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Abstract 

 

Motivation: Biological ontologies, such as the Human Phenotype Ontology (HPO) and the 

Gene Ontology (GO), are extensively used in biomedical research to find enrichment in the 

annotations of specific gene sets. However, the interpretation of the encoded information 

would greatly benefit from methods that effectively interoperate between multiple ontologies 

providing molecular details of disease-related features.  

Results: In this work, we present a statistical framework based on graph theory to infer direct 

associations between HPO and GO terms that do not share co-annotated genes. The method 

enables to map genotypic features to phenotypic features thus providing a valid tool for 

bridging functional and pathological annotations. We validated the results by (a) supporting 

evidence of known drug-target associations (PanDrugs), protein-protein physical and 

functional interactions (BioGRID and STRING), and common pathways (Reactome); (b) 

comparing relationships inferred from early ontology releases with knowledge contained in 

the latest versions. 

Applications: We applied our method to improve the interpretation of molecular processes 

involved in pathological conditions, illustrating the applicability of our predictions with a 

number of biological examples. In particular, we applied our method to expand the list of 

relevant genes from standard functional enrichment analysis of high-throughput experimental 

results in the context of comorbidities between Alzheimer’s disease, Lung Cancer and 

Glioblastoma. Moreover, we analyzed pathways linked to predicted phenotype-genotype 

associations getting insights into the molecular actors of cellular senescence in Proteus 

syndrome. 

Availability: https://github.com/dariogarcia/phenotype-genotype_graph_characterization 

 

Introduction 

 

The phenome can be defined as the totality of all distinct variants of phenotypic 

characteristics (traits) expressed by a cell, a tissue, an organ, an organism, or a species, under 

the influence of both genetic variation and environmental factors (Mahner and Kary. J Theor 

Biol. 1997). Finding associations between phenome, genome and environment is of utmost 

priority in biomedicine as it could lead to the identification of the molecular drivers 

underlying human traits and diseases. Genome-wide association studies (GWAS) have been 

extensively carried out to dissect complex traits (Beck et al. E J Hum Genet. 2014). 

Moreover, reverse genetic approaches such as phenome-wide association studies (PheWAS) 

(Bush et al. Nat Rev Genet. 2016), as well as large systems genetics infrastructures (Li et al. 

Cell Syst. 2018), have been recently developed. Nonetheless, the phenome-genome 

association is hampered by biological complexity (Hall et al. Trends Genet. 2016) and lack of 

consensus on the evidence level required to establish pathogenicity and disease susceptibility 
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(Strande et al. Am J Hum Genet. 2017). Yielding a definitive molecular diagnosis from the 

genotype or a confident clinical diagnosis from the phenotype is arduous, especially in 

absence of richly genotyped or phenotyped sets like the case of rare diseases (Wright et al. 

Nat Rev Genet. 2018). Categorical approaches use biomedical ontologies to systematically 

capture genotypic and phenotypic attributes to facilitate the identification of discriminative 

patterns of molecular and clinical features. An ontology is a domain-specific knowledge 

formalization based on sets of entities with relations operating among them (Schulze-Kremer 

Pac Symp Biocomput. 1998). Biological ontologies are recognized as essential in the grand 

challenges of biomedical research (Hoehndorf et al. Brief Bioinform. 2015), and community 

efforts like the Critical Assessment of Functional Annotation (CAFA; 

https://biofunctionprediction.org/cafa/) have been created. 

In this work, we developed and evaluated a method based on graph theory to infer phenome-

genome associations by using the Human Phenotype Ontology (HPO) and the Gene Ontology 

(GO). To our knowledge, this is the first method developed specifically to infer 

associations between HPO and GO terms that do not exhibit any already existing co-

annotation. Indeed, tools designed to address ontology interoperability generally rely on the 

availability of co-annotations between specific terms, such as HPO2GO (Doğan PeerJ 2018), 

which annotates a gene to a certain HPO term based on supplemental co-annotated GO terms, 

and Phevor (Singleton et al. Am J Hum Genet. 2014), which identifies distinct annotations 

relevant for a HPO-GO co-annotation of interest. The applications of our method show that 

our predictions improve the molecular interpretation of distinct pathological processes. In 

particular, we enhanced standard functional enrichment analysis of genes with expression 

patterns consistent with observed comorbidity between Alzheimer’s disease, Lung Cancer, 

and Glioblastoma. Moreover, we uncovered relevant molecular insights for the rare condition 

known as Proteus syndrome. 

