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Summary 24	

Signal transduction pathways are largely based on compilation of individual post-translational 25	

modification assays in heterogeneous cellular contexts. Indeed, de novo reconstruction of 26	

signaling interactions from large-scale molecular profiling is still lagging, compared to similar 27	

efforts in transcriptional and protein-protein interaction networks. To address this challenge, we 28	

present systematic, computational reconstruction of tyrosine kinase (TK) signal transduction 29	

pathways, based on mass spectrometry-based proteomics profiling of phosphotyrosine-enriched 30	
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peptides from 250 samples representative of lung adenocarcinoma. The network represents 43 31	

TKs and their predicted substrates, which were validated at >60% accuracy by SILAC assays, 32	

including “novel’ substrates of the EGFR and c-MET TKs, which play a critical oncogenic role in 33	

lung cancer. Availability of the network allowed prediction of drug response in individual samples, 34	

including accurate prediction of synergistic EGFR and c-MET inhibitor activity in cells lacking 35	

mutations in either gene, which was experimentally validated, thus contributing to current 36	

precision oncology efforts.  37	

 38	

Keywords: signaling network, lung cancer, tyrosine kinase,  combination therapy, proteomics, 39	

EGFR, c-MET40	
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Introduction  41	

Lung adenocarcinoma (LUAD) is a leading cause of cancer related deaths in United States, 42	

representing 40% of the 225,500 new lung cancer cases every year and a 5-year survival rate of 43	

only 16 % (1). Excluding immunotherapeutic agents, which have recently shown significant 44	

success in a relatively small subset of patients (2), the most effective targeted therapies for this 45	

diseases were designed to inhibit tyrosine kinases harboring genetic alterations inducing aberrant 46	

activation of downstream signaling pathways (3-7). These events primarily include EGFR 47	

mutations and ALK-EML4 fusion events, in ~15% and ~3–7% of LUAD patients, respectively (8, 48	

9). Yet, while targeted therapy is initially effective in a significant fraction of patients harboring 49	

these actionable alterations, the vast majority of them will either fail to respond or develop 50	

resistance to mono-therapy (10, 11). In addition, most patient lack actionable alterations 51	

altogether. This suggests that novel approaches are critically needed.   52	

A possible alternative to minimize emergence of resistance is combination therapy, a strategy 53	

that has been shown to be effective in many metastatic tumors, such as breast cancer, and acute 54	

myeloid leukemia (12-14). However, systematic identification of effective drug combinations on a 55	

genetic alteration basis is difficult, because the number of patients presenting multiple actionable 56	

events is extremely low. As a result, combination therapy is generally hypothesized and tested on 57	

an empirical basis or based on elucidation of complex mechanisms of tumor cell adaptation. To 58	

address these limitations, we and other have proposed that rational design of combination therapy 59	

will require a more mechanistic and tumor-context-specific understanding of the molecular 60	

interactions that underlie their potential synergistic activity, starting with tyrosine kinases, which 61	

represent a critical class of pharmacological targets in cancer (15). Such an approach requires 62	

methodologies for the accurate and systematic elucidation of tumor-specific signaling 63	

transduction pathways. 64	
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Dissection of signal transduction networks represents a complex endeavor, requiring elucidation 65	

of hundreds of thousands of tissue-specific molecular interactions that mediate the post-66	

translational modification of protein substrates. In vitro approaches generally fail to capture the 67	

tissue-specific nature of these interactions, thus providing “average” signal transduction pathways 68	

that are both incomplete and inaccurate. In addition, experimental approaches that have been 69	

successful in accelerating the analysis of molecular interactions in transcriptional regulation and 70	

protein-protein interaction in stable-complexes, such as those based on co-expression or yeast-71	

2-hybrid assays, do not easily translate to elucidating signaling interactions. Similarly, approaches 72	

based on the use of phospho-specific antibodies, while elegant and effective, are limited to only 73	

a handful of proteins. Computationally, compared to the many algorithms that have been 74	

developed for the reverse engineering of transcriptional and protein-complex interactions (16, 17), 75	

only a handful of experimentally validated algorithms are available for the dissection of signaling 76	

networks, none of which works at the proteome-wide level or is tumor-context specific (16, 18, 77	

19).  78	

Recent availability of proteome-wide molecular profile data, characterizing the abundance of 79	

phospho-tyrosine-enriched peptides by liquid chromatography coupled to tandem mass 80	

spectrometry (LC-MS/MS), suggests that additional methodologies may be developed to extend 81	

approaches that have been successfully applied to the dissection of transcriptional networks from 82	

gene expression profiling. In this manuscript, we propose extending the Algorithm for the 83	

Reconstruction of Accurate Cellular Networks (ARACNe) (26) for the reverse engineering of 84	

signal transduction networks from large-scale phosphoproteomic profiles.  The new method, 85	

pARACNe, addresses critical issues that prevented the direct application of the original ARACNe 86	

algorithm on phosphoproteomic datasets. In particular, it has been modified to handle the highly 87	

sparse nature of phosphopeptide abundance data, the large amount of noise and missing data, 88	
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and the degenerate peptides-to-protein mapping, as resulting from the use of LC-MS/MS-based 89	

assays. 90	

When used to analyze genome-wide phosphoproteomic data from 245 lung cancer samples, 91	

including fresh-frozen biopsies and cell lines for non-small-cell lung carcinoma, as well as normal 92	

lung tissue, pARACNe produced a dense network connecting 46 tyrosine kinases (TK) with 415 93	

substrates (including 377 proteins without TK activity). This represents the first genome-wide, 94	

tumor-context-specific model for a TK signal transduction network, capturing both protein-specific 95	

and phospho-site specific events. We validated substrate predictions for two “hubs,” whose 96	

activity may play a key role in determining sensitivity to Erlotinib and Crizotinib, two FDA-approved 97	

drugs for LUAD, including the EGFR and c-MET tyrosine kinases by independent SILAC assays 98	

and database analysis, with an accuracy of over 60%. Of particular note, the pARACNe-predicted 99	

