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Abstract 
Concurrent METATEM is a high-level language in which the behaviour of an indi­
vidual reactive component is represented by a temporal logic formula and is ani­
mated by direct execution. The combination of this executable temporal formalism, 
together with an operational model providing asynchronous concurrency and broad­
cast message-passing, presents a powerful and flexible framework in which to de­
velop concurrent object-based, particularly agent-based, applications. 

While Concurrent METATEM has been applied in a variety of scenarios, and tech­
niques for the verification of properties of Concurrent METATEM systems have been 
developed, little work has been carried out on the basis for refining such systems. 
Here, we introduce simple mechanisms for the refinement both of an object's inter­
nal behaviour and interface, and of individual objects into new systems of commu­
nicating objects. 
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INTRODUCTION 

Concurrent METATEM is a simple programming language developed for reactive 
systems (Fisher 1993) that has been shown to be particularly useful in representing 
and developing multi-agent systems (Fisher 1995a). It is based on the combination 
of two complementary elements: the direct execution of temporal logic specifica­
tions providing the behaviour of an individual object (Fisher 1996); and a concur­
rent operational model in which such objects execute asynchronously, communicate 
via broadcast message-passing, and are organised using a powerful grouping mech­
anism (Fisher 1994). While both the operational model and object representation 
technique are simple, they together provide a framework in which a variety of con­
current object-based systems can be specified and implemented. It is important to 
note that object-based, rather than object-oriented, systems are developed here, and 
so we are not directly concerned with features such as inheritance and classes; the 
only attributes these objects have are encapsulation and message-based communi-
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cation. Note, however, that many 'standard' object-oriented features can be built on 
top of this basic framework, if required. In this sense, the closest related work stems 
from the development of the Actor paradigm (Agha 1986). 

In this paper we consider the refinement of Concurrent METATEM, incorporating 

I . the refinement of an individual object's behaviour, which corresponds to standard 
refinement of temporal specifications (Manna & Pnueli 1992); 

2. the refinement of an object into a collection of new objects that together imple­
ment the original behaviour under appropriate communication constraints; and 

3. the use of a fixed set of transformation rules, rather than arbitrary refinements, 
allowing a "pick and mix" approach to program development. 

For simplicity, we consider propositional, rather than first-order, temporal specifica­
tions. While this is obviously a restriction, many of the techniques we discuss can be 
transferred, with a little work, to the first-order framework. 

The structure of this paper is as follows. In §2, we provide a definition of the tem­
poral logic we use, followed, in §3, by a brief review of the Concurrent METATEM 
language. In §4, we present the framework for refinement of Concurrent METATEM 
objects, and consider a range of simple examples. We also derive fixed transfor­
mations which are behaviour preserving, and present a larger example of system 
refinement. Finally, in §5, we present conclusions and identify future work. 

2 TEMPORAL LOGIC 

Temporal logic can be seen as classical logic extended with various modalities repre­
senting temporal aspects oflogical formulae (Emerson 1990). The propositional tem­
poral logic we use (called PTL) is based on a linear, discrete model of time (Gabbay, 
Pnueli, Shelah & Stavi 1980). Thus, time is modelled as an infinite sequence of dis­
crete states, with an identified starting point, called 'the beginning of time'. Classical 
formulae are used to represent constraints within states, while temporal formulae rep­
resent constraints between states. This temporal logic can be seen as classical logic 
extended with various modalities, for example '0', 'D ', and '0 '. The intuitive 
meaning of these connectives is as follows: 0 A is true now if A is true sometime in 
the future; DAis true now if A is true always in the future; and OA is true now 
if A is true at the next moment in time. In this presentation, similar connectives are 
introduced to enable reasoning about the past (Lichtenstein, Pnueli & Zuck 1985). 

2.1 Syntax 

We begin with the formal syntax of the language. Formulae of PTL are constructed 
using the following symbols. 



Towards the refinemeflt of executable temporal objects 441 

• A set, £p, of propositional symbols represented by strings of lower-case alpha­
betic characters. 

• Classical connectives, ...,, V, A, true, false and =>. 
• Future-time temporal operators, categorised as 

- nullary operators: start, 
- unary operators: 0, 0, D, 
- binary operators: U, and W . 

• Past-time temporal operators, categorised as 

- unary operators: 0, +, •. 
- binary operators: S, and Z. 

The set of well-formed formulae of PTL (WFFP) is defined as follows. 

• Any element of £pis in WFFP. 

