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Abstract 
SWATH-MS has been widely used for proteomics analysis given its high-throughput and 
quantitative reproducibility, but ensuring consistent quantification of analytes across large-scale 
studies of heterogeneous samples such as human plasma remains challenging. Heterogeneity 
in large-scale studies can be due to large time intervals between acquisition, acquisition by 
different operators or instruments or intermittent repair or replacement of parts, such as the 
liquid chromatography column, all of which affect retention time (RT) reproducibility and 
successively quantitative performance of SWATH-MS. Here, we present a novel algorithm 
based on direct alignment of raw MS2 chromatograms using a hybrid dynamic programming 
approach. The algorithm does not impose a chronological order of elution and allows for 
aligning of elution-order swapped peaks. Furthermore, allowing RT mapping in a certain window 
around coarse global fit makes it robust against noise. On a manually validated dataset, this 
strategy outperforms the current state-of-the-art approaches. In addition, on a real clinical data, 
our approach outperforms global alignment methods by mapping 98% of peaks compared to 
67% cumulatively, is capable of reducing alignment error up to 30-fold for extremely distant 
runs. The robustness of technical parameters used in this strategy has also been demonstrated. 
The source code is released under the BSD license at https://github.com/Roestlab/DIAlign . 
 
Introduction: 

In translational research, protein biomarkers and therapeutic targets are usually 
discovered by data-driven methods such as by linking protein abundance patterns with disease 
conditions. A large sample cohort is essential in these studies as huge biological variability 
exists in the population and enough statistical power is required to identify disease specific 
events (Uzozie and Aebersold 2018; Surinova et al. 2011). Plasma is a good source of clinical 
information of a patient as it is noninvasive and proteins from affected tissue can potentially leak 
into the blood. Plasma samples, unfortunately, are highly challenging for proteomic analysis due 
to the diversity of peptides within the samples and high dynamic range of plasma 
proteins(Nigjeh et al. 2017). Therefore, quantification of plasma proteins requires a highly 
reproducible reduction of complexity and measurement within a wide dynamic range. The 
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situation exacerbates across large-scale studies and make development of plasma biomarker 
challenging (Nigjeh et al. 2017; Surinova et al. 2011). 

In the past two decades, mass spectrometry (MS) based proteomics has made rapid 
advances to obtain near-exhaustive identification and quantification of proteins in various 
biological samples(Surinova et al. 2011; Schubert et al. 2017). Targeted proteomics methods, 
specifically selected reaction monitoring (SRM), can provide reproducible protein quantification 
across multiple runs. However, they are limited by low throughput and can measure abundance 
of only a few tens of proteins per study(Röst et al. 2016; Uzozie and Aebersold 2018).  

Recently, we developed SWATH-MS, an approach for targeted analysis of 
data-independent acquisition (DIA) data, which has potential to reproducibly quantify large sets 
of peptides in large-scale clinical study(Röst et al. 2016; Gillet et al. 2012). Implementing this 
method in the clinical field could provide comprehensive characterization of sample across 
various clinical conditions. It also facilitates creating a digital inventory of a tissue 
proteome (Uzozie and Aebersold 2018; Guo et al. 2015) and opens up the potential for clinics to 
record a molecular inventory of samples through which longitudinal monitoring of patient is 
possible (Uzozie and Aebersold 2018). 

In DIA mode, after MS1 precursors are selected for a predetermined m/z range and 
fragmented non-specifically. This produces a multiplexed MS2 spectra of fragment-ions of all 
selected precursors. The DIA data can then be analyzed by either using a library-based 
approach (Röst et al. 2014; Röst et al. 2016) or a library-free approach (Tsou et al. 2015). 
Library-based approaches have shown to be capable of accurate peptide and protein 
quantification in complex samples (Navarro et al. 2016; Röst et al. 2016; Röst et al. 2014; Liu et 
al. 2015). Nonetheless, obtaining reproducible protein quantification from clinical plasma sample 
has been challenging even with SWATH-MS, as large variations in number of proteins in 
individual runs were observed (Nigjeh et al. 2017, (Röst et al. 2016; Liu et al. 2015; Navarro et 
al. 2016). One of the major factors driving variability is retention time deviation between the 
assay library and plasma peptides’ DIA elution profiles. In experiments carried by Nigjeh and 
coworkers, most of the peptides had RT variation of about 10 minutes between technical 
replicates, affecting the robustness of peptide quantification (Nigjeh et al. 2017) . RT variations, 
if left uncorrected, may also produce incorrect and inconsistent identification of the 
peptides(Nigjeh et al. 2017). 

