
30

Towards the Refinement of
Executable Temporal Objects

Michael Fisher
Department of Computing, Manchester Metropolitan University
Manchester Ml 5GD, U.K. EMAIL: M. Fisher®doc .rrunu. ac. uk

Abstract
Concurrent METATEM is a high-level language in which the behaviour of an indi­
vidual reactive component is represented by a temporal logic formula and is ani­
mated by direct execution. The combination of this executable temporal formalism,
together with an operational model providing asynchronous concurrency and broad­
cast message-passing, presents a powerful and flexible framework in which to de­
velop concurrent object-based, particularly agent-based, applications.

While Concurrent METATEM has been applied in a variety of scenarios, and tech­
niques for the verification of properties of Concurrent METATEM systems have been
developed, little work has been carried out on the basis for refining such systems.
Here, we introduce simple mechanisms for the refinement both of an object's inter­
nal behaviour and interface, and of individual objects into new systems of commu­
nicating objects.

Keywords
Executable specifications, refinement, object-based systems, transformation

INTRODUCTION

Concurrent METATEM is a simple programming language developed for reactive
systems (Fisher 1993) that has been shown to be particularly useful in representing
and developing multi-agent systems (Fisher 1995a). It is based on the combination
of two complementary elements: the direct execution of temporal logic specifica­
tions providing the behaviour of an individual object (Fisher 1996); and a concur­
rent operational model in which such objects execute asynchronously, communicate
via broadcast message-passing, and are organised using a powerful grouping mech­
anism (Fisher 1994). While both the operational model and object representation
technique are simple, they together provide a framework in which a variety of con­
current object-based systems can be specified and implemented. It is important to
note that object-based, rather than object-oriented, systems are developed here, and
so we are not directly concerned with features such as inheritance and classes; the
only attributes these objects have are encapsulation and message-based communi-

© IFIP 1997. Published by Chapman & Hall

440 Part Nine Formal Specification (II)

cation. Note, however, that many 'standard' object-oriented features can be built on
top of this basic framework, if required. In this sense, the closest related work stems
from the development of the Actor paradigm (Agha 1986).

In this paper we consider the refinement of Concurrent METATEM, incorporating

I . the refinement of an individual object's behaviour, which corresponds to standard
refinement of temporal specifications (Manna & Pnueli 1992);

2. the refinement of an object into a collection of new objects that together imple­
ment the original behaviour under appropriate communication constraints; and

3. the use of a fixed set of transformation rules, rather than arbitrary refinements,
allowing a "pick and mix" approach to program development.

For simplicity, we consider propositional, rather than first-order, temporal specifica­
tions. While this is obviously a restriction, many of the techniques we discuss can be
transferred, with a little work, to the first-order framework.

The structure of this paper is as follows. In §2, we provide a definition of the tem­
poral logic we use, followed, in §3, by a brief review of the Concurrent METATEM
language. In §4, we present the framework for refinement of Concurrent METATEM
objects, and consider a range of simple examples. We also derive fixed transfor­
mations which are behaviour preserving, and present a larger example of system
refinement. Finally, in §5, we present conclusions and identify future work.

2 TEMPORAL LOGIC

Temporal logic can be seen as classical logic extended with various modalities repre­
senting temporal aspects oflogical formulae (Emerson 1990). The propositional tem­
poral logic we use (called PTL) is based on a linear, discrete model of time (Gabbay,
Pnueli, Shelah & Stavi 1980). Thus, time is modelled as an infinite sequence of dis­
crete states, with an identified starting point, called 'the beginning of time'. Classical
formulae are used to represent constraints within states, while temporal formulae rep­
resent constraints between states. This temporal logic can be seen as classical logic
extended with various modalities, for example '0', 'D ', and '0 '. The intuitive
meaning of these connectives is as follows: 0 A is true now if A is true sometime in
the future; DAis true now if A is true always in the future; and OA is true now
if A is true at the next moment in time. In this presentation, similar connectives are
introduced to enable reasoning about the past (Lichtenstein, Pnueli & Zuck 1985).

2.1 Syntax

We begin with the formal syntax of the language. Formulae of PTL are constructed
using the following symbols.

Towards the refinemeflt of executable temporal objects 441

• A set, £p, of propositional symbols represented by strings of lower-case alpha­
betic characters.

• Classical connectives, ...,, V, A, true, false and =>.
• Future-time temporal operators, categorised as

- nullary operators: start,
- unary operators: 0, 0, D,
- binary operators: U, and W .

