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Abstract:  

Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. 
Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged 
as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation 
data. Moreover, in silico annotation tools obtain and rank candidate molecules for fragmentation spectra. 
Ideally, all structural information obtained and inferred from these computational tools could be combined to 
increase the resulting chemical insight one can obtain from a data set. However, integration is currently 
hampered as each tool has its own output format and efficient matching of data across these tools is lacking. 
Here, we introduce MolNetEnhancer, a workflow that combines the outputs from molecular networking, 
MS2LDA, in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR) and the 
automated chemical classification through ClassyFire to provide a more comprehensive chemical overview of 
metabolomics data whilst at the same time illuminating structural details for each fragmentation spectrum. We 
present examples from four plant and bacterial case studies and show how MolNetEnhancer enables the 
chemical annotation, visualization, and discovery of the subtle substructural diversity within molecular 
families. We conclude that MolNetEnhancer is a useful tool that greatly assists the metabolomics researcher 
in deciphering the metabolome through combination of multiple independent in silico pipelines.  

Keywords: chemical classification; in silico workflows; metabolite annotation; metabolite identification; 
metabolome mining; molecular families; networking; substructures. 

 

 

1. Introduction 

 
Metabolomics has matured into a research field generating increasing amounts of metabolome profiles of 
complex metabolite mixtures aiming to provide biochemical insights. Mass spectrometry has become the 
workhorse of metabolomics and typical untargeted experiments currently result in qualitative and semi-
quantitative information on several thousands of molecular ions across tens to hundreds of samples. Technical 
advances in the last decade have allowed researchers to fragment increasing amounts of mass peaks that result 
in mass fragmentation spectra (MS/MS or MS2). Metabolite annotation and identification tools have benefited 
from these advances as now more MS2 spectra per sample can be queried in reference libraries in order to find 
candidate structures or submitted to in silico tools that propose a putative structure [1–9]. 
 

Despite these tremendous advances, a key challenge remaining for metabolomics researchers is to 
biochemically interpret large-scale untargeted metabolomics studies due to the complexity of the metabolomes 
represented by mass fragmentation spectra to which actual chemical structures need to be assigned, and for 
which reference spectra are not available. In biological samples, many metabolites share molecular 
substructures and form structurally related molecular families (MFs) of various chemical classes, which has 
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inspired metabolome mining tools exploiting these biochemical relationships. Indeed, since the molecular 
networking approach was proposed in 2012 [10], numerous complementary molecular mining workflows as 
well as annotation and classification tools have been introduced including SIRIUS [3], CSI:FingerID [4], 
MetFusion [11], MetFamily [12], and many others [1,2,7,8,13–22] and their combined use for natural product 
discovery was very recently reviewed [23]. Where tandem mass spectral molecular networking efficiently can 
group molecular features in molecular families [10], MS2LDA can discover substructures that aid in further 
annotation of subfamilies and shared modifications [14]. Furthermore, recently introduced tools such as 
Network Annotation Propagation (NAP) [8], DEREPLICATOR [1], VarQuest [2], or SIRIUS+CSI:FingerID 
[4] allow for effective searching in chemical databases for candidate structures. These candidate structures can 
now be automatically chemically classified using the ClassyFire tool [16] which takes molecular descriptors as 
SMILES or InchiKeys as input and outputs hierarchical chemical ontology terms. Taken together, these 
developments enable the discovery of relations between millions of spectra and the listing of candidate 
structures from various spectral libraries or alternatively from compound libraries using in silico approaches.  

 
Whilst each of those tools produce useful structural information, their combined application has been 

hampered by the use of different file formats, platforms, and the challenge to match molecular features across 
the outputs of these tools. We postulate that whilst each tool provides complementary insights, their combined 
use allows an increased level of biochemical interpretation: i.e., the sum becomes greater than the individual 
parts. Furthermore, it would be practically advantageous to combine all these results in one place. We have 
previously described the integration of Mass2Motifs and chemical classifications with molecular networks to 
assess the chemical diversity within a subset of species of the plant genus Euphorbia [24] and the plant family 
Rhamnaceae [25]. However, in those studies, integration was achieved using custom in-house scripts in R, 
hampering adoption by the community. Moreover, results of the peptide annotation tools DEREPLICATOR 
and VarQuest were not included in those custom scripts. 

 
Here, we introduce MolNetEnhancer a software package available in Python and R that unites many of 

the above mentioned metabolome mining and annotation tools independent of what dataset it processes, thus 
making the algorithm accessible in an easy-to-use format to the community (Figure 1). MolNetEnhancer 
discovers molecular families (MFs), subfamilies, and subtle structural differences between family members. 
The workflow enhances both currently available molecular networking methods based on either MS-Cluster 
[26] (classical) or  MZmine2 [27] (also called “feature-based molecular networking”) and results in annotated 
molecular networks that can be explored in Cytoscape [28].  We applied MolNetEnhancer to publicly available 
mass spectrometry fragmentation data ranging from marine-sediment and nematode-related bacteria, to 
Euphorbia and Rhamnaceae plants. Illustrated by four case studies, we demonstrate how our integrative 
workflow discovers dozens of MFs in large-scale metabolomics studies of these plant and bacterial extracts. 
Moreover, discovered MFs can be divided into subfamilies using the mapped MS2LDA results. Structural 
annotation of Mass2Motifs is facilitated by having chemical and structural annotations at hand, for example by 
recognizing substructures in peptidic molecules. We conclude that our workflow provides chemical refinement 
of metabolomics results beyond spectral matches through large-scale MF and substructure discovery and 
annotation by integrating outputs of various tools in one place allowing for enhanced visualization. This also 
guides the metabolomics researcher in prioritizing MFs to explore and in structurally annotating molecules.  
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Figure 1. Schematic overview of the MolNetEnhancer workflow. Starting with mass spectrometry data obtained 
from complex metabolic mixtures mass spectral molecular networks are built by GNPS molecular networking 
and substructure patterns (Mass2Motifs) are discovered by MS2LDA. These information layers can be mapped 
on top of each other resulting in more detailed substructure information within molecular families (as 
exemplified for the organic acid conjugates in the enlarged part of the triterpenoid molecular family on the 
right). Another route obtains candidate structures for as many nodes as possible through GNPS library matches, 
or in silico annotation such as Network Annotation Propagation (NAP) or DEREPLICATOR and VarQuest for 
peptidic molecules. All the obtained candidate molecules are fed into the ClassyFire tool to obtain the most 
abundant annotated chemical classes per molecular family, resulting in a quick overview of the measured 
chemistry by colouring molecular families according to most occurring chemical class terms in candidate 
structures of their molecular features as exemplified for three different chemical classes in the molecular network 
on the left. Structural information obtained through both routes can be combined into one molecular network. 
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2. Results 

