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ABSTRACT

In an effort to surmount the issues that arise when attempting to scale transis-

tors down to the low nanometer regime, the use of two-dimensional materials

in transistors is regarded as a possible solution. One such material, silicene, has

garnered much attention recently due to its unique properties and compatibility

with current silicon-based technology. Silicene is a silicon analog of graphene

in which a monolayer of silicon atoms forms a honeycomb structure. There-

fore, silicene contains many of the properties of graphene. However, due to it’s

buckled structure and larger spin orbit coupling, silicene has a gapped band

structure. Moreover, application of an electric field perpendicular to the silicene

plane has been shown to induce band splitting and band gap manipulation.

In this thesis, the reported electronic and topological properties of silicene

are investigated using a low-energy effective Hamiltonian. It is confirmed that

silicene’s band structure is strongly manipulated by the application of a vertical

electric field. Furthermore, by calculation of the Z2 topological invariant, it is

confirmed that when the electric field surpasses a critical value silicene transi-

tions from topological insulator to band insulator. The use of silicene in a bal-

listic independent double gate field effect transistor is also modeled. It is found

that while the drain current exhibits the current saturation expected of a field

effect transistor, the use of asymmetric gate voltages generates a transverse spin

current perpendicular to the drain current. The spin current is found to have a

switching capability, depending on whether the vertical electric field generated

by the asymmetric gate voltages is greater than or less than a critical value. This

property is very interesting and could have spintronic applications.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Since the first transistor was created in 1947 [1], semiconductor devices

have been steadily decreasing in size at a rate comparable to that predicted by

Moore’s Law. This decrement in size has lead to large improvements in device

performance and efficiency. However, devices are now reaching near atomic

scale lengths and this creates numerous hurdles which prevent further size re-

duction. The latest transistors have gate lengths in the low nanometer regime

and at this scale the probability of electrons tunneling from the source to the

drain becomes problematic. This has lead to novel devices that make use of

tunneling, but there are still many other issues that arise when devices reach

these lengths. As the size of a 3D semiconductor is reduced to the nanometer

scale and below, the band gap of the material begins to rapidly increase due to

quantum confinement. Also, as the material size decreases, the effects of sur-

face states due to dangling bonds and surface roughness become much greater.

In the nanometer scale, these issues cause a great impediment to creating 3D

devices [2].

In an effort to overcome the aforementioned hurdles when using 3D mate-

rials, a great deal of investigation is being done into the use of 2D materials in

devices. Many of the issues that prevent further size reduction in 3D materials

are resolved in 2D materials. The inherently thin nature of 2D materials makes

them more robust against the effects of quantum confinement. Also, 2D ma-

terials do not have the dangling bond and surface roughness issues that cause

problems in 3D materials. Many 2D materials also have unique properties, such

as a linear band structure, that make them particularly exciting for new device
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research. The use of 2D materials in devices will potentially lead to smaller scale

devices.

As one of the oldest and most researched 2D materials, graphene has many

unique properties that would make it very useful in devices. However, due to

the gapless band structure of graphene, preventing current leakage in devices

is difficult. Therefore, there is a great deal of research into materials that retain

many of the properties of graphene, but also have a notable band gap. One such

material that has received attention recently is silicene. Silicene can be consid-

ered a silicon analog of graphene and has many of the properties of graphene

as well as numerous unique properties. Unlike graphene, which is completely

planar, silicene has a buckled structure. Due to this structure, application of an

electrical field perpendicular to the material plane can alter the electronic prop-

erties of silicene and also cause topological phase changes.

In this thesis, the electronic and topological properties of silicene are exam-

ined under various electric field strengths. Furthermore, ballistic transport of

a silicene field effect transistor (FET) is modeled and analyzed. In chapter 2, a

brief theoretical background of silicene and ballistic transport is given. Using

this background, the electronic and topological properties of silicene are ana-

lyzed in chapter 3. In chapter 4, the ballistic transport model derivation and

results of a silicene FET are discussed. Finally, in chapter 5, the conclusions are

summarized and future prospects discussed.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Graphene: Entry Point for 2D Materials

Graphene is one of the most well researched 2D materials. Thus, graphene often

serves as the foundation for research into more exotic 2D materials. This is

due to the atomic structure and properties of many 2D materials being very

similar to that of graphene. With this in mind, it is prudent to begin with an

introduction to graphene, as it will allow for easier understanding of the unique

properties of silicene.

Figure 2.1: a) Graphene primitive lattice and basis. b) Graphene reciprocal lat-
tice and first Brillouin zone

Graphene is a 2D allotrope of carbon which has received immense exper-

imental attention ever since stable monolayers were created in 2004 [3],[4].

Graphene has a honeycomb structure, which can be described as a hexagonal

Bravais lattice with a two atom basis (figure 2.1a). Since graphene is completely

planar and carbon has four valence electrons, the carbon atoms are bonded to

each other through sp2 bonding. The pz (arbitrarily chosen to be the orbital
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perpendicular to the sheet plane) orbitals, which do not interact with the sp2

orbitals, contain one electron per carbon atom and form π bond with each other

[4, 5]. It should be noted that in actuality there are interactions between the pz

orbitals and the sp2 orbitals, however these interactions are minimal and can

often be neglected.

As previously stated, to a good approximation the pz orbitals can be consid-

ered to be completely uncoupled from all other orbitals in graphene. Since these

orbitals contain only one electron per atom, it is clear that the electronic proper-

ties of graphene will result from the interactions between the pz orbitals. Using

a tight binding analysis with the pz orbitals and nearest-neighbor interactions,

one finds the band structure to be [4, 6]

E± = ±

√
t2

[
1 + 4 cos

(
3
2

kxa
)

cos
( √

3
2

kya
)

+ 4 cos2

( √
3

2
kya

)]
, (2.1)

where ± refers to the conduction (+) and valence (−) bands, the on-site energies

of the two carbon atoms in each unit cell (figure 2.1a) are defined to be zero,

kx and ky are wave vectors in momentum space (figure 2.1b), t = 3.0 eV is the

hopping energy, and a = 0.15 nm is the distance between the two basis atoms.

A graphical view of equation 2.1 can be seen in figure 2.2. At low energies, the

band becomes conical and the energy gaps close at the corners of the first Bril-

louin zone (FBZ) (figure 2.1b). These FBZ corners are often referred as the Dirac

points. Considering that most of the applications of graphene are relatively low

energy, it is useful to expand equation 2.1 about a Dirac point. In doing so, one

finds

E± = ±~v f

√
k2

x + k2
y , (2.2)

where kx and ky are now measured relative to the Dirac point and the “Fermi”
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velocity is

v f =

√
3at

2~
≈ 108 cm/s. (2.3)

To a first order approximation, the band structure is completely conical and

gapless at the Dirac points (figure 2.2). At low energies, the second and higher

order terms of the energy dispersion (equation 2.1) are negligible. This linear

band structure is one of the unique properties of graphene that drives research

into this material. Graphene has numerous other unique properties as well,

such as pseudospin chirality, Klein tunneling, and the quantum hall state, but

these will not be covered in this thesis. If the reader is interested, references [3]

and [4] are suggested.

Figure 2.2: a) Graphene tight-binding energy dispersion. b) Low-energy linear
dispersion.

Although the linear energy dispersion makes graphene a very interesting

material, the gapless band structure of graphene makes utilization in transis-

tors difficult. A basic requirement of transistor switch is a sharp on and off

state, but since graphene has a gapless band structure it is always readily con-
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ductive regardless of Fermi level and temperature. Therefore, to prevent major

off state current leakage in transistor switches, finding a suitable method to in-

corporate a band gap into graphene is of great interest. This research includes

bilayer graphene [7], transition metal dichalcogenides [8], and recently silicene

has gained interest [9].

2.2 Silicene: Graphene Plus Buckling

As mentioned in the previous section, one of the newer and more exotic 2D

materials that is being considered as a graphene-like material that contains a

notable band gap is a silicon analog of graphene called silicene. Silicene has the

same honeycomb structure as graphene, but the basis atoms are silicon instead

of carbon. Until recently, silicene was primarily considered a theoretical mate-

rial since monolayers of silicon were found to rapidly decompose in air, making

growth of stable silicene very difficult. However, recent advances in silicene

growth techniques show the potential for this material to be used in devices

[10].