• Past-time temporal operators, categorised as

- unary operators: 0, +, •.
- binary operators: S, and Z.

The set of well-formed formulae of PTL (WFFP) is defined as follows.

• Any element of £pis in WFFP.

• If A and E are in WFFP' then so are

2.2 Semantics

AVE
DA .A

AAE
AUE
ASE

A=>E
AWE
AZE

start
OA
OA

Intuitively, the models for PTL formulae are based on discrete, linear structures hav­
ing a finite past and infinite future, i.e., sequences such as

where each si, called a state, provides a propositional valuation. However, rather
than representing the model structure in this way, we will define a model, a, as

a = (N, 7rp}

where N is used to represent the sequence of states s0 , s 1 , s 2 , s3 , ... , and, 'll'p is a
map from N x Lp to {T, F}, giving a propositional valuation for each state in the
sequence.

An interpretation for this logic is defined as a pair (a, i}, where a is the model and
i the index of the state at which the temporal statement is to be interpreted.

A semantics for well-formed temporal formulae is a relation between interpreta­
tions and formulae, and is defined inductively as follows, with the (infix) semantic
relation being represented by ·~·.The semantics of a proposition is defined by the
valuation given to that proposition at a particular state:

(a, i} ~ p iff 'll'p(i,p) = T [forp E £p]·

442 Part Nine Formal Specification (II)

The semantics of the standard propositional connectives is as in classical logic, e.g.,

(a, i) J= A V B iff (a, i) J= A or (a, i) J= B .

The semantics of the unary future-time temporal operators is defined as follows.

(a, i) J= OA
(a, i) J= OA
(a, i) J= DA

iff (a, i + 1) J= A
iff there exists j EN such that j 2: i and (a, j) J= A
iff for all j EN, if j 2: i then (a, j) J= A

Additionally, the syntax includes two binary future-time temporal operators, inter­
preted as follows.

(a, i) J= AUB

(a, i) J= AWE

iff

iff

there exists k EN, such that k 2: i and (a, k) J= B
and for all j EN, ifi ~ j < k then (a,j) J= A

(a, i) J= AUB or (a, i) J= DA

As temporal formulae are interpreted at a particular state-index, i, then indices less
than i represent states that are 'in the past' with respect to state Si. The semantics of
the unary past-time operators is given as follows.

(a, i) J= OA
(a, i) J= ~A
(a, i) J= •A

iff (a, i - 1) J= A and i > 0
iff there exists j EN, s.t. 0 ~ j < i and (a, j) J= A
iff for all j EN, ifO ~ j < i then (a,j) J= A

Note that, in contrast to the future-time operators, the '~ ' ("sometime in the past")
and '•' ("always in the past") operators are interpreted as being strict, i.e., the
current index is not included in their definition. Apart from their strictness, the binary
past-time operators are similar to their future-time counterparts; their semantics is
defined as follows.

(a, i) J= ASB

(a, i) J= AZB

iff there exists k EN, s.t. 0 ~ k < i and (a, k) J= B
and for all j EN, if k < j < i then (a,j) J= A

iff (a, i) J= ASB or (a, i) J= .A.

Finally, the 'start' operator is defined such that it can only be satisfied at the begin­
ning of time, i.e. where i = 0.

2.3 Separated Normal Form

As an object's behaviour is represented by a temporal formula, we can transform this
formula into Separated Normal Form (SNF) (Fisher 1992, Fisher 1997a). This not

Towards the refinemellt of executable temporal objects 443

only removes the majority of the temporal operators, but also translates the formula
into a set of rules suitable for direct execution (see §3). Each of these rules is of one
of the following forms.

r

start => Vmi (an initial 0-rule)
i=l

q r

01\ ki => Vmi (a global 0-rule)
i=l i=l

start => Ol (an initial 0-rule)

q

01\ ki => Ol (a global 0-rule)
i=l

where each ki, mi or l is a literal. Note that the left-hand side of each initial rule
is a constraint only on the first state, while the left-hand side of each global rule
represents a constraint upon the previous state. The right-hand side of each 0-rule
is simply a disjunction of literals referring to the current state, while the right-hand
side of each 0-rule is a single eventuality (i.e., '0' applied to a literal).

