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Abstract. Oceanic Lagrangian Coherent Structures have been shown to15

deeply influence the distribution of primary producers and, at the other16

extreme of the trophic chain, top predators. However, the relationship be-17

tween these structures and intermediate trophic levels is much more ob-18

scure. In this paper we address this knowledge gap by comparing acous-19

tic measurements of mesopelagic fish concentrations to satellite-derived20

fine-scale Lagrangian Coherent Structures in the open ocean. The results21

demonstrate unambiguously that higher fish concentrations are signifi-22

cantly associated with stronger Lagrangian Coherent Structures, and we23

observe that these features represent a limiting condition for high fish24

concentrations. A model, specifically built for mid trophic levels with25

realistic parameters, provides a possible mechanism of fish aggregation,26

and is coherent with the observations. These results may help to inte-27

grate intermediate trophic levels in trophic models, which can ultimately28

support management and conservation policies.29

Introduction30

Marine biomass distribution is highly patchy and variable in time across the31

entire trophic web Bertrand et al. (2014); McManus and Woodson (2012). Dis-32

cerning the factors underpinning ocean patchiness is fundamental to understand33

how they influence biogeochemical reactions and ecosystem stability Martin34

(2003); Lévy and Martin (2013). These issues are pivotal for conservation pur-35

poses Gaines et al. (2010) and for assessing the impact of climate change on the36

marine environment Hoegh-Guldberg and Bruno (2010).37

One of the origins of the heterogeneity of the biotic fields is the dynamic nature38

of the ocean environments, which transforms the water masses on a large range39
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2 Fine-scale fronts as hotspots of fish aggregation in the open ocean.

of temporal scales, including those of ecological relevance. In this regard, a spe-40

cial role is fulfilled by the mesoscale and submesoscale McGillicuddy (2016), now41

commonly referred to together as “fine-scales”, which span a spatial range from42

a few to hundreds of kilometers.43

One fruitful approach for capturing the structuring effect of fine-scale dynamics44

is the extraction of so-called Lagrangian Coherent Structures, and in particu-45

lar Lagrangian fronts Haller (2015); Lehahn et al. (2018). Lagrangian Coherent46

Structures (LCSs) provide several types of information regarding flow proper-47

ties, such as the location of fronts, barriers to transport Boffetta et al. (2001),48

or retentive and coherent regions d’Ovidio et al. (2013). One of the most com-49

mon Lagrangian diagnostics used to determine LCSs is the Finite-size Lyapunov50

Exponent (FSLE, d’Ovidio et al., 2004). This measures the exponential rate of51

water parcel deformation and has maximal values over frontal regions.52

By shaping and elongating water patches, Lagrangian Coherent Structures have53

been demonstrated to set the frontiers of phytoplanktonic patches in terms54

of chlorophyll concentration Lehahn et al. (2018), and even functional type55

d’Ovidio et al. (2010). This in turn enhances contacts between different com-56

munities, regulating plankton diversity De Monte et al. (2013).57

More recently, advances in biologging programs provided evidence on the impact58

of fine-scale structures on top predators behavior. The concentration of preda-59

tors foraging efforts has been observed in the neighbourhoods of Lagrangian60

fronts Kai et al. (2009); Scales et al. (2018). Furthermore, fronts detected by61

Lagrangian Coherent Structures (which in the following we will call Lagrangian62

fronts) have been observed to influence predators movements Della Penna et al.63

(2015). This could enhance energy transfer and gain Abrahms et al. (2018).64

However, while the influence of Lagrangian fronts has been observed on both ex-65

tremes of the trophic chain, much less is known about mid-trophic levels. Prants66

et al. (see in particular Prants et al., 2014) demonstrated a correlation between67

Pacific saury catches and Lyapunov exponents, and Watson et al. (2018) found68

that several fishery vessels track LCSs when targeting fishery spots. However,69

these results leave some concerns about possible biases because commercial fish-70

eries provides only punctual observations, and because they are even known to71

use satellite images. Therefore, fishing vessels may target intentionally frontal72

systems. Unbiased fish measurements have been instead recently used by Sato73

et al. (2018) to analyse the relationship between a frontal system and acoustic74

measurements in a coastal upwelling system. This allowed the authors to high-75

light the different role played by in-shore and off-shore waters. In terms of the76

mechanisms which can explain how fine-scale structures influence mid-trophic77

biomass distribution, even less is known. Classical explanations are based pri-78

marily on bottom-up mechanisms along fronts with intense upwelling Yoder et al.79