Current DIA data analysis softwares are capable of finding multiple peak-groups in MS2 
extracted ion chromatograms (XICs), however it is often challenging to efficiently integrate this 
information across multiple runs. By establishing peak correspondence among runs, correct 
peptide elution time could be determined in each MS run (Smith et al. 2015; Röst et al. 2016).  A 
shift in retention time (RT) is often considered as system-level variation which is then modelled 
using monotonic functions between two runs (Smith et al. 2015). However, this assumption may 
not always be accurate, and specifically among distant runs singularities specific to a single 
peptide are also common that produces relative peptide switching (peak switching) where the 
elution order of two peptides is swapped across two runs (Smith et al. 2015; Spicer et al. 2010; 
Wu et al. 2016)]. This phenomenon is increasingly likely in larger studies and very probable in 
large-scale clinical studies in which data acquisition happens over a span of years. 
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Current RT alignment  algorithms were mostly developed before the arrival of 
SWATH-MS technique (Smith et al. 2015) and therefore mostly rely on either MS1 
chromatograms or picked features or combination of both (Listgarten et al. 2005; Prince and 
Marcotte 2006; Sandin et al. 2013). In SWATH runs, MS2 data has high signal-to-noise ratio 
and reproducible across multiple runs. Previous research on RT alignment in DIA data has also 
relied on feature finding, using either a bipartite matching approach (Wu et al. 2016) to match 
MS2 features or using a global function calculated either by a global local weighted regression 
(LOESS) (Chambers et al. 1992) or a kernel density approach to match features between two 
runs (Röst et al. 2016; Searle et al. 2018). These approaches, however, provide suboptimal 
results in case of high noise, missing features or when feature detection algorithms malfunction. 
Furthermore, the global monotone functions do not account for peptide switching as a monotone 
function disallows retention time reversal between any two peptides(Wu et al. 2016). 

Here, we present an algorithm which does not require features and is capable of directly 
aligning the raw multiplexed chromatographic traces from targeted proteomic data. Our 
approach uses dynamic programming to obtain an optimal mapping between two 
chromatograms which contain local information in the form of multiple, close-by peaks around 
the elution peak-group. Independent RT alignment of each precursor facilitates the alignment for 
elution-order swapped peaks. Our method is also capable of using a global whole-run alignment 
for guidance, making it robust against noise. With this flexibility, our DIAlign tool provides a knob 
to select between extremes of global and local alignment fit as user decides. 

We provide free-access to our source-code and our R-package can be downloaded from 
CRAN. We have tested our algorithm on manually validated dataset which shows improved 
performance over existing methods. We also have tested our algorithm on 24 randomly selected 
distant plasma runs. We observed that our algorithm outperforms global alignment methods and 
is capable of correcting mis-annotations introduced by feature detection algorithms. For very 
distant runs, it could also align switched peaks precisely which is not possible using global 
alignment methods (Escher et al. 2012; Röst et al. 2014). 
 
Material and Methods : 
 
Validation dataset 

For benchmarking of the developed algorithm, previously published and manually 
validated dataset of Streptococcus Pyogenes bacterial strain is used (Röst et al. 2016). Out of 
452 transition IDs from (Röst et al. 2016), eight IDs has annotated peak for less than two runs 
out of 16 runs, making them unsuitable for benchmarking. Seven transition IDs from the 
remaining set had extracted fragment-ion chromatograms (XICs) outside of annotated peak, 
making them inapplicable and hence were removed from benchmarking (see the supplemental 
Section S1). Total 437 transition IDs annotated in 16 runs were considered for testing the 
performance of the developed DIAlign tool against global alignment approaches. Retention time 
of these transition IDs in all 16 runs and run names are available in the supplemental Table 1 
and supplemental Section S2, respectively. For global alignment, LOESS fit with optimum span 
value is obtained between two runs (Chambers et al. 1992; Röst et al. 2016). ⅓ cross-validation 
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is performed to obtain the optimum span value. Steps to obtain a global fit (monotone mapping 
function) are detailed in the supplemental Section S3. 
 
Large-scale human plasma dataset 

We have performed SWATH-MS on 975 human plasma samples in 12 batches 
from 17 February 2017 to 20 July 2017. Tryptic peptides of plasma samples were separated on 
a NanoLC™ 425 System (SCIEX). 5ul/min flow was used with trap-elute setting using a 0.5 x 10 
mm ChromXP™ (SCIEX). LC gradient was set to a 43 minute gradient from 4-32% B with 1 
hour total run.  Mobile phase A was 100% water with 0.1% formic acid. Mobile phase B was 
100% acetonitrile with 0.1% formic acid. 8ug load of undepleted plasma on 15cm ChromXP 
column. MS analysis were performed using SWATH®Acquisition on a TripleTOF®6600 System 
equipped with a DuoSpray™Source and 25μm I.D. electrode (SCIEX). Variable Q1 window 
SWATH Acquisition methods (100 windows) were built in high sensitivity MS/MS mode with 
Analyst®TF Software 1.7. 

To reduce the number of pairwise alignment, randomly two runs from each batch are 
selected; their metadata and OpenSWATH output files are described in the supplemental Table 
3 and SelectedOSW.tar.gz, respectively. In the absence of manually annotated peaks, peaks 
with low FDR score and highest peak-group rank are considered for performance evaluation. 
Therefore, the best peak of target precursors with a q-value less than 10 -3 (m-score < 1e-03, 
peak-group rank = 1) and common in all 24 runs are selected, and successively, their 
fragment-ion chromatograms are extracted using OpenSWATH with default parameters 
(Rosenberger et al. 2017; Röst et al. 2014). Fragment ion chromatograms were parsed from 
OpenSWATH output using “mzR” package (Chambers et al. 2012). The retention time of these 
406 peptides in all 24 runs is provided in the supplemental Table 4. The chromatograms are 
available in the file SelectedChroms.tar.gz. The global alignment function was fit as described 
above (see the Supplemental Section S4). 
 
