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Identification of genetic variants associated with complex traits is a critical step for
improving plant resistance and breeding. Although the majority of existing methods for
variants detection have good predictive performance in the average case, they can not
precisely identify the variants present in a small number of target genes. In this paper, we
propose a weighted sparse group lasso (WSGL) method to select both common and low-
frequency variants in groups. Under the biologically realistic assumption that complex
traits are influenced by a few single loci in a small number of genes, our method involves a
sparse group lasso approach to simultaneously select associated groups along with the
loci within each group. To increase the probability of selecting out low-frequency variants,
biological prior information is introduced in the model by re-weighting lasso regularization
based on weights calculated from input data. Experimental results from both simulation
and real data of single nucleotide polymorphisms (SNPs) associated with Arabidopsis
flowering traits demonstrate the superiority of WSGL over other competitive approaches
for genetic variants detection.

Keywords: genome-wide association studies, genetic variants, single nucleotide polymorphisms, minimum allele
frequency, sparse group lasso
INTRODUCTION

Since completion of the sequencing-based structural genome project, the focus of life science
research has gradually shifted from determining the composition of DNA sequences to elucidating
the function of identified genes. However, the greatest challenge of functional genomics is to
determine the risk genes associated with complex diseases or traits among the huge amount of DNA
sequences. Approximately, 90% of all gene fragments in any two individuals of almost all organisms
are identical; thus, the fragments affecting individual characteristics, diseases, or traits only appear
in a small range of sequences (Tenaillon et al., 2001; Reich et al., 2002). Polygenic recombination or
mutation can cause individual differences in genome sequences, resulting in genetic polymorphism.
Single nucleotide polymorphisms (SNPs) are the most common form of such genetic variation.
Therefore, identification and characterization of SNPs help to discover the underlying causes of
various diseases or variable traits and to develop new therapeutic strategies and targets for drug
development or crop improvement.

The goal of genome-wide association studies (GWAS) is to elucidate the relationship between
millions of SNPs and complex traits (Klein et al., 2005). A single-locus association approach is
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typically used in GWAS; however, the “polygenic theory”
proposes that complex traits are controlled by the action of
multiple SNPs together rather than by individual genes or
variants (Dudbridge, 2016). Since the number of SNPs far
exceeds the number of samples in a multi-loci association
study, the “curse of dimensionality” becomes the main
challenge of this type of analysis (Waddell et al., 2005). Many
machine-learning algorithms have been widely used to overcome
this limitation and facilitate investigating the association between
traits with SNPs. Based on current approaches, association
studies can be divided into two main categories: one based on
feature selection (FS) and the other based on statistical machine
learning with regularizing penalty.

FS is the process of selecting the most effective features among
a set of original features so as to reduce the dimensionality of the
dataset. There are two types of FS methods: the wrapper method
as a dependent classifier (Hall and Smith, 1999), and the filter
method as an independent classifier (Liu and Setiono, 1996).
Typically, the wrapper and filter approaches are combined as the
final selected method. When applying FS methods to GWAS, the
SNPs are treated as the features, phenotypes are the labels, and
the candidate SNPs are then selected according to their
associations with phenotypes. Numerous FS methods have
been applied in genetic association studies (Evans, 2010;
Batnyam et al., 2013; Anekboon et al., 2014; Alzubi et al., 2017;
An et al., 2017; Setiawan et al., 2018; Tsamardinos et al., 2019).
For example, Evans (2010) combined two filter FS methods with
classification methods in a machine-learning approach, and
obtained strong association results. To further improve the
accuracy of the selected SNPs, Batnyam et al. (2013) applied
four popular FS approaches (Robnik-Šikonja and Kononenko,
2003; Liang et al., 2008; Seo and Oh, 2012; Lee et al., 2013) to
select novel SNPs, which were then used to generate artificial
features by applying a feature fusion method. Finally, the
artificial features were classified by traditional classifiers. As an
alternative combinational algorithm, Anekboon et al. (2014)
proposed a correlation-based FS method as a filter to first
select a portion of the SNPs, followed by a wrapper phase to
sequentially feed each of these SNPs into k-nearest neighbor,
artificial neural network, and Ridge regression classifiers. Alzubi
et al. (2017) developed a hybrid FS method by combining
conditional mutual information maximization and support
vector machine-recursive feature elimination (SVM-RFE).
An et al. (2017) used a hierarchical feature and sample
selection framework to gradually select informative features
and discard ambiguous samples in multiple steps to improve
the classifier learning. Setiawan et al. (2018) firstly employed
random forest algorithm to reduce the search space, then selected
associated SNPs by sequential forward floating selection.
Tsamardinos et al. (2019) applied p-values of conditional
independence tests and meta-analysis techniques to select
features, and made use of parallel techonology to increase the
computing speed. Current methods based on FS have sufficient
ability for selecting a candidate feature set. Nevertheless, it is
important to use available biological information as prior
knowledge in biocomputing. Since FS methods can only reflect
Frontiers in Genetics | www.frontiersin.org 2
the dataset itself, they are not suitable to screen features based on
prior biological knowledge.