(1994); Woodson and Litvin (2015). However, these hypothesis do not take into80

account the necessity of a maturation time, which in the case of fish is con-81

sistently longer than both the growth response of lower trophic levels and the82

lifetime of the front. Neither the fish behavior is considered, despite the fact83

that fish possess efficient sensorial and swimming capacities along the horizontal84
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(Kasumyan (2004)and Supporting Information SI.2).85

The objective of the present study is to analyze the relationship between fine-86

scale structures in the open ocean and mid-trophic organisms with unbiased,87

direct observations of fish concentrations, and to propose a mechanism by which88

fine-scales organize mid-trophic biomass.89

This study was conducted in the subantarctic area of the southern Indian ocean.90

The functioning of this region is mainly regulated by the Kerguelen plateau, a91

major topographic barrier for the Antarctic Circumpolar Current (ACC). The92

plateau enriches in iron, a limiting nutrient, the high-nutrients-low-chlorophyll93

waters advected by the ACC. Depending on seasonal light conditions and stratifi-94

cation of the water column, this provokes a large annual phytoplanktonic bloom,95

which supports a rich trophic chain. This is one of the reasons for which the Ker-96

guelen archipelago and its surrounding waters are part of one of the ten largest97

marine protected areas in the world (http://www.mpatlas.org/).98

In this region, the myctophids, also known as lantern fish, are one of the most99

abundant groups of mesopelagic fish. They are also present in other oceans world-100

wide and are thought to constitute one the largest portions of world fish biomass101

Irigoien et al. (2014). They also represent important prey items for numerous102

predators Cherel et al. (2010). Myctophids are reported to play a central role in103

the carbon export to deep sea depths, and are suspected to affect the climate104

Kwon et al. (2009). Constituting a potentially massive harvestable resource, they105

are threatened to be exploited in the near future St. John et al. (2016). A bet-106

ter understanding of the mechanisms regulating their biomass is thus urgently107

needed.108

In this paper, we relate acoustic measurements of fish concentrations and satel-109

lite derived diagnostics. These diagnostics allow us to identify the intensity of110

several fine scale fronts. The aim is to explore the degree to which fish distribu-111

tion is shaped by these fine-scale features, and in particular Lagrangian fronts.112

Our results indicate that stronger Lagrangian fronts aggregate larger quantities113

of fish, although not all these structures are aggregation sites. We then propose114

a simple aggregating mechanism specifically designed for fish, based on a cue115

pursuing dynamic along the horizontal dimension. Myctophids are supposed to116

be able to orientate and to actively swim to search for food (hypothesis discussed117

in SI.2). They follow a gradient of a passive tracer, which is considered a proxy118

for heterogeneously-distributed zooplankton. All the parameters values of this119

model are set using observational data (SI.5) and none of them has been opti-120

mized nor fitted. The predictions of such model are consistent with the observed121

concentrations. In addition, the model provides also theoretical estimations of122

the dominant spatio-temporal scales of aggregation.123
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4 Fine-scale fronts as hotspots of fish aggregation in the open ocean.

Fig. 1: Illustrative examples of two transects of the boat trajectory. The color of each
dot is proportional to the Acoustic Fish Concentration (in decibels, right colorbar
for scale). The transects are superimposed on a simultaneous field of Finite-size Lya-
punov Exponents. These identify fine-scale frontal structures. They are computed with
altimetry derived velocities (days−1, left colorbar for the scale). Left panel: August,
29th, 2014. Right panel: August, 31st, 2013.
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Results124

Relationships between acoustic fish concentration and125

satellite-derived diagnostics126

We used ship acoustic measurements acquired along 6 transects of 2860 linear149

kilometers. For each point of the boat trajectory, we computed a value of Acous-150

tic Fish Concentration (AFC). This is representative of the fish concentration in151

the water column. Alongside this, we calculate two satellite derived diagnostics:152

the Finite-size Lyapunov Exponent (FSLE) and the Sea Surface Temperature153

(SST) gradient. These two metrics are typically associated with front intensity154

(see Materials and Methods for further details). Other diagnostics are reported155

in SI.1. In-situ temperature measurement were available only on a part of the156

transects, and were therefore not considered in the analysis.157

Fig. 1 depicts two illustrative examples of the boat trajectory on August 29th,158

