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ABSTRACT 

The field of Pharmacogenomics presents great challenges for researchers that are willing to             

make their studies reproducible and shareable. This is attributed to the generation of large              

volumes of high-throughput multimodal data, and the lack of standardized workflows that are             

robust, scalable, and flexible to perform large-scale analyses. To address this issue, we             

developed pharmacogenomic workflows in the Common Workflow Language to process two           

breast cancer datasets in a reproducible and transparent manner. Our pipelines combine both             

pharmacological and molecular profiles into a portable data object that can be used for future               

analyses in cancer research. Our data objects and workflows are shared on Harvard Dataverse              

and Code Ocean where they have been assigned a unique Digital Object Identifier, providing a               

level of data provenance and a persistent location to access and share our data with the                

community.  
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INTRODUCTION 

 
With the advances of high-throughput technologies in biomedicine, the volume of data has             

drastically increased in the last decade across scientific disciplines 1. This influx of data has               

provided researchers with the ability to discover and utilize data of various types and structural               

characteristics that aid in carrying out leading-edge research. However, when heterogeneous           

and multimodal data types are produced in large quantities, the data become much more              

complex to process, making conventional computational processing methods inadequate and          

calling for new solutions 2,3. These conventional methods encompass the use of scripting             

languages to process this data lacking (i ) resource management capabilities (compute and            

memory); (ii ) ability to aggregate data from multiple sources; (iii ) support for modular processing;              

(iv) ability to handle unstructured data; and (v) ability to transform data to be used with other                 

tools/algorithms 4,5. Moreover, pipelines harnessing complicated methods for processing         

pharmacogenomic data may be difficult to reproduce 6. These methods include the use of              

convoluted scripts that deploy multiple genomic tools and statistical methods/algorithms to           

compute drug response and identify molecular features in samples 7,8. A challenge subsequently             

arises, as there becomes a plethora of pipelines for pharmacogenomic datasets that utilize             

different complex methods, which all aim to perform the same goal, but will yield different results                

9. These limitations hinders scalability and prevent from realizing the full potential of             

pharmacogenomic data generated by drug screening facilities worldwide. There is therefore a            

need for the development of more sophisticated computational pipelines to address these            

issues 10.  

To address the issues of scalability, reproducibility and standardization with processing           

and analyzing pharmacogenomic datasets, we created open-source processing pipelines using          

the Common Workflow Language (CWL), a popular data workflow language in the data science              
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and bioinformatics community 11. We leveraged PharmacoGx within our pipelines, an           

R/Bioconductor package that provides computational approaches to simplify the processing and           

analysis of such large datasets 12. We pushed our CWL pipelines on the Code Ocean platform 13                 

, which process two large breast cancer pharmacogenomic datasets 14–17 and create fully             

documented data objects shared through a persistent, unique digital object identifier (DOI) on             

Harvard Dataverse 18. Our study demonstrates how existing computational tools and platforms            

can be used to standardize the processing of pharmacogenomic data in a transparent and              

reproducible way, and how these processing pipelines and resulting datasets can be shared             

with the scientific community. 

Pharmacogenomic datasets 

The first dataset is the Oregon Health and Science University (OHSU) breast cancer screen              

generated within Dr. Joe Gray's laboratory (GRAY) 14,17.The two most recent versions of the              

GRAY dataset were published in 2013 and 2017, where the latest update collectively includes              

91 cell lines and 120 drugs, with 10,897 drug sensitivity experiments for 72 cell lines screened                

against 120 drugs 14,17. The dataset includes processed SNP (n =77), exon array (n =56), U133A              

expression (n =51), RNA-seq (n =54), RPPA (n =49), and methylation (n =55) profiles with the use             

of various technologies and processing methods (Table 1) 17.  

The second dataset is the University Health Network (UHN) breast cancer screen            

(UHNBreast) with molecular and pharmacological profiles released in 2016 16 and 2017 15,             

respectively. The dataset includes processed SNP (n =79), RNA-seq (n =82), RPPA (n =79), and            

miRNA (n =82) (Table 1) 16. We provide the most recent update to UHNBreast with four new                

drugs (trastuzumab, olaparib, BYL719, and UNC0642 ), along with processed miRNA, CNA, and            

RPPA data for a total of 85 cell lines, 8 drugs, and 689 drug sensitivity experiments where 56                  

cell lines were screened against 8 drugs16.  
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The convergence of the 2017 update of GRAY and our 2019 update to UHNBreast yield               

an intersection of 72 cell lines and 5 drugs after curation through our pipelines (Figure 2). 