In the previous section, spin orbit coupling was not considered in the tight

binding analysis of graphene. It is acceptable to neglect spin orbit coupling

(SOC) in graphene, because these interactions are very weak and only make

notable contributions in extreme conditions. This weak SOC can be attributed

to the size of the graphene atoms and the spatial inversion symmetry that is

found in graphene. However, the larger silicon atoms in silicene cause it to have

a very unique buckled structure, which can be seen in figure 2.3. The larger size

of the silicon atoms as well as the buckled structure cause silicene to have a

6



larger SOC than graphene. This SOC opens up a notable band gap in silicene.

It should be noted that although silicene has a larger SOC than graphene, the

SOC in silicene is still small relative to heavier elements (lower on the periodic

table). As a point of comparison, density functional theory calculations predict

a SOC band gap of approximately 1.55 meV in silicene, approximately 24 µeV

in graphene, and a spin split-off band gap of 0.8 eV in InSb [9, 11, 12].

Figure 2.3: Silicene lattice in a) XY plane and b) XZ plane.

As shown in figure 2.3, the buckled structure of silicene creates two planes of

atoms. Each plane is composed of one of the two basis atoms. When an electric

field is applied perpendicular to these planes, it is clear that a potential differ-

ence will occur between the planes and this difference will modify silicene’s

Hamiltonian. Therefore, one can use a perpendicular electric field to modify

the band structure of silicene [9]. A quantitative analysis of how a perpendic-

ular electric field effects silicene’s band structure will be carried out in the next

chapter.

Since one can modify the band structure of silicene using an electric field, it
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has been predicted that sweeping the electric field strength to cause the band

gap of silicene to close and re-open results in a phase change from a topological

insulator to a band insulator [9, 13]. An introduction to topological insulators

will be given in section 2.4.

2.3 Berry Curvature and Anomalous Velocity

As mentioned in the previous section, the breaking of spatial inversion symme-

try in silicene by its buckled structure results in very unique properties. Another

interesting property that is likely to arise from this broken symmetry is a non-

trivial Berry curvature that has different values at different valleys (Dirac points

in silicene and graphene). Therefore, in this section the concept of Berry phase

and Berry curvature will be introduced and the latter will be shown to lead to

remarkable transport properties.

The core concept behind the Berry phase stems from the phase factor that

is acquired when a system is adiabatically swept through the parameter space

that describes the system. Sweeping adiabatically is required, since this causes

the system to always remain in the same instantaneous eigenstate throughout

the whole process. Therefore, in this scheme the phase factor can be isolated

since it is the only degree of freedom and the phase factor is found to be

γn =

∫
C

dR· An(R), (2.4)

where

An(R) = i〈n(R)|
∂

∂R
|n(R)〉, (2.5)

where R is a generalized parameter space (in the regime of solid state physics
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this is usually taken to be momentum space), |n(R)〉 is the eigenstate of the nth

band at R, and A(R) is referred to as the Berry connection or Berry potential [14].

Therefore, it is found that this phase factor solely depends on the path taken

in parameter space. For this reason, it is often referred to as the geometric phase.

This phase factor is gauge dependent and by using the appropriate gauge the

phase can always be eliminated. The only situation in which the phase factor

becomes gauge independent is when the system is cyclically swept through the

parameter space on a closed path. This was first discovered by Sir Michael Berry

in 1984, hence the name Berry phase [15].

Using Stokes’ theorem, the Berry phase can be recast as

γn =

∫
S

dS·Ωn(R), (2.6)

Ωn = ∇R × An(R), (2.7)

where Ωn is referred to as the Berry curvature. It should be noted that equation

2.7 assumes a three dimensional parameter space. The Berry curvature can be

generalized to higher dimensions, however for most purposes of interest the

parameter space is three dimensional momentum space. Furthermore, equation

2.7 can be written as the following

Ωn
µν(R) = i

∑
n,n′

〈n|∂H/∂Rµ
|n′〉〈n′|∂H/∂Rν

|n〉 − 〈n|∂H/∂Rν
|n′〉〈n′|∂H/∂Rµ

|n〉
(εn − εn′)2 , (2.8)

in which H is the Hamiltonian, Rµ(ν) is the µth (νth) component of R, and εn is

the energy dispersion of the nth band. This is merely a summation over eigen-

states. In this thesis, equation 2.7 is used to check the results of equation 2.8.

Since equation 2.8 is found to be less computationally intensive, it is the pri-

mary method used for calculating Berry curvature.

At first glance the Berry curvature may seem like a trivial expansion on
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the Berry connection. However, since the Berry curvature is gauge invariant

it should be observable. The Berry connection will not be observable, because

it is not gauge invariant. One way in which Berry curvature can be observed

is through the effect it has on electron dynamics in condensed matter systems.

It has recently been found that in the presence of an electric field, the electron

group velocity acquires an extra component that is proportional to the Berry

curvature of the band. Therefore, the full expression for electron velocity in the

presence of an electric field becomes [14]

vn(k) =
∂εn(k)
~∂k

−
e
~

E ×Ωn(k), (2.9)

where the first term on the right hand side is the standard quantum mechani-

cal electron group velocity and the second term is the additional ”anomalous”

velocity due to Berry curvature. As we will see in subsequent chapters, this

anomalous velocity leads to very interesting and unique transport properties in

materials with non-trivial Berry curvatures.

2.4 Topological Insulators and the Quantum Spin Hall Effect

Condensed matter physics in large part has been the study of how symmetry

breaking leads to unique states of matter. For instance, crystalline solids re-

sult from a breaking of continuous translation and rotation symmetries. How-

ever, states of matter have recently been discovered that can not be uniquely

described in terms of broken symmetries. This has led to a new paradigm for

describing these states of matter, known as topological order. Although the

quantum hall state was the first state of matter discovered that could not be ap-

propriately described in terms of symmetry breaking, this thesis will focus on
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a more recent state of matter known as the quantum spin hall (QSH) state. For

a comprehensive description of the quantum hall state, references [16] and [17]

are suggested.

Adapted from mathematical topology, it was found that band structures

could be classified according to topological invariants. These topological classes

describe all equivalent Hamiltonians that can be smoothly deformed into each

other without closing the band gap. If a change in the system properties causes

the band gap to close and re-open then a non-smooth change in the Hamiltonian

has taken place and this is a strong indicator of a topological phase change [18].

The invariant that describes these equivalent classes of Hamiltonians is known

as the Chern invariant and is found by integrating the Berry curvature,

nm =
1

2π

∫
FBZ

d2k Ωm(k), (2.10)

where nm and Ωm are the Chern number and Berry curvature for the mth band.

Summing the Chern number over all occupied bands is the Chern invariant.

This invariant is always an integer and is directly related to the genus in the

Gauss-Bonnet theorem of two dimensional surface topology [18]. For reference,

the Chern invariant for band insulators is 0 and 1 for the quantum hall state.

Figure 2.4: Graphical representation of a) QSH spin polarized edge transport,
which are protected against scatterers, and b) QSH band structure.
Red and blue represent different spin states.
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Although the Chern invariant succeeds in uniquely classifying different

topological phases of matter, recently a new phase of matter has been discov-

ered for which the Chern invariant is inadequate. The QSH state (often referred

to as a topological insulator), was first predicted in 2005 by Kane and Mele [19]

and experimentally observed in 2007 by König in HgTe quantum wells [20]. The

topological insulator is characterized by having a gapped insulator band struc-

ture in the bulk, but also having spin polarized gapless edge states as illustrated

in figure 2.4a. A representation of this band structure can be seen in figure 2.4b.

Since the edge states are spin polarized, they are robust against scattering from

non-magnetic defects (figure 2.4a). Furthermore, unlike the quantum hall state,

an external magnetic field is generally not required to create a QSH state. This

gives topological insulators a great deal of potential for uses in devices that re-

quire spin control and low energy dissipation, such as spintronics and quantum

computation [21, 22].

Unlike the quantum hall state, topological insulators do not have a unique

Chern invariant. If one were to calculate this invariant, the result would the

same as that of a band insulator. This is due to the fact that topological insulators

generally preserve time reversal symmetry [23]. Therefore, an additional topo-

logical invariant, referred to as the Z2 invariant, distinguishes between band in-

sulator and topological insulator. Calculating the Z2 invariant from band struc-

ture can be cumbersome, but if the system conserves spin sz then the formula-

tions are greatly simplified by the use of spin Chern numbers [24]. Under this

paradigm, the Z2 invariant is found to be

ν = nσ mod 2 (2.11)

nσ = (n↑ − n↓)/2 (2.12)
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where ν is the Z2 invariant and nσ is the spin Chern number difference. Since

this thesis theoretically analyzes silicene, it is assumed to be without disorder

and sz is indeed conserved.

