Finding Compact Reliable Broadcast in
Unknown Fixed-Identity Networks
(Short Paper)

Huafei Zhu and Jianying Zhou

Institute for Infocomm Research, A-star, Singapore
{huafei, jyzhou}@i2r.a-star.edu.sg

Abstract. At PODC’05, Subramanian, Katz, Roth, Shenker and Stoica
(SKRSS) introduced and formulated a new theoretical problem called re-
liable broadcast problems in unknown fixed-identity networks [3] and fur-
ther proposed a feasible result to this problem. Since the size of signatures
of a message traversing a path grows linearly with the number of hops
in their implementations, this leaves an interesting research problem (an
open problem advertised by Subramanian et al in [3]) — how to reduce the
communication complexity of their reliable broadcast protocol?

In this paper, we provide a novel implementation of reliable broadcast
problems in unknown fixed-identity networks with lower communication
complexity. The idea behind of our improvement is that we first transfer
the notion of path-vector signatures to that of sequential aggregate path-
vector signatures and show that the notion of sequential aggregate path-
vector is a special case of the notion of sequential aggregate signatures.
As a result, the currently known results regarding sequential aggregate
signatures can be used to solve the open problem. We then describe
the work of [3] in light of sequential aggregate signatures working over
independent RSA, and show that if the size of an node v; ;’s public key
|g(vi ;)| is t;,; and the number of hops in a path p; is d; in the unknown
fixed-identity graph G (with k adversaries), the reduced communication
complexity is approximate to E;i;_ll t;,; while the computation (time)
complexity of our protocol is the same as that presented in [3].

Keywords: aggregate path-vector signatures, path-vector signatures, re-
liable broadcast problem.

1 Introduction

At PODC’05, Subramanian, Katz, Roth, Shenker and Stoica (SKRSS) intro-
duced and formulated a new theoretical problem called reliable broadcast prob-
lems in unknown fixed-identity networks [3] and then proposed a feasible result
such that given a bound k£ on the number of adversaries, there exists a distrib-
uted algorithm that achieves reliable broadcast in an unknown fixed-identity
network if and only if G is (2k + 1) vertex connected. The key idea behind their
construction is that — if a node u propagates a path-vector message (m, s, p) to

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 7281 2006.
© Springer-Verlag Berlin Heidelberg 2006

Finding Compact Reliable Broadcast 73

v, then v’s identity is already appended to the path p by u signifying that u has
propagated the message to v. As a result, the signatures’ size of the message over
the path grows linearly with the number of hops and thus increases communi-
cation overheads. This leaves an interesting research problem (an open problem
advertised by Subramanian et al in [3]) — how to reduce the communication
complexity of the proposed reliable broadcast protocol?

1.1 More on SKRSS’ Assumptions

To remove the public key infrastructure (PKI) assumption, Subramanian, Katz,
Roth, Shenker and Stoica further made the followings two assumptions on mobile
nodes:

— Assumption 1: the identity of a node is fixed which cannot be forged;
— Assumption 2: a node knows the identities of its neighbors in the under-

lying graph.

We stress that the second assumption can be absorbed by a broadcasting
protocol itself and thus can be implemented without any difficulty. For example,
an initiator node broadcasts a message ”hello, every neighbor node sends me a
reply message please”. Each node within one hop that receives this request for
the first time appends its identifier to the received message and then sends it
back to the initiator.

We also stress that an implementation of the first assumption however is a
difficult task in the non-PKI setting since if the identity of a node cannot be
forged, then some kinds of digital signatures or commitment schemes should be
involved just like the certificates in the PKI setting. A simple way here is that we
allow a device manufactory (serving as a trusted third party) to sign individual
device id. The concatenation of a device id and its signature in turn is viewed as
a fixed device id which can be publicly verified. Since a verifier cannot check the
validation of the manufactory’s public key on time in the non-PKI setting (yet
this verification can be made off-line or with the help of proxies of the device,
i.e., via delegation technique), we refer to this kind of signatures as obliviously
committed signatures. Intuitively, an obliviously committed signature is a digital
signature that is used for signing an id of a device by a third party (need not
to be trusted), and the validity of the signer’s public key is questionable from
the point view of a verifier at the current time, and thus it is oblivious (1-out-
of 2, validity (1) or invalidity (0)), however the verifier will obtain a correct
answer (0 or 1) with the help of others. Since there is no satisfactory solution to
this problem, we thus leave an interesting problem to the research community —
how to implement secure yet efficient (with low computation and communication
complexities) obliviously committed signatures in the non-PKI environment?

