
M o d e l s W h o s e C h e c k s D o n ' t E x p l o d e

R. P. Kurshan

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

A b s t r a c t . Automata-theoretic verification is based upon the language
containment test

L(P0 | P1 | | Pk) c Z(T)

where the P,'s are automata which together model a system with its fair-
ness constraints, | is a parallel composition for automata and T defines a
specification. The complexity of that test typically grows exponentially
with k. This growth, often called "state explosion", has been a major
impediment to computer-aided verification, and many heuristics which
are successful in special cases, have been developed to combat it. While
all such heuristics are welcome advances, it often is difficult to quantify
benefit in terms of hard upper bounds. This paper gives a general al-
gorithm for that language containment test which has complexity O(k)
when most of the Pi's are of a special type, which generalizes strong
fairness properties. In particular, the algorithm and bound reduce to the
natural generalization for testing the language emptiness of a nondeter-
ministic Streett automaton, in which the normal acceptance condition
is generalized to allow an arbitrary Boolean combination of strong fair-
ness constraints (not just a conjunction), expressible in disjunctive nor-
mal form with k literals. The algorithm may be implemented either as a
BDD-based fixed point routine, or in terms of explicit state enumeration.

1 Introduction

I t is well-known tha t testing emptiness of language intersection

n~=lz(Pi) = r

for a u t o m a t a P~, is PSPACE-comple te [Koz77], [G379]. This is germane to
au tomata - theore t i c formal verification based on a u t o m a t a admi t t ing of a parallel
composi t ion | which suppor ts the language inlerseclion property:

s | | Pk) = N~=IE(Pi)

as then the test

(,) s | | 1 7 4 = r

is PSPACE -c om pl e t e as well. This lat ter test enters into au tomata - theore t i c
verification when the Pi ' s model the components of a system together with its
fairness constraints and the propert ies which are to be verified. As a result of

223

this complexity barrier, many heuristics have been proposed for this test, includ-
ing compositional techniques such as [GL91], [Lon93]. Many of these techniques
are completely general and very powerful, leading to checks of (*) which em-
pirically seem to grow linearly with k, in many cases. In given problems, such
compositionM techniques thus often make the difference between computational
tractability and intractability. However, for most interesting cases, there is no
guarantee of a linear-time check.

A natural form of incremental check is to compute and then reduce each of
the successive terms

Po | P l | . . . | P~

for i = 1 , . . . , k, with the hope that internal cancellations will keep these suc-
cessive terms small [GS91]. However, a commonly observed problem with this
approach is that computing the middle terms (for i ..~ k/2) very often involves
an excessively large amount of computation - larger even than required to com-
pute the final term P0 | P1 | "'" | Pk directly (without benefit of successive
reductions). The reason for this is that the middle terms model large and highly
unconstrained systems which thus generate many states; many of these states,
however, are unreachable in the complete, more constrained model.

The algorithm given in Section 3 also is based upon computations involving
the successive terms P0 | P1 | "'" | Pi. However, each successive step involves
computations in a model no larger than O([Po | M]), where M is the largest Pi.

We assume as the underlying semantic model, the fully expressive type of
w-automata known as L-process [Kur90], for which the language-containment
problem

c(P0 | P1 , . . . | Pk) c C(T)

may be solved in time linear in the number of edges of the specification model
T. Ill [Kur90], this problem is transformed to the language emptiness problem
(.) for L-processes, in time linear in the number of edges of T. Here, we assume
this transformation, and address the check (*). We give a general algorithm for
this check, which has complexity O(k) when most of the L-processes Pi are of a
special type, which generalizes strong fairness properties. In particular, the al-
gorithm and bound reduce to the natural generalization for testing the language
emptiness of a nondeterministic Streett automaton, in which the normal Streett
acceptance condition is generalized to allow an arbitrary Boolean combination
of strong fairness constraints (not just a conjunction), where this is expressible
in disjunctive normal form with k literals. Moreover, the Mgorithm (but not
the bound) also applies to the case where the Pi's are entirely arbitrary. The
algorithm may be implemented either as a BDD-based fixed point routine, or in
terms of explicit state enumeration.