As previously mentioned, it is usually the case that a topological phase

change results from adjusting a property of the system that modifies the Hamil-

tonian in a non-smooth manner. This change should subsequently cause the

band gap to shrink to zero and then re-open. For instance, in the first exper-

iments in which the QSH effect was observed, the adjusted property was the

well thickness in HgTe quantum wells. Once the well width is increased be-

yond a critical value (∼ 6.3 nm) spin polarized edge states developed, indicating

a change from band insulator to topological insulator [20, 25].

As with the work done on HgTe quantum wells, it is claimed that silicene

also undergoes a phase change when a property is swept through a critical

value. However, in the case of silicene the property is the strength of an elec-

tric field applied perpendicularly to the silicene layer. Due to the strong SOC

and the buckled nature of silicene, it is expected that silicene is intrinsically a

topological insulator and if an electric field is applied that is beyond a critical

strength value (∼ 17 mV/Å) it changes to a band insulator. In this thesis, the cal-

culated berry curvature of silicene is used to find the Z2 invariant and confirm

the topological order.

2.5 Ballistic Transport

As mentioned in chapter 1, the purpose of this thesis is not only to analyze

the topological properties of free-standing silicene, but to also examine how
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these unique properties influence transport in devices. In particular, this thesis

will examine the transport properties of silicene in a independent double-gated

FET (IDGFET) scheme. As devices shrink in size, electron scattering is reduced

and the transport properties approach the ballistic regime. With this in mind,

the ideal ballistic case will be the focus of this device model. This section will

highlight the physics of ballistic transport. For a more comprehensive study of

ballistic transport, the reader is referred to [26, 27].

Starting with a simple case, the IDGFET device is initially considered with

zero bias on both gates. A sketch of such a device is shown in figure 2.5a and

is composed of a source, drain, a semiconducting channel material between the

two, and a gate-insulator combination above and below the channel. For this

thesis, the semiconducting device will be silicene, but this model applies to any

material with any band structure. Therefore, in this section the model will be

described in a general sense. Application of this model to the specific case of

silicene will take place in the next chapter.

Figure 2.5: a) Sketch of a double gate 2D FET device. b) Band diagram with-
out the application of a drain voltage bias. c) Sketch of Fermi circle
without applied drain bias.
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If one assumes that the source and drain are the same material and their

Fermi level is equal to the conduction band of the semiconductor material, the

band diagram will look like that shown in figure 2.5b. Application of a voltage

bias between the source and drain causes the picture to shift to that shown in

figure 2.6a. The source-drain current can be considered as a summation of left-

going and right-going currents. Without a bias, these two currents are equal

and opposite, generating a total current of zero. With a positive drain voltage,

amount of carriers moving in the source-drain direction are increased and car-

riers in the drain-source direction are decreased. This concept should be clear

if one considers how a general Fermi-circle is altered when a voltage difference

is applied. A sketch of this is shown in figure 2.6b. Therefore, the total carrier

density is always constant and the source-drain bias merely modifies the ratio

of right-going to left-going carriers.

Figure 2.6: a) General band diagram of a FET in the source-drain direction with
applied bias Vds. b) Sketch of Fermi circle when bias is applied.

The current can be found at any point along the x axis in figure 2.6, but

the source injection point is commonly chosen. The source injection point is

indicated on the band diagram in figure 2.6 and one can see that at this point

there is no electric filed, which simplifies the calculations. The left-going and
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right-going currents can be calculated by the following equations

J→ =
gsgv

L2

∑
kx,ky

vg→(kx, ky) f→(kx, ky) =
gsgv

(2π)2

∫
kdkdθ vg→(k, θ) f→(k), (2.13)

J← =
gsgv

(2π)2

∫
kdkdθ vg←(k, θ) f←(k), (2.14)

JTotal = J→ − J←, (2.15)

which is merely a summation of the current at each eigenstate converted into

an integral. In the above equations, vg is the electron group velocity (section

2.3), and f = 1/(eβ(E−E f ) + 1) is electron occupation function. In the occupation

function, terms can be consolidated by defining η ≡ E f /kBT and there will be

η→ and η← for right and left-going carriers. The η→ and η← are dependent upon

the carrier densities of the right and left-going carriers. Therefore, to find these

values at a particular bias, carrier conservation must be considered. The carrier

densities under zero and non-zero drain bias can be found by summing over all

occupied eigenstates. Converting to integral form, the equations are

ns =
gsgv

L2

∑
kx,ky

f (kx, ky) =

∫ ∞

Ec

dEg(E) f (E), (2.16)

n→ =

∫ ∞

Ec

dEg(E) f→(E), (2.17)

n← =

∫ ∞

Ec

dEg(E) f←(E), (2.18)

ns = n→ + n←. (2.19)

Plugging equations 2.16, 2.17, and 2.18 into 2.19, one can solve η→(Vds), where

Vds is the drain voltage relative to the grounded source. Subsequently, η←(Vds)

will also be found, because η← = η→−qVds. Now, η→ and η← can be plugged into

the current equations above to find the total current under any source-drain

bias.
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Up to this point, the carrier density of the semiconductor material has just

been the materials intrinsic carrier density. However, in order to properly model

a 2D FET device, one must account for the application of non-zero voltages

to the top and bottom gates (figure 2.5). The addition of the top and bottom

gate voltages allows control over the carrier density (equation 2.16) by injecting

carriers into the channel via the source. This can be thought of as changing the

area of the fermi circle in figures 2.5c and 2.6b.

Figure 2.7: General band diagram of a double gate 2D FET in the direction of
the gate-insulator-channel (chosen to be z-axis)

By summing over energies in the band diagram along the z axis (figure 2.7),

the gate voltage dependent carrier density, ns(Vgs), can be found. The current

due to a source-drain voltage can be found using equations 2.13-2.19 in the same

manner as before, with the only difference being the use of ns(Vgs) instead of

equation 2.16.

The specific application of this process to a silicene IDGFET is shown in the

next chapter and a good demonstration of applying this model to 3D semi-

conductor FETs with parabolic band structures is given in [26]. It should be

noted that this model assumes perfect gate control over the carrier density at

the source injection point and neglects drain-induced barrier lowering.
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CHAPTER 3

SILICENE ELECTRONIC PROPERTIES

With the necessary theoretical background reviewed, the electronic proper-

ties of silicene can now be understood. In this chapter, the electronic and topo-

logical properties of silicene that effect transport in devices are modeled and

analyzed. How these properties change in the presence of a perpendicular elec-

tric field is discussed as well.

3.1 Band Structure of Silicene

As mentioned in section 2.1, a tight-binding model is a good method for ana-

lytically examining the band structure of a material. Due to the sublattices of

silicene being separated from each other, application of an electric field perpen-

dicular to the silicene sheet will create a potential difference between the two

sublattices. Using a four-band model with second nearest neighbor coupling, a

tight binding Hamiltonian can be derived. In second quantization formalism,

this Hamiltonian is found to be [9, 28]

H = −t
∑
〈i, j〉α

c†iαc jα + i
λS O

3
√

3

∑
〈〈i, j〉〉αβ

νi jc
†

iασ
z
αβc jβ − i

2
3
λR

∑
〈〈i, j〉〉αβ

µi jc
†

iα(~σ × ~d0
i j)

z
αβc jβ +

e`
∑

iα

ζiEi
zc
†

iαc jα,

(3.1)

where the first term is the normal nearest neighbor hopping term with t = 1.6

eV being the hopping energy and c†iα and ciα being the electron creation and

annihilation operators at site i with spin polarization α. The 〈i, j〉 term represents

summing over nearest neighbors. The action of the first term is to cause electron

hopping from between nearest neighbor sites, as shown in figure 3.1.
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Figure 3.1: Action of the nearest neighbor creation/annihilation operators on
the silicene lattice.

As denoted by the 〈〈i, j〉〉 term, the second term represents second nearest

neighbor spin orbit coupling where λS O = 3.9 meV is the effective SOC constant,

σi is the Pauli spin matrix, and νi j = (~di × ~d j)/|~di × ~d j|where ~di and ~d j are the two

bonds connecting the next nearest neighbors. The third term represents second

nearest neighbor intrinsic Rashba spin orbit coupling where λR = 0.7 meV is

the Rashba SOC constant, µi j = ±1 represents the sublattice, and ~d0
i j = ~di j/| ~di j|.