Regression models with penalty can also be used for GWAS.
With this approach, the SNPs correspond to the independent
variables, and phenotypes are mapped to dependent variables in
the regression model. Since the number of SNPs typically far
exceeds the number of samples, it is necessary to regularize the
sparsity of coefficients in the regression model. As a
representative example, the well-established lasso method
proposed by Tibshirani (1996) can learn a sparse weight vector
by penalizing the weight vector with a 1-norm loss while
shrinking less important coefficients to zeros. Owing to this
property, lasso and its extensions have been widely applied in the
detection of genetic variants (Cao et al., 2014; Arbet et al., 2017;
Tamba et al., 2017; Cherlin et al., 2018; Wang et al., 2019). For
example, Cao et al. (2014) incorporated prior information in
lasso to further increase the selection accuracy. Arbet et al. (2017)
imposed a permutation method on lasso to improve the
performance of the algorithm. Tamba et al. (2017) first
reduced the number of SNPs to a moderate size, then used
expectation maximization Bayesian lasso to detect the
quantitative trait nucleotide (QTN). Cherlin et al. (2018) used
lasso to explore the association between phenotype and SNP data
and achieved good prediction. Wang et al. (2019) promoted a
precision lasso that utilized regularization governed by the
covariance and inverse covariance matrices of explanatory
variables to increase sparse variable selection. However, SNPs
(features) are generally found in groups, whereas lasso does not
encourage sparsity between groups. Yuan and Lin, (2006)
proposed the group lasso (GL) method, which sets a
regularization of the sum of the ℓ2 norm onto groups that
encourages only a few groups to be selected. The GL approach
has also been successfully applied in GWAS (Li et al., 2015; Lim
and Hastie, 2015; Gossmann et al., 2017; Du et al., 2018).
Gossmann et al. (2017) extended sorted L1 penalized
estimation (SLOPE) in the spirit of Group LASSO to handle
group structures between the predictor variables. Du et al. (2018)
proposed the SCCA with truncated L1 penalized and GL to
improve the performance and effectiveness of discovering SNPs
or QTs in imaging genetics. However, once a group is chosen, all
of its comprising features are also selected, which is not
compliant with the actual biological situation in which SNPs
are distributed sparsely across the genome in only a few groups.
Simon et al. (2013) developed sparse GL (SGL) that uses the ℓ2
penalty to select only a subset of the groups and the ℓ1 penalty to
select only a subset of the variables within the group. Indeed, SGL
has been widely applied in detecting genetic variants (Rao et al.,
2015; Li et al., 2017; Samal et al., 2017; Guo et al., 2019). Samal
et al. (2017) proposed a method based on SGL to identify
phenotype associated extreme currents decomposed from
metabolic networks data. Combined SGL with group-level
graph structure, which takes advantages of gene-level priors to
penalty the nucleotide-level sparsity to identify the risk SNPs.
Guo et al. (2019) proposed a method that combined SGL and
linear mixed model (LMM) for multivariate associations of
quantitative traits, and it obtained a good power. Despite this
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improvement, the limitation of this method is that SGL selects
sparse features within a group, but gives the same penalty for all
features within the group. Consequently, this approach can easily
result in swiping out low-frequency features that may play an
important role in influencing phenotypes. To overcome this
obstacle, it is important to assign different penalties to different
features. Ideally, candidate SNPs should have a smaller penalty
weight while others would have a larger penalty weight. In this
way, candidate SNPs will stand out among the data more readily.
To achieve this goal, we here propose a novel approach termed
weighted SGL (WSGL) by introducing biological prior
information for more accurate genetic variants detection.
Specifically, we compute the minimum allele frequency (MAF)
among a dataset of SNPs and use those values to reweight as the
ℓ1 penalty of each SNP site, which can increase the chance of
retaining low-frequency variants without loss of information. To
validate this approach, we compared the performance of our
model with simulation and real data against the three
mainstream models discussed above.
MATERIALS AND METHODS

Materials
Simulation Data
We used Arabidopsis thaliana data from Atwell et al. (2010),
downloaded from https://github.com/Gregor-Mendel-Institute/
atpolydb for the simulation. We used a quality control protocol
on the original data. The SNPs are eliminated by the standard
that Minor Allele Frequency (MAF) is < 0.01, the missing rate
is > 0.05, or the allele frequencies are not in Hardy-Weinberg (P
< 0.0001). After data preprocessing, we chose 200 genes on
chromosome 1 covering a total of 1,993 SNPs. Twenty of these
SNPs were chosen as the associated variants.