More specifically, for a given L-process P, an L-process Q is defined to be
P-adic if it possesses two properties of the Streett strong fairness acceptance
condition: it is P-faithful, in the sense that the behavior of Q is a function of
the state transitions of P, and it is infinilary, in the sense that its acceptance
conditions depend only upon eventuMities. The O(k) bound applies to any P-
adic L-processes. The essence of the algorithm is very simple, and closely related

224

to a natural efficient test for emptiness of the language of a nondeterministic
Streett automaton with k strong fairness constraints: each successive fairness
constraint is tested against the set of fair behaviors defined by the previous
constraints. Each set of fair behaviors corresponds to a set of strongly connected
components of P. Therefore, for each successive constraint, it is necessary only
to test the corresponding set of strongly connected components defined by the
previous constraint. This gives rise to a recursive procedure which finds the
strongly connected components of each strongly connected component defined
by the previous constraint. Although each successive set of constraints is defined
in terms of an L-process with a transition structure of its own, the fact that it
is P-adic ensures that these constraints may be pulled back t o the transition
structure of P itself, without any ensuing blow-up of the state space.

2 B a s i c s

B o o l e a n A l g e b r a

A Boolean algebra [Hal74] is a set L with distinguished elements 0, 1 E L , closed
under the Boolean operations:

* - AND
+ - OR

- NOT

with universal element 1 and its complement 0. A Boolean algebra L' C L is a
subalgebra of L if L r and L share the same 0, 1 and their operations agree. Every
Boolean algebra contains the trivial 2-element Boolean algebra ~ = {0, 1} as a
subalgebra. For x, y E L, write x < y if and only if z * y = z. S (L) - - the atoms
of L, are the nonzero elements of L, minimal with respect to <. For an arbitrary
set V, define ~[V] to be the Boolean algebra 2 v, with Boolean set operations.
For notational simplicity, for v E V, {v} E ~[V] may be denoted by v.

2.1 D e f i n i t i o n For L x , . . . , Lk C L subalgebras, define their (interior) product

H L i = x U * . . . * z k j xij E L i , J f in i t e .
i=1 JE

In [Sik69, w it is proved that for any Boolean algebras L 1 , . . . , Lk, there
exists a Boolean algebra L such that (isomorphic copies of) L1 , Lk C L and
yI/k=l Li -- L. This is defined to be the exterior product of L 1 , . . . , Lk.

T r a n s i t i o n S t r u c t u r e

2.2 D e f i n i t i o n Let V be a nonempty set, and let M be a map

M : V 2 --* L (V 2 = V• V, the Cartesian product).

225

Say M is an L-matrix with vertices or state-space V(M) = V, and edges or
transitions E(M) = {e E V2IM(e) r 0}. M provides the (stat ic) t rans i t ion
funct ion for a u t o m a t a . Note tha t M(e) = ~ s (where each s is an " input

oEs(L)
,<M(=)

le t ter") . For all v E V(M), define

SM(V)= Z M(v ,w) .
wEV(M)

2.3 D e f i n i t i o n Let M, N be L-mat r ices wi th

V(M) N V(N) = r

The i r direct sum M (t) N is L - m a t r i x with

V(M $ N) = V(M) O V(N) ,

defined by:
M(v,w) if v,w E V(M)

(M ~ N)(v, w) = N(v, w) if v, w E V(N)
0 otherwise

Thei r tensor product M | N is L - m a t r i x with

V(M | N) = V(M) x V(N) ,

where
(M | N)((v, v') , (w, w')) = M(v, w) * N(v', w') .

2.4 D e f i n i t i o n A path in M is a s t r ing v = (v0 , . . . , v ,~) E V(M) n+l for n > 1
such t ha t (vi,vi+l) E E(M) for i = 0 , . . . , n - 1. If vn -- v0, v is a cycle. Say
w is reachable f rom v E V(M) or I C V(M) if there is a p a t h v wi th v0 = v
(resp., v0 E I) and v~ = w. Say C C V (M) is strongly connected if for each
v , w E C, there is a p a t h in C f rom v to w. (N B : by this definition, {v} is
s t rongly connected if and only if (v, v) E E(M).) A directed graph is a ~ - m a t r i x .