1.2 This Work

The goal of this paper is to provide a solution to Subramanian et al’s open
problem. We employ sequential aggregate signatures to accomplish this task.
The contribution of this paper is twofold.

74 H. Zhu and J. Zhou

— In the first fold, we transfer the notion of path-vector signatures to that
of sequential aggregate path-vector signatures and show that the notion of
sequential aggregate path-vector is a special case of the notion of sequen-
tial aggregate signatures. As a result, the currently known results regarding
sequential aggregate signatures can be used to solve the open problem.

— In the second fold, we describe the work of [3] in light of the best result
regarding sequential aggregate signatures that are working over independent
RSA moduli presented in [4] and show that assuming that v; ;’s public key
size is |g(v; ;)| =t;; and the number of hops in a path p; is d; in the un-
known fixed-identity graph G (with k adversaries), the reduced communica-
tion complexity is approximate to Z;l:_ll t;; while the computation (time)

complexity of our protocol is the same as that presented in [3]. We thus,

provide a solution to the open problem presented in [3].

2 From Path-Vector Signatures to Sequential Aggregate
Signatures

2.1 Path-Vector Signatures

The basic tool used to solve the reliable broadcast problem in unknown fixed-
identity networks is the notion of path-vector signatures introduced in [3]. In-
formally, a path-vector signature consists of the following three algorithms [2]:

— Public-key initialization: By m, we denote a message sent by v; to v, over
a path (v, --,v,). Every node v; generates its public key g(v;), and com-
municates it to its neighbor v;_1.

— Message initialization: The source node v; sends the message m; = [(m, s, p),
stg1] to its neighbor vy where s =(vy, g(v1)), p1=[(v1, g(v1)), (ve, g(v2))], and
sigi = sig((m, s,p1), g(v1));

— Incremental update: Node v; receives message m;—1 = [(m, $,pi—1), Sigi—1]
from its predecessor v;_;. It then sends message m; =[(m,s,p;), sig:] to
its successor v; 11 where p; = [(pi—1, (vit1, g(vit1)] and sig; = (sigi—1,

sig((m, s, pi), (vi, g(vi)).

We stress that the notion of a path-vector signatures presented in [3] is order
specified. Furthermore, it allows multi-signer to sign same message m. As a
result, the notion of a path-vector signatures is equivalent to that of order-
specified multi-signature schemes and thus notion of sequential aggregate path-
vector is a special case of the notion of sequential aggregate signatures.

To reduce communication complexity of the reliable broadcasting problem,
we need to compress the size of the underlying path-vector signature. Motivated
by this consideration, a new notion which we called sequential aggregate path-
vector signatures can be introduced and formalized (where the same message m
is signed by all nodes along the path p) in a natural way. We however derive
this new notion from the standard notion of sequential aggregate signatures so
that currently known results regarding sequential aggregate signatures can be

Finding Compact Reliable Broadcast 75

used for our purpose, rather than formalize the stand-alone notion of sequential
aggregate path-vector signatures.

2.2 Syntax of Sequential Aggregate Signatures in the Public-Key
Infrastructure (PKI) Environment

Syntax. A sequential aggregate signature scheme (KG, AggSign, AggVf) consists
of the following algorithms [2]:

— Key generation algorithm (KG): On input [and k;, KG outputs system pa-
rameters param (including an initial value ZV, without loss of generality, we
assume that ZV is a zero strings with length I-bit), on input param and user
index 7 € T and k;, it outputs a public key and secret key pair (PK;, SK;)
of a trapdoor one-way permutation f; for a user 3.

— Aggregate signing algorithm (AggSign): Given a message m; to sign, and
a sequential aggregate o;_1 on messages {my,---,m;_1} under respective
public keys PK1, ---, PK;_1, where my is the inmost message. All of myq,

-+, my—1 and PKy, ---, PK; 1 must be provided as inputs. AggSign first
verifies that o;_; is a valid aggregate for messages {m,---, m;_1} using the
verification algorithm defined below (if i=1, the aggregate oy is taken to be
zero strings 0'). If not, it outputs L, otherwise, it then adds a signature on
m; under SK; to the aggregate and outputs a sequential aggregate o; on all

1 Messages My, -+, M.
— Aggregate verifying algorithm (AggVf): Given a sequential aggregate sig-
nature o; on the messages {mq,---,m;} under the respective public keys

{PKy, -+, PK;}. If any key appears twice, if any element PK; does not de-
scribe a permutation or if the size of the messages is different from the size
of the respective public keys reject. Otherwise, for j = 4,---,1, set 0_1 =
fi(PK1,---,PKj, 0;). The verification of ¢;_; is processed recursively. The
base case for recursion is ¢ = 0, in which case simply check that og. Accepts
if o¢ equals the zero strings.