• If A and E are in WFFP' then so are 

2.2 Semantics 

AVE 
DA .A 

AAE 
AUE 
ASE 

A=>E 
AWE 
AZE 

start 
OA 
OA 

Intuitively, the models for PTL formulae are based on discrete, linear structures hav­
ing a finite past and infinite future, i.e., sequences such as 

where each si, called a state, provides a propositional valuation. However, rather 
than representing the model structure in this way, we will define a model, a, as 

a = (N, 7rp} 

where N is used to represent the sequence of states s0 , s 1 , s 2 , s3 , ... , and, 'll'p is a 
map from N x Lp to {T, F}, giving a propositional valuation for each state in the 
sequence. 

An interpretation for this logic is defined as a pair (a, i}, where a is the model and 
i the index of the state at which the temporal statement is to be interpreted. 

A semantics for well-formed temporal formulae is a relation between interpreta­
tions and formulae, and is defined inductively as follows, with the (infix) semantic 
relation being represented by ·~·.The semantics of a proposition is defined by the 
valuation given to that proposition at a particular state: 

(a, i} ~ p iff 'll'p(i,p) = T [forp E £p]· 
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The semantics of the standard propositional connectives is as in classical logic, e.g., 

(a, i) J= A V B iff (a, i) J= A or (a, i) J= B . 

The semantics of the unary future-time temporal operators is defined as follows. 

(a, i) J= OA 
(a, i) J= OA 
(a, i) J= DA 

iff (a, i + 1) J= A 
iff there exists j EN such that j 2: i and (a, j) J= A 
iff for all j EN, if j 2: i then (a, j) J= A 

Additionally, the syntax includes two binary future-time temporal operators, inter­
preted as follows. 

(a, i) J= AUB 

(a, i) J= AWE 

iff 

iff 

there exists k EN, such that k 2: i and (a, k) J= B 
and for all j EN, ifi ~ j < k then (a,j) J= A 

(a, i) J= AUB or (a, i) J= DA 

As temporal formulae are interpreted at a particular state-index, i, then indices less 
than i represent states that are 'in the past' with respect to state Si. The semantics of 
the unary past-time operators is given as follows. 

(a, i) J= OA 
(a, i) J= ~A 
(a, i) J= •A 

iff (a, i - 1) J= A and i > 0 
iff there exists j EN, s.t. 0 ~ j < i and (a, j) J= A 
iff for all j EN, ifO ~ j < i then (a,j) J= A 

Note that, in contrast to the future-time operators, the '~ ' ("sometime in the past") 
and '•' ("always in the past") operators are interpreted as being strict, i.e., the 
current index is not included in their definition. Apart from their strictness, the binary 
past-time operators are similar to their future-time counterparts; their semantics is 
defined as follows. 

(a, i) J= ASB 

(a, i) J= AZB 

iff there exists k EN, s.t. 0 ~ k < i and (a, k) J= B 
and for all j EN, if k < j < i then (a,j) J= A 

iff (a, i) J= ASB or (a, i) J= .A. 

Finally, the 'start' operator is defined such that it can only be satisfied at the begin­
ning of time, i.e. where i = 0. 

2.3 Separated Normal Form 

As an object's behaviour is represented by a temporal formula, we can transform this 
formula into Separated Normal Form (SNF) (Fisher 1992, Fisher 1997a). This not 



Towards the refinemellt of executable temporal objects 443 

only removes the majority of the temporal operators, but also translates the formula 
into a set of rules suitable for direct execution (see §3). Each of these rules is of one 
of the following forms. 

r 

start => Vmi (an initial 0-rule) 
i=l 

q r 

01\ ki => Vmi (a global 0-rule) 
i=l i=l 

start => Ol (an initial 0-rule) 

q 

01\ ki => Ol (a global 0-rule) 
i=l 

where each ki, mi or l is a literal. Note that the left-hand side of each initial rule 
is a constraint only on the first state, while the left-hand side of each global rule 
represents a constraint upon the previous state. The right-hand side of each 0-rule 
is simply a disjunction of literals referring to the current state, while the right-hand 
side of each 0-rule is a single eventuality (i.e., '0' applied to a literal). 

While the details of the transformation process will not be given here, it is im­
portant to note that Concurrent METATEM programs are represented as sets of rules 
(i.e. implications) where the left-hand side of each rule is a past-time formula, while 
the right-hand side of each rule is a present or future-time formula. This simple form 
leads naturally on to an operational model for the execution of such rules, as de­
scribed in the next section. 