A u t o m a t a

2.5 D e f i n i t i o n An L-process P is a 5-tuple

P - - (L p , MR, I(P), R(P), Z(P))

where Lp is a suba lgebra of L (the output subalgebra) , M p is an a rb i t r a ry
L -ma t r ix , and

I(P) C Y(Mp) (initial s ta tes)

R(P) C E(Mp) (recur edges)

Z(P) C 2 V(Mp) (cycle s e t s) .

For an L-process P , write

V(P) - V(Mp), E(P) - E(Mp), P(v, w) -- MR(v, w), sp(v) -- SMp(V).

226

2.6 D e f i n i t i o n The selections of an L-process P at v E V(P) are the elements
of the set

Sp(v) = {s E S(Lp) [s . sp(v) # O} .

The intended interpretation of "selection" is a set of (nondeterministic) out-
puts as a function of state. (These may be considered to be outputs either of
the associated process or of a hidden internal process.) The nondeterministic
nature of selection is an important facility for modelling abstraction: abstrac-
tion of function, achieved through modelling an algorithm by a nondeterministic
choice of its possible outcomes, and abstraction of duration, achieved through
modelling a specific sequence of actions by a delay of nondeterministic duration.

2.7 D e f i n i t i o n Let M be an L-matrix and let v E V(M) ~. Set

#(v) = {v E V(M) I vi = v infinitely often},

fl(v) = {e E E(M) l(vi,vi+l) = e infinitely of ten}.

2.8 D e f i n i t i o n Let P be an L-process. The language of P is the set s of
x E S(L) ~ such that for some run v of x in P with vo E I(P),

fl(v) n R (P) = r and #(v) n (V (P) \ C) # r V C e Z (P) .

Such a run v is called an accepting run of x.

2.11

2.12

Note that if P is an L-process and L is a subalgebra of U, then P is an
L~-process. However, the language of P as an L~-process is not the same as the
language of P as an L-process (unless U = L). In such cases, the context will
make clear which language is meant.

2.9 D e f i n i t i o n If P is an L-process and W C V(P), define the restriction of P
~o W to be the L-process PIw with LPI W = Lp, V(PIw) = W, MPiw(e) = P(e)
for all e E W 2, I(PIw) = I(P) n W, R(PIw) = R(P) n W ~ and Z(PIw) =
{c n w I c z(P)}.

2.10 D e f i n i t i o n For an L-process P, let W C V(P) be the states reachable
from I(P) through a path which may be extended to an accepting run of P, and
set P* = P[w.

L e m I n a P* is an L-process and s = •(P).

D e f i n i t i o n Let P 1 , . . . , Pk be L-processes. Then

~ P i = Lp,, MR,, UI(P,) , UR(Pi) , Z(PI)
i = l " i i

~ P i = lliLp,, ~ M p , , X / (P /) , UII~-IR(Pi), IIi-'Z(l:'i)
i = 1 i

where II[-1Z(pi) =- {II~"C[C e Z(Pi)}. Here, ~Pi undefined unless Lp,
�9 . . = L p k) .

227

2.13 L e m m a Let P1,. :. ,Pk be L-processes. Then

': (@P,)=

2.14 L e m m a For L-processes P, Q and v E V(P), w E V(Q),

se| w) = se(v) �9 , d w)

2.15 D e f i n i t i o n Let P be an L-process and let Q = PIw where W is the set of
states of P reachable from I(P). Define po to be the directed graph with edges
E(Q*) \ R(Q*). Let B(P) be the set of strongly connected components of P~
contained in no element of Z(P).

3 P - a d i c P r o c e s s e s

The condition known as strong-fairness, although the foundation of the Streett
automaton acceptance condition, often is conceived in purely logical terms.

3.1 D e f i n i t i o n A strong-fairness constraint on the set S with designated set of
initial states I(S) is a pair (L, U) of subsets of S. Its satisfaction set is

SF(L, U) = {v E S ~ I vo E I(S),/z(v) rl i -fi r ::~ #(v) rl U -fi r

For a strong-fairness constraint on the set of states V(P) of an L-process P, it
is to be understood that the designated set of initial states I (V(P)) = I(P).

