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A b s t r a c t .  Automata-theoretic verification is based upon the language 
containment test 

L(P0 | P1 | | Pk) c Z(T) 

where the P,'s are automata which together model a system with its fair- 
ness constraints, | is a parallel composition for automata and T defines a 
specification. The complexity of that test typically grows exponentially 
with k. This growth, often called "state explosion", has been a major 
impediment to computer-aided verification, and many heuristics which 
are successful in special cases, have been developed to combat it. While 
all such heuristics are welcome advances, it often is difficult to quantify 
benefit in terms of hard upper bounds. This paper gives a general al- 
gorithm for that language containment test which has complexity O(k) 
when most of the Pi's are of a special type, which generalizes strong 
fairness properties. In particular, the algorithm and bound reduce to the 
natural generalization for testing the language emptiness of a nondeter- 
ministic Streett automaton, in which the normal acceptance condition 
is generalized to allow an arbitrary Boolean combination of strong fair- 
ness constraints (not just a conjunction), expressible in disjunctive nor- 
mal form with k literals. The algorithm may be implemented either as a 
BDD-based fixed point routine, or in terms of explicit state enumeration. 

1 Introduction 

I t  is well-known tha t  testing emptiness  of  language intersection 

n~=lz(Pi)  = r 

for a u t o m a t a  P~, is PSPACE-comple te  [Koz77], [G379]. This is germane to 
au tomata - theore t i c  formal  verification based on a u t o m a t a  admi t t ing  of  a parallel 
composi t ion  | which suppor ts  the language inlerseclion property: 

s |  | Pk) = N~=IE(Pi) 

as then the test 

(,) s |  | 1 7 4  = r 

is PSPACE -c om pl e t e  as well. This  lat ter  test enters into au tomata - theore t i c  
verification when the Pi ' s  model  the components  of  a system together  with its 
fairness constraints  and the propert ies which are to be verified. As a result of  
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this complexity barrier, many heuristics have been proposed for this test, includ- 
ing compositional techniques such as [GL91], [Lon93]. Many of these techniques 
are completely general and very powerful, leading to checks of (*) which em- 
pirically seem to grow linearly with k, in many cases. In given problems, such 
compositionM techniques thus often make the difference between computational 
tractability and intractability. However, for most interesting cases, there is no 
guarantee of a linear-time check. 

A natural form of incremental check is to compute and then reduce each of 
the successive terms 

Po | P l  | . . . | P~ 

for i = 1 , . . . ,  k, with the hope that  internal cancellations will keep these suc- 
cessive terms small [GS91]. However, a commonly observed problem with this 
approach is that  computing the middle terms (for i ..~ k/2) very often involves 
an excessively large amount of computation - larger even than required to com- 
pute the final term P0 | P1 | "'" | Pk directly (without benefit of successive 
reductions). The reason for this is that the middle terms model large and highly 
unconstrained systems which thus generate many states; many of these states, 
however, are unreachable in the complete, more constrained model. 

The algorithm given in Section 3 also is based upon computations involving 
the successive terms P0 | P1 | "'" | Pi. However, each successive step involves 
computations in a model no larger than O([Po | M]), where M is the largest Pi. 

We assume as the underlying semantic model, the fully expressive type of 
w-automata known as L-process [Kur90], for which the language-containment 
problem 

c(P0 | P1 , . . .  | Pk) c C(T) 

may be solved in time linear in the number of edges of the specification model 
T. Ill [Kur90], this problem is transformed to the language emptiness problem 
(.)  for L-processes, in time linear in the number of edges of T. Here, we assume 
this transformation, and address the check (*). We give a general algorithm for 
this check, which has complexity O(k) when most of the L-processes Pi are of a 
special type, which generalizes strong fairness properties. In particular, the al- 
gorithm and bound reduce to the natural generalization for testing the language 
emptiness of a nondeterministic Streett automaton, in which the normal Streett 
acceptance condition is generalized to allow an arbitrary Boolean combination 
of strong fairness constraints (not just a conjunction), where this is expressible 
in disjunctive normal form with k literals. Moreover, the Mgorithm (but not 
the bound) also applies to the case where the Pi's are entirely arbitrary. The 
algorithm may be implemented either as a BDD-based fixed point routine, or in 
terms of explicit state enumeration. 