 

Methods 

 

Ontologies and annotations 

 

For our experiments, we used the Gene Ontology (GO) (Ashburner et al. Nat Genet. 2000) 

and the Human Phenotype Ontology (HPO) (Köhler et al. Nucleic Acids Res. 2017), 

available at OBO Foundry Permanent URLs (PURLs) http://purl.obolibrary.org/obo/. We 

used GO ontologies released on 29 June 2013 and 23 May 2017, and HPO ontologies 

released on 31 May 2013 and 13 April 2017 (Suppl. Table 1). We only considered human GO 

annotations associated with experimental evidence codes. As for the gene annotations, we 

used the human GO Annotation (GOA) for UniProt version 117 (released on 05 March 2013) 

and version 168 (released on 09 May 2017), available at https://www.ebi.ac.uk/GOA, and the 

gene-to-phenotype associations (“ALL_SOURCES_ALL_FREQUENCIES”) released on 01 

July 2013 and 29 June 2017, available at https://github.com/Phenomics/HPO-archive. 

 

Model implementation 

 

Our model assumes the existence of two ontologies, P and G, a set of genes H, and two sets 

of gene annotations <p,h> and <g,h> where p∈P, g∈G and h∈H. The objective of the model 

is to, given a pair of terms <p,g> which do not have shared annotated genes, estimate the 

likelihood that such an annotation should exist. For this purpose, we separated all possible 

pairs <p,g> in two sets: those which have a shared annotated gene h (henceforth called 

connected pairs), and those which do not (henceforth called disconnected pairs). We then 

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/682229doi: bioRxiv preprint 

https://biofunctionprediction.org/cafa/
http://purl.obolibrary.org/obo/
https://www.ebi.ac.uk/GOA
https://github.com/Phenomics/HPO-archive
https://doi.org/10.1101/682229


3 
 

built a representation of each of those two sets, such that when a given pair <p’,g’> is 

provided we can estimate the likelihood of the pair to belong to the set of connected pairs and 

to the set of disconnected pairs. To build these representations we created a composed graph, 

which includes all terms from both ontologies, all “is-a” relations between terms of the same 

ontology, and all genes annotated to the ontologies (Figure 1). 

 
Figure 1. Illustration of the composed graph used for inference. Human Phenotype Ontology 

(HPO) (in blue) and Gene Ontology (GO) (in orange) consist of vertices (terms) and edges 

(“is_a” relationships). Genes with at least one annotation to an ontology term (in red) are 

added to the graph, representing a connection layer between the two ontologies. Thick lines 

highlight an example path connecting an HPO term (blue filled box) and a GO term (orange 

filled box) that do not directly share a co-annotated gene. 

 

Representations of connected and disconnected pairs 

 

The representations of the two sets of connected and disconnected pairs are generated after 

random sampling. For each randomly sampled connected and disconnected pair <p,g>, we 

computed the total number of paths that lead from one term to the other, with a maximum 

distance of 4 edges, chosen to limit both the combinatorial explosion (O(n!) for a graph with 

n nodes) and paths’ sparsity (88 possible paths with a maximum of 4 steps for a given pair 

<p,g>). Paths are walked through the composed graph in a two-way unconstrained manner to 

allow for a deeper exploration of the graph structure which is crucial for inference (Mohamed 

et al. Lecture Notes in Computer Science. 2017). 

