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Abstract

Motivation: Automatic biomedical named entity recognition (BioNER) is a key task in biomedical
information extraction (IE). For some time, state-of-the-art BioNER has been dominated by machine
learning methods, particularly conditional random fields (CRFs), with a recent focus on deep learning.
However, recent work has suggested that the high performance of CRFs for BioNER may not generalize
to corpora other than the one it was trained on. In our analysis, we find that a popular deep learning-
based approach to BioNER, known as bidirectional long short-term memory network-conditional random
field (BiLSTM-CRF), is correspondingly poor at generalizing – often dramatically overfitting the corpus it
was trained on. To address this, we evaluate three modifications of BiLSTM-CRF for BioNER to alleviate
overfitting and improve generalization: improved regularization via variational dropout, transfer learning,
and multi-task learning.
Results: We measure the effect that each strategy has when training/testing on the same corpus ("in-
corpus" performance) and when training on one corpus and evaluating on another ("out-of-corpus"
performance), our measure of the model’s ability to generalize. We found that variational dropout improves
out-of-corpus performance by an average of 4.62%, transfer learning by 6.48% and multi-task learning by
8.42%. The maximal increase we identified combines multi-task learning and variational dropout, which
boosts out-of-corpus performance by 10.75%. Furthermore, we make available a new open-source tool,
called Saber, that implements our best BioNER models.
Availability: Source code for our biomedical IE tool is available at https://github.com/BaderLab/saber.
Corpora and other resources used in this study are available at https://github.com/BaderLab/Towards-
reliable-BioNER.
Contact: john.giorgi@utoronto.ca

1 Introduction
PubMed contains over 30 million publications and is growing
rapidly (https://www.nlm.nih.gov/bsd/index_stats_comp.html). Accurate,
automated text mining tools are needed to maximize discovery and unlock
structured information from this massive volume of text (Cohen and
Hunter, 2008; Rzhetsky et al., 2009).

A fundamental task in biomedical text mining, and text mining in
general, is named entity recognition (NER). Biomedical named entity

recognition (BioNER) is the task of identifying biomedical named entities
— such as genes and gene products, diseases, cell types, chemicals,
and species — in raw text. Biomedical named entities have several
characteristics that make their recognition in text particularly challenging
(Zhou et al., 2004), including the use of descriptive entity names (e.g.
"normal thymic epithelial cells") leading to ambiguous term boundaries,
and several spelling forms for the same entity (e.g. "N-acetylcysteine", "N-
acetyl-cysteine", and "NAcetylCysteine"). Finding solutions for reliable
BioNER has been (Kim et al., 2004), and continues to be (Delėger et al.,
2016), a focus of various shared tasks organized within the biomedical
natural language processing (BioNLP) community.
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Recently, state-of-the-art methods have employed a domain-
independent approach to this problem, based on deep learning and
statistical word embeddings, called bidirectional long short-term memory
network-conditional random field [BiLSTM-CRF (Lample et al., 2016;
Ma and Hovy, 2016)]. This approach has achieved state-of-the-art results
for the task of BioNER (Habibi et al., 2017). It is entity-agnostic, requiring
only pre-trained word embeddings and labelled training data. Even more
recently, improvements to this method have been made using transfer
learning (Giorgi and Bader, 2018) and multi-task learning (Wang et al.,
2018), two forms of inductive transfer.

While BiLSTM-CRF paired with pre-trained word embeddings as
inputs is a powerful approach which has found success in many sequence
labelling tasks (Huang et al., 2015), it contains a large number of trainable
parameters which could lead to overfitting on the training data. For
our purposes, we say that the model (i.e. BiLSTM-CRF) has overfit a
dataset (i.e. a corpus of text annotated for biomedical entities) when it
learns parameters that perform well on the training corpus but which
do not generalize to other corpora annotated for the same biomedical
entity. Overfitting on biomedical corpora appears to be a problem even
for less-parameterized machine learning methods. For example, Gimli,
an open-source tool for BioNER based on a CRF classifier, achieved a
F1-score of 87.17% when trained and tested on the GENETAG corpus
(Campos et al., 2013a), but only a 45-55% F1-score when trained on the
GENETAG (Tanabe et al., 2005) corpus and tested on the CRAFT corpus
(Bada et al., 2012) for genes and proteins (Campos et al., 2013b).

Galea et al. (2018) explore the issue of overfitting further, by
demonstrating that performance of a CRF model for BioNER trained
on individual corpora decreases substantially for recognition of the same
biomedical entity in independent corpora. They found that overfitting may
be partly caused by bias in popular BioNER evaluation corpora. In a simple
orthographic feature analysis (i.e., what does a word look like?), they find
that features which significantly predict biomedical named entities in one
corpus (e.g., number of digits, number of capital letters, length of the text
span) do not necessarily predict for the same entity in a different corpus.
A powerful model such as BiLSTM-CRF is likely to overfit in this case,
by learning representations that encode biases in individual corpora but
which do not generalize well across corpora and to biomedical text at large.
Indeed, in our analysis, we find that BiLSTM-CRF generalizes poorly to
corpora other than those it was trained on, even when a relaxed scoring
criterion is used. This problem is exacerbated by the fact that corpora in the
biomedical domain tend to be small, and that many solutions for BioNER
are trained and tested on the same corpora, e.g. the GENETAG corpus
(Tanabe et al., 2005) for gene and gene products, of which a modified
version was used in the BioCreative II gene mention task (Smith et al.,
2008) and is sometimes referred to as the BC2GM corpus.

If BiLSTM-CRF models are to be truly useful in the large-scale
annotation of widely diverse articles, such as the articles found in databases
like PubMed, this overfitting problem will need to be addressed. To
address this challenge, we sample the best ideas from recent work on
BiLSTM-CRF models for BioNER (Crichton et al., 2017; Habibi et al.,
2017; Giorgi and Bader, 2018; Wang et al., 2018) and sequence labeling
with BiLSTM-CRFs in general (Reimers and Gurevych, 2017) to propose
several strategies to reduce overfitting and improve generalization, namely:
additional regularization via variational dropout, transfer learning, and
multi-task learning. We assessed the performance of the model on the
same corpus it was trained on, which we call "in-corpus" performance,
and when trained on one corpus and tested on another corpus annotated
for the same entity class, which we call "out-of-corpus" performance.
We used the latter as a measure of the model’s ability to generalize. We
found that variational dropout improved out-of-corpus performance for 23
of 24 train/test corpus pairs, by an average of 4.62%, transfer learning

22 out of 24 train/test corpus pairs by an average of 6.48% and multi-
task learning 24 out of 24 train/partner/test corpus pairs by an average of
8.42%. All of these strategies achieved an improvement in out-of-corpus
performance without degrading the average in-corpus performance. We
also found that certain combinations of these strategies lead to additive
boosts in performance. The best combination was multi-task learning and
variational dropout, which together boost out-of-corpus performance by
10.75%. Finally, we make available to the community a user-friendly,
open-source tool for BioNLP ("Saber") which incorporates these best
practices: https://github.com/BaderLab/saber.

2 Materials and methods
The following sections present a technical explanation of the basic neural
network architectures used in this study. We first briefly describe LSTM,
a specific kind of recurrent neural network (RNN), before introducing
the architecture of the BiLSTM-CRF model for sequence labelling tasks
(Lample et al., 2016) used in this study and in prior work (Habibi et al.,
2017; Giorgi and Bader, 2018; Wang et al., 2018). We then describe several
proposed modifications to this model’s architecture and training strategies
aimed at improving generalization. Finally, we describe the corpora used
for evaluation, training details, and evaluation metrics.