While the details of the transformation process will not be given here, it is im­
portant to note that Concurrent METATEM programs are represented as sets of rules
(i.e. implications) where the left-hand side of each rule is a past-time formula, while
the right-hand side of each rule is a present or future-time formula. This simple form
leads naturally on to an operational model for the execution of such rules, as de­
scribed in the next section.

3 CONCURRENT ME TATEM

The motivation for the development of Concurrent METATEM (Fisher 1993) has
been provided from many areas. Being based upon executable logic, it can be utilised
as part of the formal specification and prototyping of reactive systems. In addition,
as it uses temporal, rather than classical, logic the language provides a high-level
programming notation in which the dynamic attributes of individual components can
be concisely represented (Barringer, Fisher, Gabbay, Gough & Owens 1995). This,
together with its use of a novel model of concurrent computation, ensures that it has
a range of applications in distributed and concurrent systems (Fisher 1994).

Concurrent METATEM is an object-based programming language comprising two
distinct aspects:

I . the fundamental behaviour of a single object is represented as a temporal formula
and animation of this behaviour is achieved through the direct execution of the
formula (Fisher 1996);

444 Part Nine Formal Specification (li)

2. objects are placed within an operational framework providing both asynchronous
concurrency and broadcast message-passing.

While these aspects are, to a large extent, independent, the use of broadcast commu­
nication provides a natural link between them as it represents both a flexible com­
munication model for concurrent objects (Birman 1991) and a natural interpretation
of distributed deduction (Fisher 1997 b). Thus, these features together provide an co­
herent and consistent programming model within which a variety of reactive systems
can be represented and implemented.

3.1 Objects

The basic elements of Concurrent METATEM are objects. These are considered to
be encapsulated entities, executing independently, and having complete control over
their own internal behaviour. There are two elements to each object: its interface def­
inition and its internal definition. The definition of which messages an object recog­
nises, together with a definition of the messages that an object may itself produce, is
provided by the interface definition for that particular object. The internal definition
of each object is provided by a temporal specification.

An object's interface consists of three components, namely a unique identifier,
which names the object, a set of symbols defining what messages will be accepted by
the object (these are called environment propositions) and a set of symbols defining
messages that the object may send (these are called component propositions). For
example, the interface definition of a 'car' object might be:

car(go,stop,turn)[fuel,overheat]

Here, car is the identifier that names the object, {go,stop,turn} are the environment
propositions, and {fuel,overheat} are the component propositions.

In order to animate the behaviour of an object, we choose to execute its temporal
specification directly (Fisher 1996). Execution of a temporal formula corresponds to
the construction of a model for that formula and, in order to execute a set of SNF
rules representing the behaviour of a Concurrent METATEM object, we utilise the
imperative future (Barringer, Fisher, Gabbay, Owens & Reynolds 1996) approach.
This evaluates the SNF rules at every moment in time, using information about the
history of the object in order to constrain future execution.

The operator used to represent the basic temporal indeterminacy within the SNF
rules is the sometime operator, '0'. When 0'P is executed, the system must try to
ensure that r.p eventually becomes true. As such eventualities might not be able to be
satisfied immediately, we must keep a record of the unsatisfied eventualities, retrying
them as execution proceeds. It should be noted that the use of temporal logic as the
basis for the computation rules gives an extra level of expressive power over the cor-

Towards the refinement of executable temporal objects 445

responding classical logics. In particular, operators such as '0' give the opportunity
to specify future-time (temporal) indeterminacy.

As an example of a simple set of rules which form a fragment of an object's
description, consider the following.

start =>
Ogo =>

O(moving 1\ go) =>

.moving
<>moving
overheat v fuel

Here, we see that moving is false at the start of execution and, whenever go is satis­
fied in the last moment in time, a commitment to eventually satisfy moving is made.
Similarly, whenever both go and moving are satisfied in the last moment in time,
then either overheat or fuel must be satisfied.

3.2 Concurrency and Communication

It is fundamental to our approach that all objects are (potentially) concurrently ac­
tive. In particular, they may be asynchronously executing. Each object, in execut­
ing its temporal formula, independently constructs its own temporal model. Within
Concurrent METATEM, a mechanism is provided for communication between sep­
arate objects which simply consists of partitioning each object's propositions into
those controlled by the object and those controlled by its environment. As above,
the former are termed either component or internal propositions while the latter are
termed environment propositions. Within the individual object's execution, if a com­
ponent proposition is satisfied, this has the side-effect of broadcasting the value of
that proposition to all other objects. If a particular message is received, a corre­
sponding environment proposition is satisfied in the object's execution. If an internal
proposition is satisfied, this has no external effect.