Suppose it is required to verify that all L-process P has empty language. It
may be that this test fails, unless P is subject to a number of strong-fairness
constraints (Li, Ui) on V(P). (This arises naturally if the system model rep-
resented here by P is presented as a Streett automaton.) The strong-fairness
constraint (Li, Ui) may be represented by a 4-state L-process, provided P "out-
puts its state": i.e., provided the output subalgebra Lp of P contains enough
information to determine the state of P from its selections. This always can be
accomplished by augmenting the output subalgebra Lp so as to contain the state
of P as a component, as in Example 3.2.

3.2 E x a m p l e Suppose P is an L-process whose output subalgebra Lp is an
exterior product of the form Lp = L' .~[V(P)] , and se(v) < v for all v E V(P).
Then the state of P is a component of its selection: every selection of P is of the
form x*v where x E S(L') and v E V(P). In this case, a strong-fairness constraint
(L,, Ui) on V(P) may be represented by the 4-state L-process Qi = Qi z r QV
where Q/L and Q/V are defined as follows: for S -- Li or Ui the respective
transition matr ix of QL or Q/U is

0 1

1 X I X

228

where X' = V(P) \ X , I(Q L) = I(Q7) = {0}, R(Q L) = {(0,1), (1, 1)}, Z(Qfi) =
r R(QVi) = r Z(QUi) = {{0}} and each has the trivial output subalgebra ~.
Then Qi is a]]$[V(P)]-process and as such, for each run v of P,

v �9 Z(Q) , (v) n Li = r

and

Thus,

C(Qi) = L(Q) v Z (QT) .

�9 v �9 SF(Li,Ui) ~ v �9 s �9

Consequently, for several strong-fairness constraints (Li, Ui), the subset of s
whose runs all satisfy A SF(Li, Ui) is precisely s174 where Q = | Hence,
to show that P subject to the strong-fairness constraints (Li, Ui) has empty
language, corresponds to showing

3.3 s 1 7 4 = r

The size of P | Q grows geometrically with the number of strong-fairness
constraints. In fact, it can be shown that in the worst case, if s = s174 Q),
then 2 k < IV(P')I [HSB94]. Thus, it may seem that the computational complex-
ity of testing (3.3) also should grow thus. However, in what follows, it is shown
that this isnot the case. In fact, for a class of L-processes Qi which contains as
a proper subset those L-processes derived from strong-fairness constraints (as
above), the complexity of testing

3.4 s 1 7 4 Q1 | Qk) = r

is only linear in the size of k. Moreover, we will see that it is not even necessary
to test the Qi's for membership in this special class: the algorithm to test (3.4)
will have complexity which is linear in k when the Qi's are of this class, but will
test (3.4) for any L-processes Qi whatsoever.

The next definition generalizes the context of Example 3.2.

3.5 Defini t ion Let P, Q be L-processes. Say Q is P-faithful provided for all
v E V(P), and w,w 'E V(Q),

sp(v) * Q(w, w') ~ 0 =~ sp(v) <_ Q(w, w') .

229

Thus, Q is P-faithful if whenever some selection of P at v enables a given
transit ion of Q, then every selection at v enables that transition. In other words,
Q cannot distinguish among the different selections of P at a given state, and
the behavior of Q is a function of the state transitions of P.

3.6 L e m m a I f Q is P.faithful and x, y E ~.(P) share the same run of P, then
x E s r y E f~(Q).

3.7 D e f i n i t i o n Let P be an L-process and let L' C L be a subalgebra. Say L'
is P-faithful provided that for any x, y E S(L'), if v E V(P), x �9 sp(v) ~ 0 and
y . sp(v) ~ 0, then x = y.

The prototype P-faithful subalgebra is the subalgebra II~[V(P)] of Exam-
ple 3.2. A P-faithful subalgebra L ~ is "faithful" to the state of P , inasmuch
as distinct a toms x , y E S(L ~) correspond to distinct states of P . The a tom
x E S(L') "corresponds" to the state v E V(P) if x �9 sp(v) ~ O, and for each
state v, this is true of exactly one element of S(L~).

3.8 P r o p o s i t i o n Let P be an L-process, L' C L a P-faithful subalgebra and ie~
Q be an Lt-process. Then Q is P-faithful.