2.1 Bidirectional Long Short-Term Memory-Conditional
Random Field (BiLSTM-CRF)

LSTMs, a type of RNN architecture, are a popular choice for sequence
labelling tasks due to their ability to use previous information in a sequence
for processing of current input. An LSTM achieves this behaviour through
the use of a memory cell, which serves as a summary of the preceding
elements of an input sequence, and is able to model dependencies between
sequence elements even if they are far apart (Hochreiter and Schmidhuber,
1997). The input to an LSTM unit is a sequence of vectors of length T ,

x1, x2, ..., xT

for which it produces an output sequence of vectors of equal length,

h1, h2, ..., hT

by applying a non-linear transformation learned during the training phase.
Each ht is called the activation of the LSTM at token t, where a token
is an instance of a sequence of characters in a document that are grouped
together as a useful semantic unit for processing. The formula to compute
one activation of an LSTM unit in the LSTM-CRF model is provided below
(Lample et al., 2016):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ct = (1− it)� ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (2)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3)

ht = ot � tanh(ct) (4)

where all W s and bs are trainable parameters, σ(·) and tanh(·) denote
the element-wise sigmoid and hyperbolic tangent activation functions, and
� is the element-wise product.

Intuitively, an LSTM unit is able to "remember" information about
previous items in a sequence (such as words in a sentence) by modifying
the cell state (ct). It regulates the flow of information in the cell state
through a series of gates (called the "update" and "forget" gates), which
themselves are simple neural network layers who’s behaviour is learned
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during the training process. Additionally, a final "output" gate decides
what information from the cell state to use when processing the next item
in the sequence.

The above-described LSTM-layer processes input in one direction, and
thus can only encode dependencies on elements that came earlier in the
sequence. Processing information after the current element is also useful.
Thus, another LSTM-layer which processes input in the reverse direction
is commonly used. The resulting network is called a bidirectional LSTM
[BiLSTM (Graves and Schmidhuber, 2005)]. The representation of a word
using this model is obtained by concatenating its left and right context
representations,

ht = [
−→
ht;
←−
ht]

which effectively encodes a word in its context.
A simple sequence labelling approach would be to use the ht’s as

features to make independent tagging decisions for each output yt. For
example, one simple strategy would be to select the label yi that has the
highest probability in hi, i.e.,

yi = argmax
k

hi[k]

where k is the number of distinct tags. However, this greedy approach
fails to consider the dependencies between subsequent labels. Therefore,
instead of modelling tagging decisions independently, BiLSTM-CRF
models them jointly using a conditional random field [CRF (Lafferty et al.,
2001)].

Each input sequence token is mapped to a pre-trained word embedding,
which is concatenated with a learned character representation of that token
(see Section 2.2). This character-enhanced word embedding is processed
by a BiLSTM network, before being fed to a dense layer which maps the
outputs of this BiLSTM network to a sequence of vectors containing the
probability of each label for each corresponding token. Finally, a CRF is
used to output the most likely sequence of predicted labels based on these
probabilities.

Figure 1 illustrates the basic BiLSTM-CRF architecture. With the
exception of the pre-trained word embeddings, all layers of the network
are learned jointly. A detailed description of the architecture is explained
in Lample et al. (2016). A similar architecture, which uses a convolutional
neural network (CNN) in place of an LSTM to learn character-level
representations, is presented in Ma and Hovy (2016).

2.2 Word embeddings

The inputs to the BiLSTM-CRF model for sequence labelling are the
individual words (or tokens) of a given sentence. A standard approach is
to utilize statistical word embedding techniques which capture functional
(i.e., semantic and syntactic) similarity of words based on their surrounding
words. Such word embeddings are learned on large unlabelled datasets,
typically containing billions of words (Collobert et al., 2011; Mikolov
et al., 2013; Pennington et al., 2014). The learned continuous vector
representations, or word embeddings, encode many linguistic patterns. In
the canonical example, the resulting vector for vec("king")− vec("man")
+ vec("woman") is closest to the vector associated with "queen",
i.e., vec("queen"). These token-based word embeddings effectively
capture distributional similarities of words (where does the word tend
to occur in a corpus?). To capture orthographic similarities (what does
the word look like?) and better handle out-of-vocabulary tokens and
misspellings, character-based word representation models (Ling et al.,
2015) have been developed. By using each individual character of a
token to generate the token vector representation, character-based word
embeddings encode sub-token patterns such as morphemes (e.g. suffixes
and prefixes), morphological inflections (e.g. number and tense) and other

Fig. 1. Architecture of the bidirectional long short-term memory network-conditional
random field (BiLSTM-CRF) model for named entity recognition (NER). Here, xi is the
ith token in the input sequence, xij is the jth character of the ith token, `(i) is the
number of characters in the ith token and ei is the character-enhanced token embedding
of the ith token. Output labels "O’ represent tokens "outside" of an entity, and label "GGP"
stands for "gene or gene product". Figure from Giorgi and Bader (2018).

information not contained in the token-based word embeddings. The
BiLSTM-CRF architecture used in this study combines character-based
word representations with token-based word representations to produce
character-enhanced word representations, allowing the model to learn both
distributional and orthographic features of words.

In this study, we used the Wiki-PubMed-PMC model, trained on
a combination of PubMed abstracts (nearly 23 million abstracts) and
PubMedCentral (PMC) articles (nearly 700,000 full-text articles) plus
approximately four million English Wikipedia articles, therefore mixing
domain-specific texts with domain-independent ones. The model was
created by Pyysalo et al. (2013) using Google’s word2vec tool (Mikolov
et al., 2013). We chose this model because previous work has shown it to
work well for the task of BioNER (Habibi et al., 2017; Giorgi and Bader,
2018; Wang et al., 2018).

2.3 Variational Dropout

Given the over-parameterization of neural networks, generalization
performance crucially relies on the ability to regularize a model
sufficiently. Dropout is a technique to prevent neural networks from
overfitting by reducing the amount of co-adaptation between units in a
neural network (Srivastava et al., 2014). The basic idea is to randomly
discard or "drop" units from the network during training. Previous
applications of BiLSTM-CRF models for BioNER (Habibi et al., 2017;
Giorgi and Bader, 2018) have relied on a single dropout layer applied to
the character-enhanced word-embeddings, the final inputs to the word-
level BiLSTM layers. This strategy was proposed by Lample et al. (2016)
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as a means of encouraging the model to make use of both character- and
word-derived information in the embedding. However, no regularization
technique was applied to the recurrent layers of the model containing the
majority of the model’s trainable parameters, which were, therefore, free to
overfit on the training data. The seemingly simple solution to this problem
is to apply dropout to the recurrent layers of the model. Unfortunately,
regularizing recurrent connections with naive applications of dropout is
ineffective, as it disrupts the RNNs ability to retain long-term dependencies
(Pachitariu and Sahani, 2013; Bayer et al., 2013; Zaremba et al., 2014).

Recently, Gal and Ghahramani (2016) have proposed a solution to this
problem, which they call variational dropout, where the same units are
dropped across multiple time steps (in our case, tokens of an input sentence)
as opposed to randomly dropping units at each time step (Figure 2). It was
demonstrated that applying variational dropout to the input, recurrent,
and output connections of an RNN significantly outperforms no dropout
and naive applications of dropout. We hypothesize that regularizing the
recurrent layers of the BiLSTM-CRF model via variational dropout will
greatly reduce the degree to which the model overfits the training corpus,
especially in the case where the training corpus is small. To test this, we
compare the performance of two BiLSTM-CRF models for the task of
BioNER: one with the dropout strategy proposed by Lample et al. (2016)
and used in previous work (Habibi et al., 2017; Giorgi and Bader, 2018),
and a second model in which variational dropout is additionally applied to
the input, recurrent, and output connections of all recurrent layers.