TK-substrate network provided unique information about tyrosine kinase auto-phosphorylation, 100	

either direct (cis) or via a second kinase (trans). Analysis of the resulting TK-network, via master 101	

regulator analysis (27), recapitulated established genetic determinants of LUAD and identified 102	

predictive biomarkers of response to Erlotinib and Crizotinib combination therapy, which were 103	

validated in an independent set of LUAD cell lines, the majority of which harbored no genetic 104	

alterations in the corresponding genes. Furthermore, predictions based on the analysis of the 105	

corresponding patient cohort were strongly supported by genomic information, suggesting 106	

potential value in using these analyses for the identification of effective combination therapies in 107	

precision oncology.  108	

 109	
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Results 110	

Overview of the pARACNe algorithm 111	

Enzymatic activity of tyrosine kinase (TK) proteins – as assessed by the ability to phosphorylate 112	

their downstream substrates – is effectively determined by their phosphorylated isoform 113	

abundance (Fig. 1A, B). Therefore, we reasoned that computational inference of TK-substrate 114	

interactions (TK→S) could be effectively performed by measuring the dependency between their 115	

respective phospho-states, as measured over a large compendium of samples (Fig. 1C). 116	

Unfortunately, due to signal transduction cascade complexity and pathway cross-talk, such 117	

dependencies can manifest between protein pairs that are not involved in direct TK→ S 118	

interactions. The ARACNe algorithm, which we had previously designed for the reverse 119	

engineering of transcriptional networks, effectively addresses this problem by leveraging the Data 120	

Processing Inequality (28), a critical property of mutual information (29) , that effectively allows 121	

disambiguating between direct and indirect interactions. This is accomplished by assessing 122	

whether the information transfer on a candidate direct interaction (e.g., TK1→S) is greater than 123	

on all other indirect paths (e.g., TK1→TK2→S).  ARACNe has been highly successful in the 124	

experimentally validated dissection of transcriptional networks via analysis of large gene 125	

expression profile compendia. ARACNe-inferred targets of transcription factors were validated in 126	

multiple cellular contexts, with an accuracy of 70% to 80% (26, 30-33).  127	

However, ARACNe relies on molecular profile data that is both continuous and non-sparse, 128	

properties that are not always provided by quantitative proteomic data sets, which can be 129	

generated by a variety of methods. Those based on LC-MS/MS represent the most popular 130	

approaches [PMID: 27629641], but different implementations have specific performance profiles 131	

in terms of analyte throughput, consistency of measurement of peptides across samples and 132	

linear dynamic range [PMID: 27049628]. Depending on the data acquisition method, one or both 133	

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/289603doi: bioRxiv preprint 

https://doi.org/10.1101/289603
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

of these assumptions of ARACNe are violated in proteome-wide datasets generated by the most 134	

popular methods based on data-dependent acquisition. Particularly when employing 135	

quantification by spectral counting, as is typically conducted for global protein-protein interaction 136	

studies [PMID: 26186194, 28514442], phosphoproteomic data is both discrete (i.e., generally 137	

represented by spectral counts), very sparse, with a majority of peptides having zero spectral 138	

counts, and presenting a significantly skewed distribution for low-abundance peptides. 139	

 140	

To address these limitations, we developed an entirely novel algorithm, pARACNe (phospho-141	

ARACNe) (Fig. 1C), specifically designed to measure phospho-state dependencies between TKs 142	

and their candidate substrates using large-scale LC-MS/MS phosphoproteomic profiles. 143	

pARACNe thus extends the original ARACNe framework to allow systematic inference of TK→S 144	

interactions. Specifically, to handle the highly discrete nature of the data, pARACNe replaces the 145	

kernel-density and adaptive partitioning based mutual information estimators with the naive 146	

method (Fig 1C4), using gold standard data to select the most effective number of bins [12] (see 147	

Methods). Furthermore, to deal with the skewed spectral count distribution, we introduce an 148	

iterative quantile discretization method, where samples are binned together, based on their 149	

spectral counts, to produce a distribution as close to uniform as possible (Fig 1C3, Methods). 150	

 151	

pARACNe-inferred LUAD-specific TK-phosphorylation network  152	

We used pARACNe to reconstruct a LUAD-specific TK-signaling network, by analyzing 153	

phosphopeptide profiles obtained from 245 LUAD samples (34). These data represent the 154	

abundance of peptides containing at least one phospho-tyrosine, as obtained by 155	

phosphoproteomic analysis of 46 LUAD cell lines, 151 LUAD tumors, and 48 adjacent normal 156	

samples. LC-MS/MS profiling identified 3920 phospho-tyrosine residues on approximately 2600 157	

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/289603doi: bioRxiv preprint 

https://doi.org/10.1101/289603
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

different proteins. Based on these data, pARACNE identified a total of 2611 peptide-peptide 158	

interactions, which could be further mapped to 2064 unique TK→S interactions (Suppl. Table 1). 159	

The latter represent interactions between 46 distinct TKs and their candidate substrates, including 160	

174   TK1→TK2 interactions between two TKs (Fig 2A), which represents a statistically significant 161	

bias toward TK-TK interactions in the network (p = 10-62). This suggests that TKs may form a more 162	

densely inter-connected subnetwork within the complete TK signaling network than previously 163	

assessed, thus potentially providing critical novel information about adaptive response, pathway 164	

cross-talk, and auto-regulatory loops. Indeed, such highly interconnected structure provides 165	

potential functional advantage compared to less connected or “flat” architectures, including the 166	

ability to provide more fine-grain response to a highly heterogeneous variety of exogenous signals 167	

and conditions, the ability to provide rapid adaptive response to changing stimuli, and the ability 168	

to preserve cell state via autoregulatory feedback. Interestingly, in contrast to transcriptional 169	

networks, the vast majority of pARACNe-inferred interactions have a positive Spearman 170	

correlation, with higher counts of TK-mapped phosphopeptides corresponding to higher counts of 171	

candidate substrate-mapped ones. This is consistent with the fact that, in contrast to 172	

transcriptional networks where interactions may activate or suppress expression of a target gene, 173	