The last term is the Hamiltonian modification due to the potential difference

between the sublattices where ζi = ±1 represents the sublattice, Ez is the strength

of the electric field applied perpendicularly to the silicene plane, and ` = 0.23Å

is half the vertical distance between the sublattices. For a detailed derivation of

this Hamiltonian, the reader is referred to [28].

For many solid state devices, the applied potentials are relatively low (∼ 1 V

or less) and thus result in low energy excitations in the band structure. There-

fore, a low energy approximation to the Hamiltonian can be used to examine

the physics in this regime. This gives the advantage of being much less com-

putationally intensive and even analytical in many cases. For silicene, using
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equation 3.1, a low energy effective Hamiltonian has been found to be [28]

Hη = ~v f (kxτx − ηkyτy) + ητzh11 + e`Ezτz, (3.2)

where v f =
√

3at
2~ = 5.5 × 107 cm/s is the Fermi velocity, a = 3.86 Å is the lattice

constant, τi is the Pauli sublattice matrix, η = ±1 refers to the K± Dirac point, and

h11 is

h11 = −λS Oσz − aλR(kyσx − kxσy). (3.3)

As mentioned by Liu [28], the effective Hamiltonian can be found by Fourier

transforming the creation and annihilation operators in equation 3.1 and sum-

ming over nearest and next-nearest neighbors. This converts the Hamiltonian

to a momentum space representation, which is then expanded about the Dirac

points to achieve the low energy approximation given in equation 3.2. This ex-

pansion pulls the extra terms found in equation 3.2 (kx, ky, v f ) out of the phase

factors in the Hamiltonian. The effective Hamiltonian can also be derived using

tight-binding with an atomic orbital bases, which is also shown in [28].

At each Dirac point, the matrix created from equations 3.2 and 3.3 can be

diagonalized to find the energy dispersion at energies near that of the Dirac

points. This energy dispersion can be compactly written as [9]

Eη = ±

√
~2v2

f k
2 +

(
e`Ez − ηsz

√
λ2

S O + a2λ2
Rk2

)2

, (3.4)

where sz = ±1 refers to spin up and spin down states. Equation 3.4 takes on a

form similar to that of graphene (equation 2.2), but with an additional mass term

shown in the parenthesis. Furthermore, this mass can be adjusted by tuning the

value of Ez and its effect on the band structure will be different for spin up and

spin down states, meaning that the energy dispersion will differ for spin up and

spin down states. This creates a gap Eσ
gap = E↑ − E↓ between spin up and spin

down bands.
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The energy dispersion near the K+ and K− Dirac points are plotted in figure

3.2 at various values of Ez. One can see that at Ez = 0 the bands are spin and

valley degenerate and there is a band gap of ∼ 7.8 meV. When |Ez| is increased,

spin degeneracy is broken and the bands split into distinct spin up and spin

down states. This is expected since the application of a perpendicular electric

field creates a potential difference between the two sublattices.

Figure 3.2: Silicene low-energy band structure at a) Ez = 0, b) Ez < Ec, and c)
Ez = Ec, and d) Ez > Ec. Arrows indicate spin.

Near the K+ Dirac point, as Ez increases from zero the band gap of the spin

up states decrease while the gap of the spin down states increase. This continues

until Ez reaches the critical value Ec = λS O/e` ≈ 17 mV/Å, at which the spin up

energy dispersion becomes completely gapless and similar to that of graphene.

Beyond this point, the gap in the spin up dispersion re-opens and continues to

increase as Ez increases. When Ez is decreased below zero, the spin up band that

becomes gapless at −Ec. Near the K− Dirac point, the modified spin states are
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opposite that of the K+ Dirac point.

Observing figure 3.2, it can be seen that there are two notable regimes that

can be considered: |Ez| < |Ec| and |Ez| > |Ec|. The transition from one regime to

the other occurs as Ez sweeps through Ec and the band gap closes and re-opens.

As mentioned in section 2.4, the closing and opening of a band gap signifies

a non-smooth change in the material’s Hamiltonian and a topological phase

change in its eigenvalue spectrum. In the subsequent sections, this topological

phase change will be confirmed by finding the Z2 invariant in these two regimes.

Considering that the Rashba component has a negligibly small effect on the

properties of silicene being investigated in this thesis, from this point forward

the Rashba spin orbit component will be neglected. In the parenthesis of equa-

tion 3.4, the λ2
S O term is on the order of 10 meV2 while the a2λ2

Rk2 term is on the

order of 10−4 meV2 at k = 0.5 nm−1. As we will see in section 3.3, the unique

properties generally occur close to the Dirac points (< 0.5nm−1). Therefore, if

one sets λR = 0 meV in equation 3.4, the band structure remains relatively un-

changed.

3.2 Density of States

In consideration of the prominent role that carrier density plays in determining

the transport properties of devices, examining the low energy density of states

(DOS) in silicene will be beneficial in the next chapter. Generally, the density of

states can be found by equating the number of states in a infinitesimal volume
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of k space to that of energy space

2πgsgv

(2π
L )2

kdk = G(E)dE, (3.5)

where G(E) is the total density of states and gs and gv are the spin and valley

degeneracy. Since the degeneracy of silicene changes depending on the applied

electric field, the DOS must be found for each band separately and summed to

achieve the total DOS. Therefore, for each separate band gs = gv = 1.

Using equation 3.4, the left side of equation 3.5 can be converted to energy

space and used to solve for the DOS per unit area, g(E) = G(E)/L2. For the spin

up states near the K+ Dirac point, this yields the following

1
2π

k

√
~2k2v2

f + (eEz` − λS O)2

~2kv2
f

dE = g(E)dE → g+↑(E) =
|E|

2π~2v2
f

Θ
(
|E| − |eEz` − λS O|

)
,

(3.6)

where g↑+(E) signifies the DOS of spin up states near the K+ Dirac point. The

step function is required to account for the fact that states can not exist in the

band gap of the material and the absolute value signs in the step function ac-

count for the valance and conduction bands. Similarly, for spin down states

near the K+ Dirac point

g+↓(E) =
|E|

2π~2v2
f

Θ
(
|E| − |eEz` + λS O|

)
. (3.7)

Due to the symmetry of the bands, which can be seen in figure 3.2, the den-

sity of states near the K− Dirac point will have the following relations

g−↑ = g+↓, (3.8)

g−↓ = g+↑, (3.9)

and the total DOS will be the sum of the DOS over all bands

gtotal(E) =
∑
η,sz

gη,sz(E) =
|E|
π~2v2

f

(
Θ
(
|E| − |eEz` + λS O|

)
+ Θ

(
|E| − |eEz` − λS O|

))
. (3.10)
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The total DOS at various electric field strengths can be seen in figure 3.3. At

Ez = 0, the bands are spin degenerate, resulting in only one step and then a

linear DOS. When Ez , 0 two steps occur in the DOS since the bands are split

into upper and lower bands. As |Ez| approaches |Ec|, the first step decreases

until it is zero at |Ez| = |Ec|. At this point, the DOS of the first bands match that

of graphene since the lower bands themselves are of the same form as graphene.

As |Ez| increases beyond |Ec|, the first step in the DOS re-opens and continues to

grow larger as |Ez| increases. This behavior precisely matches that of the band

structure. One can also see from figure 3.3 that the DOS is always linear. The

reason for this is unclear, but this is a surprising result, as one would expect the

DOS near the band edge to be constant due to the parabolic nature of the bands

near the edge. In the next chapter, the effects that this DOS manipulation has on

current in a FET device will be explored.

Figure 3.3: Total DOS at a) Ez = 0, b) |Ez| < |Ec|, c) |Ez| = |Ec|, and d) |Ez| > |Ec|
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3.3 Berry Curvature

As discussed in the previous chapter, a non-trivial Berry curvature can greatly

influence the transport and topological properties of a material. Therefore, in-

vestigating the Berry curvature of silicene is a natural precursor to understand-

ing silicene in a device setting. Using equation 2.8, one can calculate the berry

curvature for any material. It can also be found using equation 2.7, but equa-

tion 2.8 doesn’t require differentiation of the eigenstates and is therefore easier

for computational software to handle.