More specifically, for a given L-process P,  an L-process Q is defined to be 
P-adic if it possesses two properties of the Streett strong fairness acceptance 
condition: it is P-faithful, in the sense that  the behavior of Q is a function of 
the state transitions of P,  and it is infinilary, in the sense that  its acceptance 
conditions depend only upon eventuMities. The O(k) bound applies to any P- 
adic L-processes. The essence of the algorithm is very simple, and closely related 
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to a natural efficient test for emptiness of the language of a nondeterministic 
Streett  automaton with k strong fairness constraints: each successive fairness 
constraint is tested against the set of fair behaviors defined by the previous 
constraints. Each set of fair behaviors corresponds to a set of strongly connected 
components of P.  Therefore, for each successive constraint, it is necessary only 
to test the corresponding set of strongly connected components defined by the 
previous constraint. This gives rise to a recursive procedure which finds the 
strongly connected components of each strongly connected component defined 
by the previous constraint. Although each successive set of constraints is defined 
in terms of an L-process with a transition structure of its own, the fact that it 
is P-adic ensures that  these constraints may be pulled back t o  the transition 
structure of P itself, without any ensuing blow-up of the state space. 

2 B a s i c s  

B o o l e a n  A l g e b r a  

A Boolean algebra [Hal74] is a set L with distinguished elements 0, 1 E L , closed 
under the Boolean operations: 

* - AND 
+ - OR 

- NOT 

with universal element 1 and its complement 0. A Boolean algebra L' C L is a 
subalgebra of L if L r and L share the same 0, 1 and their operations agree. Every 
Boolean algebra contains the trivial 2-element Boolean algebra ~ = {0, 1} as a 
subalgebra. For x, y E L, write x < y if and only if z * y = z.  S ( L ) - -  the atoms  
of L, are the nonzero elements of L, minimal with respect to <. For an arbitrary 
set V, define ~[V] to be the Boolean algebra 2 v,  with Boolean set operations. 
For notational simplicity, for v E V, {v} E ~[V] may be denoted by v. 

2.1 D e f i n i t i o n  For L x , . . . ,  Lk C L subalgebras, define their (interior) product 

H L i =  x U * . . . * z k j  xij E L i ,  J f in i t e  . 
i=1 JE 

In [Sik69, w it is proved that  for any Boolean algebras L 1 , . . . ,  Lk, there 
exists a Boolean algebra L such that  (isomorphic copies of) L1 . . . .  , Lk C L and 
yI/k=l Li -- L. This is defined to be the exterior product of L 1 , . . . ,  Lk. 

T r a n s i t i o n  S t r u c t u r e  

2.2 D e f i n i t i o n  Let V be a nonempty set, and let M be a map 

M : V 2 --* L (V 2 = V• V, the Cartesian product). 
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Say M is an L-matrix with vertices or state-space V(M) = V, and edges or 
transitions E(M) = {e E V2IM(e) r 0}. M provides the (stat ic)  t rans i t ion  
funct ion for a u t o m a t a .  Note tha t  M(e) = ~ s (where each s is an " input  

oEs(L) 
,<M(=) 

le t ter") .  For all v E V(M), define 

SM(V)= Z M(v ,w) .  
wEV(M) 

2.3 D e f i n i t i o n  Let M,  N be L-mat r ices  wi th  

V(M) N V(N) = r  

The i r  direct sum M (t) N is L - m a t r i x  with 

V(M $ N) = V(M) O V(N) , 

defined by: 
M(v,w) if  v,w E V(M) 

(M ~ N)(v, w) = N(v, w) if v, w E V(N) 
0 otherwise 

Thei r  tensor product M | N is L - m a t r i x  with 

V(M | N) = V(M) x V(N) , 

where 
(M | N)((v, v') ,  (w, w' ) )  = M(v, w) * N(v', w') . 