TKs only phosphorylate their substrates, thus inducing positive phospho-state correlation. Only a 174	

negligible number of interactions (0.5%) were associated with a negative Spearman correlation 175	

(N = 11, p ≤ 0.05). These may represent either indirect interactions where the TK activates a 176	

substrate-specific phosphatase or direct interactions where phosphorylation of one phosphosite 177	

may prevent phosphorylation of another site on the same protein. 178	

	179	
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LUAD Network Accuracy and Sensitivity Analysis 180	

To estimate the accuracy of the inferred TK-signaling network, we investigated the substrates of 181	

two TK-proteins, EGFR and c-MET, representing high-affinity binding targets of existing FDA-182	

approved TK inhibitors for LUAD. Specifically, we compared their pARACNe-inferred substrates 183	

to those reported in the phosphoDB database (35) and those supported by experimental 184	

evidence, based on previously published SILAC assays, following cell line treatment with 185	

associated, selective TK inhibitors. pARACNe inferred 123 EGFR substrates (Fig 2B). Of these, 186	

5 (blue and cyan) were included as high-confidence EGFR substrates in phosphoDB, out of 13 in 187	

total (38%), including the established EGFR auto-phosphorylation site. Moreover, 50 additional 188	

proteins (45%, green) showed significant decrease (alteast 2 fold) in the abundance of their 189	

phosphorylated isoforms in SILAC assays (34), following treatment of H3255 cells with the EGFR 190	

inhibitor Gefitinib. Similarly, pARACNe predicted 179 c-MET substrates (Fig 2C). Notably, both 191	

of the established substrates reported in PhosphoDB were identified by pARACNE (100%, blue). 192	

Moreover, 126 additional proteins (71.5%, blue) showed significant decrease in the abundance 193	

of their phosphorylated isoforms in SILAC assays(34), following treatment of MKN45 cells with 194	

the first-generation c-MET-specific inhibitor Su11274.  195	

We used MKN45, even though it represents a gastric cancer cell line, to assess the overall 196	

conservation of predictions in different tissues. Indeed, while specific substrates are likely to be 197	

highly tumor-context specific, signaling networks should be significantly more conserved than 198	

transcriptional ones, since lineage-specific chromatin states represent a major determinant of 199	

transcriptional regulation, while signal transduction is only affected indirectly by the availability of 200	

specific partner proteins. As a result, it is reasonable to expect that an even greater overlap of 201	

inferred vs. SILAC positive substrates may be achieved in native LUAD cells.  202	

 203	
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Taken together, these data suggest that pARACNe can identify a much larger subset of candidate 204	

substrates, while both identifying a significant proportion of established substrates (46% on 205	

average, based on phosphoDB) and maintaining high accuracy (~60% on average, by SILAC 206	

assays). This also suggest that, similar to transcription factor targets reported in the literature, TK 207	

substrates are poorly characterized, even for highly relevant and exceedingly well-studied kinases 208	

such as EGFR and c-MET. As a result, pARACNe could provide significant novel hypotheses for 209	

TK→S interactions that can be validated as required. We should also note that the reported 210	

accuracy for pARACNe is estimated using SILAC data on a single cell line. SILAC assays have 211	

significant false negatives and it would be reasonable to expect that, once tested in additional cell 212	

lines, the accuracy of pARACNe could further increase. As a further performance benchmark, we 213	

used the same SILAC benchmark to test predictions by NetworkIN, a reverse engineering method 214	

based on protein sequence motif analysis and protein association networks (16). The analysis 215	

found almost no consensus with SILAC assays, with only one out of 33 NetworkIN-predicted 216	

EGFR substrate identified as significantly dephosphorylated following treatment with TK-specific 217	

inhibitors. 218	

 219	

Systematic, network-based inference of pharmacological dependencies 220	

Once an accurate model of signal transduction in LUAD cells was established by pARACNe 221	

analysis, we interrogated the corresponding TK→S network using phosphoproteomic signatures 222	

from 46 LUAD cell lines to identify key dependencies for experimental validation. For this purpose, 223	

we extended the Virtual Proteomics by Enriched Regulon analysis (VIPER)(37), which had been 224	

originally developed to identify key proteins controlling the transcriptional state of tumor-related 225	

cells, on an individual sample basis. Specifically, VIPER was designed to identify these proteins 226	

by assessing the enrichment of their transcriptional targets in differentially expressed genes, in a 227	

tumor-specific gene expression signature. VIPER, which extends the Master Regulator Inference 228	
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algorithm (MARINa) to support analysis of single samples, has been instrumental in identifying 229	

master regulator proteins representing key functional determinants of tumor-related phenotypes 230	

in many cancer types, from glioblastoma (32, 33, 38), lymphoma (39, 40), and leukemia (41) to 231	

prostate (42-44) and breast adenocarcinoma(45-47), among others. We thus reasoned that 232	

VIPER could be modified to identify master regulator TKs, most likely to induce the differential 233	

phosphorylation pattern observed in a specific tumor sample (Fig. 3A). A specific additional value 234	

of the algorithm is that it could not only identify individual MR TK proteins, representing individual, 235	

pharmacologically accessible dependencies of the tumor, but also TKs representing potential 236	

synergistic MR-pair as candidate dependencies for combination therapy.  237	

VIPER can be easily modified to analyze phosphoproteomic signatures. Specifically, rather than 238	

assessing the enrichment of a protein’s transcriptional targets (regulon) in differentially expressed 239	

genes, pVIPER is designed to measure the enrichment of a TK’s substrates (signalon) in 240	

differentially phosphorylated proteins. We performed pVIPER analysis at phosphopeptide specific 241	

level, where dependencies were assessed based on individual phosphopeptide ather than whole 242	

protein state, and were finally combined the result of all phosphopeptide mapping to the same 243	

protein. Consistent with VIPER’s experimentally validated ability to identify synergistic master 244	

regulators proteins by transcriptional network analysis (32, 40, 42), pVIPER can identify candidate 245	

synergistic TKs by assessing the statistical significance of the enrichment of the common 246	

substrates of both TKs over the enrichment of unique substrates of each individual TK (see 247	