Real Data
The genotype information was the same as that obtained from
the simulation data. Ten phenotypes were selected among the
107 reported. First, from chromosome 1 to 5, we chose the first
1,000 genes, which were sorted according to sequence length,
including 49,962 SNPs. Second, we selected 19 genes containing
367 SNPs, which have been verified to be associated with
flowering time in Arabidopsis. Thus, a total of 50,329 SNPs
were analyzed in our experiments.

Statistical Model and Methods
We first give a problem statement, followed by a brief overview of
lasso and its extension for application in a genetic association
study. Finally, we describe our new WSGL method.

Let X = (x1, x2,…, xn)
T denote the n × p genotype matrix,

where n is the number of samples and p is the number of
genotypes. Let Y = (y1, y2,…, yn)

T represent the n × 1 phenotype
vector, containing the phenotype values of the n samples. We
then establish a linear model between X and y:

Y = Xb + ϵ (1)
Frontiers in Genetics | www.frontiersin.org 3
where b = (b 1, b 2,…, b n)
T is a p × 1 regression coefficients

vector, and ϵ ∼N(0, 1).

Lasso and Its Extension for Association Mapping
Tibshirani (1996) proposed the popular lasso estimator,

min
b

1
2
‖ y − Xb ‖22 +l ‖ b ‖1 (2)

whereb is the regression coefficients vector, and x, corresponding to
the nonzero estimated coefficients in b, represents the candidate
SNPs. ||b||1 is the ℓ1 penalty item. l is a regularization parameter,
and its size determines the sparsity.When l= 0, the lasso estimator
is equivalent to ordinary least-squares regression.

However, the lasso applies to the situation in which the
variables are independent of each other. For the situation in
which the variables can be divided into m groups, Yuan and Lin
(2006) proposed the GL estimator,

min
b

1
2
‖ y − om

l=1X
lð Þb lð Þ ‖22 +lom

l=1
ffiffiffiffi
pl

p
‖ b lð Þ ‖2 (3)

wherem is the group of variables, the first part is OLS, the second
part is the sum of the ℓ2 penalty of the coefficients of each group,
and l is the regularization parameter. If the size of the group is 1,
it will degenerate to the standard lasso.

The GL can generate a sparse in groups; however, the
variables in a group are not sparse. To solve this problem,
Simon et al. (2013) proposed the SGL,

min
b

1
2n

‖ y − om
l=1X

lð Þb lð Þ ‖22 + 1 − að Þlom
l=1

ffiffiffiffi
pl

p
‖ b lð Þ ‖2 +al ‖ b ‖1 (4)

where l still controls the overall penalty and a determines the
ratio between ℓ1 and ℓ2. When a = 1, it will be transformed into
lasso, whereas when a = 0, it will be GL. SGL can either select the
variables in a group-by-group manner, or screen the individual
variables in the remaining groups.

Our Method
With respect to the genetic association problem, the variables in
a group have different effects on the independent variable.
However, the SGL uses the same penalty coefficients for all
variables, regardless of the relative importance among SNPs in
the screened groups.

To tackle this problem, we introduce the prior informationw in
themodel to improve the statistical power, and propose theWSGL,

min
b

1
2n

‖ y − om
l=1X

lð Þb lð Þ ‖22 + 1 − að Þlom
l=1

ffiffiffiffi
pl

p
‖ b lð Þ ‖2 +al ‖wb ‖1 (5)

The objective function in (5) is clearly convex; therefore, the
optimal solution can be achieved by subgradient equations. Letb̂
be the optimal solution of WSGL. For group k = (1, 2,…, m), the
solution b̂ (k) satisfies

1
n
X kð ÞT y − om

l=1)X
lð Þb̂ lð Þ

� �

=
ffiffiffiffiffi
pk

p
1 − að Þlm kð Þ + alw kð Þn kð Þ (6)
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where µ(k) and v(k) are subgradients of ‖ b̂ (k) ‖2 and ‖ b̂ (k) ‖1,
respectively. According to Simon et al. (2013), m(k) = b̂ (k)= ‖ b̂ (k)

‖2 if b(k) ≠ 0; otherwise, || µ(k) ||2 ≤ 1. n(k)
j = sign(b̂j

(k)) when
b̂j

(k) ≠ 0; otherwise, ‖ n(k)
j ‖2 ≤ 0.