2014 and August 31st, 2013 respectively. They are superposed on a field of Finite-159

size Lyapunov exponents. The latter are associated with frontal features. Each160

dot of the boat trajectory is colored proportionally to the AFC in that point. On161

both the panels, AFC values indicate a qualitative agreement with the FSLE,162

increasing in correspondence of the frontal features identified by high values of163

the Lyapunov exponents.164

Fig. 2 depicts the scatter plots of the AFC against the two diagnostics, with both165

the axes in logarithmic scale. To determine whether the AFC values present sig-166

nificant differences in proximity of fine-scale features, a bootstrap analysis was167

conducted. Details of the methodology are provided in Materials and Methods168
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Fig. 2: Scatter plot of AFC against FSLE (left panel) and SST gradient (right panel).
The lines, from the bottom to the top, indicate the linear quantile regressions at 75th,
90th, 95th and 99th percentiles. The analysis is used to investigate the relationship
between the front intensity and just the higher values of fish concentration. Both axes
are in logarithmic scale (values equal to zero are therefore not depicted). Values of the
quantile regression coefficients are reported in Table S.1.
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Fig. 3: Bootstrap method results. Left columns refer to FSLE analysis, right columns
to SST gradient. Light gray columns represent the mean AFC under the respective
threshold, and the dark gray columns represent the mean AFC over the threshold.
Error bars indicate the standard deviation, while black stars indicate the significance
of the bootstrap test.
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section. The results are reported in Fig. 3. Significantly higher AFC values are169

detected over the thresholds (p-value < 0.001) for both FSLE and SST gradient.170

Finally, linear quantile regression method was employed Koenker (2005). This171

analysis was used to investigate the relationship between the higher values of172

AFC and the front intensity. Results of the regression are displayed in Fig. 2 as173

red lines. All the quantile slopes are statistically different from zero. This sug-174

gests the presence of a positive relationship between the higher values of AFC175

and FSLE and SST gradient (Table S.1).176

A fine-scale mechanism of fish aggregation177

Why do fish aggregate along frontal features? We addressed this question by178

proposing a simple mathematical model. The model assumes a gradient climb-179
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6 Fine-scale fronts as hotspots of fish aggregation in the open ocean.

ing capacity, which is one of the most widespread movement mechanisms used in180

other biological contexts (e.g., chemotaxis, Adler (1975)). This gradient climbing181

capacity is specifically tuned for mid-trophic organisms and myctophids and is182

based on a cue pursuing dynamic. Fish try to climb a gradient of tracer. We183

considered this tracer a proxy of zooplankton concentration, prey of several fish184

species, and in particular of myctophids Pakhomov et al. (1996). At the scales185

considered in this study (10s of kilometers) zooplankton swimming capacities are186

restricted to the vertical axis Genin et al. (2005). They can thus be considered,187

along the horizontal axis, passive tracers. Along this dimension, zooplankton ag-188

gregation and growth is usually driven by a relatively fast response to nutrients189

presence, of the order of days to weeks Vidal (1980). In particular, this is valid190

also for zooplankton species present in our study region Alonzo et al. (2003);191

Labat et al. (2005). Conversely, fish have growth rates consistently slower: in192

particular, pelagic fishes and myctophids are considered as “slow-growing fish”,193

with lifetimes spanning few years Greely et al. (1999). Therefore, their aggre-194

gation can not be explained by the same dynamics affecting the zooplankton.195

Alongside this, fish have extremely developed sensorial capacities and, differ-196

ently from zooplankton, they can actively swim, with both capacities involved197

in many functional activities, including feeding Kasumyan (2004). These argu-198

ments support our approach of modelling zooplankton as a passive tracer and199

fish as active swimmers (we invite the reader to refer to SI.2 for further details).200

To include ocean patchiness, we perturbed the ability of the fish to properly iden-201

tify the spots of zooplankton with a noise term. However, we assumed that fish202

are able to orientate without problems over a given threshold of the zooplank-203

ton gradient. This threshold was estimated from the zooplankton concentrations204

(SI.5).205

Making these assumptions, the average velocity of a group of fish UF (x) can206

be found applying simple algebra to a standard gradient climbing model (see207

Materials and Methods, subsection “Gradient climbing model”):208

UF (x) = V
∂T
∂x

∂T
∂x MAX

(
2−

∣∣∂T
∂x

∣∣
∂T
∂x MAX

)
(1)

in which T is the zooplankton concentration, ∂T
∂x MAX

is the threshold of the217

zooplankton gradient, and V is the cruising speed of the myctophids.218

Similarly, the evolution of the fish concentration over time can be easily obtained219

from the one-dimensional continuity equation, by imposing the conservation of220

fish total biomass, and by using Expr. 4 (see Materials and Methods for fur-221

ther details). The tracer shape used describes a sigmoid function, which models222

a generic local gradient in the zooplankton concentration. At the limits of the223

plateau, the tracer decreases along a distance of ∼5 km, a typical fine-scale224

range.225

Four different snapshots (at 0, 6 hours, 1 day and 4 days) of the fish modelled226