 
2.1. MolNetEnhancer workflow  

MolNetEnhancer is a software package available both in R and Python, which enables straightforward 
integration of mass spectral molecular networks with substructure information, in silico structural annotations 
and chemical classifications and is available at https://github.com/madeleineernst/pyMolNetEnhancer and 
https://github.com/madeleineernst/RMolNetEnhancer. MolNetEnhancer consists of two independent steps. 
During the first step, molecular substructures detectable by co-occurring fragment ions or neutral losses, so 
called Mass2Motifs, are mapped onto a Molecular Network. Each node in the network represents a molecular 
feature, whereas Mass2Motifs represent substructural features. Most fragmented mass peaks (precursor ions) 
represent molecular ions, although fragmented mass peaks may also represent adducts of one and the same 
molecule, in source fragments or doubly-charged peaks [29]. For simplicity, we will refer to any fragmented 
mass peak as molecular feature throughout the manuscript. Mass2Motifs contained within each molecular 
feature can be visualized as pie charts on the nodes. Alternatively, Mass2Motifs shared across multiple 
molecular features can be visualized as multiple lines (edges) connecting the nodes. In a second step, most 
abundant chemical classes per molecular family based on candidate structures from in silico annotation tools as 
well as GNPS library matches can be mapped through chemical classification using ClassyFire [Feunang et al., 
2016]. A Chemical Classification score is calculated representing what percentage of nodes within a molecular 
family are attributed to a given chemical class (see Material and Methods section and Figure 8 therein). Mapping 
Mass2Motifs onto a molecular network is possible through both the Python module as well as the R package, 
whereas mapping of chemical classes is available through the Python module only. In sections 2.2. to 2.5. we 
show how MolNetEnhancer can accelerate and enrich chemical information retrieval in 4 case studies, 
comprising two plant and two bacterial publicly accessible datasets. The MolNetEnhancer workflow results in 
one graphml network file that contains all the structural information obtained from the individual tools. Such a 
file can be easily imported into network visualization tools such as Cytoscape [28], an environment where 
additional metadata on the molecular features can be added. In addition, all structural information is also 
available as tab delimited text files.  

 

2.2. Case study 1: Annotation of Euphorbia specialized metabolites using MolNetEnhancer 

With more than 2000 species worldwide, the plant genus Euphorbia is among the most species-rich 
and diverse flowering plants on earth [30,31].  Besides exhibiting an extreme diversity in its growth forms and 
habitat types, the genus has also attracted interest within natural products drug discovery [32,33]. Euphorbia 
species are chemically highly diverse, particularly within macro- and polycyclic diterpenoids, biosynthetically 
derived from a head-to-tail cyclization of the tetraprenyl pyrophosphate precursor, which have been found to 
exhibit a range of biological activities with pharmaceutical interest, such as antitumor, antimicrobial or 
immunomodulatory activity [Vasas and Hohmann, 2014]. Ingenol mebutate for example, a diterpenoid 
originally isolated from Euphorbia peplus L. is marketed for the topical treatment of actinic keratosis, a 
precancerous skin condition [34], however production through plant extraction or chemical synthesis is 
inefficient and expensive  [35,36]. 

A key interest is therefore to find species within the genus producing higher quantities of ingenol 
mebutate or other close diterpenoid analogs exhibiting biological activities with pharmaceutical interest. We 
have previously assessed chemical diversity within a representative subset of species of the plant genus 
Euphorbia [Ernst et al., 2018]. A major challenge is the rapid identification of known and unknown Euphorbia 
diterpenoid structures. Using MolNetEnhancer, we were able to significantly accelerate manual annotation of 
diterpenoids and retrieve chemical structural information, even for molecular families with no structural 
matches in the GNPS spectral libraries.  

An example of how MolNetEnhancer increases chemical structural information throughout two 
molecular families is highlighted in Figure 2. Using GNPS spectral library matching, chemical structural 
information for only one molecular feature was obtained, and manual propagation of the annotation throughout 
molecular family (i) was limited given that the annotated ion exhibited one neighbor only. No structural 
information could be retrieved for family (ii), where no chemical structural information was retrieved through 
GNPS library matching (Figure 2a).  

Using MolNetEnhancer however, we were able to highlight substructural Mass2Motifs within both 
molecular families (Figure 2b). Substructural Mass2Motifs, putatively annotated as a Euphorbia diterpenoid 
backbone skeleton with mass peaks at m/z 313, 295, and 285 were found both in molecular families (i) and (ii) 
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(Figure 2b). Manual annotation of these Mass2Motifs was possible by comparing mass fragments of the library 
spectrum to mass fragments contained in the Mass2Motifs. A mirror plot comparing the GNPS reference 
spectrum to the unknown spectrum found in our samples is shown in Supplementary Figure 1. The exact 
Euphorbia backbone skeleton type could not be identified unambiguously, as many Euphorbia diterpenoid 
skeletons are isomeric, and their respective MS2 spectra identical or very similar. A Euphorbia backbone 
skeleton with masses at m/z 313, 295, 285 can either result from a jatrophane, deoxy tigliane, or ingenane ester 
like skeleton [37,38]. Furthermore, we were able to see that molecular family (ii) contains substructural 
Mass2Motifs related to a nicotinoyl side chain. Manual annotation of these Mass2Motifs was possible by 
comparing chemical structures retrieved through NAP in silico structure annotation with mass fragments found 
in the Mass2Motifs. Motifs 432 and 180, were both found to contain mass peaks at m/z 106 and 124, possibly 
resulting from a nicotinoyl side chain and a hydroxylation (Figure 2b). Chemical structures retrieved through 
in silico annotation or library matching can aid the manual annotation of Mass2Motifs and vice versa annotated 
Mass2Motifs can aid the propagation of chemical structural information throughout the network. Additionally, 
chemical structural hypotheses can be reinforced by taking into consideration both substructural information as 
well as chemical class information obtained through in silico annotation and library matching. Most chemical 
structures retrieved for molecular family (i) and (ii) were diterpenoids of the jatrophane, tigliane or ingenane 
type and substructures related to these Euphorbia diterpenoid backbone skeletons were also found within the 
Mass2Motifs (Figure 2c).   

In conclusion, using MolNetEnhancer we were able to significantly increase chemical structural 
information from retrieving chemical structural information of one molecular feature through GNPS library 
matching (Figure 2a), to retrieving chemical structural information at an annotation level 3 (putatively 
characterized compound classes) according to the Metabolomics Standard Initiative’s reporting standards [39] 
of 2 molecular families comprising 73 molecular features (Figure 2b-d). Finally, this information allowed us to 
conclude that Euphorbia diterpenoid skeletons of the jatrophane, deoxy tigliane, or ingenane ester type are 
found within all Euphorbia subgeneric clades, whereas nicotinoyl sidechain modifications are unique to 
subgenus Esula (Figure 2d).  