To fit in with this logical view of communication, whilst also providing a flexible
and powerful message-passing mechanism, broadcast message-passing is used to
pass information between objects. Here, when an object sends a message it does not
send it to a specified destination, it merely sends it to its environment where it can
be received by all other objects. Although broadcast is the basic mechanism, both
multicast and point-to-point message-passing can be defined on top of this (Fisher
1994). Finally, the default behaviour for a message is that if it is broadcast, then it will
eventually be received at all possible receivers. Also note that, by default, the order
of messages is not preserved, though such a constraint can be added, if required.

3.3 Applications and Implementation

The combination of executable temporal logic, asynchronous message-passing and
broadcast communication provides a powerful and flexible basis for the develop­
ment of reactive systems. Concurrent METATEM is being utilised in the development

446 Part Nine Formal Specification (/1)

of a range of applications in areas from distributed artificial intelligence (Fisher &
Wooldridge 1993), agent societies (Fisher & Wooldridge 1995), concurrent theorem­
proving (Fisher 1997b), and systems simulation (Finger, Fisher & Owens 1993). A
survey of some of the potential applications of the language is given in (Fisher 1994).

4 PRINCIPLES OF REFINEMENT

Given that Concurrent METATEM objects can be defined and executed, we now con­
sider the refinement of their representations. In particular, we examine the refinement
of an object's internal behaviour (via manipulation of its SNF rules), refinement of
an object's interface (thus affecting how it interacts with the environment), and re­
finement of a single object into a set of objects exhibiting equivalent behaviour.

First, we will provide a definition of specifications for Concurrent METATEM ob­
jects. Rather than consisting solely of the appropriate temporal rules, an object's
specification must also provide the partition of propositions into component, envi­
ronment and internal sets. Note that, in the following definition, props is a function
that extracts all proposition symbols from a given set of SNF rules.

Definition 1 (Specification) A specification of a Concurrent METATEM object is
givenasatuple (R,PE,Pc,PI), where

• R is the set of SNF rules comprising the object,
• PE is the object's set of environment propositions,
• Pc is the object's set of component propositions, and
• PI is the object's set of internal propositions,

and where both props(R) ~ PE U Pc U PI and Pc n PI = 0.

We now consider a variety of different classes of refinement, beginning with stan­
dard refinement of temporal specifications. The notation we use for refinement of
specifications is S1 --+ S2 , meaning that S2 is a refinement of S1.

4.1 Refining an Object's Internal Behaviour

Standard refinement of temporal specifications (Manna & Pnueli 1992) can be ap­
plied to specifications of Concurrent METATEM objects. Such refinement can be
carried out in the following circumstances:

(R, PE, Pc, PI) --+ (R', PE, Pc, PI) if, and only if,

Towards the refinement of executable temporal objects 447

Example 1 This first (simple) example involves the removal of eventualities. The
original object defined by

can be refined to

ex1 (announce)[give,receive]:
start => <)give

ex1 (announce)[give,receive]:
start => x
Ox => give

showing that a give message will be produced on the second execution step of object
ex1. This follows since

I- (O(start=>x) 1\ O(Ox=>give)) => O(start=><)give)

Example 2 Another simple example of the reduction of non-determinism con­
cerns the removal of disjunctions. Here, the object defined by

ex2(ins)[outs]:
Op => q v r

can be refined to

ex2(ins)[outs]:
Op => q

Thus, as in standard formal development, non-determinism within the temporal spec­
ification is reduced by such refinement steps.

4.2 Interface Refinement

In addition to the refinement of an object's rule set, as above, we can apply refinement
to the object's interface. However, certain restrictions on this are enforced. Thus,

(R, PE, Pc, PI) --+ (R, PJ,;, Pb, P})

just as long as the following constraints are observed.

I. Any increase in component, environment or internal sets involves propositions
not already present in any of those sets, e.g. for environment propositions

(P],;- PE) n (PE u Pc u PI)= 0

448 Part Nine Formal Specification (II)

2. Any decrease in component, environment or internal sets does not involve propo­
sitions which appear in the original rule set, e.g., again for environment proposi­
tions

(PE- Pj.;) n props(R) = 0

Example 3 To provide a simple example showing why such restrictions are neces­
sary, we give an illegal refinment below which may produce unwelcome behaviour.
Thus, if we refine the interface of

ex3(ins)[outs,p]:
Otrue => Op

by removing p from its component set, we produce

ex3(ins}[outs]:
Otrue => Op

However, while p messages are broadcast from the original object infinitely often,
no p messages are ever broadcast from the refined object. If any other object is de­
pendent upon these messages, then this can obviously lead to radically different be­
haviour across the system.