Following the analysis in Simon et al. (2013), the condition
for b̂ (k) = 0 is

‖ S X kð ÞTg −kð Þ=n,alw
kð Þ

� �
‖2 ≤

ffiffiffiffiffi
pk

p
1 − að Þl (7)

whereg(−k) = y −ol≠kX
lb̂ (l)is the partial residual of y, and S is

defined as (S(a, b))j = sign(aj)(jajj − bj)+.
If b̂ (k) ≠ 0, the subgradient condition for b (k)

i becomes

1
n
X kð ÞT
i y − om

l=1X
lð Þb̂ lð Þ

� �

=
ffiffiffiffiffi
pk

p
1 − að Þl

bbi kð Þ

‖ b̂ kð Þ ‖2
+ alw kð Þ

i n kð Þ
i (8)

This is satisfied for b̂ (k) = 0, if jX(k)T
i g(−k,i)j ≤ nalw , where

g(−k,i) = g(−k) −oj≠iX
(k)
j b̂ (k) is the partial residual of y.

When b (k)
i ≠ 0, we can get

b̂ kð Þ
i =

S X kð ÞT
i g −k,ið Þ=n,alw

� �
X kð ÞT
i X kð Þ

i =n + 1 − að Þl= ‖ b̂ kð Þ ‖2
(9)

For each locus, MAF indicates, to some degree, its rareness. The
MAF of low-frequency variants is usually small, so the associated
low-frequency variants are more susceptible to sparsity
regularization than other common variants. With normal sparse
group lasso, the pressure of being zeroed out on each locus within
the same group is equally high. In this case, those low-frequency
variants are more likely to be excluded during the process. So
selection of an appropriate weight can help to filter out more
accurate candidate low-frequency variants.

There are several approaches for deciding the weights. For
example, a small penalty can be assigned to the loci in known
susceptibility genes to ensure including them into the model.
Alternatively, the weights can be dependent on the MAF. For a
dataset including both low-frequency and common variants,
low-frequency markers are assigned smaller weights to
compensate for their low frequencies. Here, we assign each
locus a weight as follows: weight = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAF(1 −MAF)

p
. Each

weight wi is calculated in advance, which contains genotypes
and biological explanations. The importance of the ith variable
can be adjusted by the weight wi. Thus, to choose a locus, we can
give it a relatively small penalty weight. Conversely, a larger
weight can be assigned to exclude a locus. If wi = 1, our model
will be transformed to the SGL. Moreover, it is important to
select an optimal regularization parameter l, as a larger l will
generate a sparser result. For the present model, we chose cross-
validation to select the optimal l.

A brief algorithmic description of our method is shown in
Algorithm 1. Let n represent the number of samples and p be the
number of genotypes. The time complexity of subgradient step in
Frontiers in Genetics | www.frontiersin.org 4
each iteration is O(np). In real data, p is usually supposed to be
large, resulting in comparatively high time complexity.
Therefore, in genome-wide association analysis, we suggest to
analyze chromosomes individually for huge genome.

Performance Measurements
For performance evaluation of the new model, we treat the loci
detection as a binary classification under class imbalance, in
which associated loci are assigned the label 1, and all others are
assigned the label 0. The testing frequency of each locus is then
regarded as the predicted probability for label 1. The receiver
operating characteristic (ROC) curve and the area under the
precision-recall curve (AUPR) are typically used for performance
assessments. The ROC curve is plotted based on the sensitivity
and specificity, whereas AUPR is generated based on the
precision and recall. In our problem, the number of variants is
significantly lower than the number of all loci, resulting in an
imbalanced dataset. In the ROC curve, the false positive rate
cannot descend greatly when the true negative is huge. However,
the AUPR is sensitive to false positive. Considering these factors,
we chose the AUPR as the performance metric for this purpose.
RESULTS AND DISCUSSION

Experiments on Simulation Data
For assessing the performance of WSGL in selecting candidate
SNPs associated with a trait of interest, its performance was
compared with lasso, GL, and SGL. Two parameters needed to be
controlled in this experiment: a, which is the proportion of ℓ1
and ℓ2 loss in SGL, and l, which is the coefficient of the entire
regularization term and influences the sparsity. We set a to 0.95.
Based on the results of cross-validation, l was set to 0.09.

Figure 1 shows the results of the four methods with the
simulation data, which clearly exhibits the superior performance
of WSGL. The AUPR of WSGL is 0.652, which outperformed
lasso by 23.6%, GL by 50.8%, and SGL by 24.4%. Lasso uses ℓ1 to
guarantee the sparsity of selected SNPs, but does not consider the
group information; therefore, the candidate SNPs may be
selected from all groups equally. Although GL imposes group
information on the model, it still lacks sparsity constraint within
the group, which does not correspond with the biological
assumption that only a small number of candidate SNPs are
contained in a small number of groups. SGL considers the
sparsity between and within groups, but can still easily exclude
ALGORITHM 1 | Parameter estimation for weighted sparse group lasso.