concentration are illustrated in Fig. 4. Intuitively, having chosen a gradient-227

climbing behavior, one can expect that fish concentration will evolve quickly in228

the regions in which the tracer gradient is larger. Indeed, after only 6 hours,229
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Fine-scale fronts as hotspots of fish aggregation in the open ocean 7

two peaks of doubled concentration are present in correspondence with the mar-230

gins of the tracer plateau. In the following days, the two peaks decreased their231

growth rate, while the concentration between them increases until they merged232

together. The fish concentration is thus homogeneous over the plateau, present-233

ing values between 2.5 and 3.5 times higher than the initial concentration. In234

case of a larger plateau (Fig. 5), the model predicts a similar behavior, but the235

merging between the peaks occurs over longer timescales. In that case, the peaks236

reach their maximum value after the first day, with the creation of two regions237

of increased concentration at the margins of the plateau. Changing the type of238

fish behavior leads to similar results (see SI.3).239

We note that this mechanism does not explicitly take into account fronts. How-240

ever, in the oceanic environment, frontal regions represent areas of convergence241

of water masses with different properties. This is why regions of strong gradients242

are often associated to frontal features Yoder et al. (1994).243

However, at the same time during which this mechanism occurs, the tracer can244

evolve. As a sensitivity test, we numerically analyzed a scenario in which the245

tracer, subjected to a typical frontal dynamics, is stretched in a filament and246

eroded by diffusion (SI.4). Using realistic bio-physical parameters representative247

of the study area, we found that these tracer dynamics do not compromise the248

aggregation mechanism presented above, but may even facilitate the aggrega-249

tion of fish along frontal zones. Indeed, the model developed predicts several250

quantitative information, such as an estimate of the fish aggregation over time.251

The latter highlighted a final concentration, on average, an order of magnitude252

stronger than the initial one. In addition, it was possible to obtain the “school253

life time”. This quantity indicates the amount of time during which a group of254

fish is able to follow a patch of interest before it vanishes due to the frontal255

Fig. 4: Time evolution of the fish concentration (blue line, adimensional) according to
the continuity equation. The tracer (red line, adimensional) describes a plateau of 8
km in width. At its limits, its values range from 1 to 0 in about 5 km. Each panel
represents a different snapshot at 0, 6 hours, 1 day, and 4 days.

209

210

211

212213

Fig. 5: Time evolution of the fish concentration as reported in Fig. 4. This time, the
plateau width has been set to 70 km.

214

215216
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8 Fine-scale fronts as hotspots of fish aggregation in the open ocean.

dynamics. The school life times we obtained ranged between 7 to 25 days, with256

an average value of around 2 weeks. Remarkably, this amount of time matches257

with that of fine-scale processes.258

Discussion259

In the oceans, patchiness characterizes biomass distribution, which regulates260

ecosystem stability and biogeochemical processes Bertrand et al. (2014); Mar-261

tin (2003); Lévy and Martin (2013). In the open ocean, biomass distribution is262

largely driven by processes at the fine-scale (between 1 and hundreds of kilo-263

meters or a few days to several weeks, such as lateral advection and horizontal264

stirring Martin (2003); Lévy et al. (2018).265

One approach to studying the structuring processing occurring at this scale is266

provided by Lagrangian methods. In the past, Lagrangian tools like the com-267

putation of Lagrangian Coherent Structures have revealed the structuring role268

of fine-scale dynamics on primary levels of the trophic chain (see a review in269

Lehahn et al. (2018)). On the other hand, they have highlighted their influence270

on apex predators behaviors as well Kai et al. (2009); Scales et al. (2018).271

However, less information is available on intermediate trophic levels. In the272

present study (i) we correlate the intensity of acoustic fish concentrations and273

fine-scale fronts, and (ii) we propose a mechanism of fish aggregation along fronts.274

We analyze the Kerguelen region in the Southern Ocean, one of the ten largest275

protected areas in the world, and an oasis for several threatened species (IUCN,276

https://www.iucn.org/). The reference fish of this study are the myctophids,277

which are highly diffused in that region and one of the most abundant group of278

mesopelagic fish in the world Irigoien et al. (2014).279

Our results reveal a significant difference in fish concentration between frontal280

and non-frontal features. These are difficult to explain with traditional mecha-281

nisms usually prescribed to lower trophic levels, such as rapid growth associated282

to a presence of nutrient, because fish have slower growth rates. Therefore, start-283

ing from a homogeneous fish distribution and applying simple ecological rules,284

we propose a gradient-climbing model specifically calibrated for the study of285

mid-trophic organisms. Once parameterized with values typical for the study286

region, the model demonstrates a quick response to gradient structures. Two287

peaks of doubled concentration appear after just 6 hours, and then merge after288