The eigenstates of silicene are found by computationally solving for the

eigenvectors of the Hamiltonian given in equation 3.2. Upon normalization,

the Hamiltonian must be differentiated according to equation 2.8. For three di-

mensional k-space, the differentiation gives

∂H
∂kx

= ~v fτx + ηaλRσy, (3.11)

∂H
∂ky

= −η~v fτy − ηaλRσx, (3.12)

∂H
∂kz

= 0, (3.13)

which means that the only non-zero Berry curvature will be Ωn
xy. Therefore, the

Berry curvature for silicene will always be in the z direction.

Plugging equations 3.11 and 3.12 into equation 2.8, the Berry curvature is

found for each band by summing over the interactions between the band of in-

terest and all other bands. With the Rashba SO component neglected, it is found

that there are only interactions between the valence and conduction bands. With

the Rashba SO component included, there are interactions between two valence

or conduction bands, but they are negligible compared to the interactions when
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one band is conduction and the other is valence. It is found that the Berry cur-

vature of silicene can be expressed in the following compact form

Ωxy =
ξη~2v2

f (eEz` − ηszλS O)

2(~2k2v2
f + (−ηszeEz` + λS O)2)3/2

ẑ, (3.14)

where k =
√

k2
x + k2

y and ξ = ±1 signifies the conduction and valence bands.

Also, η = ±1 and sz = ±1 again signify the Dirac points and spin states.

The conduction band Berry curvature near the K+ Dirac point can be seen in

figure 3.3. At Ez = 0, the Berry curvature for the spin up and spin down states

are equal magnitude, but opposite direction. Also, the maximum curvature is

always reached at the Dirac point. As seen in figure 3.4, increasing the field

strength causes the curvature of one spin state to increase while the other spin

state decreases. Which spin state increases depends on the direction of the field.

Figure 3.3 shows the results of increasing the field strength in the positive z

direction.

Figure 3.4: Spin up (blue) and spin down (red) conduction band Berry curva-
ture near K+ at a) Ez = 0, b) Ez < Ec, c) Ez > Ec, and d) Ez >> Ec
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As Ez approaches Ec, the spin up Berry curvature in figure 3.4 diverges while

the spin down curvature continues to decrease. When Ez become greater than

Ec, the direction of the spin up Berry curvature changes sign and decreases in

magnitude as Ez is increased beyond this point. Therefore, Ec is the critical point

at which the spin up and spin down Berry curvatures transition from pointing in

opposite direction to pointing in the same direction. If the electric field strength

is increased in the negative z direction the same phenomena occurs. However,

under this field it is the spin down curvature that diverges and changes direc-

tion as Ez is swept through Ec.

Figure 3.5: Spin up (blue) and spin down (red) conduction band Berry curva-
ture near K− at a) Ez = 0, b) Ez < Ec, c) Ez > Ec, and d) Ez >> Ec

As seen in figure 3.5, the Berry curvature near the K− Dirac point when Ez

is increased in the positive z direction following the same pattern. However,

the spin state which switches direction when Ez is swept through Ec is opposite

that near the K+ Dirac point. In subsequent sections it will be shown that this

difference creates very interesting transport properties in silicene.
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3.4 Z2 Topological Invariant

In order to gain better insight into the properties of a unique material like sil-

icene, it is very useful to characterize the material’s topological phase. It has

been claimed that silicene is a topological insulator when |Ez| < |Ec| and that it

transitions to a band insulator when |Ez| > |Ec| [9]. However, there is little in the

way of theoretical calculations to support this. Therefore, with Berry curvature

of silicene found it is a prudent time to examine silicene’s topological phase by

calculating the Z2 invariant.

As described in section 2.4, since sz is conserved in this low energy ap-

proximation of silicene’s band structure, the use of spin Chern numbers is

a convenient method to find the Z2 invariant. Using equation 2.10, nm =

1
2π

∫
FBZ

d2k Ωm(k), and plugging the Berry curvatures of each occupied (valence)

band (equation 3.14), the Z2 invariant can be found. The partial Chern number

for spin up valence band near K+ is found to be

n+,↑ =
1

2π

∫ ∞

0
dk

−~2v2
f (eEz` − λS O)

2(~2k2v2
f + (−eEz` + λS O)2)3/2

=
−eEz` + λS O

2
√

(−eEz` + λS O)2
. (3.15)

Equation 3.15 is referred to as a ”partial Chern number”, because only the

K+ valley is considered. The Chern number of this band is found by summing

the partial Chern number over the two valleys. It must be noted that the partial

Chern numbers are not physically meaningful; they are merely being used as

an intermediary step to better elucidate the process. Using the same method,

partial Chern number expressions can be found for the rest of the bands as well

and can be placed in the following compact form

nξ,η,sz =
ξ(ηeEz` − szλS O)

2
√

(−ηszeEz` + λS O)2
, (3.16)
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where ξ = ±1 represents the conduction and valance bands, η = ±1 represents

the Dirac points, Ez is the vertical electric field, λS O = 3.9 meV is the effective

SOC constant, and ` = 0.23 Å is half the distance between the sublattices.

From equation 3.16, since each band’s Chern number is the sum over the

two valleys, each band’s Chern number will always be ±1. This is shown in

figure 3.6, in which the magnitude of the partial Chern number is always ±1/2

for every band near a single valley. For each band, there is also a critical electric

field strength at which the Chern number changes sign. This critical field occurs

at Ez = λS O/e`, which is the electric field at which the band gap for one spin state

is reduced to zero.

Figure 3.6: Partial Chern numbers for a) spin up states near K+, b) spin up states
near K−, c) spin down states near K+, and d) spin down states near
K−

Using the results of figure 3.6 along with equations 2.11, ν = nσ mod 2, the

Z2 invariant can be calculated. It should also be noted that the Chern invariant,

which is merely the sum of the Chern numbers, is always zero. Therefore, before
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calculating the Z2 invariant it is already clear that the electronic phase of silicene

must either be a band insulator or a topological insulator. A plot of the spin

chern number difference, nσ = (n↑ − n↓)/2, is shown in figure 3.7. Using equation

2.11, it can be seen that when |Ez| < |Ec| the Z2 invariant is that of a topological

insulator. When |Ez| > |Ec|, the Z2 invariant changes to that of a band insulator.

Therefore, it has been confirmed that silicene does indeed transition from topo-

logical insulator to band insulator when Ez is swept through Ec. It should be

noted that although this model characterizes silicene in these two topological

regimes, the topological properties of silicene when Ez = Ec = λS O/e` are not

clearly characterized by this model.

Figure 3.7: Spin chern number difference, nσ, versus perpendicular electric field

3.5 Electron Velocity

In order to examine ballistic transport in a silicene FET, the group velocity of the

electron states in silicene must first be known. As discussed in section 2.3, most

common materials have a electron velocity that is found by simply taking the

gradient of the energy dispersion. However, when a material has a non-trivial
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Berry curvature, an extra term is required to properly characterize the velocity

profile. As seen in equation 2.9, vn(k) =
∂εn(k)
~∂k −

e
~
E × Ωn(k), this term depends

on a cross product of the applied electric field as well as the Berry curvature.

Since the Berry curvature in silicene is solely in the z direction, the z direction

electric field that has been used to modify the properties of silicene thus far will

not contribute directly to the electron velocity since Ezẑ × Ωxyẑ = 0. Therefore, it

will be assumed henceforth that an electric field in the x direction is also being

applied, which is the case for transport of carriers in the silicene plane. For now,

this field will have an arbitrary magnitude, but in the next chapter Ex and Ez

will be dictated by the voltages applied to the drain and gate contacts. Using

the band structure and Berry curvature of silicene in equation 2.9, the electron

group velocity components in the conduction band are found to be

vx,η,sz =
∂εη,sz(k)
~∂kx

=
~kxv2

f√
~2k2v2

f + (−ηszeEz` + λS O)2
x̂, (3.17)

vyOriginal =
∂εη,sz(k)
~∂ky

=
~kyv2

f√
~2k2v2

f + (−ηszeEz` + λS O)2
ŷ, (3.18)

vyBerry,η,sz = −
e
~

Ex x̂ ×Ωη,sz(k)ẑ = −
ηeEx~v2

f (eEz` − ηszλS O)

2(~2k2v2
f + (−ηszeEz` + λS O)2)3/2

ŷ, (3.19)

where vy = vyOriginal + vyBerry. The Berry curvature velocity component, vyBerry,η,sz ,

can also be recast as

vyBerry,η,sz = −µB,η,sz Ex, (3.20)

where µB is

µB,η,sz = −
ηe~v2

f (eEz` − ηszλS O)

2(~2k2v2
f + (−ηszeEz` + λS O)2)3/2

. (3.21)

In this form, µB can be considered to be an effective transverse mobility, or

”Berry” mobility.
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Since the current generating electric field is chosen to be in the negative x

direction, which will be the case in the FET structure in the following chapter,

the velocity component due to the Berry curvature will solely be in the y direc-

tion. Without the Berry curvature component, the velocity would be directed

radially outward from the Dirac point in a similar manner to that of graphene.