2.4 Transfer Learning

Transfer learning is a machine learning research problem which aims
to perform a task on a "target" dataset using knowledge learned from a
"source" dataset (Pan and Yang, 2010; Li, 2012; Weiss et al., 2016). A
formal definition of transfer learning involves defining a domain D and a
task T . A domain consists of a feature spaceX and a marginal probability
distribution P (X) over the feature space, where X = x1, ...,∈ X is
the set of all input features. Situations where the domain differs between
tasks are typically referred to as domain adaptation (Bridle and Cox, 1991;
Ben-David et al., 2010). For a given domain, D = {X , P (X)}, a task
T consists of a label space Y , and a conditional probability distribution
P (Y |X), where Y = y1, ..., yn ∈ Y is the set of all targets. The goal of
transfer learning is to learn the target conditional probability distribution
P (Yt|Xt) for the target task TT with the information gained from the
source task TS , where TS 6= TT . In our setting, the feature space X
contains the character-enhanced word embeddings, the final representation
of words fed to the LSTM layers, and the label space Y for a task T
contains the set of biomedical entity classes (e.g. gene/protein) annotated
in the training dataset for that task T .

For neural networks, transfer learning is typically implemented by
using some or all of the learned parameters of a neural network pre-
trained on a source dataset to initialize training for a second neural
network to be trained on a target dataset. Ideally, transfer learning
improves generalization of the model, reduces training times on the target
dataset, and reduces the amount of labelled data needed to obtain high
performance. Recently, we demonstrated that a simple transfer learning
strategy for BioNER (Giorgi and Bader, 2018) reduces the amount of
labelled data needed to achieve high performance from a BiLSTM-CRF
model. However, our previous work did not assess the impact of using
transfer learning to improve generalizability.

In this study, we explore the effect of transfer learning on the
generalizability of a BiLSTM-CRF model for BioNER. We apply transfer
learning in a near identical way to Giorgi and Bader (2018), by first
training on a large, silver-standard corpus (SSC), i.e., the source task TS ,
and then using the learned parameters to initialize training on a smaller,
gold-standard corpus (GSC), i.e., the target task TT . GSCs are manually

Fig. 2. Naive dropout in recurrent neural networks (RNNs) compared to variational dropout,
as proposed by Gal and Ghahramani (2016). Each square represents the unit of an RNN,
horizontal arrows the recurrent connections, and vertical arrows the input and output
connections. Coloured arrows represent connections to which dropout has been applied,
with individual colours corresponding to different dropout masks. Dashed lines represent
standard connections with no dropout. In naive dropout (a), a different dropout mask is
randomly sampled for each time step and, typically, no dropout is applied to the recurrent
layers of the neural network. In variational dropout (b), the same dropout mask is used
across all time steps for input, recurrent and output connections. Figure adapted from Gal
and Ghahramani (2016).

annotated by biological experts. As such, they tend to be small, but highly
reliable. In contrast, SSCs are annotated in an automatic or semi-automatic
fashion (e.g., by deploying existing NER tools on a large body of unlabelled
text) and therefore tend to be much larger than GSCs, but of much lower
quality. Like Giorgi and Bader (2018), we use CALBC (Collaborative
Annotation of a Large Biomedical Corpus) as our silver-standard corpus
(Rebholz-Schuhmann et al., 2010), specifically CALBC-SSC-III (Kafkas
et al., 2012). The motivation for using transfer learning here is that by
exposing the network to a much larger number of examples, it may learn
representations that apply more generally to the task of BioNER, instead
of learning representations that encode biases in the individual training
corpora.

2.5 Multi-task learning

Multi-task learning (Caruana, 1993) is a machine learning method in which
multiple learning tasks are solved at the same time. In the classification
context, multi-task learning is used to improve the performance of multiple
classification tasks by learning them jointly. The idea is that by sharing
representations between tasks, we can exploit commonalities, leading to
improved learning efficiency, prediction accuracy, and generalizability for
the task-specific models, when compared to training the models separately
(Thrun, 1996; Caruana, 1998; Baxter et al., 2000). Multi-task learning
has been used successfully for many applications of machine learning,
including natural language processing (Collobert and Weston, 2008),
speech recognition (Deng et al., 2013), computer vision (Girshick, 2015)
and drug discovery (Ramsundar et al., 2015).

Recent work has explored multi-task learning for the task of BioNER.
Crichton et al. (2017) demonstrated that a neural network multi-task
model outperforms a comparable single-task model, on average, for
the task of BioNER. Similarly, Wang et al. (2018) also found that
multi-task learning outperformed single-task learning for BioNER with
a BiLSTM-CRF. However, neither study explored the effect of multi-
task learning on the model’s ability to generalize. Given that, similar to
transfer learning, multi-task learning exposes the model to a much larger
number of training examples, we hypothesize that multi-task learning
will improve generalization. Additionally, because multi-task learning
typically requires the optimization of multiple objective or loss functions,
we hypothesize that it may serve as a form of regularization for the
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Table 1. The gold-standard corpora (GSCs) used in this work.

Entity type Corpus No. annotations

Chemicals BC4CHEMD (Krallinger et al., 2015) 84,310
BC5CDR (Li et al., 2016) 15,935
CRAFT (Bada et al., 2012) 6053

Diseases BC5CDR 12,852
NCBI-Disease (Doğan et al., 2014) 6881
Variome (Verspoor et al., 2013) 5859

Species CRAFT 6868
Linnaeus (Gerner et al., 2010) 4263
S800 (Pafilis et al., 2013) 3708

Genes/proteins BC2GM (Smith et al., 2008) 24,583
CRAFT 16,114
JNLPBA (Kim et al., 2004) 35,336

BiLSTM-CRF model and thus reduce overfitting, especially on small
training corpora. To test this, we compare the performance of a single-task
and multi-task BiLSTM-CRF model for the task of BioNER.

For our baseline (BL) single-task model, we use the same architecture
introduced by Lample et al. (2016) and described here in Section 2.1.
Specifically, we use a BiLSTM-CRF to jointly model the word and
character sequences in a given input sentence (Figure 1). Our multi-task
model (MTM) builds off this BiLSTM-CRF architecture. The MTM is a
global model comprised of distinct, task-specific input and output layers,
while the hidden layers (and their parameters) are shared across all tasks
(Figure 3). While it is possible to construct different configurations of the
MTM (i.e. by sharing or not sharing particular layers between tasks) we
follow Wang et al. (2018) who found it best to share all hidden layers of the
BiLSTM-CRF model for BioNER. In our setting, each dataset the model is
trained on represents a single task, and we therefore use the terms task and
dataset interchangeably. A multi-task model (MTM), therefore, consists
of m different models, each trained on a separate dataset, Dm, while
sharing some of the model parameters across datasets. During training,
the model optimizes the log-probability of the correct tag sequence for
each dataset. In practice, the model is trained in an end-to-end fashion.

2.6 Datasets

We used a total of 12 biomedical GSCs for our experiments,
each containing hand-labelled annotations for one or more of the
major biomedical entity classes: chemicals, diseases, species, and
genes/proteins. In our transfer learning experiments, we use a random
100,000 abstracts from the silver-standard CALBC-III-Small corpus
(Kafkas et al., 2012) as our source dataset. Containing over 2 million
annotations, this corpus subset is many times larger than any of the GSCs.