Chromatogram Alignment Algorithm 

In targeted proteomics or SWATH experiments, each precursor is measured using one 
or more fragment ions (transitions) which are measured using an extracted fragment-ion 
chromatogram (XIC or chromatogram). A collection of one or more chromatogram is called a 
“chromatogram group” which all map to the same precursor ion. If the same precursor is 
measured across multiple runs, each run produces a “chromatogram group” for that precursor 
and this constitutes the raw data for our alignment procedure. 

A chromatogram group can be considered a collection of time-series signals. The 
similarity of the time-series signals between chromatogram groups from runA (ChromA) and 
runB (ChromB) can be calculated. If a precursor has n fragment-ions, therefore, n XICs; where 
each XIC has I and J time-points in ChromA and ChromB, respectively as shown in Fig. 1 a, the 
similarity between all time-points is represented as a similarity matrix s, where 

 s = ƒ(ChromA, ChromB).  
The function ƒ is termed as a similarity measure and can be selected by the user (see below). 

a. Similarity measure: 
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In our R package DIAlign, we have implemented several similarity measures which have 
been suggested in previous literature for chromatograms such as covariance, dot-product, 
Pearson’s correlation, spectral angle and euclidean distance (Röst et al. 2014; Prince and 
Marcotte 2006). We observed that the dot-product between all I and J data points provides 
information about both magnitude and angle between two data-vector, hence segregating 
elution signal from the background. If each data point of chromatogram is represented by a 
vector in n dimensional space (n = 3 in Fig. 1 a ), the resulting dot-product of the two vectors is 
shown in Fig. 1 b. Thus, in the case of the dot-product, a similarity matrix from all vectors ofs  
both chromatogram-groups is defined as, 

  b  sij = ∑
n

k = 1
aik jk  

Where and represents index of vectors in ChromA and ChromB, {1, .., }i ∈  . I  {1, .., }j ∈  . J  
respectively. A color-coded similarity matrix of size I x J is shown in Fig. 1 c. However, to reduce 
the impact of noise peaks, a modified dot-product is used where higher similarity scores are 
checked again for spectral angle similarity (see the Supplemental Section S5). A path in the 
resulting similarity matrix is calculated using dynamic programming which directly translates to a 
retention time alignment that maps indices/time from ChromA to ChromB and vice-versa. 
 

b. Penalizing similarity matrix with global alignment: 
While dynamic programming will find a path which results into highest cumulative score, 

in some instances the score is driven by alignment to noise and can lead to a solution where the 
alignment is highly divergent from a global linear or non-linear alignment. To make alignment 
robust against noise and in order to incorporate information from a global context, we have 
added an option in our algorithm to modify the the similarity matrix s using feature-based global 
alignment (such as LOESS). Residual Sum of Error (RSE) of fit is utilized to define a region of 
non-interference in the similarity matrix and values outside of it punished with negative score 
(see the Supplemental Section S5). This allows us to find an alignment path within a reasonable 
time window relative to global prediction and avoid large deviations as shown in Fig. 1 d. 
 

c. Overlap Alignment with affine gap penalty: 
The optimal alignment path is found by recursively calculating all possible optimal paths 

from the start of the similarity matrix (1,1) to the end of it (I, J) using dynamic programming 
(Durbin et al. 1998). Chromatogram-groups ChromA and ChromB may not have end-to-end 
mapping as these may only be partial chromatograms which were extracted around the 
expected peptide elution (as determined by iRT peptides for example). Therefore, overlap 
alignment instead of a global alignment of MS2 chromatogram groups is employed. This 
approach allows free end-gaps and thus allows to slide chromatograms freely without incurring 
any gap-penalty for it. 

To widen or shrink chromatogram peaks, a gap of unit length is a reasonable choice as it 
will distribute gaps along the complete peak. Therefore, an affine gap penalty scheme is utilized 
with higher gap penalty for gap length of more than one. In this approach, three matrices (Matrix 
M, A, B) are defined which recursively calculates score for gaps of more than unit length (Durbin 
et al. 1998). The overlap alignment path using affine gap-penalty is presented in Fig. 1 e. The 
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running time of such alignment is O( ). A heuristic data-driven approach is employed tomax(I , )J 3  
obtain suitable affine gap penalties from the similarity matrix (see the Supplemental Section S5). 
Mapping the alignment path to the initial time values provides aligned chromatograms as 
depicted in Fig. 1 f. 
 

d. Running time for alignment: 
Alignment of MS2 chromatograms of each peptide/precursor has running time of order 

O(max(I, J)^3); however, chromatograms of different precursors can be aligned independently. 
Therefore, we employ parallelization for different peptides to obtain much faster speed for 
complete run time-mapping. 
 

e. Optimization of algorithm parameters: 
There are various parameters used in DIAlign. A description of these parameters is 

available in the Supplemental Section S5. We have used a manually validated dataset of 437 S. 
pyogenes peptides acquired with SWATH-MS across 16 LC-MS/MS runs for parameter 
optimization, using  the number of peaks aligned within half chromatographic peak-width and 
cumulative RT alignment error as our optimization target. 
 