However, the Berry curvature velocity component greatly increases vy near the

Dirac points. As seen in figure 3.8, this creates a asymmetry in the velocity dis-

persion. Refer to appendix A for the velocity profiles of the remaining bands.

Figure 3.8: Spin up conduction band velocity profile near K+ Dirac point at a)
Ez = 0, b) Ez < Ec, Ez > Ec, and d) Ez >> Ec. The length of the arrows
are proportional to the magnitude of the velocities.

When Ex , 0 and |Ez| , λS O/e`, there is always an extra non-zero y com-

ponent in the velocity due to the Berry curvature. This creates the previously
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mentioned asymmetry in the velocity profile and also shifts the zero-velocity

point away from the Dirac points. The Berry curvature velocity term quickly

goes to zero as one moves away from the Dirac points and therefore reinforces

the prediction that much of the interesting properties of silicene occur in the

low-energy regime. Furthermore, when |Ez| < |Ec| the y direction velocity of

spin up and spin down states point in opposite directions and when |Ez| > |Ec|

the y direction velocities transition to pointing in the same direction.

Figure 3.9: Spin up conduction band velocity profile of standard (red) and Berry
(blue) velocities near K+ Dirac point at a) kx = ky = 5× 10−3 nm−1, and
b) kx = ky = 2 × 10−3 nm−1.

As seen in figure 3.9a, initially the Berry velocity and standard group ve-

locity are in the same direction. However, as Ez is increased the Berry velocity

crosses the standard group velocity and eventually becomes negative and larger

in magnitude than the standard velocity. This causes the transitioning in the y

direction velocity near the Dirac points. Also, from figure 3.9b one can see that

the transition becomes more abrupt as one gets closer to the Dirac point. At

kx = ky = 2 × 10−3 nm−1, the process resembles a switching effect more so than a

smooth transition.

As will be examined in the next chapter, this transitioning in the velocity

profile predicts a transitioning in the direction and magnitude of a spin Hall

effect when silicene changes phase from topological insulator to band insulator.
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Also, it should be noted that these Hall effects are being created without the use

of a magnetic field, which is a unique property of topological insulators.
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CHAPTER 4

SILICENE 2D FET MODELING & RESULTS

With the pertinent material properties of silicene explored in the previous

section, these properties can now be used to examine silicene-based device

physics. In this section, a model is developed to examine the transport prop-

erties of a silicene FET. The development of this model is based on the method

originally created by Natori [26]. This method is modified to support the use of

silicene as the channel material and the use of independent double gates.

4.1 Carrier Density

When examining the transport properties of any FET device, the goal is to find

a relationship between the applied voltages (gate and drain voltages) and cur-

rent density. As discussed in section 2.3, in order to find the current density,

one must first find the relationship between the gate and drain voltages and

the Fermi level at the source injection point. This relationship can be found by

noting that application of a drain bias will not effect the total carrier density

at the source injection point in a carefully designed transistor that has no short

channel effects. Therefore, one can find the source injection point Fermi level by

finding the relationship between the gate voltage and total carrier density and

imposing carrier density conservation when a drain bias is applied.

Using the z direction band diagram (figure 2.7), one can find the relation-

ship between gate voltages and carrier density by summing over energies. The

carrier densities on the gates will be in the form of sheet charges and since we

are dealing with a 2D material it can be assumed that the carrier density in the
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Figure 4.1: (a) charge, (b) field, and (c) band diagram of a general 2D indepen-
dent double gate FET in the gate-channel-gate direction

channel will also be a sheet charge. This leads to the charge-field-barrier dia-

gram shown in figure 4.1. By summing over the energies of the two barriers

separately, one finds the following relations

qφb,TG + qVb,TG − ∆EC + (E f − EC) = Vgs,TG, (4.1)

qφb,BG + qVb,BG − ∆EC + (E f − EC) = Vgs,BG, (4.2)

where qφb is the metal-insulator barrier height, Vb is the voltage drop across the

insulator (as seen in figure 2.7), ∆EC is the insulator-semiconductor conduction

band difference, E f is the semiconductor Fermi level, and EC is the intrinsic

conduction band edge. Using Gauss’ law, Vb is found to be equal to qnm/εbε0.

Grouping φb and ∆EC into a threshold voltage term, qVT = qφb − ∆EC, equations
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4.1 and 4.2 can be re-written as

q2(ns − nm,BG)
εb,TGε0

+ (E f − EC) = q(Vgs,TG − VT,TG), (4.3)

q2nm,BG

εb,BGε0
+ (E f − EC) = q(Vgs,BG − VT,BG), (4.4)

where the charge neutrality condition, ns = nm,TG + nm,BG, has been used in the

first term of equation 4.3. From this point forward, the threshold voltage terms

will not be written, but it will always be assumed that the gate voltages are in

reference to the threshold voltages.

Re-arranging equation 4.4 and plugging it into nm,BG of equation 4.3, the re-

lation between the gate voltages and total carrier density is found to be

qns

εb,TGε0
+ (1 + G)(E f − ECB) = Vgs,TG + GVgs,BG, (4.5)

G =
εb,BGtb,TG

tb,BGεb,TG
, (4.6)

in which ns is the total carrier density in the semiconductor, tb,TG and tb,BG are

the top and bottom gate oxide thickness, εb,TG and εb,BG are the top and bottom

gate oxide relative permittivity, and Vgs,TG and Vgs,BG are the top and bottom gate

voltages (referenced to the grounded source).

By applying equation 2.16, ns =
∫ ∞

Ec
dEg(E) f (E), to silicene, a relationship

can be found between ns and E f . This relationship can be plugged into equation

4.5 to find ns(Vgs,TG,Vgs,BG). Alternatively, this relationship could be also be used

to find EF(Vgs,TG,Vgs,BG), which is be found to be a less computationally intensive

method for finding ηR and ηL when a drain bias is applied. Applying equation

2.16 to silicene, the following relation is found

nη,sz =
1

πv2
f~

2

∫ ∞

ECB

dE
E

1 + e(E−E f )/kbT =
k2

bT 2

πv2
f~

2

∫ ∞

βECB

du
u

1 + eu−η0
, (4.7)
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ns =
∑
η

∑
sz

nη,sz = 2(n+,↑ + n+,↓), (4.8)

where ECB = |eEz` − ηszλS O| is the conduction band edge and the 2(n+,↑ + n+,↓)

in equation 4.8 results from the symmetry of the bands. The last term in equa-

tion 4.7 comes from changing to the dimensionless variable u = E/kbT . These

equations can not be solved analytically as they contain Fermi-Dirac integrals

of order one. Therefore, equation 4.8 must be solved computationally to find

E f (ns). Plugging this into E f in equation 4.5, one can computationally solve

for ns(Vgs,TG,Vgs,BG). In order to find Ez, the electric field is assumed to linearly

change through the channel and the mid-point found to be

Ez =
1
2

(
Vgs,BG

tb,BG
−

Vgs,TG

tb,TG

)
, (4.9)

which is taken as the vertical field to which the channel is exposed. Figure 4.2

shows the conduction band carrier density found for tb,TG = tb,BG = 2 nm and

εb,TG = εb,BG = 10.

One can see from figure 4.2 that the carrier density depends on the gate volt-

ages as would be expected in a FET device. Increasing the positive gate voltage

on either gate injects more carriers into the channel via the source. As either

of the gate voltages becomes much less then zero, the carriers are pulled out of

the channel and the carrier density approaches zero. Furthermore, temperature

only has a notable effect at lower gate voltages. At higher voltages the carrier

density is high enough that temperature changes don’t make notable changes

to the carrier density, because E f − Ec >> kbT .