Reproducible and transparent processing of data 

Due to the scale and complexity of data that are produced through high-throughput platforms,              

the data processing and analysis pipelines should possess a robust and flexible infrastructure             

4,5. It is therefore important for pipelines to support interoperability, such as where different tools               

can be allocated to different data 19. However, pipelines that are interoperable by consisting of               

multiple components/stages are difficult to reproduce 20, such as those used to process and              

analyze pharmacogenomic datasets due to their multimodality 10. To solve this issue, we             

developed our PharmacoGx pipelines in CWL, which allowed us to standardize the way we              

executed our multi stage processing and analysis of both breast cancer datasets in a              

reproducible and transparent manner (Figure 1) 11. Importantly, PharmacoGx implements the           

PharmacoSet (PSet) class, allowing us to create shareable R objects integrating all aspects of              

pharmacogenomic datasets, from the cell line and drug annotations to the molecular and             

pharmacological data. Each CWL pipeline is allocated a specific subroutine that is required for              

PSet creation, which includes curating cell and drug annotations, computing drug response, and             

incorporating processed molecular profiles for a given dataset (Table 2). To accomplish this in a               

semi-automatic fashion, we incorporated each pipeline into a CWL workflow, where           

PharmacoGx computes each stage of a pipeline and assembles their corresponding outputs            

into a PSet. This workflow not only transparently indicates the pipelines that are being executed,               

but also ensures that each pipeline is executed in the same manner if replicated, enforcing               

reproducibility. Because every dataset requires a different way of transforming and processing            

the data, due to variability in the way the data were initially shared and structured for each                 

study, GRAY and UHNBreast possess their own CWL pipelines and workflow to accommodate             
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for the differences 14–17. Because CWL is a standardized language, each pipeline must include              

input and output definitions, base commands, and requirements (e.g., resource, Docker). In            

addition, each CWL pipeline and workflow must be accompanied by a YAML (YAML Ain't              

Markup Language ) or JSON file, which consists of an object array that defines a class and path                 

for each input in the respective pipelines. In order for our CWL pipelines to execute               

successfully, they must specify the following: hints (docker requirement to run PharmacoGx),            

inputs that declare a type and input binding position (Rscripts, annotation files, raw drug data,               

processed molecular data,.), outputs that declare a type and output binding (e.g, processed             

drug sensitivity R objects, PSets), and a base command (to run Rscript), in the specified CWL                

file. Therefore, in order for our CWL workflows to be fully documentented and reproducible,              

each pipeline must be defined as an input and possess a successful runtime independently.              

Having to explicitly specify these parameters required to run each pipeline, along with the inputs               

and outputs in CWL provides an added layer of transparency to the pipelines, as well as                

allowing users to have control over data provenance. One of the highlights of our CWL               

workflows is the recomputation of drug response data for both datasets, which include AAC              

(Area Above the drug-dose response Curve), IC50 (maximal drug concentration to achieve 50%             

cell growth inhibition), Hill-Slope (measurement of slope of a drug-dose response curve), Einf             

(maximum theoretical inhibition), and EC50 (drug concentration for which 50% of maximum            

response is observed). For GRAY, we computed sensitivity profiles that include recomputed            

AAC, IC50, Hill slope values, and included published GI50 (concentration for 50% of maximal              

inhibition of cell proliferation) data for each corresponding cell line and drug combination 14,17.              

For UHNBreast, recomputation of AAC and IC50 was also performed, along with Hill slope, Einf,               

and EC50 15,16.  
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Tracking data provenance and validating pipeline integrity 

Tracking data provenance with CWL can be further enhanced through the use of the              

provenance flag (--provenance) when executing the PSet workflows. Here, a Research Object is             

automatically generated, which is a directory that acts as a bundled container for all of the                

resources utilized and produced within our workflows, including metadata that annotates each            

resource 21. Within this object is a “data” directory that contains each input file used in the                 

workflow with a unique and fixed checksum. We are given granular transparency across the              

entire workflow at every stage, as we are able to map each checksum to a respective input file                  

and location in the “data” directory, including all of the Rscripts that were utilized within a                

pipeline, through a workflow metadata file that is generated. In addition to a checksum, each               

PSet is also assigned a Universally Unique Identifier (UUID), which provides an additional layer              

of provenance to accurately identify the PSet that was generated by the workflow. Moreover,              

this is accompanied by a provenance metadata file, which provides users with the ability to use                

checksums and UUID’s to accurately identify when each file was called and generated along the               

entire execution of a workflow. Therefore, a Research Object confirms the reproducibility of our              

CWL workflows and validates the PSet that was generated with a respective runtime by              

providing rich metadata that tracks data provenance at each stage of a workflow. 