3 CONCURRENT ME TATEM 

The motivation for the development of Concurrent METATEM (Fisher 1993) has 
been provided from many areas. Being based upon executable logic, it can be utilised 
as part of the formal specification and prototyping of reactive systems. In addition, 
as it uses temporal, rather than classical, logic the language provides a high-level 
programming notation in which the dynamic attributes of individual components can 
be concisely represented (Barringer, Fisher, Gabbay, Gough & Owens 1995). This, 
together with its use of a novel model of concurrent computation, ensures that it has 
a range of applications in distributed and concurrent systems (Fisher 1994 ). 

Concurrent METATEM is an object-based programming language comprising two 
distinct aspects: 

I . the fundamental behaviour of a single object is represented as a temporal formula 
and animation of this behaviour is achieved through the direct execution of the 
formula (Fisher 1996); 
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2. objects are placed within an operational framework providing both asynchronous 
concurrency and broadcast message-passing. 

While these aspects are, to a large extent, independent, the use of broadcast commu­
nication provides a natural link between them as it represents both a flexible com­
munication model for concurrent objects (Birman 1991) and a natural interpretation 
of distributed deduction (Fisher 1997 b). Thus, these features together provide an co­
herent and consistent programming model within which a variety of reactive systems 
can be represented and implemented. 

3.1 Objects 

The basic elements of Concurrent METATEM are objects. These are considered to 
be encapsulated entities, executing independently, and having complete control over 
their own internal behaviour. There are two elements to each object: its interface def­
inition and its internal definition. The definition of which messages an object recog­
nises, together with a definition of the messages that an object may itself produce, is 
provided by the interface definition for that particular object. The internal definition 
of each object is provided by a temporal specification. 

An object's interface consists of three components, namely a unique identifier, 
which names the object, a set of symbols defining what messages will be accepted by 
the object (these are called environment propositions) and a set of symbols defining 
messages that the object may send (these are called component propositions). For 
example, the interface definition of a 'car' object might be: 

car(go,stop,turn)[fuel,overheat] 

Here, car is the identifier that names the object, {go,stop,turn} are the environment 
propositions, and {fuel,overheat} are the component propositions. 

In order to animate the behaviour of an object, we choose to execute its temporal 
specification directly (Fisher 1996). Execution of a temporal formula corresponds to 
the construction of a model for that formula and, in order to execute a set of SNF 
rules representing the behaviour of a Concurrent METATEM object, we utilise the 
imperative future (Barringer, Fisher, Gabbay, Owens & Reynolds 1996) approach. 
This evaluates the SNF rules at every moment in time, using information about the 
history of the object in order to constrain future execution. 

The operator used to represent the basic temporal indeterminacy within the SNF 
rules is the sometime operator, '0'. When 0'P is executed, the system must try to 
ensure that r.p eventually becomes true. As such eventualities might not be able to be 
satisfied immediately, we must keep a record of the unsatisfied eventualities, retrying 
them as execution proceeds. It should be noted that the use of temporal logic as the 
basis for the computation rules gives an extra level of expressive power over the cor-
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responding classical logics. In particular, operators such as '0' give the opportunity 
to specify future-time (temporal) indeterminacy. 

As an example of a simple set of rules which form a fragment of an object's 
description, consider the following. 

start => 
Ogo => 

O(moving 1\ go) => 

.moving 
<>moving 
overheat v fuel 

Here, we see that moving is false at the start of execution and, whenever go is satis­
fied in the last moment in time, a commitment to eventually satisfy moving is made. 
Similarly, whenever both go and moving are satisfied in the last moment in time, 
then either overheat or fuel must be satisfied. 

3.2 Concurrency and Communication 

It is fundamental to our approach that all objects are (potentially) concurrently ac­
tive. In particular, they may be asynchronously executing. Each object, in execut­
ing its temporal formula, independently constructs its own temporal model. Within 
Concurrent METATEM, a mechanism is provided for communication between sep­
arate objects which simply consists of partitioning each object's propositions into 
those controlled by the object and those controlled by its environment. As above, 
the former are termed either component or internal propositions while the latter are 
termed environment propositions. Within the individual object's execution, if a com­
ponent proposition is satisfied, this has the side-effect of broadcasting the value of 
that proposition to all other objects. If a particular message is received, a corre­
sponding environment proposition is satisfied in the object's execution. If an internal 
proposition is satisfied, this has no external effect. 