One complication in the transfer learning experiments is that some of
the abstracts in the SSC are also present in the GSC, thus we removed
such cases using a blacklist of duplicated PubMed IDs. We also compiled
a blacklist of single-token entities that appear in the SSC, and are present in
at least one of the GSCs but never annotated (see Supplementary Material).
These are mostly higher level entity categories, like "Genes", "elderly",
"infertile" and "epitope", and arguably do not constitute biomedical
named entities. We found this de-noising step to be important for good
performance during transfer learning (Giorgi and Bader, 2018).

Word labels for each dataset are encoded using the BIO tag scheme.
In this scheme, a word describing a protein or gene entity, for example, is
tagged with "B-PRGE" if it is at the beginning of the entity and "I-PRGE"
if it is in the middle of the entity. All other words that do not describe any
specific entities are tagged as "O".

Fig. 3. Architecture of the bidirectional long short-term memory network-conditional
random field (BiLSTM-CRF) multi-task model (MTM). For each task, there is a distinct
input layer (not shown), which connects to the shared hidden layers. At the output, there
are distinct conditional random field (CRF) layers corresponding to each of the input layers
or tasks. The model is capable of supporting an arbitrary number of input datasets. In our
setting, each dataset the model is trained on represents a single task, and we therefore use
the terms ’task’ and ’dataset’ interchangeably

Nearly all of the GSCs were originally collected by Crichton et al.
(2017), and are publicly available at https://github.com/cambridgeltl/MTL-
Bioinformatics-2016. We evaluated our models on especially popular
corpora, in order to compare our results to other studies which evaluate
deep learning methods for BioNER (Crichton et al., 2017; Habibi et al.,
2017; Giorgi and Bader, 2018; Wang et al., 2018). Table 1 lists each corpora
along with its size in number of annotations.

2.7 Hyperparameters and model training

The selection of good hyperparameters for a given neural network is
a time-consuming, but necessary task (Snoek et al., 2012). Optimal
hyperparameters can often make the difference between mediocre and
state-of-the-art performance; commonly tuned hyperparameters include
the learning rate, batch size, and dropout rate. In spite of this, previous
applications of BiLSTM-CRF to BioNER have been presented without
a strong validation for why certain hyperparameter values were chosen
(Habibi et al., 2017; Giorgi and Bader, 2018; Wang et al., 2018),
which is likely due to the computational cost of determining optimal
hyperparameters via methods such as grid search, randomized search or
more advanced optimization techniques such as Tree-structured Parzen
Estimator [TPE (Bergstra et al., 2011)]. Recently, Reimers and Gurevych
(2017) presented a set of empirically validated, optimal hyperparameters
for deep BiLSTM networks for sequence labelling tasks, which we follow
in this work (Table 2). Some hyperparameters, such as the dropout rate,
were modified across experiments and are presented in their respective
Results sections.

In all experiments, the BiLSTM-CRF model was trained for 50 epochs,
using the back-propagation algorithm to update the parameters on every
training step. In each training session, the character embedding vectors
are initialized randomly and learned jointly with the other parameters of
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Table 2. Hyperparameter values and model details of the bidirectional long short-term memory network-conditional random field (BiLSTM-CRF) model used in
this study.

Hyperparameter Value Comment

Word embeddings Wiki-
PubMed-
PMC

Wiki-PubMed-PMC model (Pyysalo et al., 2013), trained on a combination of PubMed abstracts,
PubMedCentral (PMC) articles and approximately four million English Wikipedia articles using Google’s
word2vec (Mikolov et al., 2013).

Character representation LSTM Character representations in the BiLSTM-CRF model can be learned either with convolutional neural
networks (CNNs) (Ma and Hovy, 2016) or long short-term memory (LSTM) networks (Lample et al.,
2016).

Optimzer Nadam Parameters follow those provided in Dozat (2016).
Gradient normalization Γ = 1 A common strategy to deal with the exploding gradient problem (Pascanu et al., 2013). Rescales the gradient

whenever the norm goes over some threshold Γ.
Tagging scheme BIO In the BIO tagging scheme, each token of the training corpus is tagged as occuring at the beginning of an

entity mention (B), inside an entity mention (I) or outside an entity mention (O).
Dropout rate 0.3 Fraction of units to drop in a given layer. Dropout was applied to the character-enhanced word embeddings.
No. LSTM layers 2 The number of word-level LSTM layers.
No. Recurrent units 100 The number of units in each LSTM layer within the BiLSTM-CRF model. Because all LSTM layers are

bi-directional in this model, the total number of units per LSTM layer is 200.
Mini-batch size 32 When using a batch size 6= 1, input sequences must be padded. We truncated or right-padded every input

sequence in the training corpus to match a length of 100 tokens. Similarly, every character sequence was
truncated or right-padded to match a length of 25 characters.

the model. The word embedding vectors are retrieved directly from a pre-
trained word embedding lookup table and the classical Viterbi algorithm
is used to infer the final labels for the CRF model. The model was
implemented using Keras (https://keras.io/).

In the transfer learning setting, a BiLSTM-CRF model was first trained
on the CALBC-SSC-III corpus for a single epoch. The learned weights
were then used to initialize training on one of the 12 GSCs introduced
in Section 2.6. The weights of the final layer of the model, the CRF, are
randomly initialized and the state of the optimizer is reset when a model
is transferred.

When training the MTM, each dataset is used to update the parameters
of the model, in random order. For example, if the multi-task model is
trained on two datasets, we first randomly select one of these datasets
and use it to update all shared parameters, and parameters specific to that
dataset (via forward and backward propagation), followed by using the
remaining dataset to update all shared parameters, and parameters specific
to that dataset. We consider this process a single epoch. The model thus
behaves like separate neural networks, each training on its own dataset and
performing prediction with its own output layer.

2.8 Evaluation metrics

For each experiment, we measure the performance of the model in terms
of how it performs on the same corpus it was trained on, which we refer to
as "in-corpus" performance, as well as how it performs on a corpus other
than the one it was trained on, or "out-of-corpus" performance – sometimes
called translational or cross-corpus performance. We use out-of-corpus
performance to measure the model’s generalizability. When evaluating
in-corpus performance, we used five-fold cross-validation, and report the
average performance from across the five folds. When evaluating out-of-
corpus performance, we used an entire corpus for training – except for
10% of examples which are used as a validation set – and a second, entire
corpus for testing. Each out-of-corpus experiment was run three times and
average results are reported.

We compared all methods in terms of F1-score on the test sets. F1-
score is computed as the harmonic mean of precision (P) and recall (R),
where precision is the percentage of predicted labels that are gold labels

(i.e., labels that appear in the training corpus), and recall is the percentage
of gold labels that are correctly predicted:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 =
2 ∗ P ∗R
P +R

(7)

where TP is the number of true positives predicted by the model, FP
the number of false positives and FN the number of false negatives.
In the case of in-corpus performance, a predicted label was considered
correct if and only if it exactly matched a gold label. Because annotation
standards differ across corpora, we used a relaxed matching criterion when
evaluating out-of-corpus performance, namely, right-boundary matching,
which was found to be a suitable alternative to exact boundary matching
in an evaluation of multiple BioNER matching strategies by Tsai et al.
(2006). In this scheme, a predicted label is considered correct as long as
the right boundary of the text span matched the gold label (e.g., if the gold
label is "familial gastric cancer" and the predicted label "gastric cancer",
the prediction is scored as a true positive).