 
Harnessing Docker to create a reproducible runtime  

PharmacoGx integrates seamlessly with CWL, as we leverage CWL’s Docker capabilities to            

containerize the package and run all of our pipelines in an isolated environment 20. Docker is a                 

tool that allows for PharmacoGx to be uniformly deployed with all software dependencies, in a               

containerized runtime environment where all of our computations are performed and PSets are             

produced 20. The Docker container is invoked upon CWL workflow execution, where all the input               

files for a given pipeline become mounted into the container and all output files produced in the                 
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isolated environment are recovered into a local environment 22,23. Another advantage of Docker             

is the ability of containers to utilize and share the hardware resources of the environment it is                 

being run in 24. Therefore, PharmacoGx deployment is not only consistent, but also portable              

across both cloud and high performance computing environments, as our Docker image is also              

publicly available through Docker Hub  

(https://hub.docker.com/r/bhklab/pharmacogxcwl ) 23,24. The ability to standardize the manner in         

which PSets are produced through CWL, and develop an additional layer of abstraction for              

pipeline execution through Docker, allowed us to create and deploy reproducible and            

transparent pharmacogenomic pipelines that can be shared with the research community and            

replicated. 

Sharing of data and pipelines 

In order for a study to be computationally reproducible, data and pipelines must be well               

documented, uniquely identified, and easily accessible in a persistent location to other            

researchers 25. To accomplish this, we utilized the Harvard Dataverse to share our PSets for               

both breast cancer pharmacogenomic datasets, along with Code Ocean to share our CWL             

pharmacogenomic pipelines 13,18. Harvard Dataverse is an online data repository for           

transparently preserving and sharing research data with other researchers. By creating a            

container known as a “dataverse” within the platform, researchers are to able deposit their              

datasets and corresponding metadata, in an organized fashion and make them easily            

discoverable for others to download and share 18. Each dataset can be also assigned an unique                

DOI, which allows a dataset to possess a persistent location, as well as allow researchers to                

accurately identify and share a specific dataset of interest. In addition, subsequent updates             

(versions) to a dataset can be uploaded, with accompanying metadata that explains the update              

and its changes, providing a layer of data provenance to the research community. 
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We also transferred our reproducibility measures to the pipeline level, as we deposited             

and shared our CWL workflows through Code Ocean, a reproducibility platform that allows for              

researchers to upload, share, and run published and configured code 13. Data is uploaded into a                

“capsule”, which provides a computational environment for others to run code in the capsule,              

without the need to manually execute it locally with the addition of installing any dependencies               

13,26. Moreover, code can also be assigned a persistent DOI, providing the ability to accurately               

share and retrieve pipelines, as well as verify the reproducibility of published results directly              

through the compute capsule 13,26. Because Code Ocean does not currently support running             

multi-container pipelines, and therefore our CWL workflows, we used the platform to host our              

workflows and raw data, provide execution instructions, and run a post-PSet analysis for             

biomarker discovery.  

Our PSets can be found on Harvard Dataverse at the following DOI:            

https://doi.org/10.7910/DVN/BXIY5W. Our CWL workflows can be found on Code Ocean at the            

following DOI: https://doi.org/10.24433/CO.7378111.v1 .  

 
Utilization of PSets for Biomarker Discovery 

In order to demonstrate the utilization of our PSets for cancer research, we identified ERBB2 

expression as a biomarker for lapatinib in both the GRAY 2017 and UHNBreast 2019 datasets 

(Figure 3). To investigate this gene-drug association, we utilized processed RNA-seq 

expression and recomputed drug sensitivity (AAC)  from each PSet. We subsequently identified 

cell lines from both PSets that possess gene expression and drug sensitivity for ERBB2 and 

lapatinib, respectively, and computed the concordance index and p-value between them. Our 

computed concordance index of 0.7308 and 0.6299 for GRAY and UHNBreast respectively, 

indicate a correlation between the effects of drug response (lapatinib) to molecular features 
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(ERBB2 amplification) across both datasets. This analysis can be reproduced through our Code 

Ocean capsule. 