Along with the total number of paths, we also computed the type of path, which is defined by 

the type of vertices being visited at each hop (p for vertices in P, h for vertices in H, and g for 

vertices in G). For example, a path may start in the source HPO term p¹, which is connected 

with a gene h¹, which is connected with another HPO term p², which is connected with 

another gene h², which is finally connected to the target GO term g¹. Such a path would be of 

type “phphg”. The random sampling continued until stabilization of path statistics is attained 

(Suppl. Table 2). In particular, using 2013 ontology releases, we randomly sampled 123,834 

disconnected pairs (0.3% of the total disconnected pairs) and 34,499 connected pairs (10% of 

the total connected pairs), and computed the average number of paths per path type, and its 
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standard deviation. Same statistics have been computed for 2017 ontology releases, from 

which we randomly sampled 111,952 disconnected pairs (0.2% of the total disconnected 

pairs) and 38,703 connected pairs (5% of the total connected pairs).  

 

Likelihood estimation 

 

Once we generated the representations of the randomly sampled connected and disconnected 

pairs, we assessed the likelihood of a given pair <p’,g’> to belong to each of those sets. To do 

so, we measured how well the number and type of paths between <p’,g’> fit the distributions 

of paths within the sets of connected and disconnected pairs. In particular, we estimated the 

probability density function (PDF) per path type, assuming a normal distribution. The 

likelihood of the given pair to belong to a set is then computed as the product of all its PDFs: 

𝑃(< 𝑝′, 𝑔′ >∈ 𝐶𝑂𝑁)  =  ∏

∀𝑡∈𝑇

𝑃𝐷𝐹(< 𝑝′, 𝑔′ >𝑡 , 𝐶𝑂𝑁𝑡) 

𝑃(< 𝑝′, 𝑔′ >∈ 𝐷𝐼𝑆)  =  ∏

∀𝑡∈𝑇

𝑃𝐷𝐹(< 𝑝′, 𝑔′ >𝑡 , 𝐷𝐼𝑆𝑡) 

where CON is the representation of connected pairs, DIS is the representation of 

disconnected pairs, <p’,g’> is any pair of terms not used to build CON or DIS, T is the set of 

all path types, <p’,g’>t is the number of paths between p and g of type t, and CONt is the 

mean and standard deviation of paths of type t within CON (analogous for DIS). 

For any given pair <p’,g’>, this process generates a likelihood of the pair being connected 

and a likelihood of the pair being disconnected. We compute those likelihoods for a large 

number of random disconnected pairs, ensuring that the ones used to generate the 

representations are not considered. We generated 1,000,682 pairs (of a total of 45 million) by 

using 2013 ontology releases, and 244,315 pairs (of a total of 82 million) by using 2017 

ontology releases. In order to obtain the most reliable candidate pairs to be connected or 

disconnected, likelihoods have been sorted as follows: 

 

𝑚𝑎𝑥(𝑃(< 𝑝′, 𝑔′ >∈ 𝐶𝑂𝑁) −  𝑃(< 𝑝′, 𝑔′ >∈ 𝐷𝐼𝑆)) 

𝑚𝑎𝑥(𝑃(< 𝑝′, 𝑔′ >∈ 𝐷𝐼𝑆)  −  𝑃(< 𝑝′, 𝑔′ >∈ 𝐶𝑂𝑁)) 

 

We then kept the top 2,000 pairs resulting from each sorting, and used these as our ranked 

predictions (henceforth called candidate pairs and non-candidate pairs, respectively). 

 

Evaluation metrics 

 

Method performance has been evaluated by computing the Area under Receiving Operator 

Characteristic Curve (AUROC), which measures the probability that positive instances are 

ranked higher than negative ones. An HPO-GO association predicted using the 2013 ontology 

releases is a true positive (TP) if that association occurs in the 2017 ontology releases (i.e. at 

least one gene is co-annotated). If no association occurs, a positive prediction is a false 

positive (FP). If the algorithm fails to predict a true association, it is a false negative (FN). If 

no true association occurs, a negative prediction is a true negative (TN). We also computed 

established metrics for the goodness of fit of prediction (precision, accuracy, F1-score, 

Matthews Correlation Coefficient (MCC)) after identifying a decision threshold (optimal cut-

off point) from the ROC curve by maximizing the Youden's index, i.e. the difference between 
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recall and False Positive Rate (FPR). All the analyses have been performed using R package 

pROC. 