2.4 D e f i n i t i o n  A path in M is a s t r ing v = (v0 , . . . , v ,~ )  E V(M) n+l for n > 1 
such t ha t  (vi,vi+l) E E(M) for i = 0 , . . . ,  n -  1. If  vn -- v0, v is a cycle. Say 
w is reachable f rom v E V(M) or I C V(M) if there  is a p a t h  v wi th  v0 = v 
(resp., v0 E I )  and v~ = w. Say C C V ( M )  is strongly connected if for each 
v , w  E C,  there is a p a t h  in C f rom v to w. ( N B :  by this definition, {v} is 
s t rongly  connected if and only if (v, v) E E(M).) A directed graph is a ~ - m a t r i x .  

A u t o m a t a  

2.5 D e f i n i t i o n  An L-process P is a 5-tuple 

P - - ( L p ,  MR, I(P), R(P), Z(P)) 

where Lp is a suba lgebra  of L (the output subalgebra) ,  M p  is an a rb i t r a ry  
L -ma t r ix ,  and 

I(P) C Y(Mp) (initial s ta tes)  

R(P) C E(Mp) (recur edges) 

Z(P) C 2 V(Mp) (cycle s e t s ) .  

For an L-process P ,  write 

V(P) - V(Mp), E(P) - E(Mp), P(v, w) -- MR(v, w), sp(v) -- SMp(V). 
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2.6 D e f i n i t i o n  The selections of an L-process P at v E V(P) are the elements 
of the set 

Sp(v) = {s E S(Lp) [ s .  sp(v) # O} . 

The intended interpretation of "selection" is a set of (nondeterministic) out- 
puts as a function of state. (These may be considered to be outputs either of 
the associated process or of a hidden internal process.) The nondeterministic 
nature of selection is an important  facility for modelling abstraction: abstrac- 
tion of function, achieved through modelling an algorithm by a nondeterministic 
choice of its possible outcomes, and abstraction of duration, achieved through 
modelling a specific sequence of actions by a delay of nondeterministic duration. 

2.7 D e f i n i t i o n  Let M be an L-matrix and let v E V(M) ~. Set 

#(v) = {v E V(M) I vi = v infinitely often}, 

fl(v) = {e E E(M) l(vi,vi+l) = e infinitely of ten}.  

2.8 D e f i n i t i o n  Let P be an L-process. The language of P is the set s  of 
x E S(L) ~ such that  for some run v of x in P with vo E I(P), 

fl(v) n R ( P ) = r  and #(v) n ( V ( P ) \ C ) # r  V C e Z ( P ) .  

Such a run v is called an accepting run of x. 

2.11 

2.12 

Note that  if P is an L-process and L is a subalgebra of U,  then P is an 
L~-process. However, the language of P as an L~-process is not the same as the 
language of P as an L-process (unless U = L). In such cases, the context will 
make clear which language is meant. 

2.9 D e f i n i t i o n  If P is an L-process and W C V(P), define the restriction of P 
~o W to be the L-process PIw with LPI W = Lp, V(PIw ) = W, MPiw(e ) = P(e) 
for all e E W 2, I(PIw) = I(P) n W, R(PIw ) = R(P) n W ~ and Z(PIw ) = 
{c n w I c z(P)}. 

2.10 D e f i n i t i o n  For an L-process P,  let W C V(P) be the states reachable 
from I(P) through a path which may be extended to an accepting run of P,  and 
set P* = P[w. 

L e m I n a  P* is an L-process and s = •(P). 

D e f i n i t i o n  Let P 1 , . . . ,  Pk be L-processes. Then 

~ P i  = Lp,, MR,, UI(P,) ,  UR(Pi) ,  Z(PI) 
i = l  " i i 

~ P i  = lliLp,,  ~ M p , ,  X / ( P / ) ,  UII~-IR(Pi), IIi-'Z(l:'i ) 
i = 1  i 

where II[-1Z(pi) =- {II~"C[C e Z(Pi)}. Here, ~Pi  undefined unless Lp, 
�9 . . =  L p k  ) .  
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2.13 L e m m a  Let P1,. :. ,Pk be L-processes. Then 

': (@P,)= 

2.14 L e m m a  For L-processes P, Q and v E V(P),  w E V(Q), 

se| w) = se(v) �9 , d w )  

2.15 D e f i n i t i o n  Let P be an L-process and let Q = PIw where W is the set of 
states of P reachable from I(P). Define po to be the directed graph with edges 
E(Q*) \ R(Q*). Let B(P) be the set of strongly connected components of P~ 
contained in no element of Z(P). 