 

 

 
Figure 2. MolNetEnhancer increases chemical structural information obtained for Euphorbia specialized 
metabolites. (a) Mass spectral molecular network showing two molecular families of Euphorbia specialized 
metabolites. Using GNPS library matching only one molecular feature could be putatively annotated, manual 
annotation propagation is limited for family (i) and none for family (ii). (b) Using MolNetEnhancer, 
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substructural Mass2Motifs can be visualized within the network; both molecular family (i) and (ii) contain 
Mass2Motifs related to a Euphorbia diterpene spectral fingerprint (DSF) and molecular family (ii) contains 
Mass2Motifs related to a nicotinoyl side chain. Mass2Motifs are mapped on the nodes as pie charts with an area 
proportional to their overlap score,  a score measuring how much of the Mass2Motif is present in the spectrum, 
whereas dotted lines connecting the nodes represent features with a MS2 spectral similarity of a cosine score 
over 0.6 (c) Most chemical structures retrieved for molecular family (i) and (ii) are diterpenoids of the 
jatrophane, tigliane or ingenane type, which both can result in a DSF with m/z 313, 295, 285. Substructures with 
mass fragments characteristic of these Euphorbia DSFs were also found within the Mass2Motifs. Node colors 
represent most abundant chemical classes, colored lines connecting the nodes represent shared Mass2Motifs, 
and dotted lines connecting the nodes represent features with a MS2 spectral similarity of a cosine score over 
0.6 (d) Euphorbia diterpenoid skeletons of the jatrophane, deoxy tigliane, or ingenane ester type are found 
within all Euphorbia subgeneric clades, whereas nicotinoyl sidechain modifications are unique to subgenus 
Esula. Node colors represent summed peak area per Euphorbia subgeneric clade, colored lines connecting the 
nodes represent shared Mass2Motifs, and dotted lines connecting the nodes represent features with a MS2 
spectral similarity of a cosine score over 0.6. 

 

 

 

 

 

 

 

2.3. Case study 2: Annotation of Rhamnaceae specialized metabolites 

Another case where we demonstrate the efficiency of MolNetEnhancer for enhancing the chemical 
annotation of metabolomics data is our previous study on the plant family Rhamnaceae [25]. Rhamnaceae is a 
cosmopolitan family including about 900 species, and Rhamnaceae species are known for their exceptional 
morphological and genetic diversity, which are thought to be caused by the wide geographic distribution and 
different habitats [40]. We applied an MS2-based untargeted metabolomics approach to get insights on the 
metabolomic diversity of this highly-diversified family, and MolNetEnhancer was used as a key to provide 
fundamental annotations for MS2 spectra. 

As shown in Figure 3a, MolNetEnhancer provided the putative chemical classification of molecular 
families within the Rhamnaceae molecular network. After combining this chemical class annotations with 
taxonomic information of each molecular feature, the normalized distribution pattern of different classes of 
metabolites were analyzed. This revealed that the taxonomic clade Rhamnoid exhibits more diversified 
flavonoids, carbohydrate, and anthraquinones, while the Ziziphoid clade produces various triterpenoids and 
triterpenoid glycosides [25].  

MolNetEnhancer allowed us to visualize and discover the subtle substructural diversity within the 
molecular families. In the molecular family of triterpenoid esters, for example, substructural differences of 
phenolic moieties such as protocatchuate, vanillate, and coumarate were easily recognized by analyzing the 
distribution of Mass2Motifs 28, 117, 120, and 191 (Figure 3b). Two flavonoid aglycone substructures, 
kaempferol and quercetin, were also distinguished by analyzing the distribution of Mass2Motifs 86, 130, and 
149 in the molecular family of flavone 3-O-glycosides (Figure 3c). Mass2Motif 130 contained mass peaks at 
m/z 284, 255, and 227, while Mass2Motifs 86 and 149 covered mass peaks at m/z 300, 271, and 255. These 
fragment ions are well-known as characteristic fragments of kaempferol 3-O-glycosides and quercetin 3-O-
glycosides [41–43], so these Mass2Motifs could be easily annotated. This case study shows how 
MolNetEnhancer facilitates the interpretation process and our knowledge on MS2 fragmentation, previously 
mainly applied manually by experts. 
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Figure 3. MolNetEnhancer increases chemical structural information obtained for Rhamnaceae specialized 
metabolites. (a) Structural annotation for molecular families was suggested based on consensus-based 
classification of NAP in silico structure annotation. (b) Subtle chemical differences of phenolic acid moieties 
can be visualized within the molecular family of triterpenoid esters based on Mass2Motifs. (c) Molecular family 
annotated as flavonoid glycosides reveals two subfamilies by Mass2Motif mapping: the pink Mass2Motif is 
related to the kaempferol core structure, whereas the orange and brown Mass2Motifs are related to the quercetin 
core structure - two related yet distinct flavonoid structures. 
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2.4. Case study 3: Large chemical diversity uncovered by annotating specialized metabolites in marine 
sediment Streptomyces and Salinispora bacterial extracts 

The MolNetEnhancer workflow was also applied to bacterial data sets to gain more detailed insights 
into their chemical richness. Crüsemann and coworkers created a molecular network of extracts of the marine 
sediment bacteria Salinispora and Streptomyces that formed the basis for this case study [44]. Figure 4 displays 
the molecular network coloured by the most prevalent chemical class annotations. Whilst we can observe that 
the bacteria also produce a structurally diverse arsenal of molecules, its composition is clearly different from 
that of the Rhamnaceae plants in Fig. 3a. The most prevalent chemical class annotations are “Carboxylic acid 
and derivatives” and “Prenol lipids” with the first containing peptide-related molecules and the latter containing 
terpenoid molecules. Both these classes of molecules are known to be produced by Salinispora and 
Streptomyces bacteria. The Chemical Classification Scores (see Methods section) for the ClassyFire class and 
kingdom terms are presented in Supporting Figure S2. These scores aid in assessing chemical novelty and also 
provide information on the consistency of the chemical class annotations of the structural candidates. 

From the 5930 network nodes, we discovered 300 Mass2Motifs using MS2LDA. From those, we could 
annotate 40 with structural information at various levels of structural details gained from spectral matching with 
the GNPS libraries, or from the in silico annotation tools NAP, DEREPLICATOR, and VarQuest. For example, 
we could annotate an aminosugar-related Mass2Motif with fragment ions related to two known N,N-dimethyl 
amino sugars present in known specialized molecules from the bacteria under study [44]: dimethylamino-β-D-
xylo-hexopyranoside (rosamicin) and N,N-dimethyl-pyrrolosamine (lomaiviticin) which have overlapping 
fragment ions and are therefore characterized by the same Mass2Motif. With a frequency of more than 70 
throughout the entire molecular network (using probability and overlap score thresholds of 0.1 and 0.3, 
respectively, for the molecular feature - Mass2Motif connections) , the aminosugar Mass2Motif can be used as 
a handle to identify known and potential novel natural products throughout network. Indeed, the Mass2Motif 
was found in all members of the Rosamicin MF (Figure 5A) and the Lomaiviticin MF (Supporting Fig. S3-A). 
Moreover, the same aminosugar-related Mass2Motif was also found in all members of two yet unknown MFs 
(Figure 5B, Supporting Fig. S3-B). In addition, the Mass2Motif was also found in a number of singletons not 
connected to any MF, often in combination with Mass2Motif 66 as well like we see for the rosamicin-related 
MF. Mass2Motif 66 represents the presence of an m/z 116 fragment which is likely also generated by the 
dimethylated amino sugar; in fact it may point to the dimethylamino-β-D-xylo-hexopyranoside moiety or 
something very similar as this fragment is absent in spectra from the lomaiviticin MF which contains the 
different dimethylated aminosugar N,N-dimethyl-pyrrolosamine. In most singletons, no other Mass2Motifs 
were discovered that could provide clues on the complete structures of these molecules; however, given the 
presence of the aminosugar moiety they are  likely natural products and not core metabolites or contaminants - 
something that we could not confidently state without using the MolNetEnhancer workflow. 