Input: Genotype X, phenotype y ratio a, regularization hyperparameter l

Output: Estimated b̂
1: calculate w = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAF(1 −MAF)

p
;

2: while not converge do
3: for k from 1 to number_of_groups do
4: for i from 1 to length_of_groups (k) do

5: update b̂ (k)
i using equation (9);

6: return b̂ ;
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important SNPs with a lower MAF. By introducing biological
information to adjust the penalty of SNPs in the selected groups,
WGSL places less weight on the low-frequency variants and thus
increases their chance of being kept out. Despite its simplicity,
the simulation results demonstrated the effectiveness of this
approach for screening out important SNPs.

To further compare the performance of the four algorithms,
we computed their AUPR values by fixing a at 0.95 and varying
l from 0.01 to 0.1 by steps of 0.01. As shown in Figure 2, with
smaller l, the model shows lower sparsity. When l is 0.01 or
0.02, the model will include more SNPs, which may include more
non-candidate SNPs that would cause a high false positive rate.
Conversely, as l increases, the number of selected SNPs
decreases, which might result in the loss of some candidate
SNPs, leading to a low TP rate. However, WSGL will include
more candidate low-frequency loci by introducing prior
knowledge to adjust the weight. Accordingly, WSGL keeps the
highest position starting from l = 0.03. When l increases from
0.02 to 0.05, the AUPR of WSGL increases significantly from
58% to 64.5%, whereas the AUPR of lasso decreases from 59.2%
to 53.2%, and that of SGL decreases from 59.9% to 56.1%.
Surprisingly, the AUPR of GL decreases even more sharply
from 51.1% to 34.1%. When l reaches 0.05, the AUPR of
WSGL tends to be stable, and the peak of 65.2% occurs at l =
0.09. The AUPR of both lasso and SGL gradually decreases, and
finally drops to around 40%. When l is 0.1, the AUPR of GL
Frontiers in Genetics | www.frontiersin.org 5
drops to 13.3%. These results were consistent with our
expectation that the performance of WSGL would be the best,
SGL would perform better than lasso, and GL would show the
worst performance overall.

Experiments on Real Data
To verify the ability of WSGL to detect candidate SNPs, we
compared the performance of the four models using Arabidopsis
flowering time data with known genetic associations. The dataset
included 10 different phenotypes, FT10, FT16, FT22, LD, LDV,
SD, SDV, LN10, LN16, and LN22, and the descriptions of the 10
phenotypes are shown in Table 1. We analyzed the associated
number of genes covered by 100 SNPs with top probabilities of
being target loci.

As shown in Table 2, WSGL could link more candidate genes
with phenotypes FT10, FT16, FT22, LD, SD, and SDV. In
particular, WSGL demonstrated excellent performance for
FT10, not only by selecting less groups but also by including
less SNPs within each group, and the ratio of candidate genes was
23.08%. By contrast, the ratios of candidate genes were 4.65%,
9.09%, and 5.13% for lasso, GL, and SGL, respectively. For
phenotypes FT16, FT22, LD, SD, and SDV, WSGL still
achieved the best detection performance. However,
unexpectedly, the GL model obtained better results for the first
four phenotypes. We consider that this may be due to the specific
distribution of loci in the dataset. In cases for which most or all of
FIGURE 1 | Precision-recall (PR) curves of WSGL and the other methods.
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FIGURE 2 | Precision-recall (PR) curves of WSGL and the other methods for varying l.
TABLE 1 | Description of the 10 flowering related phenotypes in A.thaliana in real data application.

Phenotype Accessions Phenotype description Growths
conditions

Phenotype scoring

LD 167 Days to flowering time (FT) under
Long Day (LD) and Short Days (SD)
+/− vernalization

18°C 16-h
daylight

Number of days following stratification to opening of the first flower. The
experiment was stopped at 200d, and accessions that had not flowered at the
point were assigned a value of 200.

LDV 168 18°C 16-h
daylight,

vernalized (5wks
4)

SD 162 18°C 16-h
daylight

SDV 159 18°C 16-h
daylight,

vernalized (5wks
4)

FT10 194 10°C 16-h
daylight

FT16 193 16°C 17-h
daylight

Plants were checked bi-weekly for presence of first buds, and the average
flowering time and average leaf number of four plants of the same accession at
each temperature were collected.