3 P - a d i c  P r o c e s s e s  

The condition known as strong-fairness, although the foundation of the Streett  
automaton acceptance condition, often is conceived in purely logical terms. 

3.1 D e f i n i t i o n  A strong-fairness constraint on the set S with designated set of 
initial states I(S) is a pair (L, U) of subsets of S. Its satisfaction set is 

SF(L,  U) = {v E S ~ I vo E I(S),/z(v) rl i -fi r ::~ #(v)  rl U -fi r  

For a strong-fairness constraint on the set of states V(P) of an L-process P,  it 
is to be understood that the designated set of initial states I (V(P))  = I(P). 

Suppose it is required to verify that all L-process P has empty language. It 
may be that this test fails, unless P is subject to a number of strong-fairness 
constraints (Li, Ui) on V(P). (This arises naturally if the system model rep- 
resented here by P is presented as a Streett automaton.)  The strong-fairness 
constraint (Li, Ui) may be represented by a 4-state L-process, provided P "out- 
puts its state": i.e., provided the output  subalgebra Lp of P contains enough 
information to determine the state of P from its selections. This always can be 
accomplished by augmenting the output subalgebra Lp so as to contain the state 
of P as a component, as in Example 3.2. 

3.2 E x a m p l e  Suppose P is an L-process whose output  subalgebra Lp is an 
exterior product of the form Lp = L' .~[V(P)] ,  and se(v) < v for all v E V(P). 
Then the state of P is a component of its selection: every selection of P is of the 
form x*v where x E S(L') and v E V(P). In this case, a strong-fairness constraint 
(L,, Ui) on V(P) may be represented by the 4-state L-process Qi = Qi z r QV 
where Q/L and Q/V are defined as follows: for S -- Li or Ui the respective 
transition matr ix of QL or Q/U is 

0 1 

1 X I X 
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where X'  = V(P) \ X ,  I(Q L) = I(Q7) = {0}, R(Q L) = {(0,1), (1, 1)}, Z(Qfi) = 
r R(QVi) = r Z(QUi) = {{0}} and each has the trivial output subalgebra ~. 
Then Qi is a ]]$[V(P)]-process and as such, for each run v of P, 

v �9 Z(Q ) , ( v )  n Li = r  

and 

Thus, 

C(Qi) = L(Q ) v Z (QT)  . 

�9 v �9 SF(Li,Ui) ~ v �9 s �9 

Consequently, for several strong-fairness constraints (Li, Ui), the subset of s  
whose runs all satisfy A SF(Li, Ui) is precisely s174 where Q = | Hence, 
to show that P subject to the strong-fairness constraints (Li, Ui) has empty 
language, corresponds to showing 

3.3 s 1 7 4  = r  

The size of P | Q grows geometrically with the number of strong-fairness 
constraints. In fact, it can be shown that in the worst case, if s  = s174 Q), 
then 2 k < IV(P')I [HSB94]. Thus, it may seem that the computational complex- 
ity of testing (3.3) also should grow thus. However, in what follows, it is shown 
that this isnot the case. In fact, for a class of L-processes Qi which contains as 
a proper subset those L-processes derived from strong-fairness constraints (as 
above), the complexity of testing 

3.4 s 1 7 4  Q1 |  Qk) = r 

is only linear in the size of k. Moreover, we will see that it is not even necessary 
to test the Qi's for membership in this special class: the algorithm to test (3.4) 
will have complexity which is linear in k when the Qi's are of this class, but will 
test (3.4) for any L-processes Qi whatsoever. 

The next definition generalizes the context of Example 3.2. 