Another MF displayed in Figure 5C did not return any GNPS library hits; however, all its members 
shared Mass2Motif 154. Due to its indicative fragment ions, we could annotate this Mass2Motif as tryptophan-
related, indicating that all these molecules contain a tryptophan core structure. Based on their shared 
Mass2Motif, the masses of the molecular features, and their fragmentation patterns, with help of 
MolNetEnhancer we could now tentatively annotate this MF as tryptophan-related containing molecules such 
as small peptides or N-acyltryptophans. Figure 5D shows the peptidic MF of actinomycin-related molecules. 
The annotation of this MF was guided by DEREPLICATOR and VarQuest annotations as well as the 
Mass2Motif that 10 of its members shared. We could annotate this Mass2Motif as the amino acid lactone loop 
present twice in actinomycins using reference data from literature [45]. The unique combination of four 
actinomycin-related mass fragments was only present in the 10 MF members, thereby reinforcing the 
DEREPLICATOR and VarQuest annotations. 

Furthermore, mapping the Mass2Motifs on the molecular network means that we can more easily track 
neutral loss-based motifs such as the loss of an acetyloxy group that was only found in Streptomyces MFs. 
Moreover, inspection of the MFs without annotated chemical classes revealed that they contained some 
Mass2Motifs with relatively low frequency throughout the data set - something that could point to a unique 
substructure or scaffold possibly from a unique biosynthesis enzymatic function. For example, Mass2Motif 35 
has a frequency of 43 and was present in all four members of the MF in Supporting Fig. S3-C. It is a mass-
fragment-based Mass2Motif and with masses of 142, 100, and 58 Da it could be related to a polyamine-like 
structural feature. Finally, the MF in Supporting Fig. S3-D shares the two still unknown loss-based Mass2Motifs 
250 and 261 that have frequencies of 26 and 50, respectively. These are examples of Mass2Motifs representing 
potential novel chemistry that can now be easily tracked in the molecular network. 
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Figure 4. Marine sediment Salinispora/Streptomyces molecular network colored by 15 selected chemical class 
terms as indicated in the legend. In total, 50 different class terms were annotated in the network using 
MolNetEnhancer, indicating that the metabolic output of the Salinispora/Streptomyces strains is chemically very 
diverse. We can observe that the larger molecular families are mostly annotated with prenol lipids (blue) and 
carboxylic acids and derivatives (red). Furthermore, for a couple of MFs no chemical class annotations were 
obtained as no candidate structures were retrieved through any of the annotation tools.  
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Figure 5. Molecular families from marine sediment bacteria with color coded Mass2Motif substructure 
information mapped on them, with (a) Rosamicin-related molecular family found through GNPS library hits 
where all members contain an amino sugar-related motif as coloured in blue in its depicted structure - 
substructures or motifs found within each molecular feature are mapped on the nodes as pie charts, where the 
relative abundance of each motif represents the overlap score, a score measuring how much of the motif is 
present in the spectrum. Furthermore, motifs shared between two nodes are visualized as coloured continuous 
lines (edges) connecting the nodes whereas dashed lines (edges) represent a cosine score of over 0.6, (b) Yet 
unknown molecular family that shares an amino sugar-related motif connecting this MF to (a) by sharing a 
substructure, (c) Tryptophan-related molecular family sharing the Tryptophan Mass2Motif, and (d) 
Actinomycin-related molecular family - found through GNPS library hits and further validated with help of 
DEREPLICATOR results - sharing an Actinomycin related motif across most of its members. The Actinomycin 
D (Daptomycin) structure is depicted with the Mass2Motif substructure highlighted in colour: the peptide 
lactone ring present twice in the molecule. In all MFs, nodes are coloured based on Mass2Motif overlap scores 
and the edges show if cosine score-connected nodes share similar Mass2Motifs. It can be seen that in all families 
multiple motifs are shared across some of its members. 
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2.5. Case study 4: Annotating peptidic motifs in peptide-rich Xenorhabdus/Photorhabdus extracts 

Xenorhabdus and Photorhabdus are Gammaproteobacteria that live in symbiotic association with soil-
dwelling nematodes of the genus Steinernema [46,47]. Eventually as a consequence thereof, they spend a large 
amount of their resources to the production of specialized metabolites, in particular non-ribosomal peptides and 
polyketides. Tobias and coworkers recently published metabolomics data of 25 Xenorhabdus and 5 
Photorhabdus strains to explore metabolic diversity amongst these strains [46]. Here, we applied 
MolNetEnhancer on this publicly available molecular networking data to further probe the chemical diversity 
previously found. The 6228 network nodes were analysed with MS2LDA to discover 300 Mass2Motifs. 
Furthermore, we also submitted the Xenorhabdus/Photorhabdus molecular networking data to NAP, 
DEREPLICATOR, and VarQuest to run the MF chemical class annotation pipeline. By far the majority of the 
46 annotated motifs were peptide, amino acid, or likely to be peptidic-related which fits with the ClassyFire 
predicted peptide-related MFs present in the Xenorhabdus/Photorhabdus extracts with “Carboxylic acids and 
derivatives” and “Peptidomimetics” as most frequently occurring annotations (see Figure 6 - with corresponding 
Chemical Classification Scores in Figure S4). We could also annotate an indole-related Mass2Motif which can 
be part of peptides/amino acids. An exception is the ethylphenyl-related Mass2Motif that was found in 478 
molecules (out of 6228 nodes, corresponding to 7.7%) of the Xenorhabdus/Photorhabdus extracts. This can be 
explained by the reported production of phenylethylamides, dialkylresorcinoles, and cyclohexadions derivatives 
by the studied strains [48]. 

Annotations included Mass2Motifs that form peptidic substructures related to well-known 
Xenorhabdus peptidic families such as the commonly found bioactive rhabdopeptides and the related xenortides 
[48,49]. We could annotate two rhabdopeptide-related motifs with frequencies of 231 and 186 (3.7% and 3.0% 
of nodes, respectively). Compared to the structurally less diverse xentrivalpeptides [50] which the Mass2Motif 
had a frequency of 28, corresponding to 0.45% of the nodes, we can conclude that rhabdopeptide-related 
molecules are widespread in the Xenorhabdus/Photorhabdus extracts. The PAX peptides constitute another 
well-known  Xenorhabdus/Photorhabdus lysine-rich peptide class [51]. The corresponding MF consisted of 13 
members; indeed, they shared a Mass2Motif related to lysine (lys) and lys-lys fragments. Similarly, a leucine-
leucine Mass2Motif was found in molecules annotated as xenobovid. This motif occurred in 110/6228 (1.8%) 
nodes pointing to several peptidic families that contain this amino acid motif - this in contrast to the lys-lys 
amino acid motif that is very wide-spread in Xenorhabdus/Photorhabdus molecules, being present in 1500 
(24%) nodes. In total, using the MolNetEnhancer workflow we could annotate 32 peptidic motifs of which we 
could link 11 to peptides known to be produced by Xenorhabdus/Photorhabdus strains whilst the other 21 
Mass2Motifs represent substructures not yet elucidated. The peptidic nature of these Mass2Motifs was assessed 
by recognition of typical fragment ion patterns as seen for known peptides as well as doubly charged precursor 
ions that are often a sign of peptides in these extracts. 