4.3 Object Decomposition

Next, we consider refining a single object into a set of objects that together imple­
ment the required behaviour. For example, in Fig. I, an object A is refined into three
objects 81, 82 and 83, which communicate together to provide A's behaviour.

This decomposition can take place as long as

where [] provides the temporal semantics of each object (Pnueli 1981), under ap­
propriate communication constraints (Fisher 1995b). Note that this validation also
checks that the sets of environment, internal and component predicates are consis­
tent across the distributed system.

Unfortunately, simple (yet non-trivial) examples of this type of transformation are
difficult to find. The problem is that, even for relatively small specifications, the
temporal formula representing the semantics of an object tends to be large. Lack of
space precludes the inclusion of such examples.

Towards the refinement of executable temporal objects 449

~-·······~

·.

Figure 1 Decomposing an Object

4.4 Fixed Transformations

In an effort to simplify the refinement procedure for the system developer, partic­
ularly in the case where an object is decomposed into a new set of objects, we in­
troduce fixed transformations which preserve the behaviour of the systems. While
many of the simpler transformations concern the single object refinements described
above (in §4.1 and §4.2), the ones we describe here relate to object decomposition
(as in §4.3) and have been found to be very useful in simplifying the derivation of
refinement.

We label the first transformation, Tl; the second one, called T2 is essentially a
generalisation of the first.

Tl: Given a specification containing the rules

Op => q
Oq =>

where r and q do not occur on the left-hand side of any other rules, apart from
the above, then the specification of the new object is ({ 0 q => r}, { q}, { r}, 0)
where Oq => r is removed from the original object's ruleset and q is added to
its set of component propositions. Note that, if r does not occur in any other rule
in the original object, this proposition can be removed from its set of component
propositions.

T2: This is similar to Tl, except that the r message is recognised by the original
object, hence providing a mechanism for passing information between the new

450 Part Nine Formal Specification (II)

and original object. Thus, given a specification containing the rules

Op => q
Oq =>
Or => s

where r and q do not occur in any other rules, then the specification of the new
objectisagain({Oq => r},{q},{r},0).Asbefore, Oq => risremovedfrom
the original object's ruleset and q is added to its set of component propositions,
but now r is added to its set of environment propositions. While this transforma­
tion produces the same new object as in Tl, the difference is that, using T2, the r
message will effectively be passed back to the original object.

Other transformations follow this pattern. The important property of these transfor­
mations is as follows.

Theorem 1 If a fixed transformation is applied to specificationS to giveS', then
[S] <=> [S'] under the standard communication constraints.

The standard communication constraints are that if a message is broadcast it will
eventually arrive at all other objects. Given this, the above theorem can be established
by appealing to the temporal semantics of Concurrent METATEM (Fisher 1995b).

Example 4 As a simple example of the use of T2, we can transform the object

ex4(a)[s,b]:
Oa => p
Op => q
Oq => r
Oq => b
Or => s
Op => s

to a system comprising two objects, i.e.

ex4(a,r)[s,q]:
Oa => p
Op => q
Or => s
Op => s

new4(q)[r,b]:
Oq => r
Oq => b

Towards the refinement of executable temporal objects 451

Thus, the sub-computation concerning the q proposition (message) can be isolated
within the newly spawned object.

4.5 Development Example

In this section, we provide a simple example exhibiting the varieties of refinment
steps described above, particularly with respect to decomposing an object into a new
set of communicating objects. This example, which consists of a very basic planning
system, not only has obvious relevance to the domain of multi-agent systems but also
shows how specifications incorporating general liveness constraints may be refined.
The original object is specified simply by

planner(goal)[plan]:
Ogoal => ¢plan

--,subplan1 S goal => -,plan
--,subplan2 S goal => -,plan
--,subplan3 S goal => -,plan

Ogoal => ¢subplan1
Ogoal => ¢subplan2
Ogoal => ¢subplan3

Here, once a goal message is received by the object, it guarantees to eventually
produce a plan that achieves that goal. However, the plan can not be produced until
all of its three subplans have been completed. Thus, the object also undertakes to
generate these subplans.

