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Abstract. Process models specify behavioral execution constraints between ac-
tivities as well as between activities and data objects. A data object is character-
ized by its states and state transitions represented as object life cycle. For process
execution, all behavioral execution constraints must be correct. Correctness can
be verified via soundness checking which currently only considers control flow
information. For data correctness, conformance between a process model and its
object life cycles is checked. Current approaches abstract from dependencies be-
tween multiple data objects and require fully specified process models although,
in real-world process repositories, often underspecified models are found. Coping
with these issues, we apply the notion of weak conformance to process models
to tell whether each time an activity needs to access a data object in a particular
state, it is guaranteed that the data object is in or can reach the expected state.
Further, we introduce an algorithm for an integrated verification of control flow
correctness and weak data conformance using soundness checking.

1 Introduction

Business process management allows organizations to specify their processes struc-
turally by means of process models, which are then used for process execution. Process
models comprise multiple perspectives with two of them receiving the most attention
in recent years: control flow and data [22]. These describe behavioral execution con-
straints between activities as well as between activities and data objects. It is usually
accepted that control flow drives execution of a process model. While checking control
flow correctness using soundness [1] is an accepted method, correctness regarding data
and control flow is not addressed in sufficient detail. In this paper, we describe a formal-
ism to integrate control flow and data perspectives that is used to check for correctness.

In order to achieve safe execution of a process model, it must be ensured that every
time an activity attempts to access a data object, the data object is in a certain expected
data state or is able to reach the expected data state from the current one, i.e., data speci-
fication within a process model must conform to relevant object life cycles, where each
describes the allowed behavior of a distinct class of data objects. Otherwise, the execu-
tion of a process model may deadlock. To check for deadlock-free execution in terms
of data constraints, the notion of object life cycle conformance [9, 20] is used. This ap-
proach has some restrictions with respect to data constraint specification, because each
single change of a data object as specified in the object life cycle, we refer to as data
state transition, must be performed by some activity. [21] relaxes this limitation such
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that several state changes can be subsumed within one activity. However, gaps within
the data constraints specification, i.e., implicit data state transitions, are not allowed al-
though some other process may be responsible of performing a state change of an object,
i.e., these approaches can only check whether an object is in a certain expected state.
We assume that implicit data state transitions get realized by an external entity or by
detailed implementations of process model activities. In real world process repositories,
usually many of those underspecified process models exist, which motivates the intro-
duction of the notion of weak conformance [13]. It allows to also check underspecified
models.

Additionally, in real world, often dependencies between multiple data objects exist;
e.g., an order may only be shipped to the customer after the payment is recognized. Non
of above approaches supports this. Thus, we utilize the concept of synchronized object
life cycles that allows to specify dependencies between data states as well as state tran-
sitions of different object life cycles [16]. Based thereon, we extend the notion of weak
conformance and describe how to compute it for a given process model and the corre-
sponding object life cycles including synchronizations. We utilize the well established
method of soundness checking [1] to check for process model correctness. For mapping
a process model to a Petri net, we utilize an extension covering data constraints [16] to
a widely-used control flow mapping [4] to enable an integrated checking of control flow
and data correctness. Further, fundamentals and preliminaries required in the scope of
this paper are discussed in Section 2 of our report [16].

The remainder is structured as follows. First, we discuss weak conformance in gen-
eral and compare it to existing conformance notions in Section 2 before we introduce
the extended notion of weak conformance in Section 3. Afterwards, we discuss the pro-
cedure for integrated correctness checking in Section 4. Section 5 is devoted to related
work before we conclude the paper in Section 6.

2  Weak Conformance

The notion of weak conformance has been initially proposed in [13] as extension to the
notion of object life cycle conformance [9, 20] to allow the support of underspecified
process models. A fully specified process model contains all reads and writes of data
nodes by all activities. Additionally, each activity reads and writes at least one data
node except for the first and last activities, which may lack reading respectively writing
a data node in case they only create respectively consume a data node.

In contrast, underspecified process Table 1. Applicability and time complexity of data
models may lack some reads or writes  conformance computation algorithms