To fit in with this logical view of communication, whilst also providing a flexible 
and powerful message-passing mechanism, broadcast message-passing is used to 
pass information between objects. Here, when an object sends a message it does not 
send it to a specified destination, it merely sends it to its environment where it can 
be received by all other objects. Although broadcast is the basic mechanism, both 
multicast and point-to-point message-passing can be defined on top of this (Fisher 
1994 ). Finally, the default behaviour for a message is that if it is broadcast, then it will 
eventually be received at all possible receivers. Also note that, by default, the order 
of messages is not preserved, though such a constraint can be added, if required. 

3.3 Applications and Implementation 

The combination of executable temporal logic, asynchronous message-passing and 
broadcast communication provides a powerful and flexible basis for the develop­
ment of reactive systems. Concurrent METATEM is being utilised in the development 
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of a range of applications in areas from distributed artificial intelligence (Fisher & 
Wooldridge 1993 ), agent societies (Fisher & Wooldridge 1995), concurrent theorem­
proving (Fisher 1997b), and systems simulation (Finger, Fisher & Owens 1993). A 
survey of some of the potential applications of the language is given in (Fisher 1994 ). 

4 PRINCIPLES OF REFINEMENT 

Given that Concurrent METATEM objects can be defined and executed, we now con­
sider the refinement of their representations. In particular, we examine the refinement 
of an object's internal behaviour (via manipulation of its SNF rules), refinement of 
an object's interface (thus affecting how it interacts with the environment), and re­
finement of a single object into a set of objects exhibiting equivalent behaviour. 

First, we will provide a definition of specifications for Concurrent METATEM ob­
jects. Rather than consisting solely of the appropriate temporal rules, an object's 
specification must also provide the partition of propositions into component, envi­
ronment and internal sets. Note that, in the following definition, props is a function 
that extracts all proposition symbols from a given set of SNF rules. 

Definition 1 (Specification) A specification of a Concurrent METATEM object is 
givenasatuple (R,PE,Pc,PI), where 

• R is the set of SNF rules comprising the object, 
• PE is the object's set of environment propositions, 
• Pc is the object's set of component propositions, and 
• PI is the object's set of internal propositions, 

and where both props(R) ~ PE U Pc U PI and Pc n PI = 0. 

We now consider a variety of different classes of refinement, beginning with stan­
dard refinement of temporal specifications. The notation we use for refinement of 
specifications is S1 --+ S2 , meaning that S2 is a refinement of S1. 

4.1 Refining an Object's Internal Behaviour 

Standard refinement of temporal specifications (Manna & Pnueli 1992) can be ap­
plied to specifications of Concurrent METATEM objects. Such refinement can be 
carried out in the following circumstances: 

(R, PE, Pc, PI) --+ (R', PE, Pc, PI) if, and only if, 
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Example 1 This first (simple) example involves the removal of eventualities. The 
original object defined by 

can be refined to 

ex1 (announce)[give,receive]: 
start => <)give 

ex1 (announce)[give,receive]: 
start => x 
Ox => give 

showing that a give message will be produced on the second execution step of object 
ex1. This follows since 

I- (O(start=>x) 1\ O(Ox=>give)) => O(start=><)give) 

Example 2 Another simple example of the reduction of non-determinism con­
cerns the removal of disjunctions. Here, the object defined by 

ex2(ins)[outs]: 
Op => q v r 

can be refined to 

ex2(ins)[outs]: 
Op => q 

Thus, as in standard formal development, non-determinism within the temporal spec­
ification is reduced by such refinement steps. 

4.2 Interface Refinement 

In addition to the refinement of an object's rule set, as above, we can apply refinement 
to the object's interface. However, certain restrictions on this are enforced. Thus, 

(R, PE, Pc, PI) --+ (R, PJ,;, Pb, P}) 

just as long as the following constraints are observed. 

I. Any increase in component, environment or internal sets involves propositions 
not already present in any of those sets, e.g. for environment propositions 

(P],;- PE) n (PE u Pc u PI)= 0 
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2. Any decrease in component, environment or internal sets does not involve propo­
sitions which appear in the original rule set, e.g., again for environment proposi­
tions 

(PE- Pj.;) n props(R) = 0 

Example 3 To provide a simple example showing why such restrictions are neces­
sary, we give an illegal refinment below which may produce unwelcome behaviour. 
Thus, if we refine the interface of 

ex3(ins)[outs,p]: 
Otrue => Op 

by removing p from its component set, we produce 

ex3(ins}[outs]: 
Otrue => Op 

However, while p messages are broadcast from the original object infinitely often, 
no p messages are ever broadcast from the refined object. If any other object is de­
pendent upon these messages, then this can obviously lead to radically different be­
haviour across the system. 