Method section). Systematic VIPER analysis of phosphoproteomic profiles from 46 LUAD cell 248	

lines generated between 2 and 13 master regulator TKs or synergistic TK-pairs, as candidate 249	
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pharmacologically actionable dependencies, for each cell line, thus generating a plausible number 250	

of hypothesis for each line (Fig. 3B and Fig 3C).  251	

 252	

VIPER identifies LUAD-specific dependencies 253	

VIPER analysis inferred several TK proteins as highly conserved individual dependencies across 254	

multiple cell lines, including the Ephrin type-A receptor 2 (EPHA2), epidermal growth factor 255	

receptor (EGFR), c-Met proto-oncogene (MET), and HER2 receptor tyrosine kinase 2 (ERBB2), 256	

suggesting a critical role of these proteins in the maintenance of LUAD cell line state. This is also 257	

in agreement with the functional role of these genes and the use of inhibitors of these kinases 258	

across a large panel of patients in multiple cancer types (48-52).  259	

In contrast to these established LUAD cell line dependencies, we also identified several TKs as 260	

dependencies of specific cell lines. This can either be the result of associated genetic or 261	

epigenetic alterations in these cell lines or the result of field effects, where multiple genetic 262	

alterations or alterations in upstream pathway contribute to the cell line dependency on a specific 263	

TK activity. For instance, we identified ALK (Anaplastic Lymphoma Receptor Tyrosine Kinase) to 264	

be addiction point only in H2228 cell line. ALK is a conserved trans-membrane receptor tyrosine 265	

kinase (RTK) protein in the insulin-receptor super family. Chromosomal alterations involving ALK 266	

translocations and fusion events have been identified in several cancer types including LUAD (53, 267	

54), diffuse large B-cell lymphomas (55), neuroblastoma (56), and inflammatory myofibroblastic 268	

tumors (57), among others. Additionally, ALK fusion events with other genes, including EML4 269	

(Echinoderm Microtubule-associated protein Like 4) in LUAD lead to aberrant protein activity 270	

eliciting “oncogene addiction” (54). Presence of ALK-EML4 fusion transcripts, in ~3–7% of LUAD 271	

patients (58-60), is a strong predictor of response to ALK inhibitors, such as Crizotinib, among 272	

others (61, 62). Interestingly, among all available LUAD cell lines for which a phosphoproteomic 273	
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profile was available, H2228 was the only one with an established ALK-EML4 fusion event and 274	

with established sensitivity to ALK inhibitor (63, 64). This further reflects the specificity of our 275	

analysis as this was the only cell line predicted to depend on ALK activity. Interestingly, we 276	

identified 4 additional H2228 dependencies, namely EGFR, Epha2, c-MET, and PTK2. H2228 277	

sensitivity to EGFR inhibitors, in combination with ALK inhibitors, was already established (64). 278	

In addition, we confirmed dependency of H2228 cells on the other 3 TKs (Epha2, c-MET and 279	

PTK2) by cell viability assay following siRNA-mediated silencing of the corresponding gene, 280	

(Suppl. Fig. 2A). BrdU assays confirmed H2228 sensitivity to c-MET and PTK2 silencing (Suppl. 281	

Fig. 2B). Surprisingly, in contrast to inhibition by small molecule inhibitor, siRNA-mediated EGFR 282	

silencing did not show decrease in cell viability, while ALK silencing showed little effect. This may 283	

be due to the lower degree of siRNA-mediated inhibition, compared to specific inhibitors, or to the 284	

multi-kinase effect of the latter. For instance, consistent with their identification as cell line specific 285	

dependencies, Crizotinib is both an ALK and a c-MET inhibitor. Indeed, although siRNA-mediated 286	

c-MET inhibition was modest, BrdU incorporation assays showed significant effect on cell viability. 287	

 288	

EGFR and c-MET are predicted as dependencies in multiple LUAD cell lines 289	

As discussed, pVIPER analysis revealed several TK-pairs as candidate synergistic dependencies 290	

across several cell lines, such as Epha2/c-MET, EGFR/PTK2, EGFR/Epha2, Epha2/c-MET, and 291	

EGFR/c-MET. Among these the EGFR/c-MET pair emerged as the most conserved synergistic 292	

TK-pair across the available cell lines. In addition, EGFR and c-MET were also identified as 293	

candidate TK MRs in several of these cell lines, suggesting either a complementary or synergistic 294	

role for these proteins and a potential therapeutic opportunity for combination therapy in LUAD 295	

(65, 66).  296	

 297	

To validate pVIPER-predicted, cell line specific EGFR/c-MET synthetic lethality, we selected a 298	

panel of 14 cell lines, 11 of which were predicted to be synergistically dependent on EGFR/c-MET 299	
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(H226, H2122, H1666, H2172, Cal-12T, H2023, H1568, Calu-3, H1650, HCC78, and A549), as 300	

well as 3 negative controls with no predicted synergistic or individual dependencies on the two 301	

TKs (H2170, H460, and H520). To measure sensitivity to these agents, we used two different and 302	

complementary assays, including: (a) colony formation assay to assess long term sensitivity (Fig. 303	

4A and Methods) and (b) 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) 304	

assay for short term sensitivity analysis (Fig. 5A and Methods). For colony formation assays, 305	

cells were treated with either an EGFR inhibitor (Erlotinib, 1uM) or a c-MET/ALK inhibitor 306	

(Crizotinib, 0.1uM), either individually or in combination (see Methods). To evaluate synergistic 307	

dependency on EGFR/c-MET we used Excess Over Bliss (67), which measures the difference 308	

between the observed effect on colony formation and the effect expected from a purely additive 309	

model. For MTT assay, first, cells were treated with EGFR inhibitor (Erlotinib) or MET inhibitor 310	