of data nodes such that they are im-

plicit, performed by some other pro-  Attribute [9,20] [21] [13] this
cess, or they are hidden in aggregated gy
EI.CIIVIUCS.» changing the state rpultlple specification
times with respect to the object life Underspecification - o  + +
cycle. Though, full support of under-  gynchronization
specified process models requires that
the process model may omit state
changes of data nodes although they are specified in the object life cycle.
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In this paper, we extend the notion of weak conformance to also support object
life cycle synchronization. First, we compare different approaches to check for confor-
mance between a process model and object life cycles. Table 1 lists the applicability and
specifies the time complexity of the computation algorithms for approaches described
in [9,20], [21], [13], and this paper. The notion from [9, 20] requires fully specified
process models and abstracts from inter-dependencies between object life cycles by not
considering them for conformance checking in case they are modeled. Conformance
computation is done in polynomial time. In [21], underspecification of process models
is partly supported, because a single activity may change multiple data states at once
(aggregated activity). Though, full support of underspecified process models would re-
quire that the process model may omit data state changes completely although they
are specified in the object life cycle. Synchronization between object life cycles is not
considered in that approach and complexity-wise, it requires exponential time. [13] sup-
ports fully and underspecified process models but lacks support for object life cycle syn-
chronization, which is then solved by the extension described in this section. For [13],
no computation algorithm is given such that no complexity can be derived. The solution
presented in this paper requires exponential time through the Petri net mapping and sub-
sequent soundness checking as described in Section 4. However, state space reduction
techniques may help to reduce the computation time for soundness checking [6]. The
choice of using soundness checking to verify weak conformance allows to check for
control flow soundness as well as weak conformance in one analysis and still allows to
distinguish occurring violations caused by control flow or data flow.

3 The Notion of Weak Conformance

Weak conformance is checked for a process model with respect to the object life cycles
referring to data classes used within the process model. To such concept, we refer as
process scenario h = (m, L, C), where m is the process model, £ is the synchronized
object life cycle, and C is the set of data classes. Next, we define several notions for
convenience considerations before we introduce the notion of weak conformance. Let
f € Tm be a data flow edge of process model m indicating either a data object read
or write. With f4 and fp, we denote the activity (A) and data node (D) component of
f, respectively. For instance, if f is equal to (a,d), a read, or to (d, a), a write, then
(in both cases) f4 = a and fp = d. With ¥(f), we denote the data state r4 involved
inaread (f = (d,a) € §) or write (f = (a,d) € §F) operation. We denote the set
of synchronization edges having data state 4 as target data state with SE,.. Further,
a =, a' denotes that there exists a path in process model m which executes activity
a € A, before activity ' € A,,. Analogously, s =, s’ denotes that there exists a
path in the object life cycle /. of data class ¢ which reaches state s € S, before state
s’ € S. . Thereby, we assume trace semantics. Due to space limitations, details about
the concepts utilized throughout this paper and especially in this section can be found
in [16], where we introduce the corresponding fundamentals.

Definition 1 (Weak Data Class Conformance). Given process scenario h = (m, L, C),
m = (N,D,Q,C,§,type, u, ) and L = (L, SE), process model m satisfies weak
conformance with respect to data class ¢ € C'if forall f, f € Fsuchthat fp =d = [}
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with d referring to ¢ holds (i) fa =, f) implies O(f) =1, I(f'), (i) Vse € SEyp
originating from the same object life cycle | € L : 3¢(se) == true, and (iii) fa = f)
implies f represents a read and f’ represents a write operation of the same activity. ¢

Given a process scenario, we say that it satisfies weak conformance, if the process
model satisfies weak conformance with respect to each of the used data classes. Weak
data class conformance is satisfied, (i),(iii) if for the data states of each two directly
succeeding data nodes referring to the same data class in a process model there exists a
path from the first to the second data state in the corresponding object life cycle and (ii)
if the dependencies specified by synchronization edges with a target state matching the
state of the second data node of the two succeeding ones hold such that all dependency
conjunctions and disjunctions are fulfilled. Two data nodes of the same class are directly
succeeding in the process model, if either (1) they are accessed by the same activity with
one being read and one being written or (2) there exists a path in the process model in
which two different activities access data nodes of the same class in two data states with
no further access to a node of this data class in-between.

4 Computation of Weak Conformance via Soundness Checking

A given process scenario h = (m, L, C) can be checked for weak conformance by
applying the following four steps in sequence:

1. Map the process model m and the synchronized object life cycle £ to Petri nets,

2. integrate both Petri nets,

3. post-process the integrated Petri net and transform it to a workflow net system, and
4. apply soundness checking to identify violations within the process scenario h.

Before we discuss these four steps, we recall the notions of preset and postset. A preset
of a transition ¢ respectively a place p denotes the set of all places respectively transi-
tions directly preceding ¢ respectively p. A postset of a transition ¢ respectively a place
p denotes the set of all places respectively transitions directly succeeding ¢ respectively
.

1—Petri Net Mapping: The process model is mapped to a Petri net following the rules
described in [4] for the control flow and in [16] for the data flow. The mapping of
the synchronized object life cycle is split. First, each single object life cycle [ € L is
mapped to a Petri net, which than secondly are integrated utilizing the set of synchro-
nization edges. The mapping of single object life cycles utilizes the fact that Petri nets
are state machines, if and only if each transition has exactly one preceding and one suc-
ceeding place [2]. Thus, each state of an object life cycle is mapped to a Petri net place
and each data state transition connecting two states is mapped to a Petri net transition
connecting the corresponding places.