Performance metrics for comparison with current algorithms: 

We used the manually validated dataset (Röst et al. 2016) to compare DIAlign to the 
current state-of-the-art method which utilizes a set of high confidence peaks (“anchor peptides”) 
to compute a linear or non-linear alignment function that transforms RT values of run1 to RT 
values of run2. We chose LOESS (local regression) as well as linear regression for our 
evaluation of a nonlinear alignment function. For LOESS, both optimized spanvalue from 
cross-validation (as used in TRIC) and default spanvalue (= 0.75) of the R software environment 
are tested (Chambers et al. 1992). 

Retention time error is calculated by comparing against the manual annotation of the S. 
Pyogenes dataset (Röst et al. 2016) and the resulting distribution of the number of peptides 
aligned within a certain RT tolerance is used as a measure of overall accuracy of the alignment 
algorithm. Manual annotations are not available for the iPOP dataset, therefore, the high quality 
results (peaks with low FDR cutoff) of the automated OpenSWATH tool is used for 
benchmarking. 
 
Results: 
Parameter optimization.  

Here, we present an algorithm for multi-trace chromatographic alignment that can 
directly use raw data from targeted proteomics or DIA experiments for retention time alignment. 
To optimize the performance of our algorithm, we used a manually validated dataset of 7,232 
peakgroups (Röst et al. 2016) to investigate the effect of algorithmic parameters on the 
accuracy of the results. First, we evaluated the performance for different similarity measures of 
chromatogram groups. The dot product masked with spectral angle as a similarity measure 
provides the highest fraction of peptides aligned for 120 possible run pairs on the validation 
dataset (Fig. 2 a) . Within RT error tolerance of half peak-width (15.3 sec), this similarity measure 
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aligns 94.33% of annotated peaks with the highest area under the curve (see the supplemental 
Table 6 and 7). 

We then investigated the effect of gap penalty used in dynamic programming. In DIAlign, 
the gap penalty is calculated heuristically from the distribution of similarity scores using a fixed 
quantile value. We found that the selection of quantile value does not have a considerable 
impact on the percentage of peaks aligned within certain RT tolerance (Fig. 2 b). From the 
figure, 20 th to 90 th quantile values yield approximate 95.6% of aligned peaks within half 
peak-width. The effect of gapQuantile is less pronounced for wider RT tolerance. For further 
analysis, the 65 th quantile is selected as base gap penalty for chromatogram alignment. For 
affine gap penalty, gap opening factor is considered as 0.125, while gap extension factor is 40 
(see the Supplemental Section S5). 

Our algorithm is capable of constraining the similarity matrix using a global alignment 
function. Constraining the alignment in a certain window (given by RSEdistFactor) about the 
global fit improves the alignment accuracy. We observed that with a constrained similarity matrix 
95.4% peaks get aligned compared to  94.3% with non-constrained one (see the supplemental 
Figure 10). An example of such alignment is shown in Fig. 2 c and 2 d, in which the similarity 
matrix has two high similarity hot-spots. Constraining similarity outside of dashed region in Fig. 
2 d, the alignment path goes through correct hot spot. With the unconstrained similarity matrix, 
an incorrect alignment resulted as shown in the supplemental Figure 11 . 
 
Validation using "gold standard" reference dataset 

We then used the manually validated dataset to compare DIAlign to the current 
state-of-the-art method which utilizes a set of high confidence peaks (“anchor peptides”) to 
compute a linear or non-linear alignment function that transforms RT values of run1 to RT 
values of run2. In terms of number of peptides aligned and alignment precision, chromatogram 
alignment outperforms LOESS and linear regression methods (see the Fig. 3 a and Table I). On 
the benchmark dataset, DIAlign improves error rates by 1.8-fold compared to the 
state-of-the-art. Cumulatively, chromatographic alignment only mis-aligns 4.3% of all peaks 
within 15.3 seconds (half peak width) of the true RT compared to 7.9% for LOESS (while 
LOESS with default parameters mis-aligns 22.8% of all peaks and linear regression mis-aligns 
44.8%; see Fig. 3a). 

We next investigated the effect of experimental perturbation on the performance of the 
alignment method. We compared within-condition alignments with between-condition 
alignments (in the validation dataset, the conditions were 0% and 10% human plasma added to 
S. pyogenes). When human plasma (10% volume) is added to the sample, the performance of 
both alignment methods degrades compared to samples without plasma (Fig. 3 b). Additional 
drift in LC retention time is expected for a sample of increased complexity (Nigjeh et al. 2017). 
However, the LOESS performance drop (4.93%) is substantially larger than the corresponding 
performance drop of DIAlign (2.7%) (Fig 3 b). 

To evaluate the consistency of alignment approaches across multiple run-pairs, we 
computed the number of aligned-peaks (time mapping falls within half peak-width from 
annotated RT) for each run-pair. This distribution is shifted towards the right with low standard 
deviation for chromatogram alignment method compared to the same for LOESS, indicating that 

 

.CC-BY 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/438309doi: bioRxiv preprint 

https://paperpile.com/c/IVCxSy/v7V0
https://doi.org/10.1101/438309
http://creativecommons.org/licenses/by/4.0/


 

the former is consistent in its performance (Fig. 3 c). In terms of the precision of the alignment, 
chromatogram alignment consistently performs better than global alignment methods such as 
LOESS as the former has higher area under the cumulative peptide frequency curve for each 
run-pair (see the supplemental Figure 12 c). Similarly, we observed a  larger RT variation 
(standard deviation = 18.45 sec) with the LOESS approach which chromatogram alignment is 
able to correct satisfactorily with standard deviation being 11.68 sec (Fig 3 d and supplemental 
Fig. 12 a,b ). We conclude that on the validation dataset, DIAlign performs consistently better in 
terms of accuracy of alignment and number of aligned-peaks across a range of different RT 
cutoffs. 