4 days. Fish thus tend to be homogeneously distributed over the entire patch of289

interest. This is in coherence with on-going studies on myctophids’ response to290

food concentration. These presuppose that myctophids have a Holling type III291

functional response, in that they ingest always the same quantity of food over a292

certain prey density (A. Hulley, personal communication).293

Tracer patchiness is known to be associated with frontal features Yoder et al.294

(1994); Lehahn et al. (2018). However, patchiness evolves, and under the double295

effect of stretching and diffusion, local gradients can be eroded. Thus, we tested296

the robustness of our model to this feature in SI.4. As in the former case, none297

of the parameters employed has been optimized nor fitted, but they all represent298
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Fine-scale fronts as hotspots of fish aggregation in the open ocean 9

rigorous estimations of Southern Ocean physical and biological conditions, such299

as stretching and mixing rates or fish cruising speed. Results allowed us to esti-300

mate a typical lifetime for a fine-scale patch of around two weeks, much longer301

than the peak doubling time (∼ 6 hours). This robustness analysis is consistent302

with the hypothesis of a fixed tracer assumed in the gradient climbing scenario.303

Furthermore, we demonstrated that the stretching and diffusion dynamics can304

potentially enhance fish aggregations.305

The patch of interest is considered as a proxy of zooplankton concentration.306

However, being parameterized as a passive tracer, it can be considered, more307

simply, as a physical water property. Indeed, physical characteristics, such as308

temperature, have been proven to be used by predators to find favorable condi-309

tions where concentrated food occurs Snyder et al. (2017).310

The proposed mechanism of aggregation needs two obvious initial conditions: the311

presence of fish, and the presence of a zooplankton patch. It is presumable that312

fine-scale fronts, lacking one or both these conditions, cannot act as aggregating313

spots. Furthermore, while we assumed that the aggregation occurs after a certain314

amount of time, the environment studied is dynamic. Thus, it is likely that the315

aggregation mechanism was observed during different stages. The statistically316

significant positive relationships between the high values of acoustic fish concen-317

tration with the front intensity diagnostics confirms the previous considerations.318

Not all of the strong fronts detected indicate high acoustic fish concentrations.319

On the contrary, strong fish aggregation is preconditioned by the intensity of a320

frontal feature. Our results suggest that fronts represent in this regard a limit-321

ing condition for high fish concentrations. Model predictions are in accordance322

with the observations. Furthermore, the model provided estimations of other323

aggregation dynamics, such as the dimensions of the aggregation patterns or its324

intensity, with timescales comparable with those of fine scale processes. Specific325

experiments are necessary to validate these outputs, which however look promis-326

ing.327

Within the ACC, little information available on mid-trophic levels reported that328

the large circumpolar fronts are known to host (i) large densities of zooplankton329

and myctophids and (ii) that these organisms are patchily distributed Pakhomov330

and Froneman (2000). We identified in this study, at least partly, the potential331

mechanisms driving the patchiness observed at fine-scale. Assessing the precon-332

ditions and the other dynamics necessary for front aggregation is a new, open333

challenge emerging from the present work.334

Note that in our work we focus only on open ocean Lagrangian fronts, that335

is, fine-scale frontal features induced by the mesoscale open ocean activity. In336

particular, we intentionally exclude coastal fronts as well as large scale fronts,337

whose dynamics and ecological role may be different (e.g., Lara-Lopez et al.338

(2012); Netburn and Koslow (2018); Sato et al. (2018)). Finally, the limitations339

of our analysis must be discussed. No vertical dynamics has been included in340

the model presented. However, these play an important role in the organization341

of marine biota Lévy et al. (2018), and, typically, stronger gradients are present342

along the vertical Ohman (1988). This assumption is due to the fact that, while343
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10 Fine-scale fronts as hotspots of fish aggregation in the open ocean.

knowledge on horizontal dynamics is more advanced, 3D Lagrangian analyses,344

while appealing Sulman et al. (2013), are not currently possible, due to a lack345

of quantitative information on the vertical velocities of the ocean. Future satel-346

lite missions (such as SWOT: https:/swot.cnes.fr) will possibly help to mitigate347

this problem, by helping the assimilation scheme to better reconstruct the three348

dimensional dynamics Morrow et al. (2019). At the same time, they will also im-349

prove satellite resolution, providing a more precise location of fine-scale fronts.350