3.5 Defini t ion Let P, Q be L-processes. Say Q is P-faithful provided for all 
v E V(P), and w,w 'E  V(Q), 

sp(v) * Q(w, w') ~ 0 =~ sp(v) <_ Q(w, w') . 
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Thus, Q is P-faithful if whenever some selection of P at v enables a given 
transit ion of Q, then every selection at v enables that  transition. In other words, 
Q cannot distinguish among the different selections of P at a given state, and 
the behavior of Q is a function of the state transitions of P.  

3.6 L e m m a  I f  Q is P.faithful and x, y E ~.(P) share the same run of P, then 
x E s r y E f~(Q). 

3.7 D e f i n i t i o n  Let P be an L-process and let L'  C L be a subalgebra. Say L'  
is P-faithful provided that  for any x, y E S(L'), if v E V(P), x �9 sp(v) ~ 0 and 
y .  sp(v)  ~ 0, then x = y. 

The  prototype P-faithful subalgebra is the subalgebra II~[V(P)] of Exam-  
ple 3.2. A P-faithful subalgebra L ~ is "faithful" to the state of P ,  inasmuch 
as distinct a toms x , y  E S(L ~) correspond to distinct states of P .  The  a tom 
x E S(L') "corresponds" to the state v E V(P) if x �9 sp(v) ~ O, and for each 
state v, this is true of exactly one element of S(L~). 

3.8 P r o p o s i t i o n  Let P be an L-process, L' C L a P-faithful subalgebra and ie~ 
Q be an Lt-process. Then Q is P-faithful. 

P r o o f .  Let v E V(P) and w ,w '  E V(Q). Suppose ~ = sp(v) * Q(w,w') ~ O, 
and let ~ = sp(v)* ..~ Q(w, w~). By assumption,  ~ > 0, so for some x E S(L~), 
x * ~  > 0. I f ~  > 0, then likewise for some y E S(L'), y*~  > 0. Thus, x . sp (v )  ~ 0 
and y * sp(v) ~ O, so x = y. However, x < Q(w, w') while y <_..~ Q(w, w'), so 
x = y = 0, a contradiction. It  follows that  ~ = 0, so sp(v) < Q(w, w'), tha t  is, 
Q is P-faithful.  

P-faithfulness is one half of a generalization of strong-fairness. If  Qi is the L- 
process constructed in Example 3.2 to implement the strong-fairness constraint 
(Li, Ui), then by Proposition 3.8, Qi is P-faithful.  The other half of the gener- 
alization relates to the acceptance condition, as follows. 

3.9 D e f i n i t i o n  An L-w-language/2 is said to be infinitary if whenever a, a ~ E 
S(L)* and b E S(L) ~, then 

a b  E / :  :=~ a~b E L: . 

An L-process P is in]initary if L:(P) is. 

Thus, a language s is infinitary if membership in L: depends only upon even- 
tualities. It is easily seen that  each Qi of Example 3.2 is infinitary. Thus,  in- 
finitary and P-faithful together generalize strong-fairness, allowing more general 
acceptance conditions and sequentiality (defined by the transition structure).  

3 .10 D e f i n i t i o n  Let P be an L-process. An L-process Q is said to be P-adic if 
Q is infinitary and P-faithful.  Set 

s = { s174  Q) I Q is P-adie} , 

the P-adic languages. 
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3.11 L e m m a  l f  Q1, Q2 are P-faithful (respectively, infinitary), then the same 
is true for Q1 | Q2 and Q1 @ Q2. If  L is infinitary, so is the complementary 
language s 

Proof .  Suppose Q1, Q2 is P-faithful. Obviously, Q1 @ Q2 is P-faithful. Let 
! I (wl, w2), (w 1, w2) E V(Q1 | Q2) and suppose 

sp(v) �9 (Q1 | Q~)((wl, w2), (w'l, w'2)) ~ O . 

Then sp(v) �9 Ql(wl, W~l) * Q2(w2, w~) ik 0 so 

sp(v) _< Ql(wx, w~) * Q2(w2, w'~) = (Q1 | Q~)((wl, w:), (w~; w2) 

Suppose Q1, Q2 are infinitary and ab E f~(Q1 �9 Q2). Then ab E f~(Qi) for 
i = 1 or 2, so for any a', a'b E E(Qi) C f~(Q1 �9 Q~). If ab E Z(Qx | Q~) then 
ab E ~(Qi) for i = 1 and 2, so likewise a'b for any a t. 