FT22 193 Flowering time (FT) and leaf number
at flowering time (LN)

22 °C 18-h
daylight

LN10 177 10 °C 19-h
daylight

LN16 176 16°C 20-h
daylight

LN22 176 22°C 21-h
daylight
Frontiers in G
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the candidate objects are located in only one group, GL will
apparently show a good result. By contrast, all four methods
could link all six genes with LDV, LN10, LN16, and LN22. This
surprising result may reflect the strong association between the
selected SNPs and these phenotypes, which is highly
discriminable. Nevertheless, this assessment demonstrated that
our new weighted method achieves the best performance overall,
highlighting the importance of considering prior biological
information for selection of candidate SNPs.
CONCLUSION

We proposed a method named weighted sparse group lasso
(WSGL) to improve the detection of genetic variants. WSGL
incorporates the ℓ1 penalty, ℓ2 penalty, and prior biological
knowledge into a single linear regression model, and then uses
Frontiers in Genetics | www.frontiersin.org 7
SGL to either select or clear out all SNPs in a group potentially
associated with a phenotype of interest. To screen candidate low-
frequency variants, we introduced the MAF as the weight to re-
scale each element for calculating ℓ1 loss. In addition, WSGL can
detect meaningful associations with more accuracy compared to
available methods, which conforms with the general assumption
that complex traits are affected by a few SNPs in a few genes.
Experiments with both simulation and real data of SNPs related
to the flowering time of A. thaliana demonstrated the
effectiveness of our approach.
DATA AVAILABILITY STATEMENT

We used Arabidopsis thaliana data from Atwell et al. (2010),
downloaded from https://github.com/Gregor-Mendel-Institute/
atpolydb for the simulation.
TABLE 2 | Summary of four methods associations found in real data.

Phenotype Method Number of genes covered by top 100 SNPs Number of genes in the 19 genes Ratio of candidate genes

FT10 Lasso 86 4 4.65%
GL 66 6 9.09%
SGL 78 4 5.13%
WSGL 26 6 23.08%

FT16 Lasso 76 8 10.53%
GL 62 8 12.9%
SGL 64 7 10.94%
WSGL 67 10 14.93%

FT22 Lasso 78 7 8.79%
GL 72 7 9.72%
SGL 77 6 7.79%
WSGL 71 9 12.68%

LD Lasso 81 9 11.11%
GL 67 9 13.43%
SGL 73 11 15.07%
WSGL 74 12 16.22%

LDV Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –

SD Lasso 78 5 6.41%
GL 70 5 7.14%
SGL 79 6 7.59%
WSGL 77 6 7.79%

SDV Lasso 84 1 1.19%
GL 66 1 1.52%
SGL 78 2 2.56%
WSGL 72 2 2.78%

LN10 Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –

LN16 Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –

LN22 Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –
March 202
0 | Volume 11 | Article 155

https://github.com/Gregor-Mendel-Institute/atpolydb
https://github.com/Gregor-Mendel-Institute/atpolydb
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Che et al. WSGL for Genetic Variants Detection
AUTHOR CONTRIBUTIONS

Conceptualization: KC. Formal analysis: KC. Funding acquisition:
MG, CW, and XL. Methodology: KC. Validation: KC and XC.
Writing—original draft: KC and XC.Writing—review and editing,
KC, MG, CW, and XL.
Frontiers in Genetics | www.frontiersin.org 8
FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 61571163, 61532014, 61671189,
61872114, and 61871020) and the National Key Research and
Development Plan of China (Grant No. 2016YFC0901902).
REFERENCES

Alzubi, R., Ramzan, N., Alzoubi, H., and Amira, A. (2017). A hybrid feature
selection method for complex diseases snps. IEEE Access 6, 1292–, 1301. doi:
10.1109/ACCESS.2017.2778268

An, L., Adeli, E., Liu, M., Zhang, J., Lee, S.-W., and Shen, D. (2017). A hierarchical
feature and sample selection framework and its application for alzheimer᾽s
disease diagnosis. Sci. Rep. 7, 45269. doi: 10.1038/srep45269

Anekboon, K., Lursinsap, C., Phimoltares, S., Fucharoen, S., and Tongsima, S.
(2014). Extracting predictive snps in crohn's disease using a vacillating genetic
algorithm and a neural classifier in case–control association studies. Comput.
Biol. Med. 44, 57–65. doi: 10.1016/j.compbiomed.2013.09.017

Arbet, J., McGue, M., Chatterjee, S., and Basu, S. (2017). Resampling-based tests
for lasso in genome-wide association studies. BMC Genet. 18, 70. doi: 10.1186/
s12863-017-0533-3

Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., Willems, G., Horton, M., Li, Y., et al.
(2010). Genome-wide association study of 107 phenotypes in arabidopsis
thaliana inbred lines. Nature 465, 627. doi: 10.1038/nature08800