(Crizotinib) individually at various concentrations to identify IC50 (concentration resulting in 50% 311	

cell death). Next, cells were treated with 1 uM of Erlotinib and varying concentrations of Crizotinib 312	

to identify combinations resulting in IC50 and used  the combination index (CI) statistic (68) to 313	

measure interaction between the two drugs.  314	

 315	

Across all 11 cell lines tested in colony formation assay, 8 showed significant sensitivity to either 316	

individual inhibitors (H226E,C, H2122E, H1666E,C, Cal-12TE, Calu-3E,C, H1650E) or synergistic 317	

sensitivity to the combination (HCC78E+C and H2023 E+C) (Fig 4B-C and Fig S3). Surprisingly, all 318	

of these cell lines were EGFRWT, ALKWT, and c-METWT, except for H1650, which was EGFRMut. 319	

Thus, based on standard of care criteria, 7 out of 8 cell lines would not have been considered as 320	

sensitive to either EGFR or ALK/c-MET inhibitors. Several cell lines presented striking sensitivity 321	

to either one (H2122E, Cal-12TE, H1650E) or both inhibitors (H226E,C, H1666E,C, Calu-3E,C) in 322	

isolation, thus making the assessment of synergistic drug sensitivity difficult. In addition, three 323	

EGFRWT cell lines harboring BRAF (Cal-12T and H1666) or KRAS (H2122) mutations were also 324	

highly sensitive to Erlotinib as a single agent, as predicted by pVIPER, despite the fact that KRAS 325	
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pathway mutations are mutually exclusive with EGFR mutations and predictive of Erlotinib 326	

resistance (Fig. 4C). Finally, none of these cell lines was predicted to be sensitive to ALK 327	

inhibitors, suggesting that Crizotinib sensitivity is mediated by c-MET specific dependencies. Of 328	

the negative controls, only one (H2170) showed high sensitivity to Erlotinib. Taken together, 8/11 329	

cell lines (73%) predicted as sensitive to the inhibitors were validated long term colony formation 330	

assays, while only 1/3 negative controls showed sensitivity to these agents (33%).  331	

 332	

To evaluate the short-term interaction between EGFR and c-MET, we performed MTT assay 333	

across 11 cell lines (HCC78, H2023, H1650, Calu-3, H2172, H2122, H1568, A549, H1666, H520 334	

and H2170) including 2 negative control cell lines (H520 and H2170). Similar to colony formation 335	

assay, we found synergistic sensitivity to EGFR and c-MET inhibitors in 6/9 cell lines (67%), with 336	

5 cell lines showing strong synergy (CI ≤ 0.8) (Fig. 5B-C) and 1 borderline synergy (CI = 0.82), 337	

showing the consistency between two assays. However, for two cell lines, H1666 and H2170 (a 338	

negative control), results were inconsistent between long term colony formation and MTT assays. 339	

For both H1666 and H2170 cell lines, colony formation and MTT assay to showed sensitivity to 340	

Erlotinib alone, where colony formation assay has complete abrogation of colonies at 1 μM of 341	

Erlotinib, and later had IC50 =1.25 μM and 3.7 μM for H1666 and H2170 respectively. However, 342	

in combination therapy, MTT assay showed antagonism (CI >1), despite the fact that colony 343	

formation assay still showed complete abrogation which could be associated to the accumulation 344	

of new mutations in these cell lines. However, this is just hypotheses and needs to be verified by 345	

further experiments such as sequencing of these cell lines pre-and post-treatment.  346	

 347	

Phosphosite specific phosphorylation predicts EGFR/c-MET inhibitor synergy.  348	

In previous section, we assessed the pVIPER predictions after consolidating the result at protein 349	

level. Following the results from MTT and colony formation assays, we reanalyzed the pVIPER 350	
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predictions at the phosphopeptide level. Interestingly, this revealed that whenever synergistic 351	

EGFR/c-MET dependencies were predicted from phosphosite EGFR1197 and phosphosites other 352	

than c-MET1003 (H1666, Cal-12T, H1650), cell lines responded to Erlotinib in isolation, while when 353	

predictions were based on phosphosites EGFR1197 and c-MET1003 (HCC78, H2023, and Calu-3), 354	

cells exhibited bona fide synergistic sensitivity to the two inhibitors, with the only possible 355	

exception of Calu-3, which showed synergistic sensitivity in MTT assays and additive sensitivity 356	

to both inhibitors in colony formation assays. Conversely, when predictions were not based on 357	

either phosphotyrosine, cells exhibited no sensitivity to the individual inhibitors or the combination 358	

(H2172, H226, A549, H460, H520, H1568). Thus, predictions based on these two phosphosites 359	

produced no false positives (6 out of 6 predicted and validated as non-sensitive) and only 2 false 360	

negatives (H2170 and H2122), resulting in an error rate of only 2 out of 14 cell lines (14%, p = 361	

0.0093 using fisher exact test).  362	

  363	

This finding is in agreement with the established role of EGFR1197 as a predictor of EGFR inhibitor 364	

sensitivity (69). Intriguingly, when sensitivity was predicted using phosphosites other than 365	

EGFR1197 and c-MET1003, cell lines did not respond to the inhibitors, either individually or in 366	

combination. For these two peptides, we found their common substrates to be hyper 367	

phosphorylated in the sensitive cell lines (Fig. 6A) compared to the specific substrates of each of 368	

them, whereas cell line responding only to EGFR inhibitors showed more hyper phosphorylation 369	

of EGFR only substrates (Fig. 6B). Cell lines resistant to both EGFR and c-MET inhibitors either 370	

showed no change in the phosphorylation status or hypo-phosphorylation compared to the normal 371	

samples (Fig. 6C). Hence, either the common substrates of EGFR and c-MET, or the 372	

phosphorylation status of EGFR1197 and c-MET1003 could potentially be used as biomarkers for 373	

predicting therapy with the dual inhibitors. However, this conclusion is based on a very limited 374	

number of observations and lacks the statistical power. This finding needs a re-375	
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evaluation/validation using larger cohort of samples to establish an appropriate biomarker for 376	

combination therapy.  377	

 378	

Addictions points in patient samples 379	

Similar to cell lines, when applied on patient data, pVIPER identified EGFR as one of the most 380	

common addiction points (Fig. 6). We inferred EGFR dependency in 12 patients. Of these, 5 381	

harbored EGFR mutation, while the remaining 7 patients had not been tested for this mutation, 382	

showing a high consistency between our predictions and the genetic predisposition for sensitivity 383	

to EGFR inhibitors. In the entire cohort, there were only 3 patients with EGFR mutations that were 384	

not identified as EGFR dependent by pVIPER, resulting in an overall sensitivity of 62.5% (5/8). 385	