To compare 2013 and 2017 ontology releases, we split the gene annotations into three 

categories: annotations that are stable across the releases; annotations that are new in the 

more recent release; annotations that changed from one release to the other. Given the genes 

annotated to a predicted HPO-GO terms pair, we measured the intersection between stable 

annotations of one ontology and new annotations of the other (Suppl. Figure 3). 

 

External databases 

 

Several databases covering different types of supporting evidence of our predictions were 

employed. PanDrugs (Perales-Patón et al. Public Health Genomics. 2017) (build of April 

2017) is a computational method to prioritize therapies by considering the biological 

relevance of altered genes in cancer, their therapeutic vulnerability and drugs clinical 

application. In our analysis, we queried PanDrugs for genes, FDA approved drugs, pathways 

the gene annotates to, and pathologies the drug is prescribed for. STRING (Szklarczyk et al. 

Nucleic Acids Res. 2017) is a database of physical and functional interactions. We utilized 

STRING v10.5 human protein network data. The Biological General Repository for 

Interaction Datasets (BioGRID) (Chatr-Aryamontri et al. Nucleic Acids Res. 2017) (built 

3.4.152, September 2017) is a database of protein, genetic and chemical interactions. We 

utilized human physical protein-protein interactions experimentally verified by co-

localization, co-purification, FRET, and two-hybrid assays (Cirillo et al. Nucleic Acids Res. 

2015). Network analysis was performed using R package igraph. Reactome (Fabregat et al. 

Nucleic Acids Res. 2018) is a curated database of human-specific pathways. We performed a 

Reactome pathway enrichment analysis (Benjamini-Hochberg adjusted p-value cutoff 0.01) 

using the R package ReactomePA. 

 

Additional analyses 

 

Information content (IC), or Shannon information has been computed as in Alterovitz et al. 

Nucleic Acids Res. 2007. Go term enrichment analysis has been performed using R package 

GOstats with Dunn-Šidák multiple conditional test correction at 5%. Disease matching has 

been performed using PhenoGrid (Smedley et al. Database 2013), a tool for visualizing 

semantic similarity between phenotypes and a target group. We used “Homo sapiens 

(diseases)” as target group, and reported the disease with the highest score and the highest 

number of matches. 

 

Results 

 

Performance evaluation 

 

We generated predictions using the 2013 releases of HPO and GO ontologies and validate 

them using the 2017 releases (Methods). In particular, our predictions consist of a set of 2000 

candidate pairs (i.e. HPO-GO term pairs predicted to be co-annotated) and 2000 non-

candidate pairs (i.e. HPO-GO term pairs predicted not to be co-annotated) (Suppl. Table 3). 

As 65 candidate pairs and 111 non-candidate pairs do not have experimentally validated gene 

annotations in the 2017 ontology releases, we excluded them from the performance analysis, 

and balanced the two classes based on the least populated one, resulting in 1889 candidate 

pairs and 1889 non-candidate pairs. 
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327 candidate pairs (17%) and 1882 non-candidate pairs (99.6%) are correctly found to be 

co-annotated and not co-annotated, respectively, in 2017 ontology releases. Only 7 non-

candidate pairs (0.4%) are co-annotated in 2017 ontology releases, while the remaining 1562 

candidate pairs (83%) are not co-annotated, as expected due to the considerable fraction of 

genes still missing a functional characterization (Cozzetto and Jones, Methods Mol Biol. 

2017). Morover, the average number of annotated genes is higher in candidate pairs 

compared to pairs predicted not to be co-annotated (Suppl. Figure 1). 

For performance evaluation, we measured the Area Under the Receiver-Operating 

Characteristic (AUROC) curve (0.77; p-value < 1e-03 after label shuffling; Figure 2). By 

bootstrapping the AUROC score, we computed that the performance has a 95% confidence 

interval between 0.75 and 0.79 (Suppl. Figure 2). Other performance assessment metrics for 

binary classification have also been evaluated (precision 0.92, recall 0.59, F1-score 0.67, 

MCC 0.30) (Methods). 

 

 
Figure 2. Performance evaluation of predictions using 2013 ontology releases (Methods). 