Batnyam, N., Gantulga, A., and Oh, S. (2013). “An efficient classification for single
nucleotide polymorphism (snp) dataset,” in Computer and Information Science
(Berlin, Germany: Springer), 171–185. doi: 10.1007/978-3-319-00804-2_13

Cao, S., Qin, H., Deng, H.-W., and Wang, Y.-P. (2014). A unified sparse
representation for sequence variant identification for complex traits. Genet.
Epidemiol. 38, 671–679. doi: 10.1002/gepi.21849

Cherlin, S., Howey, R. A., and Cordell, H. J. (2018).Using penalized regression to
predict phenotype from snp data, in: BMC Proc. (BioMed Central) 12 223–228.
doi: 10.1186/s12919-018-0149-2

Du, L., Liu, K., Zhang, T., Yao, X., Yan, J., Risacher, S. L., et al. (2018). A novel scca
approach via truncated l1-norm and truncated group lasso for brain imaging
genetics. Bioinformatics 34, 278–285. doi: 10.1093/bioinformatics/btx594

Dudbridge, F. (2016). Polygenic epidemiology. Genet. Epidemiol. 40, 268–272. doi:
10.1002/gepi.21966

Evans, D. T. (2010). A SNP microarray analysis pipeline using machine learning
techniques. Ph.D. thesis (Athens, OH, USA: Ohio University).

Gossmann, A., Cao, S., Brzyski, D., Zhao, L.-J., Deng, H.-W., and Wang, Y.-P.
(2017). A sparse regression method for group-wise feature selection with false
discovery rate control. IEEE/ACM Trans. Comput. Biol. Bioinf. 15, 1066–1078.
doi: 10.1109/TCBB.2017.2780106

Guo, Y., Wu, C., Guo, M., Zou, Q., Liu, X., and Keinan, A. (2019). Combining sparse
group lasso and linear mixed model improves power for finding genetic variants
underlyingquantitative traits.Front.Genet. 10, 271. doi: 10.3389/fgene.2019.00271

Hall, M. A., and Smith, L. A. (1999). Feature selection for machine learning:
comparing a correlation-based filter approach to the wrapper, in: FLAIRS
conference., Proceedings of the Twelfth International Florida Artificial
Intelligence Research Society Conference; 1999 March 1-5. (Orlando,
Florida, USA: DBLP) 1999 235–239.

Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J.-Y., Sackler, R. S., Haynes, C., et al. (2005).
Complement factor h polymorphism in age-related macular degeneration.
Science 308, 385–389. doi: 10.1126/science.1109557

Lee, J., Batnyam,N., andOh, S. (2013). Rfs: Efficient feature selectionmethod based on
r-value. Comput. Biol. Med. 43, 91–99. doi: 10.1016/j.compbiomed.2012.11.010

Li, J., Wang, Z., Li, R., and Wu, R. (2015). Bayesian group lasso for nonparametric
varying-coefficient models with application to functional genome-wide
association studies. Ann. Appl. Stat. 9, 640. doi: 10.1214/15-AOAS808

Li, J., Dong, W., and Meng, D. (2017). Grouped gene selection of cancer via adaptive
sparse group lasso based on conditional mutual information. IEEE/ACM Trans.
Comput. Biol. Bioinf. 15, 2028–2038. doi: 10.1109/TCBB.2017.2761871
Liang, J., Yang, S., and Winstanley, A. (2008). Invariant optimal feature selection:
A distance discriminant and feature ranking based solution. Pattern
Recognition 41, 1429–1439. doi: 10.1016/j.patcog.2007.10.018

Lim, M., and Hastie, T. (2015). Learning interactions via hierarchical group-lasso
regularization. J. Comput. Graphical Stat 24, 627–654. doi: 10.1080/
10618600.2014.938812

Liu, H., and Setiono, R. (1996). “A probabilistic approach to feature selection-a
filter solution,” in ICML (Citeseer), vol. 96. , 319–327.

Rao,N.,Nowak,R., Cox,C., andRogers,T. (2015).Classificationwith the sparse group
lasso. IEEE Trans. Signal Process. 64, 448–463. doi: 10.1109/TSP.2015.2488586

Reich, D. E., Schaffner, S. F., Daly, M. J., McVean, G., Mullikin, J. C., Higgins, J. M.,
et al. (2002). Human genome sequence variation and the influence of gene
history, mutation and recombination. Nat. Genet. 32, 135. doi: 10.1038/ng947

Robnik-Šikonja, M., and Kononenko, I. (2003). Theoretical and empirical analysis
of relieff and rrelieff. Mach. Learn. 53, 23–69. doi: 10.1023/A:1025667309714