For each typed synchronization edge, one place is added to the Petri net. If two typed
synchronization edges have the same source and the same dependency type, target the
same object life cycle, and if the corresponding target states each have exactly one in-
coming synchronization edge, both places are merged to one. Similarly, two places are
merged, if two typed synchronization edges have the same target, the same dependency
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type, and origin from the same object life cycle. The preset of an added place com-
prises all transitions directly preceding the places representing the source and the target
data states of the corresponding synchronization edge. The postset of an added place
comprises all transitions directly preceding the place representing the target state of the
synchronization edge. For currently typed edges, the postset additionally comprises the
set of all transitions directly succeeding the place representing the source state.

For each untyped synchronization edge, one transition is added to the Petri net. If
Neep157c U tgt} # O for two untyped synchronization edges, i.e., they share one data
state, then both transitions are merged. The preset and postset of each transition com-
prise newly added places; one for each (transitively) involved synchronization edge for
the preset and the postset respectively. Such preset place directly succeeds the transi-
tions that in turn are part of the preset of the place representing the data state from which
the data state transition origins. Such postset place directly precedes the transition repre-
senting the corresponding source or target transition of the typed synchronization edge.

2—Petri Net Integration: First, data states occurring in the object life cycles but not in
the process model need to be handled to ensure deadlock free integration of both Petri
nets. We add one place p to the Petri net, which handles all not occurring states, i.e.,
avoids execution of these paths. Let each ¢; be a place representing such not occurring
data state. Then, the preset of each transition ¢; being part of the preset of ¢; is extended
with place p, if the preset of ¢; contains a data state which postset comprises more than
one transition in the original Petri net mapped from the synchronized object life cycle.

Each data state represented as place in the Petri net TG
mapped from the process model consists of a control flow in data state
and a data flow component as visualized in Fig. 1 with
C and D. Within the integrated Petri net, the control flow
component is responsible for the flow of the object life
cycle and the data flow component is responsible for the
data flow in the process model. The integration of both Fig.1. Internal places for a
Petri nets follows three rules, distinguishable with respect ~Place representing a data state
to read and write operations. The rules use the data flow
component of data state places.

(IR-1) A place p from the object life cycle Petri net representing a data state of a
data class to be read by some activity in the process model is added to the preset of
the transition stating that this data node (object) is read in this specific state, e.g., the
preset of transition Read O in data state s is extended with the place representing data
state s of class O, and (IR-2) a new place ¢ is added to the integrated Petri net, which
extends the postset of the transition stating that the data node (object) is read in the
specific state and which extends the preset of each transition being part of the postset
of place p, e.g., the place connecting transition Read O in data state s and the two
transitions succeeding the place labeled O.s. (IR-3) Let v be a place from the object life
cycle Petri net representing a data state of a class to be written by some activity in the
process model. Then a new place w is added to the integrated Petri net, which extends
the preset of each transition being part of the preset of w and which extends the postset
of the transition stating that the data node (object) is written in the specific state. the
Petri net derived from the process model stating this write.
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3—Workflow Net System: Soundness checking has been introduced for workflow net
systems [1,12]. Workflow nets are Petri nets with a single source and a single sink place
and they are strongly connected after adding a transition connecting the sink place with
the source place [1]. The integrated Petri net needs to be post-processed towards these
properties by adding enabler and collector fragments. The enabler fragment consists of
the single source place directly succeeded by a transition y. The postset of y comprises
all places representing an initial data state of some object life cycle and the source place
of the process model Petri net. The preset of each place is adapted accordingly.

The collector fragment first consists of a transition ¢ preceding the single sink node.
For each distinct data class of the process scenario, one place p; and one place g; are
added to the collector. Each place p; has transition ¢ as postset'. Then, for each final data
state of some object life cycle, a transition u; is added to the collector. Each transition
u; has as preset the place representing the corresponding data state and some place g;
referring to the same data class. The postset of a transition u; is the corresponding place
p; also referring to the same data class. Additionally, a transition z succeeded by one
place is added to the collector. The place’s postset is transition t. The preset of z is the
sink place of the process model Petri net. The postset of z is extended with each place
q;-

Next, the synchronization places need to be considered. If a typed synchronization
edge involves the initial state of some object life cycle as source, then the correspond-
ing place is added to the postset of transition y of the enabler fragment. For all syn-
chronization edges typed previously, the postset of the corresponding place is extended
with transition ¢ of the collector. If a currently typed synchronization edge involves a
final state of some object life cycle as source, then the corresponding place is added
to the postset of the corresponding transition u; of the collector fragment. Finally, the
semaphore places need to be integrated. Therefore, for each semaphore place, the preset
is extended with transition y from the enabler and the postset is extended with transition
t from the collector fragments. Now, connecting sink and source node, the workflow net
is strongly connected. A workflow net system consists of a workflow net and some ini-
tial marking. The workflow net is given above and the initial marking puts a token into
the single source place and nowhere else.

