for a supervised algorithm. For generating

our system’s output for a specific query x when deployed, we shall enumerate

every possible y, predict δ(x, y) and pick the highest.”

A tiny voice piped up from across the room, and both researchers jumped

back in surprise. It was the intern, No-op Noob. “Speak up, Mr. Noob,” encour-

aged Sir Models-A-Lot.

“Nothing, sir. If Dr. Data-Morph’s transformation of the training data

seemed arbitrary, so too is the procedure to predict y using the regression model.

We may have guarantees for the expected regression loss, but I do not know if

that translates to our goal: expected happiness of reviewers.”

“Also, it may be wrong to assume that (x, y) pairs seen in the triples dataset

are independent identical draws from some Pr(X × Y). Clearly, GMT has been

using clever policies to generate Y , and we do not know if they are merely i.i.d.
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draws from some Pr(Y | X).”

The voice of John Langford boomed through the room, “There are ways to

control for that,” but it fell on deaf ears.

“How about a more principled, less feasible way to create a supervised train-

ing set from the triples dataset?” continued No-op Noob.

“For each query x in the triples dataset, from the various δ(x, y) measure-

ments sampled, we shall transduce δ(x, y) for the unsampled y’s along with con-

fidence scores for our transduction (not to be confused with the Calibrated Confi-

dence ScoreTM
δ(x, y)). With this step, we now have a distribution over y for every

query x, Pr(Y = y | x) telling us the probability that y is the best manuscript for x.

We materialize a weighted training set and learn Dr. Data-Morph’s models the

good old way. And, . . . and . . . profit?”
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[14] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends in Machine
Learning, 2012.

[15] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. Learning to rank using gradient descent. In
ICML, 2005.

[16] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited
memory algorithm for bound constrained optimization. SIAM Journal on
Scientific Computing, 1995.
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value estimation. In AISTATS, 2015.

[74] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. Modeling
user exposure in recommendation. In WWW, 2016.

[75] Daryl Lim, Julian McAuley, and Gert Lanckriet. Top-n recommendation with
missing implicit feedback. In RecSys, 2015.

[76] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization.
Neural Computation, 2007.

[77] Roderick J. A. Little and Donald B. Rubin. Statistical analysis with missing data.
John Wiley, 2002.

[78] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 2009.

[79] Benjamin M. Marlin and Richard S. Zemel. Collaborative prediction and ranking
with non-random missing data. In RecSys, 2009.

[80] Benjamin M. Marlin, Richard S. Zemel, Sam Roweis, and Malcolm Slaney.
Collaborative filtering and the missing at random assumption. In UAI, 2007.

[81] Jérémie Mary, Philippe Preux, and Olivier Nicol. Improving offline evaluation of
contextual bandit algorithms via bootstrapping techniques. In ICML, 2014.

[82] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and
sample-variance penalization. In COLT, 2009.

[83] Daniel F. McCaffrey, Greg Ridgeway, and Andrew R. Morral. Propensity score
estimation with boosted regression for evaluating causal effects in observational
studies. Psychological Methods, 2004.

203



[84] Arnaud De Myttenaere, Bénédicte Le Grand, Boris Golden, and Fabrice Rossi.
Reducing offline evaluation bias in recommendation systems. In Benelearn, 2014.

[85] Jerzy Neyman. On the application of probability theory to agricultural
experiments: Essay on principles. Statistical Science, 1923.

[86] Art B. Owen. Monte Carlo theory, methods and examples. Draft, 2013.
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