The corresponding Area Under the Receiver-Operating Characteristic (AUROC) is 0.77 (p-

value 1e-03 after label randomization, in grey, right panel; binomial smoothing). 

 

Accumulation of gene annotations over time 

 

The rate of accumulation of ontology annotations across time is a steady process leading to a 

continuous reshaping and updating in the dedicated repositories (Tomczak et al. Sci Rep. 

2018). For instance, by comparing 2013 and 2017 ontology releases we found that 48% of 

experimentally validated GO annotations were maintained while 45% were new and 7% were 

dropped. In the case of HPO annotations, 48% of those were the same in the two releases, 

41% were new, and 11% were dropped (Figure 3). 
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Figure 3. Proportion of GO and HPO annotations that have been maintained (stable; light 

purple), dropped (changed; dark purple), and added (novel; orange) from 2013 to 2017 

ontology releases. 

 

We sought to evaluate our HPO-GO predicted associations in terms of number of annotations 

accumulated over time between the two ontologies (Methods; Suppl. Figure 3). In particular, 

given a predicted HPO-GO terms pair, we counted how many genes annotating GO between 

2013 and 2017 are the same genes of maintained or acquired annotations of HPO, and vice-

versa. We found that 81 out of the 327 correctly predicted candidate pairs (24.8%) have 

gene annotations (n = 102) that are new in both HPO and GO in the 2017 releases. 110 

out of the 327 pairs (33.6%) have gene annotations (n = 146) that are new in GO and 

maintained in HPO since 2013. Finally, 172 out the 327 pairs (52.6%) have gene 

annotations (n = 200) that are new in HPO and maintained in GO. This analysis shows 

that our predictive model is able to overcome the differences in the process of annotation 

accumulation in the two ontologies (Tomczak et al. Sci Rep. 2018). 

 

Ontology levels and information content 

 

We compared graph levels and Information content (IC) (Methods) of the ontologies and our 

predictions. No relevant differences in the distribution of graph levels between the ontologies 

and our predictions can be observed (Suppl. Figure 4A) meaning that our predictions are not 

biased towards specific areas of the ontologies from which are drawn. Conversely, the 

distribution of IC of the candidate pairs differs drastically from that of the ontologies (Suppl. 

Figure 4B) showing that the specificity of our predictions is not prejudiced by the difference 

in abundance between highly specific and more general terms in the ontology trees. In 

summary, our predictions span all ontology levels and are enriched in terms with intermediate 

annotation specificity making them suitable for a broad range of applications. 

 

Supporting evidence in external databases 

 

In order to assess the quality of the predictions, we employed several databases covering 

different types of supporting evidence for our candidate pairs. PanDrugs (Methods) is a 

platform devoted to prioritize anticancer drug treatments by integrating data on drug-target 

associations. We found that 2728 genes annotated to predicted HPO-GO pairs are target of 

3503 approved drugs in 98 pathologies affecting 335 pathways. We observed that the co-

occurrence of genes annotated to candidate pairs is higher than those predicted not to be co-

annotated (p-value < 2.2e-16, Kolmogorov-Smirnov test; Figure 4). 
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Figure 4. [A] Co-occurrence of genes annotated to predicted HPO-GO terms pairs in 

PanDrugs entries (Drugs, Pathology, Pathway, and combinations). Top and bottom 10% (200 

predicted pairs) are shown in the two panels, respectively, with increasing prediction ranking 

from left to right. Colors (gray to red) indicate the number of co-occurrencies normalized by 

the total number of co-occurrencies for a given PanDrug entry. [B] Cumulative Distribution 

Function (CDF) of normalized co-occurrences. A significant difference between the two 

types of predicted HP-GO term pairs is observed (p-value < 2.2e-16, Kolmogorov-Smirnov 

test; >80% of non-candidate pairs are not found in PanDrugs). 