Next, we were interested how the global differences between the two methods translate 
to individual alignments. We therefore computed the alignment error for each pairwise alignment 
of each peptide (49,505 alignments) and found that chromatographic alignment outperforms 
LOESS in 4.7% of all cases (see the supplemental Fig. 13 b). On average, DIAlign reduces the 
RT error by 2.3 seconds with a median of 1.7 seconds (see the supplemental Fig. 13 c). Overall, 
our method aligns 47.3k peaks compared to 45.6k by an optimized global lowess method within 
15.3 seconds (half peak-width). However, in general we observed that on the validation dataset 
both methods perform with similar consistency which may be due to the low complexity of a 
bacterial sample and the high homogeneity of the data which was acquired within a single week 
on the same LC column. 
 

Application to large-scale heterogeneous human plasma measurements 

After demonstrating consistently improved performance on the S. pyogenes validation 
dataset, we investigated the performance of our algorithm on a large-scale SWATH-MS 
experiments on human plasma. This experiment provided a more challenging dataset as the 
data was acquired over the period of six months with an intermittent repair of the instrument and 
change of LC column. We selected 2 LC-MS/MS runs from each of the 12 batches at random 
and used 406 peptides for testing our algorithms. Since we did not have manual validations, we 
selected high confidence peak groups (q-value < 10 -3) as our validation peptide set. 

Comparing our chromatogram alignment algorithm (DIAlign) with the LOESS method on 
a highly heterogeneous human plasma dataset, we found that our approach aligns 97.92% of 
peaks compared to 76.03% using the LOESS method with a maximal error of 20 seconds (half 
chromatographic peak-width) as depicted in Fig. 4 a. All tested 276 pairwise alignments shown 
improved performance using chromatographic alignment (see supplemental Fig. 15). Next, we 
were interested in the performance of our method on the alignment of runs acquired on the 
same and different columns. We found that for runs acquired on different columns, 
chromatogram alignment method aligns 97.7% of peaks compared to 63.38% by LOESS 
method (Fig. 4 b), suggesting that DIAlign retains performance even for highly heterogeneous 
datasets. New column and instrument repair adds more features in the LC/MS-MS output (see 
supplemental Figure 2 and supplemental Table 5), therefore, we observed an improvement in 
LOESS’ performance for “column2 pair”. However, despite such changes our approach had 
steady response validating its robustness to such events. 
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After validating the performance of chromatogram alignment cumulatively, we decided to 
investigate its consistency across individual run-pair alignments. Fig. 4 c presents the distribution 
of the number of peaks aligned in all 276 pairs. DIAlign is capable of aligning 400 peaks on 
average within half-peak width (while LOESS aligned 309 peaks on average), a 29% 
improvement. This indicates the inconsistency of LOESS approach which was not observed 
with DIAlign. 

To validate the performance on individual alignment, we further computed the alignment 
error for each pairwise alignment of each peptide. The standard deviation of alignment error for 
LOESS was 22.91 sec compared to 13.7 sec for DIAlign (Fig. 4 d). This indicates the higher 
precision of RT alignment with our approach. Out of 112,056 alignments, we found that DIAlign 
outperforms LOESS in 23% of all cases (see the supplemental Figure 14). Thus, testing of 
chromatogram alignment approach on the heterogeneous human plasma dataset again 
validates its consistent and improved RT alignment performance. 
 
Switching of peptide elution order 

In liquid chromatography, retention time drift is often observed from one run to another 
run. However, the drift can be variable for different peptides and thus will result in reversal of 
retention order (Spicer et al. 2010). In such a scenario, two peptides which are eluting in order 
in one run may reverse their elution order in other run. Since our approach does not make an 
assumption of order preservation of peptide elution, we hypothesized that DIAlign would be 
capable of uncovering instances of non-order preserving chromatographic alignment. 
Specifically, we analyzed the heterogeneous and distant blood plasma runs for peptide pairs 
that switch elution order. 

To confirm the alignment for such peak-switching cases by chromatogram alignment 
algorithm, we have specifically looked at the alignment of the pair “run4_run23” as it had highest 
number of peak switching pairs. run4 was part of batch V4 and was acquired on February 28 th, 
2017 whereas run23 was from batch M3 and was acquired on July 20 th, 2017. The LOESS 
fitting from common high scoring training peptides for this pair is presented in Fig 5 a. Most of 
the test peptides are scattered around the global fit line, instead of being directly on the line. 
This graph quickly suggests 407 peptide pairs (one from either side of the line) compromising of 
237 out of 406 peptides which have switched their elution order (see the supplemental Section 
S6). We thus found that overall, 58.4% of peptides were involved in at least one event of 
non-order preserving elution. 