3 Results

3.1 Establishing a baseline

To establish a strong baseline for each corpus used in this study, we
performed five-fold cross-validation using the hyperparameters presented
in Section 2.7. We use the dropout strategy proposed by Lample et al.
(2016) and employed by Habibi et al. (2017) and Giorgi and Bader (2018),
which applies a single dropout layer to the final inputs to the word-level
BiLSTM layer, the character-enhanced word embeddings, with a dropout
rate of 0.3. The hope is that by randomly dropping dimensions from the
character-enhanced word embeddings, the model will learn to make use
of both character-derived and word-derived information in the embedding.
In Table 3, we present our baseline F1-scores along with the best reported
F1-scores from Habibi et al. (2017), Wang et al. (2018), and Giorgi and
Bader (2018), all of whom use nearly identical BiLSTM-CRF models and

restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. 
The copyright holder has placed this preprint (which was not peer-reviewed) in the Public Domain. It is no longer. https://doi.org/10.1101/526244doi: bioRxiv preprint 

https://doi.org/10.1101/526244


“output” — 2019/1/21 — page 7 — #7

short Title 7

Table 3. Previously published state-of-the-artF1-scores for biomedical named entity recognition (BioNER) for all corpora used in this study. All scores are compared
to the scores obtained by our baseline model via five-fold cross-validation, using an exact matching criteria. Statistical significance is measured through a two-tailed
t-test. Bold: best scores, *: significantly different than our baseline (p ≤ 0.05), **: significantly different than our baseline (p ≤ 0.01).

Entity Corpus Crichton et al. (2017) Habibi et al. (2017) Wang et al. (2018) Giorgi and Bader (2018) Our baseline

Chemicals BC4CHEM 82.95** 86.62** 89.37** – 88.46 ± 0.61
BC5CDR 89.22** 91.05** – 91.64** 92.82 ± 0.80
CRAFT 80.00** – – – 84.98 ± 1.98

Diseases BC5CDR 80.46** 83.49** – 82.32** 84.49 ± 0.33
NCBI-Disease 80.46** 84.64** 86.14 84.72** 87.01 ± 1.17
Variome – 86.05 – 85.45 85.75 ± 2.83

Species CRAFT 97.74 – – – 96.28 ± 2.21
Linnaeus 83.98** 93.40* – 93.54* 89.44 ± 3.91
S800 – 72.10 – 74.98 72.75 ± 2.42

Genes/proteins BC2GM 73.04** 78.57** 80.74** 78.66** 81.48 ± 0.48
CRAFT 75.16** – – – 84.46 ± 6.08
JNLPBA 69.73** 77.25* – – 80.92 ± 2.50

the same word embeddings as used in this study, and Crichton et al. (2017),
who used a CNN-based model for BioNER.

Our baseline significantly outperforms previous results obtained with
BiLSTM-CRF models for seven out of the twelve corpora evaluated and
was comparable to the best method in the remaining five cases. Since our
architecture is nearly-identical and paired with the same word embeddings,
this is likely due to our choice of optimal hyperparameters as presented by
Reimers and Gurevych (2017). For the remainder of the study, we compare
all performance scores to our baseline.

3.2 Can BiLSTM-CRF generalize for BioNER?

To illustrate the poor generalizability of a BiLSTM-CRF model for
BioNER, we trained the model on various corpora and evaluated its
performance on independent corpora annotated for the same entity type.
Even when corpora are annotated for the same entity type, they are
unlikely to capture the same underlying distribution because they were
made by different groups with no explicit consensus about what should
be annotated. To control for the expected drop in performance due to
differing annotation guidelines, we used a relaxed matching criterion in our
evaluation (described in Section 2.8). We found that, even with a relaxed
matching criterion, performance of the model as measured by F1-score
falls by an average of 31.16% when the model is evaluated on a corpus
other than the one it was trained on (Table 4). These results demonstrate
the dramatically poor generalizability of BiLSTM-CRF for BioNER, even
though the model obtains state-of-the-art results when trained and tested
on the same corpus (Table 3). Out-of-corpus performance was worst for
chemicals, falling by an average of 33.45%, followed by genes/proteins
(29.27%), then by species (28.47%), and disease (26.09%). This ranking
largely appeals to intuition. Gene and protein nomenclature, for example,
is highly irregular. In contrast, the naming of species of living things
follows a formal, standard naming system (i.e. binomial nomenclature,
following the International Code of Zoological Nomenclature, or ICZN).
In a single case — when the model was trained on BC4CHEMD and
tested on BC5CDR — out-of-corpus performance is better than in-corpus
performance. This suggests that the annotations in BC5CDR are well-
predicted by a model trained on BC4CHEMD, and therefore the relaxed
matching criterion used when evaluating out-of-corpus but not in-corpus
performance offers an unfair advantage.

3.3 Improved regularization

In this experiment, we explore the effect that additional regularization of
the BiLSTM-CRF model via variational dropout (see Section 2.3) has on

both in-corpus and out-of-corpus performance. In Table 5, we compare
the in-corpus performance of the baseline (BL) BiLSTM-CRF model
employing a simple dropout strategy – proposed by Lample et al. (2016)
and used in previous applications of BiLSTM-CRF to BioNER (Habibi
et al. (2017); Giorgi and Bader (2018)) – compared to a model in which
variational dropout (VD) has been additionally applied to the recurrent
layers. We use dropout ratios of 0.3, 0.3 and 0.1 for the input, output and
recurrent connections, respectively. In Table 6, we measure the effect that

Table 4. In-corpus (IC) and out-of-corpus (OOC) performance, measured by
F1-score, of the bidirectional long short-term memory-conditional random
field model (BiLSTM-CRF). IC performance is derived from five-fold cross-
validation, using an exact matching criteria. OOC performance is derived by
training on one corpus (train) and testing on another annotated for the same
entity type (test) using a relaxed, right-boundary matching criteria.

Entity Train Test IC OOC ∆F1

Chemicals BC4CHEMD BC5CDR 88.46 90.90 -2.43
CRAFT – 47.44 41.02

BC5CDR BC4CHEMD 92.82 71.81 21.00
CRAFT – 39.55 53.27

CRAFT BC4CHEMD 84.98 40.50 44.47
BC5CDR – 41.59 43.39

Diseases BC5CDR NCBI-Dis. 84.49 76.67 7.82
Variome – 74.03 10.46

NCBI-Dis. BC5CDR 87.01 69.62 17.38
Variome – 74.98 12.03

Variome BC5CDR 85.75 22.45 63.30
NCBI-Dis. – 40.17 45.58

Species CRAFT Linnaeus 96.28 45.32 50.96
S800 – 36.88 59.40

Linnaeus CRAFT 89.44 82.49 6.95
S800 – 62.90 26.54

S800 CRAFT 72.75 57.09 15.65
Linnaeus – 61.43 11.31

Genes/proteins BC2GM CRAFT 81.48 56.04 25.44
JNLPBA – 69.77 11.72

CRAFT BC2GM 84.46 44.11 40.35
JNLPBA – 52.88 31.58

JNLPBA BC2GM 80.92 51.03 29.88
CRAFT – 44.29 36.62
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Table 5. In-corpus (IC) performance, measured by F1-score, of the baseline
(BL) bidirectional long short-term memory-conditional random field (BiLSTM-
CRF) compared to a BiLSTM-CRF with variational dropout (VD). In the BL
model, dropout is applied only to the character-enhanced word embeddings.
In the VD model, dropout is additionally applied to the input, recurrent, and
output connections of all LSTM layers. IC performance is derived from five-
fold cross-validation, using an exact matching criteria. Statistical significance
is measured through a two-tailed t-test. Bold: best scores, σ: standard deviation,
*: significantly different than the BL (p ≤ 0.05), **: significantly different
than the BL (p ≤ 0.01).