A sequential aggregate signature is called a sequential aggregate path-vector
signature if all nodes over a path p=(PKj,---,PK,) sign any same message
(i.e., my = -+ =mpy).

The Definition of Security. The following security definition of sequential
aggregative signature schemes is due to [2]. The aggregate forger A is provided
with a initial value ZV, a set of public keys PK;, ---, PK;_1 and PK, generated
at random. The adversary also is provided with SK;, -+, SK;_1; PK is called
target public key. A requests sequential aggregate signatures with PK on mes-
sages of his choice. For each query, he supplies a sequential aggregate signature
0j—1 on some messages m1, ---, m;—1 under the distinct public keys PK7, ---,
PK;_1, and an additional message m; to be signed by the signing oracle under
public key PK. Finally, A outputs a valid signature o; of a message m; which
is associated with the aggregate o;_1. The forger wins if A did not request (m;,

76 H. Zhu and J. Zhou

0;—1) in the previous signing oracle queries. By AdvAggSign 4, we denote the
probability of success of an adversary.

We say a sequential aggregate signature scheme is secure against adaptive
chosen-message attack if for every polynomial time Turing machine A, the prob-
ability AdvAggSign 4 that it wins the game is at most a negligible amount, where
the probability is taken over coin tosses of KG and AggSign and 4. The security
of sequential aggregate path-vector signatures can be defined in a similar way as
that of sequential aggregate signatures with the restriction m; =m for the j**
oracle query over a path p=(PK1,---, PK,).

Sequential Aggregate Signatures from RSA. In [2], Lysyanskaya, Micali,
Reyzin, Shacham proposed two approaches to instantiate their generic construc-
tion from RSA trapdoor one-way permutations:

— the first approach is to require the user’s moduli to be arranged in increasing
order: N1 < Ny < --+ < N;. At the verification, it is important to check that
the i-th signature o; is actually less than N; to ensure the signatures are
unique if H is fixed. As long as log(N1) — log(NV¢) is constant, the range of
H is a subset of Zy, whose size is the constant fraction of Vi, the scheme
will be secure;

— the second approach does not require the moduli to be arranged in increasing
order, however they are required to be of the same length. The signature will
expanded by n bits by, - - -, by, where n is the total number of users. Namely,
during signing, if o; > N; 11, let b; =1; else, let b; =0. During the verification,
if b; =1, add N; 41 to o; before proceeding with the verification of o;. Always,
check that o; is in the correct range 0 < g; < N; to ensure the uniqueness
of signatures.

For applications of aggregate path-vector signature schemes in reliable com-
munication where a graph G is unknown, the choice of a claimed public key
of a node wv; is completely independent on the choice of a claimed public key
of another node v; in the Internet. Thus, for any RSA-based aggregate path-
vector signature that works over an unknown fixed-identity graph, a reasonable
assumption should be that the sizes of all moduli are bounded by a fixed size
(this requirement does not violate the unknown of underlying graph G). We
stress that there is efficient implementation of sequential aggregate signatures
presented in [4], which is sketched below:

Sequential aggregate signatures working over independent RSA moduli

Let H: {0,1}* — {0,1}! be a cryptographic hash function and ZV be the ini-
tial vector that should be pre-described by an aggregate path-vector signature
scheme. The initial value could be a random [-bit string or an empty string.
Without loss of generality, we assume that the initial value ZV is 0'. Our aggre-
gate path-vector signature is described as follows:

— Key generation: Each user i generates an RSA public key (N;, e;) and secret
key (N;,d;), ensuring that |N;| = k; and that e; > N; is a prime. Let G;:

Finding Compact Reliable Broadcast 77

{0,1}% — {0,1}*:, be cryptographic hash function specified by each user i,
ti=1—k;.

— AggPVSig: User i is given an aggregate path-vector signature g;_1 and (b,

-+, bi_1), a sequence of messages mq, -- -, m;_1, and the corresponding keys
(N1,e1), --+, (N;j—1,€,-1). User i first verifies 0;_1, using the verification
procedure below, where oy = 0'. If this succeeds, user i computes H; =
H(my, -+, m;, (N1,e1), -+, (N;,e;)) and computes x; = H; ® ¢g;—1. Then
it separates z; = y;||z;, where y; € {0,1}* and z; € {0,1}0, t; = | — k;.