If L: is infinitary and ab E s let a' be chosen. If a'b E L: then also ab E s 
which is impossible. Thus, a'b E E ~. 

3.12 C o r o l l a r y  ~.p is closed under union and intersection. 

3.13 N o t e  Ken McMillan has shown t h a t / : p  is closed under relative comple- 
ment, as well: t h a t / :  E / : p  =:~/~(P) \/~ E/~p. For example, for Qi as in Exam- 
ple 3.2, each Qi is P-adic (as already observed). Setting 0 ,  = 0 L | Q/U, where 
0 L and 0 ~  are formed from QL and Q/V by interchanging the cycle set and recur 
edges (Z(Q L) = {{0}}, R(Q U) = {(0, 1), (1, 1)}, R(Q L) = Z(Q~) = r gives 

Z:(Qi) = Z:(Qi)'. By Lemma (3.11), Qi is P-adic as well. Incidentally, even if P is 
as in Example 3.2, it is not the case t h a t / : p  = {/~1 I f E 5}  where 5 is the set 
of all Boolean combinations of satisfaction sets of strong-fairness constraints on 
V(P), and for f E 5 , / : 1  = {x E S(L) • I x has a run in f} ,  although it is true 
that  {/~! I f E 5}  is closed under complementation. The reason is that strong 
fairness alone cannot capture sequentiality. For example, let P be the I~-process 
with Y(P) = I(P) = {0, 1}, R(P) = Z(P) = r and P(i , j )  = j for i , j  E {0, 1}. 
T h e n / :  = (0 + 1)+(01) ~ E/~p but Z r  for any f E 5 .  

Let P,  Q 1 , . . . ,  Q~ be arbitrary L-processes. Set Go = {V(P)} and for i > 1 
set 

Gi-" {IIv(p)C]CE]3((P|215 , D E G i _ , }  

(where (P | Qi)lo• is the restriction (2.9) of P | Qi to O • Y(Qi) c 
y ( P  | Qi), and IIv(p)C is the projection of C to V(P)). 

The following theorem shows that (3.4) may be tested in time linear in 
k provided each Qi is P-adic. The algorithm consists of consecutively test- 
ing for emptiness the k sets Gi. This test has complexity O(km) where m = 
m.ax IE(Qi)[, which, incidentally, is the same complexity as testing emptiness for 

I 

a deterministic Streett automaton P with k fairness constraints [Saf88]. 
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3,14 T h e o r e m  For P, Qi and Gi as above, 

a) Gk = r :=~ s 1 7 4  q l  | 1 7 4  qk) = r 
b) s P | Q1 |  | Qk ) = r =r Gk = r provided each Qi is P-adic. 

P r o o f .  
a) Suppose x E L(P|174 "| has an accepting run v. Then v has the form 

F(P) 

o - - .  % 
I o . O . o . . ,  o~  "*% 

i ," ", ', : t  
I :' " "" . "  I 
I , " "'"'" l 

i : : l 
" o' t 

/ 
% % .  o ~ 1 7 6  / % " - - o ~ 1 7 6  / 

Gi 

t %. o~ I 
I " ' ~ 1 7 6  I 

I .~176 ".. I 

% % oO' g 

Fig. I .  Situation in the proof of (3.14) 

v = ( v 0 , v l , . . .  ,vk) for v0 an accepting run o f x  in P and vi an accepting run of 
x in Qi, for 1 < i < k. Thus, for some K e B(P| |  "| #(v)  c It" and 
so, in particular, for some C1 e B(P | Q1), r r ~t(v0,vl) c Ilv(p| C C1 
and thus 

p(v0) C IYy(p)I( C IIv(p)C1 E G1 �9 

Moreover, i f p ( v 0 )  C Di C Di-1 C .. .  C D1 with Dj E Gj for 1 < j < i, 
l lv(p)K C Di and i < k, then, since Hv(p| is strongly connected and 
contained in V(P | Qi+I) ~ for some Ci+l C B((P | Qi+l)lD.• 