BL VD

Entity Corpus Avg. σ Avg. σ

Chemicals BC4CHEMD 88.46 0.61 88.71 0.76
BC5CDR 92.82 0.80 93.08 0.82
CRAFT 84.98 1.98 85.22 1.37

Disease BC5CDR 84.49 0.33 85.10 0.56
NCBI-Dis. 87.01 1.17 87.60 1.50
Variome 85.75 2.83 85.69 3.81

Species CRAFT 96.28 2.21 96.38 2.26
Linnaeus 89.44 3.91 89.66 7.47
S800 72.75 2.42 77.39 4.17

Genes/proteins BC2GM 81.48 0.48 83.10** 0.50
CRAFT 84.46 6.08 86.09 5.19
JNLPBA 80.92 2.50 81.95 2.62

variational dropout has on the generalizability of the model, by comparing
out-of-corpus performance to the baseline.

In general, variational dropout has a small positive impact on in-corpus
performance. For at least two corpora, S800 and BC2GM, variational
dropout leads to a large improvement in performance, but only the
latter case is statistically significant. For out-of-corpus performance,
variational dropout improves performance for nearly every train/test
corpus pair we evaluated, with an average improvement of 4.62%. In
some cases, variational dropout leads to sizable improvements in out-
of-corpus performance, such as when the model was trained on S800
and tested on CRAFT (19.34%), or trained on CRAFT and tested on
BC5CDR (15.05%). In one case – when trained on BC4CHEMD and tested
on BC5CDR – variational dropout reduced out-of-corpus performance,
although the performance difference was minimal (less than 0.5%). This
corroborates our hypothesis in Section 3.2 that BC5CDR is well-predicted
by BC4CHEMD, and may explain why additional regularization failed to
improve performance in this case.

In summary, variational dropout improves the out-of-corpus
performance of the model, without degrading in-corpus performance.
Regularization of the recurrent layers of a BiLSTM-CRF model via
variational dropout is, therefore, a straightforward way to improve the
generalizability of the model for BioNER.

3.4 Transfer learning

In this experiment, we quantify the effect that a transfer learning strategy
for BiLSTM-CRF has on both in-corpus and out-of-corpus performance. In
Table 7, we compare the in-corpus performance of the baseline BiLSTM-
CRF model (BL) to that of the model trained with transfer learning (TL)
and in Table 8 we similarly compare out-of-corpus performance of the
two models. In the transfer learning setting, the model was pre-trained on
the CALBC-SSC-III, which is annotated for chemicals, diseases, species
and genes/proteins, before being trained on one of the 12 GSCs, each
annotated for a single entity class. The state of the optimizer is reset during

Table 6. Out-of-corpus (OOC) performance, measured by F1-score, of the
baseline (BL) bidirectional long short-term memory-conditional random field
(BiLSTM-CRF) compared to a BiLSTM-CRF with variational dropout (VD).
In the BL model, dropout is applied only to the character-enhanced word
embeddings. In the VD model, dropout is additionally applied to the input,
recurrent, and output connections of all LSTM layers. OOC performance is
derived by training on one corpus (train) and testing on another annotated for the
same entity type (test) using a relaxed, right-boundary matching criteria. Bold:
best scores, *: significantly different than the BL (p ≤ 0.05), **: significantly
different than the BL (p ≤ 0.01).

Entity Train Test BL VD ∆F1

Chemicals BC4CHEMD BC5CDR 90.90 90.61 -0.29
CRAFT 47.44 47.67 0.23

BC5CDR BC4CHEMD 71.81 72.41 0.60
CRAFT 39.55 41.30** 1.74

CRAFT BC4CHEMD 40.50 42.65 2.14
BC5CDR 41.59 56.64** 15.05

Diseases BC5CDR NCBI-Dis. 76.67 80.86* 4.19
Variome 74.03 74.83 0.81

NCBI-Dis. BC5CDR 69.62 74.96** 5.33
Variome 74.98 75.69 0.72

Variome BC5CDR 22.45 30.38* 7.93
NCBI-Dis. 40.17 45.16** 4.99

Species CRAFT Linnaeus 45.32 53.25* 7.93
S800 36.88 46.10** 9.21

Linnaeus CRAFT 82.49 82.85 0.36
S800 62.90 66.93* 4.02

S800 CRAFT 57.09 76.44** 19.34
Linnaeus 61.43 67.05* 5.62

Genes/proteins BC2GM CRAFT 56.04 58.17 2.12
JNLPBA 69.77 70.79** 1.02

CRAFT BC2GM 44.11 49.12* 5.01
JNLPBA 52.88 56.30 3.42

JNLPBA BC2GM 51.03 55.61 4.57
CRAFT 44.29 49.08 4.79

this transfer, but model weights for all layers beside the final CRF layer
are retained (See Sections 2.4 and 2.7).

In general, transfer learning had a small positive effect on in-corpus
performance, boosting the average F1-score by approximately 1%. In
contrast, transfer learning had a large positive effect on out-of-corpus
performance, improving performance for nearly every train/test pair we
evaluated for an average improvement of 6.48%. In a handful of cases,
such as when the model was trained on the CRAFT corpus and tested
on the BC5CDR corpus, performance improved by over 10%. In a single
case (i.e. when the model was trained on Variome and tested on BC5CDR)
transfer learning doubled out-of-corpus performance over the baseline.

We conclude that the use of transfer learning improves the
generalizability of BiLSTM-CRF models for BioNER, in some cases
dramatically, while preserving in-corpus performance.

3.5 Multi-task learning

To assess the effect that a multi-task learning strategy for BiLSTM-CRF
has on both in-corpus and out-of-corpus performance, we evaluate a model
trained on all corpus pairs within an entity class. For each model, there is
a set of "train", "partner" and "test" corpora. We define "train" to be the
corpus a model was trained on, "partner" to be the second corpus included
in the training session under the MTM, and "test" to be the corpus the model
was evaluated on. In Table 9, we compare the in-corpus performance of
the single-task, baseline BiLSTM-CRF model, to that of
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Table 7. In-corpus (IC) performance, measured by F1-score, of the baseline
(BL) bidirectional long short-term memory-conditional random field (BiLSTM-
CRF) compared to a BiLSTM-CRF trained with transfer learning (TL). The
TL model was pre-trained on the CALBC-Small-III corpus. IC performance
is derived from five-fold cross-validation, using an exact matching criteria.
Statistical significance is measured through a two-tailed t-test. Bold: best scores,
σ: standard deviation, *: significantly different than the BL (p ≤ 0.05), **:
significantly different than the BL (p ≤ 0.01).