One of the peak switching cases is presented in Fig 5 b. In run4 peptide AQLVDMK/2 
elutes after HYDGSYSTFGER/2, whereas in run23 the elution order has been reversed. Both 
peptides have seen positive RT drift in run23 from run4, however, HYDGSYSTFGER/2 had shift 
of 1070-850 = 270 seconds whereas AQLVDMK/2 had shift of only 1050-900 = 150 seconds. 
This varying RT drift between two runs has caused the peptides to elute in different order. This 
peptide pair cannot be aligned with a global alignment approach, which in the best-case 
scenario will be off by 120 seconds -- however, our chromatogram alignment method has 
mapped the peaks correctly from run4 to run23 (see the supplemental Figure 17). 

To compare DIAlign against other state-of-the-art approaches, we calculated the 
cumulative fraction of peptides aligned for pair “run4_run23” (Fig 5 c). Chromatogram alignment 
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correctly aligned 98% peaks compared to LOESS which was able to align only 37.93%, thus 
decreasing error by up to 30-fold. Eight peaks which were not aligned were further inspected 
visually by the authors and found to be cases of incorrect annotation of OpenSWATH, mainly 
due to the mis-annotations of peptides carrying of post-translational modifications (see the 
supplemental Section S7 and supplemental Figure 18). 
 
Discussion: 

Correcting for retention time drift and aligning retention times between LC-MS/MS runs 
has been a long-standing problem in proteomics and it has become of particular importance as 
proteomics moves towards large-scale analysis of human cohorts. However, most efforts so far 
have focussed on MS1 data and few algorithms are available that can exploit the full information 
present in MS2 information (such as produced by targeted methods or DIA / SWATH-MS).  

In this paper, we have presented a novel algorithm that uses the raw fragment ion 
chromatogram data directly to perform retention time alignment for targeted proteomics and DIA 
data. Our algorithm uses extracted-ion chromatograms to map peaks across multiple runs and 
improves accuracy compared to current state-of-the-art methods. We have furthermore 
extended the algorithm and implemented a hybrid approach that also uses a feature-based 
global alignment to condition the similarity matrix s which led to further gains in accuracy (see 
the Supplemental Fig. 8). This hybrid approach provides the best of both worlds with a flexible 
“knob” which allows the user to either put more focus on global features or rely more on local 
information. To our knowledge, researchers have not yet explored dynamic programming based 
alignment on raw fragment-ion-chromatograms. The dynamic programming approach is 
essential for obtaining a non-linear (or gapped) alignment as distant runs also have varying drift 
even for local peaks. Using a feature-based LOESS method to partially constrain the alignment 
makes our algorithm more stable and provide the robustness of global alignment methods. 

We have shown that on a “gold-standard” validation dataset, our method consistently 
outperforms a global alignment method (using either linear or non-linear approaches), the 
current state-of-the-art (Supplemental Figure 12 c). The DIAlign tool is able to decrease error 
rates from 7.9% to 4.3% overall. Interestingly, we find that our method is less sensitive to 
changes in chromatographic condition or sample matrix than global alignment approaches (Fig. 
3 b). 

This finding led us to speculate that the novel chromatographic alignment would be less 
sensitive to heterogeneity in sample composition and chromatographic condition in large-scale 
studies. We tested our algorithm on a large-scale SWATH-MS experiment of human blood 
plasma acquired over several months. On this heterogeneous dataset, DIAlign reduces RT 
alignment error from 24% to 2%, which is a significant improvement over current state-of-the-art 
methods. Our approach outperformed other methods and consistently mapped the highest 
number of peaks within half-peak width irrespective of acquisition time interval, column change 
or instrument repair between two runs (Fig. 4 b). DIAlign picks correct peak-group and reduces 
identification errors; an example of wrong peak-group picking by global alignment method is 
presented in the Supplemental Figure 19. We have also shown that in the case of a peak being 
outside of chromatograms, our method is able to map retention time outside of it as it also uses 
global alignment (the Supplemental Figure 18). Chromatograms can then be re-extracted and 
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be used to correctly annotate peaks. Thus this method can further be employed to extract 
chromatograms by OpenSWATH and other tools. 

We believe that our approach is most useful for large-scale heterogeneous targeted 
proteomics studies where runs are acquired by different personnel and data is collected over 
several months or even years. Applying a single mapping function in such experiments 
becomes a very challenging task considering the switching of elution order of peptides. Global 
alignment functions being monotonic in nature assume chronological order of peptide elution 
and, therefore, cannot align switched peptides. However, we have shown that our hybrid 
approach aligns these peptides accurately as it mostly relies on additional dimensions of 
fragment-ion m/z to align peaks. It is possible that switching peptides may share fragment-ion 
m/z, however, this is very rare scenario and in that case our method will perform no worse than 
global alignment methods. 

Applying mass spectrometry-based proteomics in large-scale systems biology studies, 
high reproducibility and quantitation of large number of analytes is imperative. We present a tool 
that can be used to establish correspondence between analytes across large number of 
samples, making DIA amenable for multi-center and longitudinal studies. We also expect that 
this tool can be utilized by existing proteomics softwares to streamline analyte identification and 
improve the quantification.  
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FIG. 1. Alignment algorithm for targeted proteomics MS2 chromatograms.  a , 
Fragment-ions chromatograms of a peptide for two runs; run A at top and run B at bottom. 
Correct peak, typically, has all library fragment-ions (n = 3) coeluting. b, similarity between 
chromatograms of both runs is calculated by dot-product of intensity vector; defined in n 
dimensional space. c, outer dot-product of chromatograms provides an I x J  similarity score 
matrix (S). d , feature-based complete run alignment is used as an approximate path for 
alignment. Time points farther from an allowed window in similarity score matrix are penalized 
by adding negative score. e, Affine gap penalty based overlap alignment strategy is employed 
for calculating best scoring path through the similarity matrix. This dynamic programming based 
strategy utilizes three matrices for recursively calculating multiple gap length scores. Calculated 
alignment path is indicated using black arrow. f, Chromatograms recreated by mapping intensity 
back to aligned time path. 
 