Finally, it computes g; = f; *(yi ® Gi(2:))||2i- By 07 < (gi, i), we denote
the aggregate path-vector signature(if y; ® G;(z;) > N;, then b; =1, if
yi®Gi(z;) < Ny, then b; = 0; again we do not define the case y; ®G;(z;) = N;
since the probability the event happens is negligible), where fi_l(y) =y
mod N;, the inverse of the RSA function f;(y) = y* mod N; defined over
the domain Z5 .

— AggPVf: The aggregate path-vector verification algorithm is given as input
an aggregate path-vector signature g;, (by,---,b;), the messages mq,---,m;,
the correspondent public keys (N1, e1), - -+, (N;, ;) and proceeds as follows.
Check that no keys appears twice, that e; > N; is a prime. Then it computes:

L] Hi = H(ml, cee, My, (Nl, 61), cecy (Ni, 61‘));

e Separating g; = v;||w;;

e Recovering z; form the trapdoor one-way permutation by computing z;
— Wy, Yi = Bz(fl(vz) + blNZ) D Gz(zl), and z; :yiHZi7 where BZ(QJ) is
the binary representation of x € Z (with k; bits).

e Recovering g;_1 by computing x; @ H;. The verification of (g;—1,b;—1) is
processed recursively. The base case for recursion is ¢ = 0, in which case
simply check that oo =0

Lemma 1. ([J]): Let Uicr f; be a certificated homomorphic trapdoor permutation
family, the sequential aggregate signature scheme described above is secure in the
random oracle model.

2.3 Optimal Result

Let f be an RSA trapdoor one-way permutation defined over Z3;, where N=PQ,
P and Q are two large prime numbers and |N|=k. Let H: {0,1}* — {0,1}! be
a cryptographic hash function. Let f(z) = 2 mod N and f~'(z) = 2¢ mod N,
where ed = 1 mod ¢(N), e is a public key, and d is the correspondent secret key.
Throughout this section, we assume that [> k + 1.

On input a message m € {0,1}*, we obtain a string H(m) € {0, 1} which
in turn can be rewritten as the form ¢N +r (= H(m)), where 0 < r < N. Let
g1(m) =f~(r) and go(m) =P(q), where P is a padding algorithm (UP is the
correspondent un-padding algorithm) which is further defined below.

— Padding algorithm P: on input a random string ¢ € {0,1}"7, P outputs a
(I — k)-bit codeword 0'=*=7||q of ¢ which is denoted by P(q);

— Un-padding algorithm &P: on input (I—Fk)-bit string P(q), UP(P(q)) outputs
a 7-bit string ¢, i.e., UP(P(q))=q € {0,1}".

78 H. Zhu and J. Zhou

By (N,e, H, k,l,(P,UP)), we denote the public key of a signature scheme.
The secret key is (d, N). Our signature scheme working in an extended domain
is defined as follows:

— Signing algorithm: on input a message m, the signer computes H(m),
and then writes H(m) as the form ¢N +r (0 < r < N, |N| =k); Finally it
computes g1(m) < f~1(r) and g2(m) < P(q), where P(q) is a padding of
¢; The signature o of message m is (g1(m), g2(m));

— Verification algorithm: given a putative signature o(m), a verifier com-
putes r — f(g1(m)), and ¢ < UP (g2(m)); Finally, the verifier checks H(m)

"
=gN +r.

Using the same technique presented in [4], we show that assuming that the
RSA function is a trapdoor one-way permutation defined over Zj;, our signa-
ture scheme defined above is provably secure against existential forgery under
an adaptive chosen-message attack in the random oracle model. This ordinary
signature can be further transferred to a sequential aggregate signature without
bit-expansion. For simplicity, in the following discussion, we provide our solution
to the open in light of the base signature case and leave an exercise to readers
in the optimal case.

3 Reliable Broadcast in Unknown Fixed-Identity
Networks

Given an undirected graph G, two vertices u and v are called connected if there
exists a path from u to v; Otherwise they are called disconnected. The graph G
is called connected graph if every pair of vertices in the graph is connected. A
vertex cut for two vertices u and v is a set of vertices whose removal from the
graph disconnects u and v. A vertex cut for the whole graph is a set of vertices
whose removal renders the graph disconnected. The vertex connectivity k(G)
for a graph G is the size of minimum vertex cut. A graph is called k vertex
connected if its vertex connectivity is k or greater.