BL TL

Entity Corpus Avg. σ Avg. σ

Chemicals BC4CHEMD 88.46 0.61 88.98 0.63
BC5CDR 92.82 0.80 92.20 0.86
CRAFT 84.98 1.98 85.80 1.74

Disease BC5CDR 84.49 0.33 84.41 0.24
NCBI-Dis. 87.01 1.17 87.66 0.86
Variome 85.75 2.83 86.69 3.03

Species CRAFT 96.28 2.21 96.55 1.72
Linnaeus 89.44 3.91 90.72 4.90
S800 72.75 2.42 74.93 3.27

Genes/proteins BC2GM 81.48 0.48 80.65* 0.57
CRAFT 84.46 6.08 85.50 4.59
JNLPBA 80.92 2.50 81.56 2.73

Table 8. Out-of-corpus (OOC) performance, measured by F1-score, of the
baseline (BL) bidirectional long short-term memory-conditional random field
(BiLSTM-CRF) compared to a BiLSTM-CRF trained with transfer learning
(TL). The TL model was pre-trained on the CALBC-Small-III corpus. OOC
performance is derived by training on one corpus (train) and testing on another
annotated for the same entity type (test) using a relaxed, right-boundary
matching criteria. Statistical significance is measured through a two-tailed t-
test. Bold: best scores, *: significantly different than the BL (p ≤ 0.05), **:
significantly different than the BL (p ≤ 0.01).

Entity Train Test BL TL ∆F1

Chemicals BC4CHEMD BC5CDR 90.90 90.73 -0.17
CRAFT 47.44 47.02 -0.42

BC5CDR BC4CHEMD 71.81 74.27* 2.46
CRAFT 39.55 41.20* 1.64

CRAFT BC4CHEMD 40.50 46.15* 5.64
BC5CDR 41.59 58.57** 16.98

Diseases BC5CDR NCBI-Dis. 76.67 78.51* 1.83
Variome 74.03 77.18 3.16

NCBI-Dis. BC5CDR 69.62 73.19 3.56
Variome 74.98 76.95* 1.97

Variome BC5CDR 22.45 50.28** 27.83
NCBI-Dis. 40.17 58.64** 18.47

Species CRAFT Linnaeus 45.32 53.37 8.04
S800 36.88 46.46** 9.57

Linnaeus CRAFT 82.49 83.07 0.57
S800 62.90 67.64* 4.73

S800 CRAFT 57.09 69.56** 12.47
Linnaeus 61.43 67.21* 5.78

Genes/proteins BC2GM CRAFT 56.04 56.84 0.79
JNLPBA 69.77 70.27 0.50

CRAFT BC2GM 44.11 49.69* 5.58
JNLPBA 52.88 57.91* 5.03

JNLPBA BC2GM 51.03 57.81* 6.78
CRAFT 44.29 56.90** 12.61

Table 9. In-corpus (IC) performance, measured by F1-score, of the baseline
(BL) bidirectional long short-term memory-conditional random field (BiLSTM-
CRF) compared to the multi-task model (MTM). The multi-task model (MTM)
is trained on pairs of corpora (train, partner), where each corpus is used during
training to update the parameters of all hidden layers. IC performance is derived
from five-fold cross-validation, using an exact matching criteria. Statistical
significance is measured through a two-tailed t-test. Bold: best scores, σ:
standard deviation, *: significantly different than the BL (p ≤ 0.05), **:
significantly different than the BL (p ≤ 0.01).

STM MTM

Entity Train Partner Avg. σ Avg. σ

Chemicals BC4CH. BC5CDR 88.46 0.61 88.81 0.60
CRAFT – – 88.67 0.50

BC5CDR BC4CH. 92.82 0.80 93.00 0.55
CRAFT – – 91.52* 0.68

CRAFT BC4CH. 84.98 1.98 85.06 1.49
BC5CDR – – 84.74 1.33

Diseases BC5CDR NCBI-Dis. 84.49 0.33 83.85 0.64
Variome – – 83.29* 0.80

NCBI-Dis. BC5CDR 87.01 1.17 86.89 1.74
Variome – – 86.27 1.44

Variome BC5CDR 85.75 2.83 86.13 2.49
NCBI-Dis. – – 85.73 2.46

Species CRAFT Linnaeus 96.28 2.21 96.82 1.51
S800 – – 96.90 1.31

Linnaeus CRAFT 89.44 3.91 89.72 4.51
S800 – – 92.18 3.42

S800 CRAFT 72.75 2.42 74.80 2.98
Linnaeus – – 74.43 1.90

Genes/proteins BC2GM CRAFT 81.48 0.48 79.41** 0.14
JNLPBA – – 79.60** 0.53

CRAFT BC2GM 84.46 6.08 87.76 2.65
JNLPBA – – 85.36 4.74

JNLPBA BC2GM 80.92 2.50 81.61 2.53
CRAFT – – 81.15 2.04

the multi-task model (MTM). In Table 10 we similarly compare out-of-
corpus performance of the BL and MTM. In our experiments, multi-task
learning is implemented nearly identically to Wang et al. (2018): by
training a BiLSTM-CRF model – which shares the parameters of all hidden
layers – on more than one dataset simultaneously (See Sections 2.5 and
2.7).

Multi-task learning, as applied here, appears to have little impact
on in-corpus performance. In a few cases, such as when the model
was trained on BC2GM alongside CRAFT or JNLPBA, the MTM
significantly unperformed the baseline. Despite this, average performance
of the BL and the MTM were nearly identical, at 85.74% and 85.99%
respectively. Multi-task learning improved out-of-corpus performance
for every train/partner/test corpus pair we evaluated, with an average
improvement of 8.42% (Table 10). In some cases, this improvement was
substantial, such as when the model was trained on the Variome and NCBI-
Disease corpora and tested on the BC5CDR corpus (37.61%). However,
we do observe significant variability overall in the degree of improvement,
suggesting that multi-task learning is sensitive to the choice of train/partner
pairs.

In summary, a multi-task learning strategy of simultaneously training
on multiple datasets appears to be an effective way to significantly
boost out-of-corpus performance of BiLSTM-CRF models for BioNER.
Our results do suggest, however, that both in-corpus and out-of-corpus
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Table 10. Out-of-corpus (OOC) performance, measured byF1-score, of the baseline (BL) bidirectional long short-term memory-conditional random field (BiLSTM-
CRF) compared to the multi-task model (MTM). The multi-task model (MTM) is trained on pairs of corpora (train, partner), where each corpus is used during
training to update the parameters of all hidden layers. OOC performance is derived by training on a pair of corpora (train, test) and testing on another corpus
annotated for the same entity type (test) using a relaxed, right-boundary matching criteria. Bold: best scores, *: significantly different than the BL (p ≤ 0.05), **:
significantly different than the BL (p ≤ 0.01).

Entity Train Partner Test BL MTM ∆F1

Chemicals BC4CHEMD BC5CDR CRAFT 47.44 47.74 0.29
CRAFT BC5CDR 90.90 90.97 0.07

BC5CDR BC4CHEMD CRAFT 39.55 44.79** 5.24
CRAFT BC4CHEMD 71.81 72.54 0.73

CRAFT BC4CHEMD BC5CDR 41.59 71.68** 30.09
BC5CDR BC4CHEMD 40.50 49.80** 9.30

Diseases BC5CDR NCBI-Dis. Variome 74.03 76.84* 2.81
Variome NCBI-Dis. 76.67 77.33 0.66

NCBI-Dis. BC5CDR Variome 74.98 76.32* 1.34
Variome BC5CDR 69.62 70.72 1.10

Variome BC5CDR NCBI-Dis. 40.17 69.35** 29.18
NCBI-Dis. BC5CDR 22.45 60.06** 37.61

Species CRAFT Linnaeus S800 36.88 50.26 13.38
S800 Linnaeus 45.32 57.80** 12.48

Linnaeus CRAFT S800 62.90 67.90 4.99
S800 CRAFT 82.49 82.69 0.20

S800 CRAFT Linnaeus 61.43 67.90** 6.46
Linnaeus CRAFT 57.09 80.04** 22.94

Genes/proteins BC2GM CRAFT JNLPBA 69.77 70.26 0.49
JNLPBA CRAFT 56.04 57.17 1.12

CRAFT BC2GM JNLPBA 52.88 58.78* 5.89
JNLPBA BC2GM 44.11 45.12 1.01

JNLPBA BC2GM CRAFT 44.29 52.78* 8.49
CRAFT BC2GM 51.03 57.35** 6.32

performance of the multi-task model are sensitive to the choice of partner
corpus.