However, it is well known that >50% of patients harboring EGFR mutations do not respond to 386	

Erlotinib, suggesting that these may not be false negatives but rather patients with low activation 387	

of downstream EGFR pathways, despite their EGFRMut state.  Similarly, our analysis identified 388	

candidate ALK dependencies in 4 patients. Of these one had an established TFG-ALK fusion, 389	

whereas the others had not been tested for ALK fusion events. 390	

Across all patient samples, we observed Discoidin Domain Receptor-1 (DDR1) to be the most 391	

frequent addiction point, which was not predicted for any of the 46 cell lines. One reason for the 392	

difference is that DDR1 is collagen dependent and there may be differences in the 3D structure 393	

of the tumor and the cell lines growing on the plate. An independent study (70) in a cohort of 83 394	

lung cancer specimens found that silencing of DDR1 in these samples leads to the hampering of 395	

cell survival, reduced invasiveness in collagen matrices, increased apoptosis in basal condition 396	

and decreased metastatic activity in model of tumor metastasis to bone, signifying it as a potential 397	

novel therapeutic target. CONCLUDING SENTENCE.  398	
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Discussion 399	

In this paper, we developed pARACNe to infer Tyrosine Kinase (TK) signaling network using 400	

genome-wide phosphoproteomic data from lung cancer. The network prediction was validated 401	

using SILAC experiments, with high accuracy. Interrogation of the predicted TK-substrate network 402	

generated biologically meaningful hypotheses, followed by experimental validations illustrating 403	

the effectiveness of predicted kinase inhibitor combination, EGFR and c-MET combination 404	

inhibitors, in treating lung cancer cell lines. Furthermore, Master Regulator Analysis using patient 405	

proteomics data provides implications for using targeted agent combinations to treat patients 406	

based on patient proteomic data.   407	

 408	

Notably, pARACNe is significant and powerful as of its genome-wide scale and context-specificity, 409	

which were missing by previous methods. For example, methods proposed by Linding et al. (16) 410	

combine motif-based phosphosite predictions with information of physical association, co-411	

occurrence, and co-expression to identify substrates with high specificity and accuracy, but with 412	

low coverage and lack of contextual specificity. Bender et al (17) used reverse phase protein 413	

assay data after various stimulations to cells and inferred signaling network using hidden Markov 414	

models and genetic algorithms. Even though the resulting networks are context specific, they lack 415	

genomic-scale coverage. There have been methods which used existing large-scale protein 416	

networks and prune them using transcriptomic information to identify signaling pathways (20-22). 417	

In addition, attempts have been made to reconstruct signaling network using gene expression 418	

data (23, 24). However, as signaling complexity lies mostly in upper level of cellular processes, 419	

inferring the cascades from downstream gene expression fails to capture all the dynamics. Also, 420	

PrePPI proposed by Zhang et al. (25) used protein structure-based methods to infer global 421	

protein-protein interaction, but this approach fails to address phosphorylation context specificity. 422	

Innovative uses of multiplex and microarray-based approaches, where multiple antibodies can be 423	
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used to probe an ensemble of phosphoproteins, are finally becoming sufficiently mature to allow 424	

characterization of small pathways. Yet, these methods are still far from providing an unbiased, 425	

genome-wide view of signal-transduction processes and continue to be completely dependent on 426	

antibody specificity and availability. Similarly, assays developed specifically to monitor 427	

phosphorylation pathways, such as Stable Isotope Labeling with Amino acids in Cell culture 428	

(SILAC), provides a simple and straightforward approach to detect differential protein abundance. 429	

Coupled with phosphorylation enriched assays, it can provide high quality quantification for post-430	

translation phosphorylation changes in cell lines. However, these methods are 1) laborious and 431	

costly; 2) can only be performed to dissect the substrates of a single enzyme at a time and 3) do 432	

not differentiate between direct and indirect targets. 433	

 434	

To be noted, as the LC-MS/MS experiments used here was generated based on Tyrosine-kinase 435	

enrichment, which is only about ~2% of whole phosphoproteome. pARACNe is shown only on 436	

TK-substrates network. The current methodology could be extended to whole phosphoproteomic 437	

data based signaling network reconstruction where the data is available.  In addition to label free 438	

based LC-MS/MS proteomics data used in this work, label based approaches, such as ITRAQ or 439	

TMT, could generate higher throughput whole proteomic profiles which might require future 440	

redesign of ARACNe to incorporate both kinases and phosphatases in regulating their 441	

downstream substrates. It is reasonable to expect that a version of ARACNe developed 442	

specifically to dissect signaling networks should work at least as well as its transcriptional 443	

counterpart. Since the relationship between the mRNA abundance of a gene encoding a 444	

transcription factor (TF) and the activity of the corresponding protein is much looser than that 445	

between the abundance of a phospho-isoform of a kinase and its enzymatic activity. 446	

 447	

 448	
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Even though research has attempted to identify addiction points based on gene expression data 449	

(71), predictions based on phosphoproteomic data appear superior in a way that they can directly 450	

reflect contextual specific signaling activity and are able to be directly targeted by kinase 451	

inhibitors. It is important to note that clinically, only patients with base-pair deletion at exon 19 452	

(del746_A750) or a point mutation at exon 21 mutation (L858R) in EGFR shows sensitivity to 453	

EGFR inhibitor such as Cedirinib or Erlotinib (72). 454	

 455	
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 656	

Figure Legends 657	

Figure 1. Framework for the reverse engineering of TK signaling networks from 658	
phosphoproteomic profiles.  659	

(A) Schematic diagram of a TK→S interaction. The non-phosphorylated kinase is inactive in terms 660	

of phosphorylating a substrate, while the active isoform successfully phosphorylates the 661	

substrate. (B) Schematic diagram showing the correlation between TK phosphorylation and that 662	

of its potential substrates. The first two rows in the heatmap show proteins representing candidate 663	