The model studied does not consider the diel vertical migration of myctophids351

either. This choice is driven by the difficulty in parameterizing such a non linear352

behavior and in assimilating different migratory diel patterns. However, we note353

that many zooplankton species exhibit a diel cycle as well. Finally, zooplankton354

consumption due to fish foraging is considered to be negligible, or compensated355

by source terms (like blooms). The limitations presented can open the way for356

future investigations. Thus, the present study sheds some light on a largely un-357

explored topic.358

The results presented here may be useful for improving the representation of359

intermediate trophic levels to coupled ecological and physical models Robinson360

et al. (2011), habitat models PC et al. (2018), targeting the mesopelagic com-361

partment in particular. At the same time, the possibility of using Lagrangian362

Coherent Structures as a proxy of higher fish concentrations may further improve363

the integration of satellite-derived Lagrangian tools in conservation planning364

Penna et al. (2017).365

Materials and Methods366

Acoustic measurements367

Two subsets of data were used for the analysis. Both of them were collected368

within the Mycto-3D-MAP program. The first subset (named MYCTO) was369

collected during 6 campaigns in 2013 and 2014, both in summer and in winter370

(see Tab. 1 for more details), using split-beam echo sounders at 38 and 120kHz.371

The data were then treated with a bi-frequency algorithm, applied to the 38 and372

120 kHz frequencies (details of data collection and processing are provided in373

Béhagle et al. (2017)). This provides a quantitative estimation of the concentra-374

tion of gas-bearing organisms, mostly attributed to fish containing a gas-filled375

swimbladder in the water column Kloser et al. (2009). Most mesopelagic fish376

present swimbladders and several works pointed out that myctophids are the377

dominant mesopelagic fish in the region Duhamel et al. (2014). Therefore, we378

considered the acoustic signal as mainly representative of myctophids concentra-379

tion. Data were organized in acoustic units, averaging acoustic data over 1.1 km380

along the boat trajectory on average. Myctophid school length is in the order381

of tens of meters Saunders et al. (2013). For this reason, acoustic units were382

considered as not autocorrelated. Every acoustic unit is composed of 30 layers,383

ranging from from 10 to 300 meters (30 layers in total).384

The second subset of data (named ZOO) was collected between January the385

22nd and February the 5th, 2014. It was processed in the same manner as the386
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other dataset, but this time the bifrequency algorithm was used to infer the387

zooplankton biomass. This second subset possesses a higher resolution with an388

acoustic unit every 206 m of the boat trajectory on average.389

The two datasets were used to infer the Acoustic Fish Concentration (AFC) and390

the Acoustic Zooplankton Concentration (AZC) in the water column, respec-391

tively. We considered as AFC (or AZC) of the point (xi, yi) the average of the392

bifrequency acoustic backscattering on the whole column, with the exclusion of393

the first layer. The latter was not considered due to surface noise.394

The AZC was used to compute the zooplankton gradient. The zooplankton gra-395

dient of a point i of the boat transect is computed as:396

∂Z

∂x
(i) =

1

2

(
Zi − Zi−1

di−1
+
Zi+1 − Zi

di

)
in which di indicates the kilometric distance between the point i+ 1 and i, and397

Zi is the cubic spline interpolation (to smooth the noise effects), in an around of398

2 km, of the zooplankton concentrations. This type of interpolation, in contrast399

with the moving average, preserves the trend of the data, and thus a possible400

front.401

Acoustic campaigns details

Cruise Season St. Date End Date Distance (km)

LOGIPEV193 RUNKER Summer 09/02/2013 17/02/2013 2752

LOGIPEV193 KERMAU Summer 04/03/2013 10/03/2013 3781

OP2013-2 RUNKER Winter 30/08/2013 10/09/2013 3310

LOGIPEV197 RUNKER Summer 06/01/2014 13/01/2014 2800

LOGIPEV197 KERMAU Summer 06/02/2014 18/02/2014 2045

OP2014-2 RUNKER Winter 24/08/2014 04/09/2014 3677

402

403

404

Table 1: Details of the acoustic transects analyzed.405406

Regional data selection407

The geographic area of interest of the present study is the Southern Ocean. To408

select the boat trajectory points belonging to this region, we used the ecopar-409

tition of Sutton et al. Sutton et al. (2017). Only points falling in the Antarctic410

Southern Ocean region were considered. We highlight that this choice is con-411

sistent with the ecopartition of Koubbi et al. Koubbi et al. (2011) (group 5),412

which is specifically designed for the myctophids, the reference fish of this study.413

Furthermore, this choice allowed us to exclude major fronts which have been the414

subject of different research works Lara-Lopez et al. (2012); Netburn and Koslow415

(2018). In this way our analysis is focused specifically on fine scale fronts.416
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12 Fine-scale fronts as hotspots of fish aggregation in the open ocean.