3.6 Combining the proposed modifications

We next evaluate if combinations of the proposed modifications improve
BiLSTM-CRFs model performance above individual modifications
(Figure 4). In general, all combinations of the proposed modifications
improve average out-of-corpus performance without degrading in-corpus
performance. However, not all combinations are additive. For example,
multi-task learning improves out-of-corpus performance by 8.42%,
transfer learning by 6.48% but together only by 5.61%. The biggest
boost to out-of-corpus performance is achieved by the MTM paired with
additional regularization of the recurrent layers via variational dropout,
improving average performance by 10.75%. Therefore, we recommend
this combination of strategies to produce a model with the highest expected
out-of-corpus performance.

4 Discussion
In this study, we demonstrated that BiLSTM-CRF, a popular deep
learning-based approach to BioNER, does a poor job generalizing, often
dramatically over-fitting the corpus it was trained on. We quantified the
degree of over-fitting by first establishing a state-of-the-art baseline model,
and then evaluated its performance when trained and tested on the same
corpus (in-corpus performance) and when trained on one corpus and tested
on another annotated for the same entity type (out-of-corpus performance).
Using out-of-corpus performance to measure generalization, we found that
even with a relaxed matching criterion, out-of-corpus performance of the

Fig. 4. Violin plot of the average in-corpus (IC) and out-of-corpus (OOC) performance,
measured by F1-score, of the bidirectional long short-term memory-conditional random
field (BiLSTM-CRF) model. IC performance is derived from five-fold cross-validation,
using an exact matching criteria. OOC performance is derived by training on one corpus
(train) and testing on another corpus annotated for the same entity type (test) using a relaxed,
right-boundary matching criterion. The average performance of a model employing one of
each of the proposed modifications: variational dropout (VD), transfer learning (TL) and
multi-task learning (MTL) independently as well as models which employ all combinations
of these methods is shown.

model falls by an average of 31.16%. We then evaluated three modifications
– variational dropout, transfer learning, and multi-task learning and
demonstrated that these modifications improve generalizability and reduce
over-fitting. On average, variational dropout improves out-of-corpus
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performance by 4.62%, transfer learning by 6.48% and multi-task learning
by 8.42%. Importantly, each modification improves average out-of-
corpus performance without degrading average in-corpus performance.
Finally, we found that some combinations of these modifications lead to
additive improvements in performance, most notably multi-task learning
paired with variational dropout, which improved average out-of-corpus
performance by 10.75%.

The modifications we propose in this work are often quite
easy to implement in practice. For example, using a framework
like Keras (https://keras.io/), implementing variational dropout is a
matter of providing dropout rates as arguments to an LSTM layer
(https://keras.io/layers/recurrent/#lstm). Sharing the parameters of hidden
layers across models (i.e., the multi-task learning setting) is as
easy as defining these layers globally and re-using them when
defining a new model. We provide our model to the community
as an easy-to-use tool for BioNLP under a permissive MIT license
(https://github.com/BaderLab/saber).

We note three limitations of our work. Firstly, certain combinations
of these modifications are not additive. For example, multi-task learning
improves out-of-corpus performance by 8.42%, transfer learning by 6.48%
but together only by 5.61%. Based on our experiments, we recommend
using multi-task learning paired with variational dropout, which boosted
out-of-corpus performance by 10.75%. Secondly, the most promising
modification to BiLSTM-CRF in our experiments, multi-task learning,
appears to be sensitive to the choice of train/partner corpus pairs. A user
should therefore evaluate multiple train/partner sets to determine the most
beneficial set of training corpora for their use case. Thirdly, while transfer
learning is not part of our recommended combination, we previously
found it to significantly improve performance on smaller datasets (less
than 6000 labels) (Giorgi and Bader, 2018), which we did not evaluate
here. Presumably, it would still be useful and should be considered in
these cases.

4.1 Related Work

In our multi-task experiments, we restricted ourselves to training only
on two corpora, which were annotated for the same entity type. These
restrictions were made only to keep the number and the training time
of the multi-task experiments within a reasonable range and not because
of inherent limitations in the model’s architecture. Previous work has
suggested that multi-task learning with deep neural networks for the task
of BioNER may increase performance even when trained on corpora that
do not annotate the same entity class. Crichton et al. (2017) report, for
example, that the best partner for Linnaeus (Species) out of 15 datasets
was NCBI-Disease (Disease), not another dataset which was annotated for
Species. Additionally, previous work (Wang et al., 2018) has suggested that
training a BiLSTM-CRF on many corpora (i.e., greater than two) in a multi-
task setting leads to sizable improvements in BioNER. Thus, a further
direction for our work could be to explore performance improvements
as increasing numbers of corpora annotated for different entity types are
used for training. We suspect that this could significantly boost out-of-
corpus and generalization performance. These findings, combined with
our work here, provide an interesting new direction for deep-learning
based approaches to BioNER, one that moves away from training/testing
on individual corpora and towards one in which a single model is trained
on many corpora (and even additionally pre-trained on an extremely large
SSC), to produce a robust and reliable tagger suitable for deployment on
massive literature databases (such as PubMed).

Our strategy for transfer learning involves pre-training a model on a
large SSC and transferring the learned weights to initialize training on a
smaller, but typically much higher quality, GSC. As we were writing this

paper, a novel transfer learning strategy for NLP demonstrated state-of-
the-art performance on many benchmark datasets (Radford et al., 2018;
Howard and Ruder, 2018; Devlin et al., 2018). This transfer learning
strategy involves first training a language model on a massive corpus of
unlabeled text. The task of a language model is to predict the next most
probable word given a sequence of words. By learning this task, the model
is required to capture both syntax and semantics, and is also required to
encode something akin to common sense. This is followed by the addition
of task-specific layers, which take the output of the language model as
input and are trained on labelled data in order for the model to learn some
specific classification task such as NER. This transfer learning strategy
has already been applied to BioNER with some success (Sachan et al.,
2018). In the future, we plan to explore this transfer learning strategy for
BioNER, and also for other tasks in the biomedical text-mining pipeline,
such as relation and event extraction.

5 Conclusion
While biomedical named entity recognition (BioNER) has recently made
substantial advances in performance with the application of deep learning,
current applications suffer from poor generalizability. In this study, we first
quantified the out-of-corpus performance of a bidirectional long short-
term memory network-conditional random field (BiLSTM-CRF) model
for BioNER by training on one corpus and testing on another annotated
for the same entity type, our measure of the model’s ability to generalize.
We found that even with a relaxed scoring criteria, performance dropped
by an average of 31.16% when compared to a state-of-the-art baseline. We
then explored three modifications: variational dropout, transfer learning,
and multi-task learning, which reduce the model’s tendency to overfit.
Furthermore, we show that combining multi-task learning and variational
dropout under a single model boosts out-of-corpus performance by over
10%. We propose that our model will significantly outperform previous
applications of BiLSTM-CRF models to BioNER when deployed for the
large-scale annotation of widely diverse articles, such as the articles found
in databases like PubMed. We make our model accessible as an easy-to-use
BioNLP tool, Saber (https://github.com/BaderLab/saber).
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