4—Soundness Checking: Assuming control flow correctness, if the workflow net sys-
tem satisfies the soundness property [1], no contradictions between the process model
and the object life cycles exist and all data states presented in all object life cycles are
implicitly or explicitly utilized in the process model, i.e., all paths in the object life
cycles may be taken. If it satisfies the weak soundness property [12], no contradictions
between the process model and the object life cycles exist but some of the data states
are never reached during execution of the process model. In case, control flow inconsis-
tencies would appear, places and transitions representing the control flow would cause
the violation allowing to distinguish between control flow and data conformance issues.

Validation. The described approach reliably decides about weak conformance of a pro-
cess scenario. It takes sound Petri net fragments as input and combines them with

! Generally, we assume that addition of one element a to the preset of another element b implies
the addition of b to the postset of a and vice versa.
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respect to specified data dependencies. Single source and sink places are achieved
through the addition of elements either marking the original source places or collect-
ing tokens from the original final places. Thus, they do not change the behavior of the
process model and the object life cycles, i.e., they do not influence the result.

5 Related Work

The increasing interest in the development of process models for execution has shifted
the focus from control flow to data flow perspective leading to integrated scenarios
providing control as well as data flow views. One step in this regard are object-centric
processes [3,17,23] that connect data classes with the control flow of process models by
specifying object life cycles. [8] introduces the essential requirements of this modeling
paradigm. [9, 20] present an approach, which connects object life cycles with process
models by determining commonalities between both representations and transforming
one into the other. Covering one direction of the integration, [10] derives object life
cycles from process models. Tackling the integration of control flow and data, [14, 15]
enable to model data constraints and to enforce them during process execution directly
from the model. Similar to the mentioned approaches, we concentrate on integrated
scenarios incorporating process models and object life cycles removing the assumption
that both representations must completely correspond to each other. Instead, we set a
synchronized object life cycle as reference that describes data manipulations allowed in
a traditional, i.e., activity-driven, modeled process scenario, e.g., with BPMN [18].

The field of compliance checking focuses on control flow aspects using predefined
rule sets containing, for instance, business policies. However, some works do consider
data. [11] applies compliance checking to object-centric processes by creating pro-
cess models following this paradigm from a set of rules. However, these rules most
often specify control flow requirements. [7] provides a technique to check for confor-
mance of object-centric processes containing multiple data classes by mapping to an
interaction conformance problem, which can be solved by decomposition into smaller
sub-problems, which in turn are solved by using classical conformance checking tech-
niques. [23] introduces a framework that ensures consistent specialization of object-
centric processes, i.e., it ensures consistency between two object life cycles. In contrast,
we check for consistency between a traditional process model and an object life cycle.
Eshuis [5] uses a symbolic model checker to verify conformance of UML activity di-
agrams [19] considering control and data flow perspectives while data states are not
considered in his approach. [9] introduces compliance between a process model and
an object life cycle as the combination of object life cycle conformance (all data state
transitions induced in the process model must occur in the object life cycle) and cov-
erage (opposite containment relation). [21] introduces conformance checking between
process models and product life cycles, which in fact are object life cycles, because a
product life cycle determines for a product the states and the allowed state transitions.
Compared to the notion of weak conformance, both notions do not support data syn-
chronization and both set restrictions with respect to data constraints specification in
the process model.
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6 Conclusion

In this paper, we presented an approach for the integrated verification of control flow
correctness and weak data conformance using soundness checking considering depen-
dencies between multiple data classes, e.g., an order is only allowed to be shipped
after the payment was received but needs to be shipped with an confirmed invoice in
one package. Therefore, we utilized the concept of synchronized object life cycles. For
checking data correctness, we use the notion of weak conformance and extended it with
means for object life cycle synchronization. Additionally, we utilized a mapping of a
process model with data constraints to a Petri net and described a mapping of a syn-
chronized object life cycle to a Petri net. Both resulting Petri nets are combined for an
integrated control flow and data conformance check based on the soundness criterion.
With respect to the places or transitions causing soundness violations, we can distin-
guish between control flow and data flow issues and therefore, we can verify the notion
of weak conformance. Revealed violations can be highlighted in the process model and
the synchronized object life cycle to support correction. In this paper, we focused on
the violation identification such that correction is subject to future work.
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