With the help of the integrative display of DEREPLICATOR and VarQuest annotation results, we 
could also annotate two xenoamicin-related peptidic MFs (Figure 7 A-B). Xenoamicins are known to be 
produced by Xenorhabdus and eight variants have been described in detail with variants A and B present in 
peptidic databases [52]. Xenoamicin is a cyclic peptide consisting of a peptidic ring and peptidic tail (see Figure 
7D). Interestingly, in one of the annotated MFs, not one but two Mass2Motifs were shared between most of its 
members (see Figure 7A). With help of DEREPLICATOR-predicted annotations of the fragment ions, we could 
annotate the Mass2Motif shared by almost the entire MF as being related to the xenoamicin A peptidic ring, 
whereas the other more abundant Mass2Motif was related to the xenoamicin peptidic tail (Figure 7C, and 
Supplementary Figure S5 A-B). These Mass2Motifs are quite specific as we observed that 9 and 6 mass 
fragments, respectively, were consistently present in more than 75% of the molecular features to which the ring 
and tail Mass2Motifs were linked. A third Mass2Motif could be putatively annotated as xenoamicin B peptidic 
ring-related as its masses are +14 Da as compared to the ring A motif and xenoamicin B differs from A with an 
isobutyl replacing an isopropyl group. Based on the Mass2Motif presence/absence analysis in the larger MF of 
32 members, we observe that 4 have links (overlap score > 0.3) to both ring A and tail motifs, 10 just have the 
ring A motif, 3 have only links to the peptidic tail motif, 2 share both ring A and putative ring B together with 
the tail Mass2Motif, and 2 share the putative ring B with the tail Mass2Motif (Figure 7A). Thus, this indicates 
how MolNetEnhancer increases the resolution in molecular networks by highlighting structural differences in 
between MF members.  

We could also find additional MFs and singletons in which the xenoamicin ring or tail Mass2Motif 
was present, pointing to related peptidic molecules not linked through the modified cosine score. Further 
inspection with help of VarQuest annotations strengthened these annotations as VarQuest annotated modified 
amino acids in both rings (Figure 7, Supplementary Figure S5 E-F) and the tail region (Supplementary Figure 
S5 C-D) of xenoamicin many of which, to our knowledge, have not been reported yet such as the one highlighted 
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in Figure 7D where the ring-proline is likely methylated (the ring A motif is not linked to this molecular feature). 
In fact, xenoamicin A was annotated as variant from xenoamicin B  (Supplementary Figure S5-F) where the 
modified amino acid (demethylation) corresponds to previous literature findings [52], further increasing our 
trust in these in-silico approaches. The smaller MF of 22 nodes consisted of doubly-charged precursor ions 
where no ring-related Mass2Motifs were assigned. Some members like xenoamicin A appeared in both MFs as 
singly and doubly charged precursor ions; the differences in motif distributions between the two MFs indicates 
that the initial charge has an impact on the fragmentation pathways and thus the acquired spectra given that we 
know the ring A is part of xenoamicin A.  

Altogether, this example highlights how the MolNetEnhancer approach facilitates fragmentation based 
metabolomics analysis workflows by increasing the “structural resolution”, the discovery of more xenoamicin 
variants than previously described, and highlighting previously unseen connections between MFs and 
molecules. Furthermore, the integrative approach enabled straightforward annotation of Mass2Motifs found in 
the xenoamicin MF by using the VarQuest fragment ion annotations as guide for Mass2Motif feature annotation. 
Both Mass2Motif and VarQuest results strengthened each other since when predicted amino acid changes 
occurred in the peptidic ring, the corresponding ring-related Mass2Motif was absent, and vice versa - made 
possible by combining the outputs of several in silico tools together. 

 
Figure 6. Nematode symbionts Photorhabdus/Xenorhabdus network colored by 10 selected chemical class 
terms as indicated in the legend. In total, 49 different class terms were annotated in the network using 
MolNetEnhancer. We can observe that the larger molecular families as well as many smaller molecular families 
are mostly annotated with peptidomimetics (purple) and carboxylic acids and derivatives (red). This is consistent 
with earlier findings that these nematode symbionts produce a wide array of peptidic products.  
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Figure 7. Xenoamicin-related molecular families annotated by MolNetEnhancer with (a) MF of 32 nodes of 
which 23 were annotated with at least one xenoamicin modified structure (xenoamicin A or B) by either 
VarQuest or DEREPLICATOR with VarQuest using 0.005 Da fragment binning assigning most xenoamicin 
structures (FDRs mostly < 2.5). This MF also contains nodes sharing all Mass2Motifs related to xenoamicin 
structures with two ring and tail-related Mass2Motif. Mass2Motif 265 contains mass fragments related to 
xenoamicin A, whereas masses in Mass2Motif 51 are shifted with 14 Da pointing towards xenoamicin B. The 
MF consists of singly charged molecular features. (b) Related MF of which 20 out of 22 nodes were annotated 
with xenoamicin modified structures (FDRs mostly < 2.5). This MF only shares the Mass2Motif annotated as 
xenoamicin tail-related and consists of doubly-charged precursor ions. (c) Xenoamicin A spectrum in the 
ms2lda.org environment with (top) ring-related Mass2Motif highlighted and (bottom) tail-related Mass2Motif 
highlighted with the corresponding blue and red colors as in (a) and (b). (d) VarQuest annotation of xenoamicin 
modified peptide where a ring proline indicated in brown is likely methylated. All light blue peaks in the mass 
spectrum were annotated by VarQuest. The red part in the xenoamicin structure corresponds to the selected 
fragment of m/z 537.348  which includes the tail part, whereas the light blue amino acid is annotated to be 
modified with a mass shift of 14.013 Da that likely corresponds to a methylation. Indeed, the Mass2Motif related 
to the xenoamicin tail is found in this fragmentation spectrum, whereas the ring Mass2Motif is absent. 
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3. Discussion 

 
Although significant advances have been made in molecular mining workflows, chemical annotation as 

well as classification tools [1–4,7,8,10,14–16], chemical structure annotation remains the major and most 
challenging bottleneck in mass spectrometry-based metabolomics as most of our biological interpretations rely 
on annotated structures [8,53,54]. MolNetEnhancer is a workflow that combines chemical structural 
information retrieved from different in silico tools, thus increasing structural information retrieved and 
enhancing biological interpretation. Here, we have chosen a representative number of in silico tools covering 
mining, annotation, and chemical annotation to provide the user with different chemical insights. Although we 
used DEREPLICATOR and NAP to exemplify in silico annotation tools here, MolNetEnhancer is platform 
independent, meaning that chemical structures retrieved from any in silico annotation platform could be used 
given the molecular feature identities correspond across all molecular mining and annotation tools.  