TK substrates (C) Illustration of the pARACNe framework including 6 steps. Step-1 depicts 664	

peptides collection from primary lung cancer tissue and cell lines for whole phosphrtyrosine 665	

proteomics quantification. Step-2 depicts inferences of TKàS interactions using Mutual 666	

Information by Step-3  Naïve-Bayes estimator and Step-4 of the iterative quantile discretization 667	

methods. Step-5 and 6 depict network pruning and bootstrapping to construct final network. (C). 668	

Workflow of pARACNe from LC-MS/MS data normalization, IQD process, MI calculation, DPI 669	

process, bootstrapping to network consolidation.	670	

Figure 2. Predicted TK-TK network and validation of EGFR and c-MET prediction  671	

(A) pARACNe-inferred densely inter-connected TK-TK network, with red nodes representing 672	

candidate TKs involved in auto-phosphorylation, where the phospho-state of a tyrosine is 673	

correlated with the phospho-state of a different tyrosine on the same TK protein. (B) pARACNe-674	

inferred EGFR and (C) c-MET substrate overlap with SILAC-based and Database reported 675	

substrates, respectively.  676	

 677	
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Figure 3.  Inference of Master Regulator and combination  678	

(A). Schema of Master Regulator analysis in lung cancer using pVIPER. Prioritized Master 679	

Regulators (B) and Prioritized Master Regulator Pairs (C) as significantly activated (red circle) or 680	

de-activated (blue) in different lung cancer cell lines (column). Red color represents an enrichment 681	

of substrates hyper-phosphorylation by a Master Regulator or Master Regulator Pairs. Blue color 682	

represents that of hypo-phosphorylation. 683	

Figure 4. Experimental validation of EGFR and c-MET combination by colony 684	
formation assay  685	

(A) Colony formation assay schema. (B) shows the image of long-term EGFR and c-MET double 686	

inhibition effects in HCC78 cell line with different treatments. (C) shows long-term colony 687	

formation data for 14 cell lines with different EGFR, BRAF and KRAS genomic mutation status.  688	

Figure 5. MTT Assay validation of EGFR and c-MET combination 689	

(A). MTT assay experimental schema. (B) MTT assay of HCC78 cell line shows synergistic effects 690	

of Crizotinib and Erlotinib treatment. (C) shows short-term effects of EGFR and c-MET inhibitors’ 691	

combination index in 11 cell lines include 2 control cell lines (red). 692	

Figure 6. Master Regulating peptides in primary lung cancer samples 693	

EGFR and c-MET co-regulate in three scenarios (A) when their common substrates are 694	

hyperphosphrylated, the patient responds to combination treatment well; (B) when most EGFR 695	

substrates are hyper-phosphorylated, the patient responds to EGFR inhibitor; (C) when 696	

substrates of both EGFR and c-MET are mostly hypophosphorylated, the patient does not 697	

respond. (D) show the Master Regulator and Master Regulator Pairs regulating hyper/hypo-698	

phosphorylation of their network substrates in each primary samples.  699	
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 700	

Methods and Data 701	

Phosphoproteomic data  702	

The phosphoproteomic data, downloaded from Rikova	K.	et	al. (53), representing the abundance 703	

of phospho-tyrosine containing peptides, was obtained by tandem mass spectrometry analysis of 704	

46 non-small cell lung cancer (NSCLC) cell lines, 151 NSCLC tumors, and 48 normal lung tissue 705	

samples. Immunohistochemistry and a phospho-tyrosine specific antibody were used to screen 706	

96 paraffin-embedded, formalin fixed tissue samples from NSCLC patients. About 30% of tumors 707	

showed high-levels of phospho-tyrosine expression. Immunoblotting of 46 NSCLC cell lines with 708	

a phospho-tyrosine specific antibody also showed heterogeneous reactivity especially in the 709	

molecular weight range characteristic of receptor tyrosine kinases. 710	

Since phospho-tyrosine represents less than 1% of the cellular phosphoproteome, as determined 711	

by tandem mass spectrometry (MS/MS), and is difficult to analyze by conventional methods, 712	

immuno-affinity purification was performed with a phospho-tyrosine antibody to enrich for 713	

phospho-tyrosine containing peptides prior to tandem mass spectrometry. All tumors were 714	

identified as NSCLC based on standard pathology. Only those tumors with greater than 50% of 715	

cancer cells were considered for further analysis. NSCLC cell lines were grown overnight in low 716	

serum to reduce background phosphorylation from culture conditions. 717	

Tandem MS profiling identified 3920 tyrosine phosphorylation sites on approximately 2600 718	

different proteins. 85% of these sites appeared to be novel when compared against PhosphoSite 719	

(http://www.phosphosite.org), a comprehensive resource of known phosphorylation sites. 720	
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pARACNe algorithm 721	

ARACNe is originally designed for gene expression data, where expression of genes is usually 722	

continuous and non-sparse. Quantitative data obtained from label-free LC-MS/MS by data-723	

dependent acquisition via spectral counting is discrete and very sparse, with many 724	

phosphopeptides counts not observed for multiple peptides in each sample causing the current 725	

version of ARACNe to be not suitable for this data, which thus required major modifications to 726	

handle discrete data. To handle discrete abundances, we modified the mutual information 727	

computation approach from a kernel density estimation based method to a Naïve based 728	

estimation of mutual information, which is a histogram based technique(73). Briefly, consider a 729	

collection of N simultaneous measurements of two genes X and Y. Data is partitioned into M 730	

discrete bins ia , and

€ 

ki denotes the number of measurements that lie within the bin ai . The 731	

probabilities p(ai )  are then approximated by the corresponding relative frequencies of 732	

occurrence p(ai )→
ki
N

 and the mutual information I(X,Y ) between datasets X and Y is 733	

expressed as  734	

 I(X,Y ) = logN + 1
N

kij
ij
∑ log

kij
kik j

  735	

Here ijk denotes the number of measurements where X lies in ia  and Y in ja  and N total number 736	

of samples.  737	

Accuracy of mutual information is dependent on correct numbers of bins, M. To find the optimal 738	

number of bins we applied ARACNe on the whole dataset by varying M from 1 to 20 and testing 739	

the connections in predicted sub-network against the set of known connections (gold standard) 740	

from databases (phosphoDB) (35). 741	
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In case of continuous data, partitioning can be achieved by dividing the range of data into M 742	

equally spaced distance bins. Our data being discrete, equally spaced partitioning was not 743	

possible. So, to overcome this problem, we used an iterative approach of partitioning (Fig 1C, S 744	