4.3 Object Decomposition 

Next, we consider refining a single object into a set of objects that together imple­
ment the required behaviour. For example, in Fig. I, an object A is refined into three 
objects 81, 82 and 83, which communicate together to provide A's behaviour. 

This decomposition can take place as long as 

where [ ] provides the temporal semantics of each object (Pnueli 1981 ), under ap­
propriate communication constraints (Fisher 1995b ). Note that this validation also 
checks that the sets of environment, internal and component predicates are consis­
tent across the distributed system. 

Unfortunately, simple (yet non-trivial) examples of this type of transformation are 
difficult to find. The problem is that, even for relatively small specifications, the 
temporal formula representing the semantics of an object tends to be large. Lack of 
space precludes the inclusion of such examples. 
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~-·······~ 

·. 

Figure 1 Decomposing an Object 

4.4 Fixed Transformations 

In an effort to simplify the refinement procedure for the system developer, partic­
ularly in the case where an object is decomposed into a new set of objects, we in­
troduce fixed transformations which preserve the behaviour of the systems. While 
many of the simpler transformations concern the single object refinements described 
above (in §4.1 and §4.2), the ones we describe here relate to object decomposition 
(as in §4.3) and have been found to be very useful in simplifying the derivation of 
refinement. 

We label the first transformation, Tl; the second one, called T2 is essentially a 
generalisation of the first. 

Tl: Given a specification containing the rules 

Op => q 
Oq => 

where r and q do not occur on the left-hand side of any other rules, apart from 
the above, then the specification of the new object is ( { 0 q => r}, { q}, { r}, 0) 
where Oq => r is removed from the original object's ruleset and q is added to 
its set of component propositions. Note that, if r does not occur in any other rule 
in the original object, this proposition can be removed from its set of component 
propositions. 

T2: This is similar to Tl, except that the r message is recognised by the original 
object, hence providing a mechanism for passing information between the new 
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and original object. Thus, given a specification containing the rules 

Op => q 
Oq => 
Or => s 

where r and q do not occur in any other rules, then the specification of the new 
objectisagain({Oq => r},{q},{r},0).Asbefore, Oq => risremovedfrom 
the original object's ruleset and q is added to its set of component propositions, 
but now r is added to its set of environment propositions. While this transforma­
tion produces the same new object as in Tl, the difference is that, using T2, the r 
message will effectively be passed back to the original object. 

Other transformations follow this pattern. The important property of these transfor­
mations is as follows. 

Theorem 1 If a fixed transformation is applied to specificationS to giveS', then 
[ S] <=> [ S'] under the standard communication constraints. 

The standard communication constraints are that if a message is broadcast it will 
eventually arrive at all other objects. Given this, the above theorem can be established 
by appealing to the temporal semantics of Concurrent METATEM (Fisher 1995b). 

Example 4 As a simple example of the use of T2, we can transform the object 

ex4(a)[s,b]: 
Oa => p 
Op => q 
Oq => r 
Oq => b 
Or => s 
Op => s 

to a system comprising two objects, i.e. 

ex4(a,r)[s,q]: 
Oa => p 
Op => q 
Or => s 
Op => s 

new4(q)[r,b]: 
Oq => r 
Oq => b 
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Thus, the sub-computation concerning the q proposition (message) can be isolated 
within the newly spawned object. 

4.5 Development Example 

In this section, we provide a simple example exhibiting the varieties of refinment 
steps described above, particularly with respect to decomposing an object into a new 
set of communicating objects. This example, which consists of a very basic planning 
system, not only has obvious relevance to the domain of multi-agent systems but also 
shows how specifications incorporating general liveness constraints may be refined. 
The original object is specified simply by 

planner(goal)[plan]: 
Ogoal => ¢plan 

--,subplan1 S goal => -,plan 
--,subplan2 S goal => -,plan 
--,subplan3 S goal => -,plan 

Ogoal => ¢subplan1 
Ogoal => ¢subplan2 
Ogoal => ¢subplan3 

Here, once a goal message is received by the object, it guarantees to eventually 
produce a plan that achieves that goal. However, the plan can not be produced until 
all of its three subplans have been completed. Thus, the object also undertakes to 
generate these subplans. 