 
Particularly in natural products research, the rapid annotation of known (i.e., dereplication) as well as 

unknown specialized metabolites from complex metabolic mixtures hinders interpretation in an ecological, 
agricultural or pharmaceutical context. Many specialized metabolites from natural sources are used as 
pharmaceuticals [55], in agriculture [56] or nutrition [57]; however, their discovery is inherently slow due to 
the above-mentioned limitations. To highlight how MolNetEnhancer can accelerate chemical structural 
annotation in complex metabolic mixtures from natural sources, we exemplified its use on four plant and 
bacterial datasets. 

 
In the plant genus Euphorbia, we were able to retrieve chemical structural information of previously 

described pharmaceutically highly valuable diterpenoid skeletons corresponding to an annotation level 3 
according to the Metabolomics Standard Initiative’s reporting standards [39]. The use of different tools 
combined in one data format with MolNetEnhancer allowed both for the retrieval of complementary 
information as well as the reinforcement of putative annotations, in cases where two independent tools pointed 
to the same chemical structural conclusion. Used separately, none of the tools were able to retrieve as much 
chemical structural information as when combined in MolNetEnhancer. Likewise, MolNetEnhancer allowed 
for the annotation of triterpenoids chemistries with several distinct phenolic acid modifications (e.g., vanillate, 
protocatechuate) in the plant family Rhamnaceae. In Salinispora and Streptomyces bacterial extracts, 
MolNetEnhancer aided the annotation of a previously unreported tryptophan-based MF, and a xenoamycin-
related MF in the Gammaproteobacteria of the genus Xenorhabdus and Photorhabdus could be studied in more 
detail than in previous studies. 

 
It is of utmost importance to note that results retrieved from MolNetEnhancer summarize results retrieved 

from third-party software and manual inspection and validation of all structural hypotheses remain essential. 
However, MolNetEnhancer significantly aids the manual inspection and validation process conducted by the 
expert, by making substructural as well as chemical class information readily available and visible within one 
data resource. As exemplified in the case studies, MolNetEnhancer can for example help in prioritizing 
molecular families within a molecular network, which consists of many hundred to thousands of molecular 
features, be it by highlighting different chemical classes of interest or molecular families, for which only very 
few structural hypotheses could be retrieved, potentially highlighting novel chemistry. 

  
Limitations introduced through data acquisition on different mass spectrometric instrument types do also 

apply to MolNetEnhancer. Acquiring data on different instruments can cause different MS2 fragmentation 
patterns, thus in some cases leading to different structural hypotheses through library matching or in silico 
structure prediction [58]. Also, the presence of low quality and/or chimeric MS2 spectra is a challenge for mass 
spectrometry annotation tools as the one described here, and methods that are capable of filtering-out these 
spectra before proceeding with in silico annotation tools will improve our confidence in in silico spectral 
annotation [59]. 

 
     These limitations highlight the importance of good practices during data acquisition and processing to 
minimize the time spending analyzing mass spectrometry artefacts and improving the confidence in any 
downstream annotations. Here, the use of feature-based molecular networking could also help to focus the 
analysis on those molecular features that are very likely molecular ions [60] - and it has the added benefit that 
MS1 differential abundance information from LC-MS peak picking is available on the molecular features as 
well. 
 

Apart from limitations caused by experimental conditions, analysis bias can be introduced for structural 
predictions based on chemical structures available in public databases, which are still limited especially for 
particular compound classes. This is in particular true for the chemical class annotations provided through 
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ClassyFire, which rely on collecting correct or structurally closely related candidate structures from compound 
databases. The chemical annotation score was implemented to guide the researcher in assessing how consistent 
the chemical annotations are and for how many molecular features at least one candidate structure is found. The 
peptidic annotations by DEREPLICATOR and VarQuest come with scores, p-values, and false discovery rates 
to assess confidence in the annotations. Using MolNetEnhancer, it is now also possible to explore the 
consistency in peptidic annotations within MFs, along with their associated Mass2Motifs, which also assist in 
improving confidence in the annotations, as we have shown for the xenoamicin MFs in the nematode symbiont 
bacteria where the majority of the MFs were annotated with xenoamicin variants. 

 
One limitation of the use of MS2LDA on the bacterial datasets is that most non-cyclic peptidic molecular 

families do not share any motifs as typically analogues differ by modifications such as methylation or 
hydroxylation causing a shift in m/z in most of their mass fragment peaks. Incorporation of amino acid-related 
mass differences as features for MS2LDA could be a route to also discover Mass2Motifs for non-cyclic 
peptides. As it is, cyclic peptides do often contain one or more Mass2Motifs and peptides containing positively 
charged amino acids such as lysine and leucine have this structural information represented by Mass2Motifs. 
Furthermore, many Mass2Motifs are currently still unannotated, which hampers fast structural analysis. To 
partially solve this bottleneck, MotifDB (www.ms2lda.org/motifdb) was recently introduced [61] and the here 
annotated Mass2Motif sets from the four case studies are made available through MotifDB for matching against 
Mass2Motifs found in other MS2LDA experiments. Furthermore, this will allow to use a combination of 
“supervised” (annotated) Mass2Motifs and “unsupervised” (free) Mass2Motifs in future MS2LDA experiments 
on data of related samples thereby accelerating structural annotation since part of the motifs already discovered 
do not need to be re-annotated. 

 
Despite the limitations discussed above, MolNetEnhancer assists in metabolite annotations by its 

combined analysis of chemical class annotations, structural annotations, and Mass2Motif annotations. If these 
annotations support each other, as for example for the actinomycin MF in the marine sediment bacteria, there 
is more confidence that these in silico annotations will indeed be correct. It is noteworthy that the modularity 
of MolNetEnhancer allows for complementary sources of structural information to be added on in future. We 
showed that MolNetEnhancer is a practical tool to annotate the chemical space of complex metabolic mixtures 
using a panel of complementary in silico annotation tools for mass-spectrometry based metabolomics 
experiments. Although we have highlighted the use of MolNetEnhancer using two plant and bacterial datasets, 
MolNetEnhancer is sample-type-independent and may be used for any mass-spectrometry-based metabolomics 
experiment, where chemical structural annotation and interpretation is of interest. Future work will focus on 
making the MolNetEnhancer workflow available within the GNPS platform in order to further increase its user-
friendliness. Furthermore, the integration of other existing and future metabolome mining and annotation tools 
in the output of MolNetEnhancer is also planned  to extend on the initial set of in silico tools that it currently 
can combine.  

4. Materials and Methods  

 
Currently, two distinct methods from raw data to MNs exist. One method takes all MS2 spectra found 

in the input files and uses MS-Cluster to prepare a set of representative “consensus” MS2 spectra for molecular 
networking, and the other method uses MZmine2 for data preprocessing, which performs molecular feature 
detection at the MS1 level and associates each MS1 feature with its respective MS2 spectra to send off to GNPS 
Molecular Networking. The here proposed MolNetEnhancer workflow can enrich both these molecular 
networking methods with Mass2Motif presence and chemical class annotations. 