p(V0,V/+I) C -//|/(p| C C i + l  

and thus Di+l =- 17v(p)Ci+l E Ci+I and #(v0) C Di+I C Di. Hence, by induc- 
tion on k, Gk # r 
(b) Suppose Dk e Gk. Then there is some x E L(PQQk) with a run (v0, vk) such 
that  p(v0, vk) C C E B((P | Q k ) ] D k - 1  xV(Ok)) for some C with IIv(p)C = Dk 
and some Dk-1 E G~-I .  Thus, p(v0) C Dk C Dk-1.  Now, suppose p(v0) C 
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Dk C "" C Di with Dj E Gj, for i < j < k, and ( v 0 , v i + l , . . . , v k )  is an 
accepting run o f x  in P| | "| for some i, 1 < i < k. Since Di E Gi, 
there exists some accepting run (w0, wi) in P | Q~ of (say) y E s  | Qi), 
with ~t(w0) C Di. Since Di = IIv(p)C for some C E B((P | Qi)[D,_~xV(QO) 
where Di-1 E Gi-1, it follows that  Di C Di-1.  Since Dk C Di and Di is 
strongly connected, we may suppose that  in fact, for some n, woj = voj for 
j >__ n (redefining w0j as necessary). Thus, for j > n, zj < P(voj, voj+l) < 
sv(voj), while yj < P(voj, voj+l) * Qi(wlj, wij+l). In particular, yj < sp(voj) 
and yj <_ Qi(wij, Wij+l), SO 8p(~30j ) * Qi(Wij, Wij+l) • O, for all j _> n. Since 
Qi is P-faithful,  sp(voj) < Qi(wij,wij+l), whereas xj < sp(voj), and thus 
zj < Qi(wij, wij+l) for all j > n. Since Qi is infinitary, x e s Let vi be an 
accepting run of x in Qi. Then (v0, vi)  is an accepting run of x in P | Qi and 
so (v0, vi,  V i + l , . . . ,  vk) is an accepting run of x in P | Qi |  | Qk. It  follows 
by induction on k tha t  x E s 1 7 4  Q1 | 1 7 4  

This theorem gives a way to check (3.4) for arbi trary Qi's (irrespective of 
whether each Qi is P-adic).  The algorithm is as follows: 

i = 0  
while i < k " 

i - - * i +  l 
if Gi = r report (3.4) holds; EXIT 

find x E s  with accepting run 3 V, /t(V) C D E Gk 
i = 1  
while i < k : 

if x ~ s repeat 4 algorithm with P | Qi 
in place of P, for {Qj IJ # i} 

i - -- . i+ l 
report (3.4) f a i l s - -  x E s  | Qx |  | Qk) 

The complexity of this algorithm is O(m k) for m = max [E(Qi)I, but reduces 
i 

to O(km) in case the Qi 's  are P-adic.  Moreover, even in the general case, the 
empirical complexity often may look like O(km). The algorithm can be imple- 
mented either through explicit s tate enumeration, or in terms of a BDD fixed 
point routine, as in [TBK91]. 

4 C o n c l u s i o n  

We have described a general algorithm for testing tha t  a model P defined in 
terms of L-processes satisfies its specification. This algorithm has complexity 
which is linear in the number of component  L-processes, when most of these 

3 It always is possible to find x of the form x -- y '  �9 y~' for v of the form v = w'  �9 w ~ 
with w, w'  E V(P)*. By Lemma (3.6), if the Qi's are P-faithful, then the choice of 
x for a given v is immaterial. 

4 If the Qi's are all P-adic, then this recursive call is unreachable. 
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L-processes are P-adic, a class which generalizes strong fairness with sequential 
constraints. Currently, this algorithm is being implemented into the verification 
tool COSPAN [HK90]; however, as this implementation is not complete, there 
are no concrete results to report. Nonetheless, the linear bound speaks for itself. 
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and helpful comments. 
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