An obvious structural refinement for this object is to decompose it into four ob­
jects, one effectively coordinating the planning activity, the other three producing the 
three subplans. This refined system can be represented as 

planner(goal,subplan 1 ,subplan2,subplan3)[plan,goal1 ,goal2,goal3]: 
0 goal => ¢plan 

( --,subplan1 v --,subplan2 v --,subplan3) S goal => -,plan 
Ogoal =>. goal1 
0 goal => goal2 
Ogoal => goal3 

p1 (goal1 )[subplan1 ]: 
0 goal1 => ¢subplan 1 

p2(goal2)[subplan2]: 
0 goal2 => ¢subplan2 

p3(goal3)[subplan3]: 
0 goal3 => ¢subplan3 
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To see how the original specification is transformed into this, we will now consider 
the refinement steps used in a little more detail. 

I. First, we can merge the three rules utilising the ' S ' operator into one, i.e. 

( -.subplan1 v -.subplan2 v -.subplan3) S goal => -.plan 

using standard temporal refinement. 
2. Next, we refine each of the 'Ogoal => <)subplan/ rules in order to in­

troduce intermediate steps characterised by new variables. Thus, ' 0 goal => 
<)subplan1' becomes 

Ogoal => 
Ogoal1 => 

goal1 
<)subplan1 

again using standard temporal refinement. N.B., goal1 will be used as the coor­
dinating message between the planner and p1. 

3. Finally, this specification is then distributed amongst four objects, with the plan­
ner object retaining all, and only, those SNF rules that contain the goal propo­
sition. This is achieved by fixed transformations based upon T2 being applied to 
rules of the form 0 goali => subplani generated in step (2) above. 

While this example is relatively simple, similar refinements occur in many systems. 
Since all temporal specifications are translated into SNF, wherein the main tempo­
ral operator is '<)', and since the global structures within the application are often 
provided by grouping, which itself is based upon the decomposition of objects into 
appropriate sets of objects, it is perhaps not surprising that many applications require 
transformation steps of this form. 

5 CONCLUSIONS AND FUTURE WORK 

We have provided a basic framework for refinement in Concurrent METATEM, thus 
allowing the principled development of a range of concurrent object-based systems. 
While refinement proofs remain, in general, difficult, the use of fixed transforma­
tions provides the system developer with a toolbox of fast (no verification required), 
simple and safe (behaviour preserving) refinements. 

These refinement techniques are powerful, yet relatively simple, primarily because 
of the fit between the computational model and the temporal execution mechanism. 
It is important to note that the simplicity of both the refinement conditions and of the 
fixed transformations derived is a consequence of the easy match between tempo­
ral specification, temporal execution and the particular model of computation used. 
Specifically, utilising objects makes the general refinement of temporal specifications 
simpler (Barringer, Kuiper & Pnueli 1984), using broadcast messages obviates the 
need to keep track of senders and receivers of messages, and using a simple commu­
nication constraint, such as a message broadcast will eventually arrive at all objects, 
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avoids tight coupling of objects. Although simple, this model of object-based compu­
tation can be used to represent applications in a number of areas. In particular, in the 
multi-agent systems area agents are often quite simply specified, yet it is the patterns 
of communication and grouping between them that gives these systems power. 

While there is much work in the areas of refinement of temporal specifications (Manna 
& Pnueli 1992), formal methods for object-oriented systems (Buchs & Guelfi 1993), 
and the development of concurrent object-based systems (Agha 1986), there is little 
research directly relevant to that presented here. This is mainly because the object 
model we use is much simpler than most formal models of object-oriented systems, 
the operational model is unusual compared with the majority of work on concurrent 
object-based systems, and previous work on refinement of temporal specifications 
has neither consider the refinement of executable temporal specifications, nor the 
refinement of specifications under such a model of computation. 

There are three directions for future work. 

I. The extension of these refinements to first-order temporal logics. 
2. The derivation of slightly more complex fixed transformations concerning cases 

where the objects produced need to communicate together in order to arrive at a 
common view and where true grouping (Birman 1991) is employed (again these 
are useful for the multi-agent systems area). 

3. The development of a toolbox of fixed transformations has led us to consider 
producing a visual environment for object decomposition. Here, users select the 
rule(s) they wish to move to new objects, the system checks that this can be 
achieved and then generates a template for the new objects. 
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