 
FIG. 2. Comparison of different similarity measurements, technical parameters and effect 
of penalizing similarity using global prior on the accuracy of alignment in S. Pyogenes 
dataset. a , Performance of various similarity measures as the cumulative fraction of peptides 
having error less than RT difference is plotted. b, the effect of gap penalty selection using 
gapQuantile on the percentage of peaks aligned within certain RT difference tolerance is 
depicted. c, The penalized similarity matrix for peptide DGSVSVADSGR/2 between run11 and 
run12 is presented. From available two high similarity vectors, alignment path passes through 
high similarity vectors B. d, The end-points of extracted ion chromatograms (XICs) for the 
peptide are shown as green dots. Penalizing similarity gives preference to alignment within a 
certain window around LOESS fit, depicted as dashed green lines. Here, alignment of high 
similarity vectors B (solid red circle ⚫) is preferred over high similarity vectors A (red cross  ). 
 
 
FIG. 3. Alignment accuracy of MS2 chromatogram alignment on a validation dataset of 16 
runs with manually annotated 437 peak groups in each run.  a , cumulative fraction of 
peptides having error less than RT difference is plotted for all possible C(16,2) = 120 pairs for 
chromatogram alignment, linear fit and k-nearest neighbor smoothing (LOESS) with and without 
optimum span. b, cumulative fraction of peptides with alignment accuracy is plotted for 
chromatogram alignment and LOESS for pairs with different biological conditions. Strep0 pair 
constitutes both 0% plasma runs, Strep10 pair is composed of both 10% plasma runs and 
Strep0_Strep10 pair have one run with 0% plasma and other with 10% plasma. There are 28 
Strep0 pairs, 28 Strep10 pairs and 64 pairs for Strep0_Strep10 case in the validation dataset. c, 
histogram of number of peptides matched within half peak-width for LOESS and chromatogram 
alignment. d, Histogram of retention time (RT) prediction error is plotted for chromatogram 
alignment and LOESS. RT difference standard deviation for both approaches is 9.56 sec and 
10.98 sec, respectively. 
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FIG. 4. Alignment accuracy of MS2 chromatogram alignment on  24 runs of clinical 
plasma measurement dataset annotated with OpenSWATH. 406 peak groups are selected 
in each run with m-score < 0.001.  a , cumulative fraction of peptides having error less than RT 
difference is plotted for all possible C(24,2) = 276 pairs for chromatogram alignment, linear fit 
and k-nearest neighbor smoothing (LOESS) with and without optimum span. b, cumulative 
fraction of peptides with alignment accuracy is plotted for chromatogram alignment and LOESS 
for pairs with different data acquisition conditions. LC column was changed together with 
quadrupole replacement. 14 runs were acquired on column1 which makes 91 pairs, labeled as 
“column1”. 10 runs were acquired after quadrupole replacement on column2 which results into 
45 pairs, labelled as “column2”. There are 140 pairs composed of “column1” and “column2” 
labelled runs; these pairs are labelled as “column1-column2”. c, histogram of number of 
peptides matched within half peak-width for LOESS and chromatogram alignment. d, Histogram 
of retention time (RT) prediction error is plotted for chromatogram alignment and LOESS. RT 
difference standard deviation for both approaches is 22.91 sec and 13.7 sec, respectively. 
 