Fig 1A). The basic idea is to divide the number of N data points into M with each bin containing 745	

equal number of data point. If the data point(s) with the same value falls into consecutive bin(s), 746	

we put those data point(s) into current bin and repartition the remaining points into remaining 747	

number of bins. We keep iterating this till we finish either the bins or there are no more data points 748	

to bin. For example, in Supplementary Fig. 1A, we initially partition N points into 4 bins. The data 749	

points with 0 value does not fit into first bin and falls into subsequent bins, so we assign all data 750	

points with 0 value into first bin and repartition the remaining points into 3 bins. We keep on doing 751	

this process till we achieve 4 bins. 752	

To evaluate initial performance and decide number of bins, we computed the network among all 753	

tyrosine kinases and substrates, parsed the sub-network between 49 tyrosine kinases and 114 754	

substrates which were present in PhosphoSite database and compared the results with the 755	

connections present in database. From our analysis, we found that M=10 to be an optimal number 756	

(S Fig.1B) which gave us precision of 14% and sensitivity of 24%. This precision is an 757	

underestimate of real precision as in the gold standard many interactions are not present.  758	

Master Regulator analysis 759	

To discover the master regulator in various cell lines, we interrogated the network obtained from 760	

pARACNe using a novel algorithm, MARINa (27) (Master Regulator Inference Analysis), designed 761	

to infer kinases that are key players in a particular cell line. Protein activity is a good indicator of 762	

key kinases in a particular phenotype but often phosphorylated state of a protein is not sufficient 763	

to determine its activity both due to measurement noise in phosphorylated state as well as LC-764	

MS/MS technique noise.  To overcome this problem, MARINa infers kinase activity from the global 765	
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kinase substrate relationship and its biological relevance by overlapping this information in a 766	

particular phenotype-specific program.  767	

MARINa requires a network model and signature of the phenotype transition (i.e., all genes 768	

ranked by their differential phosphorylation in two phenotypes). Here, the signature, Skin, was 769	

obtained by t-test analysis by comparing each cell line against all normal samples. First, we 770	

associate each kinase with positive and negative activity targets, by computing the correlation 771	

between each kinase and its predicted substrates and selecting only those substrates which had 772	

a significant correlation (p-value ≤ 0.05, Bonferroni corrected). Second, for each kinase we 773	

computed an activity by measuring the enrichment of the Skin signature in predicted substrates 774	

list, separately for both positive and negative correlated, (Skin-enrichment). Enrichment was 775	

computed by Gene Set Enrichment Analysis (GSEA). Since very small percentage of kinases are 776	

found to have negative correlation, we did not use those interactions to evaluate enrichment.  777	

Cell Culture 778	

All cell lines were grown in RPMI-1640 with 5% fetal bovine serum and incubated at 37oC in a 779	

humidified atmosphere containing 5% CO2. Cell lines were fingerprinted using the Perplex 1.2 780	

system (Promega, Madison, WI). Fingerprints were compared to those generated at ATCC and/or 781	

our internal database. 782	

MTS Assay 783	

Short term MTS assays (CellTiter 96® AQueous One Solution Cell Proliferation Assay, Promega, 784	

Madison WI) were performed as previously described in (74). Specifically, each drug 785	

concentration is octuplicated and the mean with standard deviation of all replicates were used to 786	

generate a curve to allow calculation of the drug IC50 (Inhibitory Concentration of 50%) value.   787	

The assays were repeated at least 3 times and the IC50s are the average of all replicates. 788	

 789	
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Colony formation assay 790	

Long term colony formation assays were performed in triplicate in 6-well plates. Cells were added 791	

to media containing drug and incubated for 1-2 weeks such that control wells (no drug) contained 792	

colonies of 50-70 cells each. At such time media was removed and all wells stained with a solution 793	

containing 0.5% crystal violet and 6% glutaraldehyde for 1 hour. The plates were then rinsed, 794	

dried, and colonies were manually counted. 795	

SILAC Experiment 796	

EGFR SILAC experiment was performed in H3255 cell line by treating samples with Gefitinib. c-797	

MET SILAC experiment was performed in c-MET-driven gastric cancer cell line, MKN45, by using 798	

c-MET inhibitor Su11274. For both genes, cells were treated with inhibitors for 3 and 24hr. For 799	

control, cells were grown in same conditions but were not treated with the drug. For our 800	

comparison we combined the peptides, which were differentially obtained between treated and 801	

untreated samples, for 3 and 24 hr. More details about the experiment can be obtained from Guo 802	

et al (34). 803	

Gold standard: In PhosphoSite database, there were 282 connections between 49 tyrosine 804	

kinases and 114 substrates.  805	

	806	

Supplemental Information 807	

S1 Fig. Performance of pARACNe algorithm.  808	

(A). To select optimal bin number in pARACNe algorithm, precision and recall curves for various 809	

number of bins were computed. Black curve is when no binning of data is done. When using 10 810	

bins, the algorithm achieved the best performance.	811	
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S2 Fig. Validation of Master Regulators and Master Regulator combination.   812	

(A) Cell viability assay for top Master Regulators including ALK, EGFR, EPHA2, MET, PTK2, and 813	

UBB in H2228 cell line.  (B) BrdU assay for MET and PTK2 and its combination.  814	

S3 Table. pARACNe inferred TK peptides – substrate peptides regpresented signaling 815	
network.  816	

S4 Table. pARACNe inferred TK protein – substrate protein regpresented signaling 817	
network.  818	

S4 Table. Colony formation assay and MTS assay results.  819	

 820	
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