 

We found evidence for products of genes annotated to predicted HPO-GO pairs to be 

physical interactors reported in BioGRID (Methods). BioGRID is a curated database of 

interaction data. Interactors annotated to candidate pairs create a network of 1693 nodes, 

2363 edges, and 93 connected components (one of 1480 nodes, the others of 2.3 nodes on 

average). Interactors annotated to non-candidate pairs, instead, create a considerably smaller 

network of 134 nodes, 86 edges, and 48 connected components (one of 12 nodes, the others 

of 2.6 nodes on average). Moreover, closeness centrality of the largest components of 

candidate pairs is significantly higher than the one of non-candidate pairs (p-value 1.161e-09, 

one-sided Wilcoxon signed-rank test).  

Products of genes annotated to predicted HPO-GO pairs are also found in STRING 

(Methods), an integrative database of functional interactions. In particular, we found 7958 

genes annotated to candidate pairs involved in 212936 unique pairwise interactions, and 3301 

genes annotated to non-candidate pairs involved in 9700 unique pairwise interactions. A 

significant difference between the fraction of co-occurrence of genes annotated to candidate 

pairs and that of genes annotated to non-candidate pairs is observed at different confidence 

score cutoffs (p-value 3.289e-67 at low confidence; p-value 1.251e-290, at high confidence; 

two-sided Wilcoxon signed-rank test; Suppl. Figure 5). 

  

Improving the interpretation of standard GO enrichment analysis 

 

We used our predictions to improve the interpretability of standard enrichment analysis on 

gene sets, such as the widely used GO enrichment analysis. GO enrichment analysis is a 

common approach for the interpretation of gene expression data as it allows the identification 

of over-represented functional categories in arbitrary sets of genes. In this application, we 

analyzed six sets of genes that are up- (Up) or down-regulated (Down) in three pathologies, 

Alzheimer's disease (AD), Lung cancer (LC) and Glioblastoma (GBM), showing distinct 
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expression patterns consistent with direct and inverse comorbidities observed at 

epidemiological level (Sánchez-Valle et al. Sci Rep. 2017). For each of the six gene sets, we 

identified over-represented GO terms (Methods), obtaining a total of 244 functional 

categories overlapping with our candidate pairs. We found that the genes annotated to the 

HPO terms that are predicted to associate with the enriched GO terms can be used to expand 

the list of relevant genes from the high-throughput experimental results (Suppl. Figure 6A), 

providing additional information to the molecular characteristics of gene sets. The average 

number of additional genes recovered through our approach is 18.19 (Suppl. Figure 6B), 

being genes of LC sets associated with more abundantly annotated HPO terms. Remarkably, 

we found that the overlap of the recovered genes among the three pathologies recapitulates 

the results from the original study (Suppl. Figure 6C) suggesting that deregulated genes 

determining specific phenotypes are shared among diseases with comorbidity relations. For 

instance, 22 genes are annotated to HPO terms predicted to be associated to GO terms that 

are enriched in AD.Up and LC.Down. The gene ANG is annotated, among other phenotypes, 

to emotional lability (HP:0000712) and agitation (HP:0000713) (Moretti et al.  Expert Rev 

Neurother. 2006), predicted to be associated with immune response (GO:0006955) and lipid 

binding (GO:0008289), functions enriched in both AD.Up and LC.Down. The gene SLC7A7, 

instead, is annotated to leukopenia (HP:0001882), predicted to associate with response to 

growth factor (GO:0070848), enriched in AD.Up, and, among others, splenomegaly 

(HP:0001744), associated to transmembrane receptor protein tyrosine kinase signaling 

pathway (GO:0007169), enriched in LC.Down. Spleen metastasis are indeed rare in LC 

(Iguchi et al. Exp Ther Med. 2015), while growth factors-based therapies are at the forefront 

of AD treatment (Duncan and Valenzuela Stem Cell Res Ther. 2017). Those results show the 

potential of mapping relevant phenotypic features to enriched molecular functions in order to 

facilitate gene candidate prioritization and treatment design. 