 
FIG. 5. Alignment of 406 peptides in pair run4 and run23  from clinical plasma 
measurement dataset. run4 “022817_V4_Plasma_8ug_C11_010−05−02−2−V3−Plasma083” 
was acquired on February 28 th, 2017 whereas run23 
“072017_M3_Plasma_8ug_C4_69−090−1031−M3−Plasma027” was acquired on July 20 th, 
2017 . a , LOESS fit between two runs is obtained using confident peaks. Test peptides are 
shown in red color around the fit line. Span value = 0.27 for fit is obtained by ⅓ cross-validation. 
Precursors AQLVDMK/2  and HYDGSYSTFGER/2 are shown in magenta and orange 
circle-cross symbols, respectively. b, Two peptides AQLVDMK/2 and HYDGSYSTFGER/2 have 
their elution order reversed in these runs. This phenomenon makes alignment of peaks 
theoretically impossible for global monotonic methods. Chromatogram alignment uses 
fragment-ions as additional dimensions and hence can align them precisely. c, fraction of 
peptides having error less than RT difference is plotted for pair run4 and run23 for 
chromatogram alignment, linear fit, k-nearest neighbor smoothing (LOESS) with and without 
optimum span and without any alignment. 
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FIG. 1. Alignment algorithm for targeted proteomics MS2 chromatograms. a , Fragment-ions 
chromatograms of a peptide for two runs; run A at top and run B at bottom. Correct peak, typically, has 
all library fragment-ions (n = 3) coeluting. b, similarity between chromatograms of both runs is 
calculated by dot-product of intensity vector; defined in n dimensional space. c, outer dot-product of 
chromatograms provides an I x J  similarity score matrix (S). d , feature-based complete run alignment is 
used as an approximate path for alignment. Time points farther from an allowed window in similarity 
score matrix are penalized by adding negative score. e, Affine gap penalty based overlap alignment 
strategy is employed for calculating best scoring path through the similarity matrix. This dynamic 
programming based strategy utilizes three matrices for recursively calculating multiple gap length 
scores. Calculated alignment path is indicated using black arrow. f, Chromatograms recreated by 
mapping intensity back to aligned time path. 
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FIG. 2. Comparison of different similarity measurements, technical parameters and effect of 
penalizing similarity using global prior on the accuracy of alignment in S. Pyogenes  dataset. a, 
Performance of various similarity measures as the cumulative fraction of peptides having error less 
than RT difference is plotted. b, the effect of gap penalty selection using gapQuantile on the percentage 
of peaks aligned within certain RT difference tolerance is depicted. c, The penalized similarity matrix for 
peptide DGSVSVADSGR/2 between run11 and run12 is presented. From available two high similarity 
vectors, alignment path passes through high similarity vectors B. d, The end-points of extracted ion 
chromatograms (XICs) for the peptide are shown as green dots. Penalizing similarity gives preference 
to alignment within a certain window around LOESS fit, depicted as dashed green lines. Here, 
alignment of high similarity vectors B (solid red circle ⚫) is preferred over high similarity vectors A (red 
cross  ). 
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FIG. 3. Alignment accuracy of MS2 chromatogram alignment on a validation dataset of 16 runs 
with manually annotated 437 peak groups in each run. a , cumulative fraction of peptides having 
error less than RT difference is plotted for all possible C(16,2) = 120 pairs for chromatogram alignment, 
linear fit and k-nearest neighbor smoothing (LOESS) with and without optimum span. b, cumulative 
fraction of peptides with alignment accuracy is plotted for chromatogram alignment and LOESS for 
pairs with different biological conditions. Strep0 pair constitutes both 0% plasma runs, Strep10 pair is 
composed of both 10% plasma runs and Strep0_Strep10 pair have one run with 0% plasma and other 
with 10% plasma. There are 28 Strep0 pairs, 28 Strep10 pairs and 64 pairs for Strep0_Strep10 case in 
the validation dataset. c, histogram of number of peptides matched within half peak-width for LOESS 
and chromatogram alignment. d, Histogram of retention time (RT) prediction error is plotted for 
chromatogram alignment and LOESS. RT difference standard deviation for both approaches is 9.56 
sec and 10.98 sec, respectively. 
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FIG. 4. Alignment accuracy of MS2 chromatogram alignment on  24 runs of clinical plasma 
measurement dataset annotated with OpenSWATH. 406 peak groups are selected in each run 
with m-score < 0.001. a , cumulative fraction of peptides having error less than RT difference is plotted 
for all possible C(24,2) = 276 pairs for chromatogram alignment, linear fit and k-nearest neighbor 
smoothing (LOESS) with and without optimum span. b, cumulative fraction of peptides with alignment 
accuracy is plotted for chromatogram alignment and LOESS for pairs with different data acquisition 
conditions. LC column was changed together with quadrupole replacement. 14 runs were acquired on 
column1 which makes 91 pairs, labeled as “column1”. 10 runs were acquired after quadrupole 
replacement on column2 which results into 45 pairs, labelled as “column2”. There are 140 pairs 
composed of “column1” and “column2” labelled runs; these pairs are labelled as “column1-column2”. c, 
histogram of number of peptides matched within half peak-width for LOESS and chromatogram 
alignment. d, Histogram of retention time (RT) prediction error is plotted for chromatogram alignment 
and LOESS. RT difference standard deviation for both approaches is 22.91 sec and 13.7 sec, 
respectively. 
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FIG. 5. Alignment of 406 peptides in pair run4 and run23  from clinical plasma measurement 
dataset. run4 “022817_V4_Plasma_8ug_C11_010−05−02−2−V3−Plasma083” was acquired on 
February 28 th, 2017 whereas run23 “072017_M3_Plasma_8ug_C4_69−090−1031−M3−Plasma027” 
was acquired on July 20 th, 2017 . a, LOESS fit between two runs is obtained using confident peaks. Test 
peptides are shown in red color around the fit line. Span value = 0.27 for fit is obtained by ⅓ 
cross-validation. Precursors AQLVDMK/2  and HYDGSYSTFGER/2 are shown in magenta and orange 
circle-cross symbols, respectively. b, Two peptides AQLVDMK/2 and HYDGSYSTFGER/2 have their 
elution order reversed in these runs. This phenomenon makes alignment of peaks theoretically 
impossible for global monotonic methods. Chromatogram alignment uses fragment-ions as additional 
dimensions and hence can align them precisely. c, fraction of peptides having error less than RT 
difference is plotted for pair run4 and run23 for chromatogram alignment, linear fit, k-nearest neighbor 
smoothing (LOESS) with and without optimum span and without any alignment. 
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