DISCUSSION 

The utilization of CWL allows us to create and execute transparent and reproducible             

pharmacogenomic pipelines that can be validated and easily shared with the scientific            

community 11. The standardized architecture of the language allows users to create            

language-agnostic pipelines and workflows that enforce strict parameter specifications to ensure           

execution is consistent 11. In addition, users are able to incorporate Docker into their runtimes,               

where data ingestion, analysis, and exportation all occur in an isolated container environment             

that promote repeatable execution 22,23. Users are also able to track data provenance across the               

entire execution time by creating Research Objects in CWL, which validates each portion of              

data flow from input to output, through checksums and UUID’s 21. Lastly, CWL pipelines and               

workflows are scalable and portable across many computing environments, such as the cloud,             

which gives users the ability to easily share their analyses and harness a plethora of various                

hardware resources to successfully execute their workloads that would not be possible with             

using on premise resources 23,24. A common practice in pharmacogenomics is sharing study             

data as supplementary files through a journal, or online sharing platforms/repositories such as             

Synapse and GitHub, which was the case for both the GRAY and UHNBreast datasets 14–17.               

However, the challenge becomes assembling these data into a form that can be successfully              

analyzed and interpreted when shared. We were able to accomplish this in a reproducible              

manner by utilizing study data from a variety of sources and assembling it into a meaningful and                 

useful form for cancer researchers, which are PSets, through CWL and PharmacoGx.            

Therefore, our pipelines form the bridge between raw pharmacogenomic data and assembly in             

a transparent fashion. However, our workflows do have limitations, including the inability to             
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identify changes to pipelines, input data, and PSets, at the file level, when updates are pushed                

and the files are taken into an environment outside of Harvard Dataverse and Code Ocean.               

However, with storing our data on Harvard Dataverse and pipelines on Code Ocean with rich               

metadata, users will be able to retrieve any updated files on both repositories and accurately               

identify the exact changes to each file. In addition, CWL Research Objects provide checksums              

and UUID’s only after a runtime is complete, which are bound to the file name and not                 

persistently attached to a file for use in subsequent workflow runs. Thus, if a input file is updated                  

and re-utilized in a workflow, we must manually keep track of all checksums and UUID’s that                

were assigned to it by CWL over time. In the future, we hope to increase transparency and                 

reproducibility by automating these pharmacogenomic pipelines in a manner that keeps track of             

all input and output data at the file level through the use of automatically generated unique                

identifiers that are persistent. Moreover, we hope to provide users with an interface that              

provides options for processing drug sensitivity and molecular profiles in a generated PSet. 

CONCLUSION 

Our PharmacoGx CWL pipelines allow for the processing and analysis of pharmacogenomic 

datasets in a reproducible and transparent manner. The pipelines compute pharmacological 

data across many cell lines and drugs and integrate it with molecular profiles to generate a 

breast-cancer specific PSet object. These data objects and pipelines are made available 

through a persistent DOI on Harvard Dataverse and Code Ocean respectively, which provide 

researchers with the opportunity to transparently share and utilize them for improved biomarker 

discovery.  
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Figure 1: Breast cancer PharmacoSet (PSet) generation and DOI assignment through execution of a reproducible
PharmacoGx CWL workflow
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Figure 2: Convergence of drugs and cell lines between GRAY (2017) and UHNBreast (2019) after curation
through our CWL pipelines
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Figure 3: ERBB2 expression as a biomarker for lapatinib in GRAY 2017 and UHNBreast 2019
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GRAY 2013 GRAY 2017 UHNBreast 2017 UHNBreast 2019
Cell lines 91 91 83 85
Drugs 89 120 4 8
Experiments 9413 10897 52 689
Molecular data and processing RNA-seq (ALEXA-Seq, TopHat, HTSeq) RNA-seq (STAR, Cufflinks)

CNV (aroma.affymetrix, CNTools, DNACopy) CNA (Illumina GenomeStudio, CNTools, DNACopy)
Methylation (Illumina GenomeStudio) miRNA (sva, ComBat)
RPPA (normalization methods from MD Anderson) RPPA (normalization methods from MD Anderson)

Table 1: Summary of cell line and drug curations, sensitivity experiments, and molecular profile processing for
GRAY and UHNBreast datasets
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CWL Pipeline Pipeline Description Input Output
Cell line Curation Curates cell lines Cell line annotation Curated cells line
Tissue Curation Curates tissues Cell line annotation Curated tissues
Drug Curation Curates drugs Drug annotation Curated drugs
Cell Line Info Collects cell line metadata Cell line metadata Cell line metadata
Drug Sensitivity Recomputes raw drug response data Raw drug response data Recomputed sensitivity
Drug Published Collects published drug response data Published drug response data Published sensitivity
Molecular Profiles Incorporates molecular data into ExpressionSets Molecular profiles ExpressionSets
getPSet Creates PSet All objects produced by each pipeline PSet

Table 2: CWL workflow pipelines and their respective data streams to produce a PharmacoSet (PSet) for GRAY
and UHNBreast datasets
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