An obvious structural refinement for this object is to decompose it into four ob­
jects, one effectively coordinating the planning activity, the other three producing the
three subplans. This refined system can be represented as

planner(goal,subplan 1 ,subplan2,subplan3)[plan,goal1 ,goal2,goal3]:
0 goal => ¢plan

(--,subplan1 v --,subplan2 v --,subplan3) S goal => -,plan
Ogoal =>. goal1
0 goal => goal2
Ogoal => goal3

p1 (goal1)[subplan1]:
0 goal1 => ¢subplan 1

p2(goal2)[subplan2]:
0 goal2 => ¢subplan2

p3(goal3)[subplan3]:
0 goal3 => ¢subplan3

452 Part Nine Formal Specification (II)

To see how the original specification is transformed into this, we will now consider
the refinement steps used in a little more detail.

I. First, we can merge the three rules utilising the ' S ' operator into one, i.e.

(-.subplan1 v -.subplan2 v -.subplan3) S goal => -.plan

using standard temporal refinement.
2. Next, we refine each of the 'Ogoal => <)subplan/ rules in order to in­

troduce intermediate steps characterised by new variables. Thus, ' 0 goal =>
<)subplan1' becomes

Ogoal =>
Ogoal1 =>

goal1
<)subplan1

again using standard temporal refinement. N.B., goal1 will be used as the coor­
dinating message between the planner and p1.

3. Finally, this specification is then distributed amongst four objects, with the plan­
ner object retaining all, and only, those SNF rules that contain the goal propo­
sition. This is achieved by fixed transformations based upon T2 being applied to
rules of the form 0 goali => subplani generated in step (2) above.

While this example is relatively simple, similar refinements occur in many systems.
Since all temporal specifications are translated into SNF, wherein the main tempo­
ral operator is '<)', and since the global structures within the application are often
provided by grouping, which itself is based upon the decomposition of objects into
appropriate sets of objects, it is perhaps not surprising that many applications require
transformation steps of this form.

5 CONCLUSIONS AND FUTURE WORK

We have provided a basic framework for refinement in Concurrent METATEM, thus
allowing the principled development of a range of concurrent object-based systems.
While refinement proofs remain, in general, difficult, the use of fixed transforma­
tions provides the system developer with a toolbox of fast (no verification required),
simple and safe (behaviour preserving) refinements.

These refinement techniques are powerful, yet relatively simple, primarily because
of the fit between the computational model and the temporal execution mechanism.
It is important to note that the simplicity of both the refinement conditions and of the
fixed transformations derived is a consequence of the easy match between tempo­
ral specification, temporal execution and the particular model of computation used.
Specifically, utilising objects makes the general refinement of temporal specifications
simpler (Barringer, Kuiper & Pnueli 1984), using broadcast messages obviates the
need to keep track of senders and receivers of messages, and using a simple commu­
nication constraint, such as a message broadcast will eventually arrive at all objects,

Towards the refinement of executable temporal objects 453

avoids tight coupling of objects. Although simple, this model of object-based compu­
tation can be used to represent applications in a number of areas. In particular, in the
multi-agent systems area agents are often quite simply specified, yet it is the patterns
of communication and grouping between them that gives these systems power.

While there is much work in the areas of refinement of temporal specifications (Manna
& Pnueli 1992), formal methods for object-oriented systems (Buchs & Guelfi 1993),
and the development of concurrent object-based systems (Agha 1986), there is little
research directly relevant to that presented here. This is mainly because the object
model we use is much simpler than most formal models of object-oriented systems,
the operational model is unusual compared with the majority of work on concurrent
object-based systems, and previous work on refinement of temporal specifications
has neither consider the refinement of executable temporal specifications, nor the
refinement of specifications under such a model of computation.

There are three directions for future work.

I. The extension of these refinements to first-order temporal logics.
2. The derivation of slightly more complex fixed transformations concerning cases

where the objects produced need to communicate together in order to arrive at a
common view and where true grouping (Birman 1991) is employed (again these
are useful for the multi-agent systems area).

3. The development of a toolbox of fixed transformations has led us to consider
producing a visual environment for object decomposition. Here, users select the
rule(s) they wish to move to new objects, the system checks that this can be
achieved and then generates a template for the new objects.

REFERENCES

Agha, G. (1986), Actors - A Model for Concurrent Computation in Distributed Sys­
tems, MIT Press.