Samal, S., Radulescu, O., Weber, A., and Fröhlich, H. (2017). Linking metabolic
network features to phenotypes using sparse group lasso. Bioinf. (Oxf. Engl.)
33, 3445–3453. doi: 10.1093/bioinformatics/btx427

Seo, M., and Oh, S. (2012). Cbfs: High performance feature selection algorithm based
on feature clearness. PloS One 7, e40419. doi: 10.1371/journal.pone.0040419

Setiawan, D., Kusuma, W. A., and Wigena, A. H. (2018). Snp selection using
variable ranking and sequential forward floating selection with two optimality
criteria. J. Eng. Sci. Technol. Rev. 11. doi: 10.25103/jestr.115.09

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A sparse-group lasso.
J. Comput. Graphical Stat 22, 231–245. doi: 10.1080/10618600.2012.681250

Tamba, C. L., Ni, Y.-L., and Zhang, Y.-M. (2017). Iterative sure independence
screening em-bayesian lasso algorithm for multi-locus genome-wide association
studies. PloS Comput. Biol. 13, e1005357. doi: 10.1371/journal.pcbi.1005357

Tenaillon,M. I., Sawkins, M. C., Long, A. D., Gaut, R. L., Doebley, J. F., andGaut, B. S.
(2001). Patterns of dna sequence polymorphism along chromosome 1 of maize
(zea mays ssp. mays l.). Proc. Natl. Acad. Sci. 98, 9161–9166. doi: 10.1073/
pnas.151244298

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.
Soc.: Ser. B. (Methodol.) 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

Tsamardinos, I., Borboudakis, G., Katsogridakis, P., Pratikakis, P., and Christophides,
V. (2019). A greedy feature selection algorithm for big data of high dimensionality.
Mach. Learn. 108, 149–202. doi: 10.1007/s10994-018-5748-7

Waddell, M., Page, D., and Shaughnessy, J.Jr. (2005). “Predicting cancer susceptibility
from single-nucleotide polymorphism data: a case study in multiple myeloma,” in
Proceedings of the 5th International Workshop on Bioinformatics (ACM), 21–28.

Wang, H., Lengerich, B. J., Aragam, B., and Xing, E. P. (2019). Precision lasso:
accounting for correlations and linear dependencies in high-dimensional genomic
data. Bioinformatics 35, 1181–1187. doi: 10.1093/bioinformatics/bty750

Yuan, M., and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. J. R. Stat. Soc. Ser. B. (Stat. Methodol.) 68, 49–67. doi: 10.1111/
j.1467-9868.2005.00532.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Che, Chen, Guo, Wang and Liu. This is an open-access article
distributed under the terms of the Creative CommonsAttribution License (CCBY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordancewith accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.
March 2020 | Volume 11 | Article 155

https://doi.org/10.1109/ACCESS.2017.2778268
https://doi.org/10.1038/srep45269
https://doi.org/10.1016/j.compbiomed.2013.09.017
https://doi.org/10.1186/s12863-017-0533-3
https://doi.org/10.1186/s12863-017-0533-3
https://doi.org/10.1038/nature08800
https://doi.org/10.1007/978-3-319-00804-2_13
https://doi.org/10.1002/gepi.21849
https://doi.org/10.1186/s12919-018-0149-2
https://doi.org/10.1093/bioinformatics/btx594
https://doi.org/10.1002/gepi.21966
https://doi.org/10.1109/TCBB.2017.2780106
https://doi.org/10.3389/fgene.2019.00271
https://doi.org/10.1126/science.1109557
https://doi.org/10.1016/j.compbiomed.2012.11.010
https://doi.org/10.1214/15-AOAS808
https://doi.org/10.1109/TCBB.2017.2761871
https://doi.org/10.1016/j.patcog.2007.10.018
https://doi.org/10.1080/10618600.2014.938812
https://doi.org/10.1080/10618600.2014.938812
https://doi.org/10.1109/TSP.2015.2488586
https://doi.org/10.1038/ng947
https://doi.org/10.1023/A:1025667309714
https://doi.org/10.1093/bioinformatics/btx427
https://doi.org/10.1371/journal.pone.0040419
https://doi.org/10.25103/jestr.115.09
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1371/journal.pcbi.1005357
https://doi.org/10.1073/pnas.151244298
https://doi.org/10.1073/pnas.151244298
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/s10994-018-5748-7
https://doi.org/10.1093/bioinformatics/bty750
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Genetic Variants Detection Based on Weighted Sparse Group Lasso
	Introduction
	Materials and Methods
	Materials
	Simulation Data
	Real Data

	Statistical Model and Methods
	Lasso and Its Extension for Association Mapping

	Our Method
	Performance Measurements

	Results and Discussion
	Experiments on Simulation Data
	Experiments on Real Data

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