The MolNetEnhancer workflow comprises the following main steps: 

1. Perform mass spectral molecular networking analysis through the Global Natural Products Social 
Molecular Networking platform (https://gnps.ucsd.edu/) 

2. Perform unsupervised substructure discovery using MS2LDA (http://ms2lda.org/) 
3. Perform in silico chemical structural annotation using for example Network Annotation Propagation 

(NAP) and DEREPLICATOR through the GNPS platform. Alternatively, other in silico tools for 
putative chemical structural annotation (e.g. SIRIUS+CSI:FingerID) [Dührkop et al., 2015, 2019] 
can also be used. 

4. Run MolNetEnhancer to: 
a. Combine substructure information retrieved through MS2LDA with mass spectral 

molecular network created through GNPS. 
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b. Retrieve most abundant chemical classes per molecular family based on GNPS structural 
library hits and in silico chemical structural annotation and integrate this information with 
mass spectral molecular network created through GNPS. 

5. Visualize enhanced mass spectral molecular network in Cytoscape.   

A step by step tutorial on how to use MolNetEnhancer can be accessed at 
https://github.com/madeleineernst/RMolNetEnhancer and 
https://github.com/madeleineernst/pyMolNetEnhancer.  

Substructural information retrieved through MS2LDA is integrated in two ways within the mass 
spectral molecular networks. Shared substructures or motifs between two molecular features are visualized as 
multiple edges connecting the nodes. Furthermore, motifs found within a molecular feature can be visualized 
as pie charts, where the relative abundance of each motif represents the overlap score, a score measuring how 
much of the motif is present in the spectrum [62]. Furthermore, for each molecular family, the x most shared 
motifs are shown, where x is defined by the user. An example of such a molecular family with motifs mapped 
is shown in Figure 5. 

To retrieve the most abundant chemical classes per molecular family, all chemical structures obtained 
through GNPS library matching, and in silico chemical structural annotation are submitted to automated 
chemical classification and taxonomy structure using ClassyFire [16]. This retrieves chemical classes for each 
of the putative structures submitted organized in 5 hierarchical levels of a chemical taxonomy (kingdom, 
superclass, class, subclass, direct parent). For each level of the chemical ontology, a score is calculated, which 
represents the most abundant chemical class found for the structural matches within the molecular family at 
each hierarchical level. It is important to note that a high score does not represent a higher confidence in the 
true identity of the chemical structures found within the molecular family, but indicates more consistency as 
more structural matches obtained for this molecular family fall within the same chemical class. Figure 4 
exemplifies how the score is calculated. Given a molecular family consisting of 6 molecular features (nodes), 
the percentage of nodes classified as cinnamaldehydes, coumarins and derivatives, flavonoids and 
macrolactames at the chemical class level respectively is calculated. Each molecular feature can have multiple 
structural matches with multiple (e.g. node 2) or identical (e.g. node 3) chemical classes. A majority of the 
structural matches obtained in the network shown in Figure 4 were classified as flavonoids (2.25 out of 6 nodes), 
thus the molecular family was classified as flavonoids with a chemical classification score at the class level of 
0.375 (2.25/6). For single nodes (molecular features which show no spectral similarity with any other molecular 
features found in the dataset) the chemical classes are retrieved analogously, however, it should be noted that 
single nodes often result in a very high score, as only one structural match is retrieved, resulting in a score of 1 
(1 node out of 1).  
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Figure 8. Schematic overview of how the Chemical Classification Score is calculated and visualized within a 
molecular family. (a) Schematic overview of hypothetical structural annotations within a molecular family 
consisting of 6 nodes. Out of the 6 nodes, chemical structural information could be retrieved for 4, where each 
node can consist of structural annotations to multiple (e.g. node 2) or identical (e.g. node 3) chemical classes. 
The total number of nodes per chemical class retrieved is calculated and the most abundant chemical class is 
assigned to the molecular family, resulting in (b) Schematic overview of the molecular family shown in (a)., 
classified as ‘flavonoids’ at the chemical class level by MolNetEnhancer, with a score of 0.375, translating to 
the majority of the putative structural annotations within this molecular family (2.25) belong to the flavonoid 
structural class. 

Publicly available mass spectrometry fragmentation data sets from four studies were used for this study. 
Details on how samples and data were collected can be found in the original studies [24,25,44,46]. Here, we 
list links to the different analyses that were done on each of the studies. Through these links, all used settings 
and parameters can be retrieved.  

 
Data illustrating MolNetEnhancer applied to feature-based molecular networking are publicly accessible 
through the links listed below: 
 
Case study 1: Euphorbia study - combined analysis of 43  Euphorbia plant extracts 

 
● MASSIVE: MSV000081082 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c9f09d31a24c475e87a0a11f6e8889e7  
● GNPS Molecular Networking job: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=26326c233918419f8dc80e8af984cdae 
● GNPS NAP jobs: 

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=2cfddd3b8b1e469181a13e7d3a867a6f and  
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=184a80db74334668ae1d0c0f852cb77c    

● MS2LDA experiment: http://ms2lda.org/basicviz/summary/390/  
 
 
Case study 2: Rhamnaceae study - combined analysis of 71 Rhamnaceae plant extracts 

 
● MASSIVE: MSV000081805 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=36f154d1c3844d31b9732fbaa72e9284 
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● GNPS Molecular Networking job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e9e02c0ba3db473a9b1ddd36da72859b 

● GNPS NAP job: 
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=6b515b235e0e4c76ba539524c8b4c6d8  

● MS2LDA experiment: http://ms2lda.org/basicviz/summary/566  
 

 
GNPS example study used in Jupyter notebook to show MolNetEnhancer based on feature-based molecular 
networking - subset of American Gut Project 
 

● MASSIVE: MSV000082678 
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=de2d18fd91804785bce8c225cc94a44 

● GNPS Molecular Networking job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b817262cb6114e7295fee4f73b22a3ad  

● GNPS NAP job: 
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=c4bb6b8be9e14bdebe87c6ef3abe11f6  

● MS2LDA experiment: http://ms2lda.org/basicviz/summary/907  
 

Data illustrating MolNetEnhancer applied to classical molecular networking are publicly accessible through the 
links listed below: 
 
 
Case study 3: Marine-sediment bacteria study - combined analysis of 120 Salinospora and 26 Streptomyces 
bacterial strain extracts 
 

● MASSIVE: MSV000078836, MSV000078839 
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=9277186021274990a5e646874a435c0d 
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=a507232a787243a5afd69a6c6fa1e508  

● GNPS Molecular Networking job: 
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c36f90ba29fe44c18e96db802de0c6b9 

● GNPS NAP job: 
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=60925078e0c148cbaba3593569e983d6  

● GNPS DEREPLICATOR 0.005 job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0ad6535e34d449788f297e712f43068a  

● GNPS DEREPLICATOR 0.05 job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e494a63be6d34747a4b8cdfb838ef96e 

● GNPS VARQUEST 0.005 job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f1f00c1c20ba4f61ad471d340066df76 

● GNPS VARQUEST 0.05 job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f5ffcc8f63ab4e6f96a97caabc11048b 

● MS2LDA experiment: http://ms2lda.org/basicviz/summary/551/  
● MS2LDA MolNetEnhancer workflow experiment: http://ms2lda.org/basicviz/summary/912/   
 