Barringer, H., Fisher, M., Gabbay, D., Gough, G. & Owens, R. (1995), 'METATEM:
An Introduction', Formal Aspects of Computing 1(5), 533-549.

Barringer, H., Fisher, M., Gabbay, D., Owens, R. & Reynolds, M., eds (1996),
The Imperative Future: Principles of Executable Temporal Logics, Research
Studies Press, Chichester, United Kingdom.

Barringer, H., Kuiper, R. & Pnueli, A. (1984), Now You May Compose Temporal
Logic Specifications, in 'Proceedings of the Sixteenth ACM Symposium on
the Theory of Computing'.

Birman, K. P. (1991), The Process Group Approach to Reliable Distributed Com­
puting, Techanical Report TR91-1216, Department of Computer Science,
Cornell University.

Buchs, D. & Guelfi, N. (1993), Formal Development of Actor Programs using Struc­
tured Algebraic Petri Nets, in 'Parallel Architectures and Languages, Europe
(PARLE)', Munich, Germany. (Published in Lecture Notes in Computer Sci­
ence, volume 694, Springer-Verlag).

454 Part Nine Formal Specification (II)

Emerson, E. A. (1990), Temporal and Modal Logic, in J. van Leeuwen, ed., 'Hand­
book of Theoretical Computer Science', Elsevier, pp. 996-1072.

Finger, M., Fisher, M. & Owens, R. (1993), METATEM at Work: Modelling Reactive
Systems Using Executable Temporal Logic, in 'Sixth International Confer­
ence on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems', Gordon and Breach Publishers, Edinburgh, U.K.

Fisher, M. (1992), A Normal Form for First-Order Temporal Formulae, in 'Pro­
ceedings of Eleventh International Conference on Automated Deduction
(CADE)', Saratoga Springs, New York. (Published in Lecture Notes in Com­
puter Science, volume 607, Springer-Verlag).

Fisher, M. (1993), Concurrent METATEM- A Language for Modeling Reactive
Systems, in 'Parallel Architectures and Languages, Europe (PARLE)', Mu­
nich, Germany. (Published in Lecture Notes in Computer Science, volume
694, Springer-Verlag).

Fisher, M. (1994), A Survey of Concurrent METATEM- The Language and its
Applications, in 'First International Conference on Temporal Logic (ICTL)',
Bonn, Germany. (Published in Lecture Notes in Computer Science, volume
827, Springer-Verlag).

Fisher, M. (1995a), Representing and Executing Agent-Based Systems, in
M. Wooldridge & N. R. Jennings, eds, 'Intelligent Agents', Springer-Verlag.

Fisher, M. (1995b), Towards a Semantics for Concurrent METATEM, in M. Fisher &
R. Owens, eds, 'Executable Modal and Temporal Logics', Springer-Verlag.

Fisher, M. (1996), 'An Introduction to Executable Temporal Logics', Knowledge
Engineering Review 11(1), 43-56.

Fisher, M. (1997a), 'A Normal Form for Temporal Logic and its Application in
Theorem-Proving and Execution', Journal of Logic and Computation 7(4).

Fisher, M. (1997 b), An Open Approach to Concurrent Theorem-Proving, in 'Parallel
Processing for Artificial Intelligence III', Elsevier Science B.V.

Fisher, M. & Wooldridge, M. (1993), Executable Temporal Logic for Distributed
A.I., in 'Twelfth International Workshop on Distributed A.l.', Hidden Valley
Resort, Pennsylvania.

Fisher, M. & Wooldridge, M. (1995), A Logical Approach to the Representation
of Societies of Agents, in N. Gilbert & R. Conte, eds, 'Artificial Societies',
UCL Press.

Gabbay, D., Pnueli, A., Shelah, S. & Stavi, J. (1980), The Temporal Analysis of
Fairness, in 'Proceedings of the Seventh ACM Symposium on the Principles
of Programming Languages', Las Vegas, Nevada, pp. 163-173.

Lichtenstein, 0., Pnueli, A. & Zuck, L. (1985), 'The Glory of the Past', Lecture
Notes in Computer Science 193, 196-218.

Manna, Z. & Pnueli, A. (1992), The Temporal Logic of Reactive and Concurrent
Systems: Specification, Springer-Verlag, New York.

Pnueli, A. (1981), 'The Temporal Semantics of Concurrent Programs', Theoretical
Computer Science 13, 45-60.