Day-night data separation417

Several species of myctophids present a diel vertical migration. They live at great418

depths during the day (between 500 and 1000 m), ascending at dawn in the upper419

euphotic layer, where they spend the night. Since the maximal depth reached420

by our equipment is 300 m, in the analysis reported in Fig. 2 and 3 we excluded421

data collected during the day. However, their analysis is reported in SI.1. This is422

also consistent with the use of the Lagrangian and Eulerian diagnostics. These423

quantities, obtained from geostrophic velocity fields, are representative of the424

first part of the water column (∼ 50 m).425

Satellite data426

Velocity current data and processing. Velocity currents are obtained from the Sea427

Surface Height (SSH), which is measured by satellite, through the geostrophic428

approximation. Data, which were downloaded from E.U. Copernicus Marine En-429

vironment Monitoring Service (CMEMS, http://marine.copernicus.eu/), were430

obtained from DUACS (Data Unification and Altimeter Combination System)431

delayed-time multi-mission altimeter, and displaced over a regular grid with spa-432

tial resolution of 1
4 ×

1
4

◦
and a temporal resolution of 1 day.433

Trajectories were computed with a Runge-Kutta scheme of the 4th order with an434

integration time of 3 hours. Finite-size Lyapunov Exponents (FSLE) were com-435

puted following the methods in d’Ovidio et al. (2004), with initial and final sep-436

aration of 0.04◦ and 0.4◦ respectively. This Lagrangian diagnostic is commonly437

used to identify Lagrangian Coherent Structures. This method determines the438

location of barriers to transport, and it is usually associated with oceanic fronts439

Haller (2015).440

Temperature field. The Sea Surface Temperature (SST) field was downloaded441

from the OSTIA global foundation Sea Surface Temperature product (SST GLO SST L4 NRT OBSERVATIONS 010 001).442

The data are represented over a regular grid with spatial resolution of 0.05×0.05◦443

and daily-mean maps.444

Satellite data extrapolation. For each point of the boat trajectory, we considered445

as value of the diagnostic the average value over a disc of radius σ. Different446

σ were tested, and the best results were obtained with the σ = 0.2◦, reference447

value reported in the present work. This value is consistent with the uncertainty448

of the satellite velocity field.449

Statistical processing450

Bootstrap method. In this section, we describe the analysis necessary for the451

bootstrap test. To identify the frontal features, the following diagnostic values452

were chosen as thresholds for representing the front: for the FSLEs, we used 0.08453

days−1, a threshold value consistent with those chosen in De Monte et al. (2012)454

and obtained from Kai et al. (2009). For the SST gradient, we considered repre-455

sentative of thermal front values greater than 0.9◦C/100 km, which is about the456

half of the value chosen in De Monte et al. (2012). However, in that work, the457
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SST gradient was obtained from the advection of the SST field with satellite-458

derived currents for the previous 3 days, which structures it in high resolution459

features that therefore present higher gradient values.460

The threshold value splits the AFC into two groups: over and under the thresh-461

old. Their independency was tested using a Mann-Whitney or U test. Finally,462

bootstrap analysis is applied following the methodologies used in De Monte et al.463

(2012).464

Linear quantile regression. Linear quantile regression method Koenker (2005)465

is employed to estimate the effect of FSLE and SST gradient on the upper466

limit of the AFC, as in Sankaran et al. (2005). The percentiles values used are467

75th, 90th, 95th, and 99th. The analysis is performed using the statistical pack-468

age QUANTREG in R (https://CRAN.R-project.org/package=quantreg, v.5.38,469

Koenker (2005)), using the default settings.470

Gradient climbing model471

The fish searching dynamic is considered a one dimensional, individual-based,472

Markovian process. Time is discretized in timesteps of length ∆τ . We presuppose473

that, at each timestep, the fish chooses between swimming in one of the two474

directions. This decision depends on the comparison between the quantity of475

tracer at its actual position and the one perceived at a distance fW from it,476

where fW is the field view of the fish. We consider the fish immersed in a tracer477

whose concentration is described by the function T (x).478

An expression for the average velocity of the fish, UF (x), can now be derived.479

We assume that the fish is able to observe simultaneously the tracer to its right480

and its left. Fish sensorial capacities are discussed in SI.2. The tracer observed481

is affected by a noise. Noise distribution is considered uniform, with −ξMAX <482

ξ < ξMAX , ξMAX > 0. The effective values perceived by the fish, at its left and483

its right, will be, respectively:484

T̃ (x0 −∆x) = T (x0 −∆x) + ξ1

T̃ (x0 +∆x) = T (x0 +∆x) + ξ2 .