Case study 4: Nematode symbionts study - combined analysis of 25 Xenorhabdus and 5 Photorhabdus bacterial 
strain extracts 

 
● MASSIVE: MSV000081063 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=dcc30b777c344d668a5626d01f26c9a0  
● GNPS Molecular Networking job: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=aaff4721951b4d92b54ecbd2fe4b9b4f  
● GNPS NAP job: 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=677f076eb04b4518958ca8cd56b4c753  
● GNPS DEREPLICATOR 0.005 job: 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=338b422483d1432e82afd1bf848f1292 
● GNPS DEREPLICATOR 0.05 job: 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=83bca3c45665470891d41ead275dcae7 
● GNPS VARQUEST 0.005 job: 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=20cfb9af4a244feea102aa9c9da2651c  
● GNPS VARQUEST 0.05 job: 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a4ffda169823476a9b1e81616aeccbda 
● MS2LDA annotation experiment: http://ms2lda.org/basicviz/summary/570/  
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● MS2LDA MolNetEnhancer workflow experiment: http://ms2lda.org/basicviz/summary/917/  
 

GNPS example study used in Jupyter notebook to show MolNetEnhancer based on classical molecular 
networking - drug metabolism in set of sputum samples 

 
● MASSIVE: MSV000081098 

https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=7c4b25d21a6348df9a6942d3071a4b1f&view=adv
anced_view 

● GNPS Molecular Networking job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b76dd5a123e54a7eb42765499f9163a5   

● GNPS NAP job: 
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=cb63770fe307410492468f62f9edb8f3  

● VarQuest job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4d971b8162644e869a68faa35f01b915 

● DEREPLICATOR job: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c62d3283752f4f98b1720d0a6d1ee65b 

● MS2LDA experiment: http://ms2lda.org/basicviz/summary/909/  
 

 
The MolNetEnhancer package in R including Jupyter notebooks with an exemplary analysis workflow 

for mapping Mass2Motifs onto classical and feature-based molecular networking is publicly accessible at: 
https://github.com/madeleineernst/RMolNetEnhancer and the MolNetEnhancer package in python including 
Jupyter notebooks with an exemplary analysis workflow for mapping Mass2Motifs and chemical class 
annotations onto classical and feature-based molecular networking is publicly accessible at: 
https://github.com/madeleineernst/pyMolNetEnhancer  

 

5. Conclusions 

MolNetEnhancer is a powerful tool to accelerate chemical structural annotation within complex metabolic 
mixtures through the combined use of mass spectral molecular networking, substructure discovery, in silico 
annotation as well as chemical classifications provided by ClassyFire. The MolNetEnhancer workflow is 
presented both as a open-source python module and R package, allowing easy access and usability by the 
community as well as the possibility for customization and further development by integration into future 
collaborative modular tools and by integration of other existing or future metabolome mining and annotation 
tools. Whilst its use was showcased using natural product examples, we expect that MolNetEnhancer will also 
enhance biological and chemical interpretations in other scientific fields such as clinical and environmental 
metabolomics. 
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Supplementary Materials: The following are available:  

Figure S1. Mirror plot comparing molecular feature with m/z 614.30 and RT 373.17 (black) to GNPS reference spectrum 
of a jatrophane diterpenoid (green). A total of 289 shared peaks were found. Mass peaks at m/z 313, 295, 285 are 
characteristic for a Euphorbia diterpenoid backbone skeleton, however spectral similarity (cosine score) was only found to 
be 0.71. The unknown molecular feature is thus likely a close structural analogue of  the jatrophane diterpenoid. The GNPS 
reference spectrum as well as the mirror plot is publicly accessible at 
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=26326c233918419f8dc80e8af984cdae&view=view_all_annotations_D
B#%7B%22main.%23Scan%23_lowerinput%22%3A%223633%22%2C%22main.%23Scan%23_upperinput%22%3A%2
23633%22%7D. 

Figure S2. (a) Marine sediment Salinispora/Streptomyces molecular network colored by chemical classification scores for 
annotated chemical class terms, and (b) same molecular network colored by chemical classification scores for annotated 
chemical kingdom terms. Light grey means no database matches were found. The higher the class score, the more consistent 
the chemical annotations are. The kingdom scores represent the database coverage of nodes across a molecular family with 
scores closer to zero representing families with fewer nodes that have at least one database hit. Whilst most MFs do have 
database matches for all or most nodes, the consistency in chemical class annotations is - apart from some exceptions - less 
(indicated by the more orange/pink colors in the left panel). This indicates that for many MF family members the right 
molecular structures might not yet be present in the structural databases used. 

Figure S3. Molecular families from marine sediment bacteria with color coded Mass2Motif substructure information 
mapped on them, with (a) Lomaiviticin related molecular family where are members contain an amino sugar related motif, 
(b) yet unknown molecular family that shares an amino sugar related motif, (c) yet unknown molecular family sharing an 
unknown fragment-based motif occurring 0.7% in the marine sediment data set, and (d) yet unknown molecular family 
sharing unknown loss-based motifs occurring 0.4% (Mass2Motif 250) and 0.8% (Mass2Motif 261) in the marine sediment 
data. In all MFs, nodes are coloured based on motif overlap scores and the edges present similar colours to show if cosine 
score-connected nodes share similar Mass2Motifs. It can be seen that in most families multiple motifs are shared across 
some of its members.  

Figure S4. (a) Nematode symbionts Photorhabdus/Xenorhabdus network colored by chemical classification scores for 
annotated chemical class terms, and (b) same molecular network colored by chemical classification scores for annotated 
chemical kingdom terms. Light grey means no database matches were found. The higher the class score, the more consistent 
the chemical annotations are. The kingdom scores represent the database coverage of nodes across a molecular family with 
scores closer to zero representing families with fewer nodes that have at least a database hit. We observe database coverages 
of close to 1 for most molecular families; however, some molecular families have a lower coverage with a few nodes that 
return candidate structures. Furthermore, we observe that the chemical class annotation is not always consistent indicating 
that manual inspection and validation of those hits remains essential. 

Figure S5. Xenoamicin Mass2Motif mass feature frequency plots for (a) Mass2Motif related to Xenoamicin peptidic ring 
and (b) Xenoamicin peptidic tail. It can be observed that many mass fragments are present in at least 75% of the associated 
molecular features (9 and 6 for ring and tail Mass2Motif, respectively) with a few mass fragments present in nearly all 
associated molecular features. (c) and (d)  Examples of annotated Xenoamicin A modified structures in which only the ring 
Mass2Motif was found. Indeed, we observe that VarQuest annotates a modified amino acid (addition and loss of) in the tail 
region of Xenoamicin A indicated in orange. (e) and (f) Examples of annotated Xenoamicin B modified structures in which 
only the ring Mass2Motif was found. Indeed, we observe that VarQuest annotates a modified amino acid (double water 
addition, loss of methyl) in the ring region of Xenoamicin B indicated in orange. The structures of Xenoamicin A and B 
differ in one methyl group on the amino acid highlighted in orange in (f) where B has an isobutyl group and A an isopropyl 
group. In fact, the structure of Xenoamicin A is correctly annotated by VarQuest to this fragmented doubly charged ion. 
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