As previously discussed, when a drain bias is applied the right-going and

left going carriers will have different quasi-Fermi levels. The difference between

these quasi-Fermi levels is equal to the drain bias in the ballistic approximation

and they can be found be imposing carrier density conservation, ns = n→ + n←.
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Figure 4.2: Carrier density at 300K and Vgs,TG = Vgs,BG (red) and Vgs,BG = 0 (blue)

Since the application of an electric field causes the bands to break degeneracy,

the carrier density conservation is imposed on a per-band basis. Therefore,

when applying a drain bias the carrier density is split into right-going and left-

going carrier densities as follows

nη,sz =
k2

bT 2

πv2
f~

2

∫ ∞

βECB

du
u

1 + eu−η0
=

k2
bT 2

2πv2
f~

2

∫ ∞

βECB

du
(

u
1 + eu−η→

+
u

1 + eu−η←

)
, (4.10)

where the first term of equation 4.10 is just equation 4.7 and must equal the right

hand side due to carrier density conservation. The carrier density without drain

bias for each band can be found using the total carrier density, ns, to find the

Fermi level from E f (ns) and plugging this into η0. Therefore, since η← = η→−qVds,

the only unknown in equation 4.10 is η→.

Using equation 4.5 to find ns, η→ is computationally found and used to calcu-

late current density in the next section. Figure 4.3 shows total carrier density as

a function of drain bias. As expected, the total carrier density is only dependent
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on the gate and has no dependence on drain bias.

Figure 4.3: Carrier density at 300K and Vgs,TG = Vgs,BG = 0 V (red) and Vgs,TG =

Vgs,BG = 0.2 V (blue)

4.2 Conventional Source-Drain Current

Using η→(Vds,VTG,gs,VB,gs) = E f /kBT , the total drain charge current can be found

using equations 2.13-2.15,

J→ =
egsgv

(2π)2

∫
kdkdθ vg→(k, θ) f→(k), (2.13)

J← =
egsgv

(2π)2

∫
kdkdθ vg←(k, θ) f←(k), (2.14)

JTotal = J→ − J←. (2.15)

As before, the current is found on a per-band basis and the total current is the

summation over all bands. Plugging 3.17 into 2.13 and 2.14, the current density
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for right going carriers is found to be

J→x,η,sz
=

e
(2π)2

∫ π/2

−π/2
dθcos(θ)

∫ ∞

0
kdk

~kv2
f√

~2k2v2
f + (−ηszeEz` + λS O)2

(
1

1 + e
E(k)
kbT −η→

)
,

(4.11)

in which polar coordinates have been used and the angular component is

integrated only over the right-going states. Converting to a dimensionless

u = E/kBT space, the following current density relation is found

J→x,η,sz
=

ek2
bT 2

4π2~2v f

∫ ∞

βECB

du
√

u2 − β2(−ηszeEz` + λS O)2

(
1

1 + eu−η→

)
, (4.12)

in which β = 1/kbT . Since the only difference between the right-going and left-

going carrier is the Fermi level, the total current is found to be

Jx,η,sz =
ek2

bT 2

4π2~2v f

∫ ∞

βECB

du
√

u2 − β2(−ηszeEz` + λS O)2

(
1

1 + eu−η→
−

1
1 + eu−η←

)
, (4.13)

JTotal
x =

∑
η

∑
sz

Jη,sz = 2(Jx,+,↑ + Jx,+,↓), (4.14)

where equation 4.13 is the total current density per conduction band and equa-

tion 4.14 is total current density over all conduction bands. As before, this

”Fermi-Dirac-type” integral is not analytically solvable and therefore the cur-

rent density is found computationally.

The current density at various symmetric and asymmetric gate voltages can

be seen in figure 4.4. Regardless of the gate voltage symmetry, all plots eventu-

ally reach a saturation current density. As discussed in section 2.5, this satura-

tion is expected and in the ballistic regime is due to the carriers being completely

converted to right-going carriers. If we compare symmetric and asymmetric

gate voltages, we see that the voltage required to achieve a certain saturation

current is lower for the symmetric case since both gates are injecting carrier into

the channel.
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Figure 4.4: Current density at 300K and Vgs,TG = Vgs,BG = 0 V (red), Vgs,TG =

Vgs,BG = 0.2 V (blue), and Vgs,TG = 0.2 V,Vgs,BG = 0 V (green)

Figure 4.5: Current density at 300K and Vds = 0.1 V (red) and Vds = 0.2 V (blue)
with symmetric gate voltages

In order to examine the subthreshold characteristics, looking at the depen-

dence of current density on gate voltage is useful. Figure 4.5 shows the rela-

tionship between current density and symmetric gate voltage at various drain

voltages. One can be see that a subthreshold slope is produced regardless of

drain voltage. Increasing the drain voltage effects the ON state by increasing
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the current density ON/OFF ratio.

Figure 4.6: Current density at 300K and a) E f = 0.1 eV and b) ns = 5x1012 cm−2

Another useful property worth examining is the effect on the current density

due to the channel’s exposure to an electric field. By varying the gate voltages

in such a way as to hold the carrier density or Fermi level constant, the vertical

field in the channel can be independently adjusted. As shown in figure 4.6, the

current does vary due to the electric field breaking spin degeneracy and shifting

the conduction band edges, but the variations are quite small. As will be seen

in the next section, the electric field has a far greater effect on the transverse

current.

It should be noted that due to the symmetry of the bands the total source

drain spin current, Jspin = J↑ − J↓, is always zero. Again, we will find that this is

not true for the transverse current. Furthermore, it should also be noted that this

model is for electron transport, which is the why the current remains in an OFF

state regardless of how negative the gate voltages become in figure 4.5. As seen

in figure 4.7 and experimentally shown by Tao [10], once the gate voltages are
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Figure 4.7: Current density at 300K (solid) and 50K (dashed) at Vds = 0.2 V
for electron transport (blue), hole transport (red), and total transport
(green). Symmetric gate voltages are used.

low enough hole transport should take over and the current should rise. Con-

sequently, if hole transport is included, the total current density never reaches

a complete OFF state due to the insufficient band gap. The hole current density

shown in figure 4.7 was found by taking advantage of the symmetry between

the valence and conduction bands. However, if this symmetry was not present,

the method previously described for electron transport could be applied to hole

transport with only minor modifications. In order to reach a complete OFF state

in silicene, one could either operate at a lower temperature, as shown in figure

4.7.

As shown in figure 4.8, looking at ION/IOFF ratio is a more elucidating way

to illustrate the effects of temperature on the switching capabilities of a FET. As

the temperature decreases, the ION/IOFF ratio increases, which is attributable to

carriers being frozen out of the conduction and valence bands at lower temper-

atures. This behavior clearly demonstrates the increased switching capability of
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the silicene FET at lower temperatures. Also, as expected, increasing the gate

voltages also increases the ION/IOFF ratio due to the increased amount of carriers

injected into the channel. Overall, the standard source-drain characteristics of

this silicene IDGFET are similar to that of a traditional FET.

Figure 4.8: ION/IOFF ratio at Vds = 0.2 V, VON
gs,TG = VON

gs,BG = 0.1 V (blue), and
VON

gs,TG = VON
gs,BG = 0.2 V (red).

4.3 Transverse Current

Due to the non-trivial Berry curvature, silicene will have a current component

which is transverse to the traditional source-drain current. Similar to the pre-

vious section, the conduction band transverse current can be found by plug-

ging the y direction velocities (equations 3.17 and 3.18) into equations 2.13-2.15.

There are two components to this y direction current: the traditional group ve-

locity current due to an applied voltage in the current direction and the current

due to Berry curvature. Since there is no voltage applied across the channel in

the y direction, there will be an equal amount of carriers going in the positive
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and negative y direction and the total standard group velocity current will be

zero. Therefore, the transverse current is solely a result of silicene’s Berry cur-

vature.

Plugging the Berry curvature velocity expression,

vyBerry,η,sz = −
ηeEx~v2

f (eEz` − ηszλS O)

2(~2k2v2
f + (−ηszeEz` + λS O)2)3/2

ŷ, (3.19)

into the ballistic current equation, the following current density relation is

found,

JBerry,η,sz =
1

(2π)2

∫ 2π

0
dθ

∫ ∞

0
kdk

−e2ηEx~v2
f (eEz` − ηszλS O)

2(~2k2v2
f + (−ηszeEz` + λS O)2)3/2

1
1 + eβE(k)−η ,

(4.15)

where Ex = VdsLch is the x direction electric field due to the drain bias. This as-

sumes a linear voltage drop across the channel with tch being the channel length.