 

Pathway analysis of candidate pairs 

 

Candidate pairs entail 227 distinct clusters: 226 ranging from 2 to 38 terms in size and one of 

1269 connected terms (Suppl. Figure 7). For each cluster, we performed a pathway 

enrichment analysis after merging the genes annotated to HPO and GO terms and excluding 

pathways that are over-represented in HPO- and GO-annotated genes separately. We found 

that 100 clusters out of 227 show enrichment in processes linking specific phenotypes to gene 

functional categories. For instance, the pool of genes PIK3R1, WAS, HLA-DPB1, annotated 

to the respiratory inflammation sinusitis (HP:0000246), and BCL10, RIPK2, UBB, annotated 

to protein ubiquitination (GO:0031398), are enriched in T cell receptor (TCR) signaling 

(Reactome ID 202403) (p-value 0.00025), confirming the role of this protein modification 

mechanism in inflammatory diseases and recurrent infections (Hu and Sun Cell Res. 2016). 

More complex associations emerge from the analysis of bigger clusters of candidate pairs. 

For instance, oxidative stress induced senescence (Reactome ID 2559580) (p-value 0.0027) is 

enriched in genes CDKN2C, CDKN2B, annotated to hypocholesterolemia (HP:0003146), 

hand oligodactyly (HP:0001180), posterior subcapsular cataract (HP:0007787), ileus 

(HP:0002595), retinal nonattachment (HP:0007899), and increased urinary cortisol level 

(HP:0012030), together with 19 genes annotated to RNA binding (GO:0003723), cadherin 

binding (GO:0045296), and nuclear body (GO:0016604) (Suppl. Figure 7). According to 

PhenoGrid (Smedley et al. Database 2013), those symptoms are consistent with Proteus 

syndrome (Monarch ID MONDO:0008318), a rare disease characterized by progressive 

overgrowth of the skeleton, skin, and adipose tissues. Importantly, this syndrome has been 

associated with a variant in the gene AKT1 whose deregulation promotes senescence events 

(Skeen et al. Cancer Cell 2006). 
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Discussion 

 

The use of biological ontologies has grown drastically in the last decades. Nowadays, they 

are recognized as crucial resources for the most important challenges in genomics research, 

especially for rare diseases. In this work, we developed a statistical framework based on 

graph theory to infer direct associations between HPO and GO terms. The method enables a 

direct mapping between phenotypic features (HPO terms) and biological processes, 

molecular functions, and cellular components (GO terms). The statistical approach is based 

on topological features of the ontology trees that are used to infer the likelihood of 

association between terms devoid of a direct cross-reference. The method achieved high 

performances (AUROC 0.75-0.79 with 95% confidence interval) in a retrospective 

benchmark in which predictions of 2013 ontology releases are evaluated using 

ontologies from 2017. By comparing stable and new annotations of those releases, we 

showed that our predictions recapitulate a large fraction of annotations accumulated over time 

between 2013 and 2017. Furthermore, we generated predictions of 2017 ontology releases 

and found that our findings are supported by evidence deposited in several databases 

(PanDrugs, BioGRID, STRING, Reactome), namely drug-target associations, protein-protein 

physical and functional interactions, and common pathways. We predicted phenome-

genome associations for specific biological cases showing that our predictions improve 

the molecular interpretation of distinct pathological processes. In particular, we applied 

our method to the analysis of large-scale comorbidity studies expanding the results of 

standard GO term enrichment analysis to gain deeper insights into the pathological 

processes. We found that deregulated genes in AD, LC and GBM are associated to specific 

phenotypic annotations showing expression patterns that are consistent with observed direct 

and inverse comorbidity relations among those conditions. 

We showed that groups of predicted HPO-GO associations encapsulate relevant information 

about genes involved in specific pathologies, namely inflammatory diseases and rare 

diseases. We identified molecular players putatively acting in Proteus syndrome. 

Interestingly, RNA-binding emerged as a relevant functional category, corroborating the 

importance of this molecular activity in cell-growth and proliferation. In conclusion, we 

introduced a method to infer pairwise associations between HPO and GO terms that can be 

used to identify symptoms-gene function associations, thus enabling ways to refine results 

from standard functional analysis of high-throughput experimental results.  

Finally, it is important to highlight that the algorithm can be adapted to any arbitrary pair of 

ontologies, making it a powerful statistical framework to integrate heterogeneous source of 

biological knowledge. 
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