3.1 Removal of Certificated Public Keys

We stress that a collection of claimed public keys within a path-vector signature
must be certificated. Thus, either a trusted third party (a certificate authority) or a
public key infrastructure is required. To remove the concept of certificated identity
graph G, from path-vector signatures, anew notion called keyed-identity graph G,
is first introduced and formalized in [3]. To do so, the fixed-identity assumption is
critical. The fixed-identity assumption states the following thing: each node in an
undirected graph G has a unique identity it cannot fake and it knows the identities
of its neighbors in G. If this assumption is not met and an adversary uses different
identities to different neighbors, then for any given integer m > 0, there exists an
m-vertex connected network G on n nodes where each node is initially aware of the

Finding Compact Reliable Broadcast 79

identities if only its neighbors such that, a single adversary using multiple identities
is sufficient to disrupt reliable broadcast in G.

With the help of fixed-identity assumption, an algorithm determining genuine
keyed-identity can be proposed [3]. Suppose the underlying graph G is 2k + 1
vertex connected with & adversaries, then, between every pair of good nodes,
there exists at least k + 1 vertex disjoint paths that traverse only good nodes
(the fact that adversaries can at most prove k disjoint paths to a fake node is
critical for the solvability of this problem.).

3.2 Sequential Aggregate Based Broadcast Protocols

Now we can embed sequential aggregate signatures into the SKRSS asynchro-
nous broadcast algorithm presented in [3]. That is, given a path-vector message
(m,s,p) and its signature, we define the keyed identity path Pr(m, s, p) associ-
ated with (m, s, p) to consist of vertices (v;, g(v;)), where v; is the identity of
a node in p and g(v;) is the public key of v; in the signature. We borrow the
notation G, from [3] to denote the keyed-identity graph computed by a node x
with a set of neighbors N(z). Every good node z performs the following set of
operations.
Sequential aggregate based broadcast protocol in identity-fixed networks.

— Asynchronous node wake up: A node can either begin broadcast by itself or
begin transmissions upon receipt of the first message from a neighbor.

— Initiation: G, consists of one vertex (z, g(x)).

— For every u € N(x), z transmits (m(z), z, [x, u]) to u along with its sequential
aggregate signature sas.

— Propagation: For every path-vector message (m, s, p) with sequential aggre-
gate signature sas that = receives from u € N(z), x performs:

e Immediate-neighbor key check: Check if public-key of u in S matches
the same public-key used in previous messages. If not, reject (m, s, p); if
v € N(z) \ {u} appears in p, then the public-key of v should also match
the one directly advertised by v.

e Verify S using the verification algorithm of the aggregate path-vector
signature.

e Learn one vertex at a time: Accept the message only if Pr(m, s, p) con-
tains at most one new keyed identity (at the end of the path) not present
in G,. If so, update G, with P;(m,s,p).

e Message suppression: If Pr(m, s, p) adds no new vertices or edges to Gy,
ignore the message.

e To every v € N(zx), x transmits (m,s,p’) where p’ = p U {u} after
updating the signature.

— Flow computation: If the number of identity-disjoint paths to (v, g(v)) in G,
is at least k + 1, then = deems v to be a genuine identity and g(v) to be
its public key. By identity disjoint paths, we mean that no two paths should
contain two different vertices (v, g(v)) and (v, ¢’(v)) which share the same
identity v. The immediate-neighbor key check is necessary to ensure that if

80 H. Zhu and J. Zhou

an adversary v € N(x), then v uses only a single keyed-identity (v, g(v)) in
all its messages propagated to x. Any other message that x receives (from
other neighbors) which contains the identity v is accepted only if it contains
the same public key g(v).

Theorem 1. Given a bound k on the number of adversaries, the algorithm de-
scribed above achieves reliable broadcast in an unknown fized-identity network
U(n,G,N) if and only if G is 2k + 1 vertex connected.

Proof. The necessary condition can be argued as follows: the structure of graph
G is unknown but each node knows the identities of its neighbors in our model
while the entire graph G is known to all nodes in Dolev’s model [I]. Clearly,
Dolev’s model is a special case of our model. It follows that the assumption that
G is (2k+1)-vertex connected is a necessary condition for reliable communication
in our model.