Changing to a dimensionless u = E/kBT space, the relationship becomes

JBerry,η,sz =
−e2ηEx(eEz` − ηszλS O)

4π~kbT

∫ ∞

βECB

u−2

1 + eu−η , (4.16)

Jtotal
y =

∑
η

∑
sz

JBerry,η,sz , (4.17)

J spin
y =

∑
η

JBerry,η,↑ −
∑
η

JBerry,η,↓, (4.18)

where equation 4.17 is the total charge current and equation 4.18 is the total spin

current.

Using the previously found source injection Fermi level, the Berry curvature

current density can be solved computationally. Figure 4.9a shows the transverse

current for one band (refer to appendix B for remaining bands) as well as the

total transverse spin current at various gate voltages. One can clearly see that

there is a current switching effect that occurs. This switching occurs when the

vertical electric field in the channel crosses the critical value Ec. The current
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directional switch occurs at +Ec for the K+,↑ and K−,↓ bands and −Ec for the K+,↓

and K−,↑ bands. However, when crossing either the positive or negative critical

field, the direction to which the current densities of the two bands switch are

opposite. Therefore, the total charge current is zero, because the current density

of each band is always cancelled by another band with a current density of equal

magnitude and opposite direction.

Figure 4.9: Transverse current density at 300K and Ez = −5 (red), Ez = −20
(blue), Ez = 5 (green), and Ez = 20 (orange). The left plot (a) is the
current for spin up states near K+ and the right plot (b) is the total
spin current over all conduction bands. Ez in mV/Å.

As seen in figure 4.9b, the transverse spin current is not zero and also dis-

plays a unique switching effect. When |Ez| < |Ec| there is a strong positive total

spin current. When |Ez| > |Ec|, the total spin current switches direction and also

becomes much smaller in magnitude.

To better characterize the effect that Ez has on the transverse spin current,

figure 4.10 shows a plot of the spin current versus vertical field strength at var-

ious Fermi levels. The curves in figure 4.10 clearly show the strong switching

behavior when the vertical field is swept through |Ec|.
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Figure 4.10: Total transverse spin current density at 300K at a) E f = 0 eV (red)
and E f = 0.1 eV (blue) and b) ns = 5x1012 cm−2.

Just as with the source-drain current, it must be noted that the transverse

current analysis up to this point is solely for conduction band electron trans-

port. In order to capture the full picture, valence band hold transport must also

be considered. The valence band Berry curvature of silicene is anti-symmetric

to that of the conduction band (unaltered magnitude, but opposite sign). There-

fore, due to this as well as the band structure symmetry, total valence band hole

transport will also be anti-symmetric, as shown in figure 4.11a.

As shown in figure 4.11b, summing the conduction and valence band trans-

port profiles gives the complete transport picture for the transverse spin cur-

rent. Rather than going to zero as the gate bias becomes negative, the current

density crosses zero at the point of gate antisymmetry and changes sign. The

point of gate antisymmetry is the point at which the electron and hole current

completely cancel each other. One can see that the switching between a HIGH

and LOW state still occurs, but the form is now antisymmetric about the x axis.
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Figure 4.11: Transverse spin current density at 300K due to conduction and va-
lence band transport. (a) Conduction (red) and valence (blue) band
current densities at Ez = 0 (solid) and Ez = 20 (dashed). (b) Total
current density at Ez = 0 (red), Ez = 10 (blue), Ez = 20 (green), and
Ez = 30 (orange). Ez in mV/Å.

Since the spin current is reduced when |Ez| > |Ec|, this point of topological

phase transition can also be thought of as a switch for turning the transverse

spin current HIGH and LOW. However, it should be noted that the terms HIGH

and LOW are only relative to each other.

As seen in figure 4.11a, when the transverse spin current is HIGH the spin

current magnitude is comparable to the standard drain current. In the LOW

state the magnitude is reduced, but is still very large relative to reported ex-

perimental values [29]. The spin current ratio is useful for comparing charge

drain current to transverse spin current. The spin current ratio is defined as

θS H = |Js/Jc|, where Jc is the charge drain current density and Js is the spin cur-

rent density. As seen in work by Dan Ralph [29], some of the highest values that

have been reported are in the range of θS H = 0.12 to 0.15. However, as seen in fig-

ure 4.12, the spin current ratio for silicene is found to each a maximum of ∼ 1.15
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at Lch = 10 nm. Since the charge drain current density does not depend on chan-

nel length in the ballistic regime, the ratio can be tuned higher if the channel

length is reduced. Even in the LOW state, the spin current ratio is found to be

comparable to experimental values. More theoretical and experimental analysis

is needed to determine the accuracy of these results, but this large spin current

magnitude and the switching capability makes silicene potentially useful for

spintronic devices.

Figure 4.12: Spin current ratio at 300K, Vds = 0.1 V, and Lch = 10 nm. (a) Total
spin current density at Ez = 0 mV/Å (red) and Ez = 20 mV/Å (blue).
(b) Corresponding spin current ratios.
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CHAPTER 5

CONCLUSIONS & FUTURE PROSPECTS

Silicene is a new 2D material that can be considered a silicon analog of

graphene. Due to the buckled structure, silicene has been predicted to have nu-

merous unique electronic and topological properties. In this thesis the material

and device physics of silicene was examined in the ballistic transport regime.

When exposed to an electric field perpendicular to the silicene plane, it was

found that many unique properties do arise and can be adjusted via the elec-

tric field strength. Using a four-band low energy tight binding model, it was

confirmed that a vertical electric field breaks spin degeneracy and causes two

of the bands to become gapless at the critical field |Ec|. Furthermore, it was

also confirmed that sweeping Ez through |Ec| causes silicene to transition from

topological insulator to band insulator.

The transport properties of silicene were also investigated by modeling a sil-

icene channel independent double gate field effect transistor. It was found that

the drain current exhibits the current saturation and the gate controlled car-

rier density that one expects in a standard FET. However, due to the non-trivial

Berry curvature in silicene, there is a strong transverse velocity component. This

velocity component leads to a spin current perpendicular to the drain current. It

was shown that this spin current is largely switched to a HIGH state when the

vertical field, which is dictated by the independent gate voltages, is less than

the critical field value. When the field is larger than the critical value, the spin

current switches direction, but also becomes relatively small and can be said

to switch to a LOW state. This spin current switching is a very unique device

property and could have potential applications in spintronics.
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In an effort to further expand upon this work, there are some notable pos-

sibilities worth mentioning. Including the Rashba SOC component would pre-

vent analytical solutions, but it would provide greater accuracy. There has also

been research done into the properties of silicene in the presence of a mag-

netic field and it seems as though this field combined with the vertical elec-

tric field can lead to more unique properties, such as the quantum anomalous

hall state [30, 31]. Examining the transport properties in this regime could lead

to more new device applications. However, the ultimate goal of this research

should be to actually attempt to grow silicene devices and test them for these

unique and interesting properties.
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APPENDIX A

ELECTRON VELOCITY PROFILES

Figure A.1: Spin down conduction band velocity profile near K+ Dirac point at
a) Ez = 0, b) Ez < Ec, Ez > Ec, and d) Ez >> Ec. The length of the
arrows are proportional to the magnitude of the velocities.

For a vertical electric field sweeping through Ec in the positive direction,

figure A.1 shows the velocity profile of spin down states near the K+ Dirac point.

The velocity profiles of spin up and down states near the K− Dirac point are

shown in figures A.2 and A.3. The velocities of the spin up states near K+ and

spin down states near K− switch direction when Ez is swept through Ec in the

positive direction. In the negative direction, the opposite states will be the ones

to switch direction.
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Figure A.2: Spin up conduction band velocity profile near K− Dirac point at a)
Ez = 0, b) Ez < Ec, Ez > Ec, and d) Ez >> Ec. The length of the arrows
are proportional to the magnitude of the velocities.
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Figure A.3: Spin down conduction band velocity profile near K− Dirac point at
a) Ez = 0, b) Ez < Ec, Ez > Ec, and d) Ez >> Ec. The length of the
arrows are proportional to the magnitude of the velocities.
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APPENDIX B

TRANSVERSE ELECTRON CURRENT

The silicene IDGFET transverse spin current contributions from the remain-

ing conduction bands is shown in figure B.1.

Figure B.1: Transverse spin current at 300K and Ez = −5 (red), Ez = −20 (blue),
Ez = 5 (green), and Ez = 20 (orange). Ez in mV/Å.
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