We assume that, if T̃ (x0 +∆x) > T̃ (x0−∆x), the fish will move to the right,485

and, vice versa, to the left. We hypothesize that the observational range is small486

enough to consider the tracer variation as linear, as illustrated in Fig. S.6 (SI.3).487

In this way:488

T̃ (x0 +∆x) = T (x0) + fW
∂T

∂x
+ ξ1

T̃ (x0 −∆x) = T (x0)− fW
∂T

∂x
+ ξ2 .

In case of absence of noise, or with ξMAX < fW
∂T
∂x , the fish will always move489

in the correct direction, in that it will climb the gradient. Assuming V as the490
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cruising swimming velocity of the fish, this means UF (x) = V .491

Let’s now assume ξMAX > fW
∂T
∂x . If T (x0 +∆x) > T (x0−∆x) (as in Fig. S.6),492

and the fish will swim leftward if493

ξ1 − ξ2 > 2fW
∂T

∂x
.

Since ξ1 and ξ2 range both between −ξMAX and ξMAX , we can obtain the prob-494

ability of leftward moving P (L). This will be the probability that the difference495

between ξ1 and ξ2 is greater than 2fW
∂T
∂x496

P (L) =
1

8ξ2MAX

(
2ξMAX − 2fW

∂T

∂x

)2

=
1

2

(
1− fW

ξMAX

∂T

∂x

)2

The probability of moving right will be497

P (R) = 1− P (L)

and their difference gives the frequency of rightward moving498

P (R)− P (L) = 1− 2P (L) = 1−
(

1− fW
ξMAX

∂T

∂x

)2

=
fW
ξMAX

∂T

∂x

(
2− fW

ξMAX

∣∣∣∣∂T∂x
∣∣∣∣) ,

where the absolute value of ∂T
∂x has been added to preserve the correct climbing499

direction in case of negative gradient. The above expression leads to:500

UF (x) =
V fW
ξMAX

∂T

∂x

(
2− fW

ξMAX

∣∣∣∣∂T∂x
∣∣∣∣) . (2)

We then assume that, over a certain value of tracer gradient ∂T
∂x MAX

, the fish are501

able to climb the gradient without being affected by the noise. This assumption,502

from a biological perspective, means that the fish does not live in a completely503

noisy environment, but that under favorable circumstances it is able to correctly504

identify the swimming direction. This means that505

fW ∗
∂T

∂xMAX
= ξMAX . (3)

Substituting then (3) into (2) gives:506

UF (x) = V
∂T
∂x

∂T
∂x MAX

(
2−

∣∣∂T
∂x

∣∣
∂T
∂x MAX

)
. (4)
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Finally, we can include an eventual effect of currents speed, considering that507

the tracer is transported passively by them, simply adding the current speed UC508

to Expr. (4).509

The representations provided are individual based, with each individual repre-510

senting a single fish. However, we note that all the considerations done are also511

valid if we consider an individual representing a fish school. UF will then simply512

represent the average velocity of the fish schools. This aspect should be stressed513

since many fish species live and feed in groups (see SI.2 for further details).514

Continuity equation in one dimension. The solution of this model will now515

be discussed. The continuity equation is first considered in one dimension. The516

starting scenario is simply an initially homogeneous distribution of fish, that are517

moving in a one dimensional space with a velocity given by UF (x).518

We assume that in the time scales considered (few days to some weeks), the519

fish biomass is conserved, so for instance fishing mortality or growing rates are520

neglected. In that case, we can express the evolution of the concentration of the521

fish ρ by the continuity equation522

∂ρ

∂t
+∇ · j = 0 (5)

in which j = ρ UF (x), so that Eq. (5) becomes523

∂ρ

∂t
+∇ ·

(
ρ UF (x)

)
= 0 . (6)

In one dimension, the divergence is simply the partial derivate along the x-axis.524

Eq. (6) becomes525

∂ρ

∂t
= − ∂

∂x

(
ρ UF

)
(7)

Now, we decompose the fish concentration ρ in two parts, a constant one and a526

variable one ρ = ρ0 + ρ̃. Eq. (7) will then become527

∂ρ

∂t
= −UF

∂ρ̃

∂x
− ρ∂UF

∂x
. (8)

Using Expr. (4), Eq. (8) is numerically simulated with the Lax method. In528

Expr. (4) we impose that UF (x) = V when UF (x) > V . This biological assump-529

tion means that fish maximal velocity is limited by a physiological constraint530

rather than by gradient steepness. Details of the physical and biological param-531

eters are provided in SI.5.532
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