The sufficient condition can be argued as follows: Let G’ be a subgraph of
G consisting of all edges between honest nodes. since the underlying graph G
is (2k + 1)-vertex connected with k adversaries, it follows that G’ is at least
(k+1)-vertex connected. If every good node u can learn all the edges in G’, then
it can definitely compute (k+ 1) identity disjoint paths to every other good node
and hence, can successfully determine every other good node v. Consequently,
to show the proposed routing algorithm achieving reliability, it is sufficient to
show that every good node will eventually learn all edges in G’. Now we consider
the presence of k > 0 adversaries and two good nodes u and v are separated
by 7 hops. By the broadcasting algorithm described above, we know that at the
it" hop, an individual node exchanges the new sequential aggregate signature it
learnt from the (i — 1)** with its neighbors. Recursively, every good node learns
all edges in G’ eventually since G’ is at least (k + 1)-vertex connected subgraph.

4 Computation and Communication Complexity

Assuming that v; ;’s public key size is |g(v; ;)| =t;; and the number of hops in a
path p;={v;1, -, viq, } is d;. The message flow of the original SKRSS protocol
is that:

message flow generated by v; 1: m;1 = < my, (vi1, 9(vi1)), (Vi2, g(vi2)) >,
and < sig;,1(m;1) >;

message flow generated by v;2: m;o= < my, (vi1, 9(vi1)), (vi2, g(vi2)),
(U@g, g(Ui,3)) > and < sigm(mi,l) and Sigivz(mivz) >,

K

— message flow generated by v; g,—1: Mi,g,—1 = < M4, (vi1, 9(Vi1)), -5 (Vid;—1,
9(vid;—1)) >, and < sig;1(mi1), -+, 81gi.d;—1(Mid;—1) >

The message flow along the path p; of our reliable broadcast protocol are that:

— message flow generated by v; 1: v; 1: My 1=<my, (vi1, 9(vi1)), (Vi2, g(vi2)) >,
< sigi1(min) >;

Finding Compact Reliable Broadcast 81

— message flow generated by v;2: mio= < my, (vi1,9(vi1)), (vi2, 9(vi2)),
(U@g, g(Ui,3)) > and < bi71, Sigivz(mig) >, where bi71 S {O, 1};

— message flow generated by v; g, —1: mM.q,—1 = < my, (vi1,9(vi1)), -+ (Vid;—1,
g(vi’di,l)) >, and < bi,l; sy bi’d172, Sigi)di,1(777Jdi,1)>7 where bi,i S {07 1},
1<i<d;—2

By comp;, we denote the communication complexity of original scheme along
the path p;; and by comp;, we denote the communication complexity of our
scheme along the same path p;. Thus, we have the following estimation (typically,
di —1 < min{t;1, -, tig—1}): comp;- comp; = ti1 + -+ tiq,—1 — (di — 1)
(the term (d; — 1) is eliminated in case that our optimal sequential aggregate
signature scheme is applied).

5 Conclusion

In this paper, we have transferred the notion of path-vector signatures to that of
sequential aggregate signatures and have also shown that the notion of sequential
aggregate path-vector is a special case of the notion of sequential aggregate
signatures. We have described the work of [3] in light of sequential aggregate
signatures to realize the same functionality of path-vector signatures. We have
presented alternative solution to reliable broadcast problem with nearly optimal
communication complexity and thus provided an efficient solution to the open
problem addressed in the introduction section.

References

1. D.Dolev: The Byzantine Generals Strike Again. J. Algorithms 3(1): 14-30 (1982)

2. A.Lysyanskaya, S.Micali, L.Reyzin, H.Shacham: Sequential Aggregate Signatures
from trapdoor one-way permutations. EUROCRYPT 2004: 74-90.

3. L.Subramanian, R.Katz, V.Roth, S.Shenker, I.Stoica: Reliable broadcast in un-
known fixed-identity networks. PODC2005: 342- 351.

4. H.Zhu, F.Bao, R.H.Deng: Sequential Aggregate Signatures Working over Indepen-
dent Homomorphic Trapdoor One-Way Permutation Domains. ICICS 2005: 207-219

	Introduction
	More on SKRSS' Assumptions
	This Work

	From Path-Vector Signatures to Sequential Aggregate Signatures
	Path-Vector Signatures
	Syntax of Sequential Aggregate Signatures in the Public-Key Infrastructure (PKI) Environment
	Optimal Result

	Reliable Broadcast in Unknown Fixed-Identity Networks
	Removal of Certificated Public Keys
	Sequential Aggregate Based Broadcast Protocols

	Computation and Communication Complexity
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