P r o o f . Let v E V(P) and w ,w ' E V(Q). Suppose ~ = sp(v) * Q(w,w') ~ O,
and let ~ = sp(v)* ..~ Q(w, w~). By assumption, ~ > 0, so for some x E S(L~),
x * ~ > 0. I f ~ > 0, then likewise for some y E S(L'), y*~ > 0. Thus, x . sp (v) ~ 0
and y * sp(v) ~ O, so x = y. However, x < Q(w, w') while y <_..~ Q(w, w'), so
x = y = 0, a contradiction. It follows that ~ = 0, so sp(v) < Q(w, w'), tha t is,
Q is P-faithful.

P-faithfulness is one half of a generalization of strong-fairness. If Qi is the L-
process constructed in Example 3.2 to implement the strong-fairness constraint
(Li, Ui), then by Proposition 3.8, Qi is P-faithful. The other half of the gener-
alization relates to the acceptance condition, as follows.

3.9 D e f i n i t i o n An L-w-language/2 is said to be infinitary if whenever a, a ~ E
S(L)* and b E S(L) ~, then

a b E / : :=~ a~b E L: .

An L-process P is in]initary if L:(P) is.

Thus, a language s is infinitary if membership in L: depends only upon even-
tualities. It is easily seen that each Qi of Example 3.2 is infinitary. Thus, in-
finitary and P-faithful together generalize strong-fairness, allowing more general
acceptance conditions and sequentiality (defined by the transition structure).

3 .10 D e f i n i t i o n Let P be an L-process. An L-process Q is said to be P-adic if
Q is infinitary and P-faithful. Set

s = { s174 Q) I Q is P-adie} ,

the P-adic languages.

230

3.11 L e m m a l f Q1, Q2 are P-faithful (respectively, infinitary), then the same
is true for Q1 | Q2 and Q1 @ Q2. If L is infinitary, so is the complementary
language s

Proof . Suppose Q1, Q2 is P-faithful. Obviously, Q1 @ Q2 is P-faithful. Let
! I (wl, w2), (w 1, w2) E V(Q1 | Q2) and suppose

sp(v) �9 (Q1 | Q~)((wl, w2), (w'l, w'2)) ~ O .

Then sp(v) �9 Ql(wl, W~l) * Q2(w2, w~) ik 0 so

sp(v) _< Ql(wx, w~) * Q2(w2, w'~) = (Q1 | Q~)((wl, w:), (w~; w2)

Suppose Q1, Q2 are infinitary and ab E f~(Q1 �9 Q2). Then ab E f~(Qi) for
i = 1 or 2, so for any a', a'b E E(Qi) C f~(Q1 �9 Q~). If ab E Z(Qx | Q~) then
ab E ~(Qi) for i = 1 and 2, so likewise a'b for any a t.

If L: is infinitary and ab E s let a' be chosen. If a'b E L: then also ab E s
which is impossible. Thus, a'b E E ~.

3.12 C o r o l l a r y ~.p is closed under union and intersection.

3.13 N o t e Ken McMillan has shown t h a t / : p is closed under relative comple-
ment, as well: t h a t / : E / : p =:~/~(P) \/~ E/~p. For example, for Qi as in Exam-
ple 3.2, each Qi is P-adic (as already observed). Setting 0 , = 0 L | Q/U, where
0 L and 0 ~ are formed from QL and Q/V by interchanging the cycle set and recur
edges (Z(Q L) = {{0}}, R(Q U) = {(0, 1), (1, 1)}, R(Q L) = Z(Q~) = r gives

Z:(Qi) = Z:(Qi)'. By Lemma (3.11), Qi is P-adic as well. Incidentally, even if P is
as in Example 3.2, it is not the case t h a t / : p = {/~1 I f E 5} where 5 is the set
of all Boolean combinations of satisfaction sets of strong-fairness constraints on
V(P), and for f E 5 , / : 1 = {x E S(L) • I x has a run in f} , although it is true
that {/~! I f E 5} is closed under complementation. The reason is that strong
fairness alone cannot capture sequentiality. For example, let P be the I~-process
with Y(P) = I(P) = {0, 1}, R(P) = Z(P) = r and P(i , j) = j for i , j E {0, 1}.
T h e n / : = (0 + 1)+(01) ~ E/~p but Z r for any f E 5 .

Let P, Q 1 , . . . , Q~ be arbitrary L-processes. Set Go = {V(P)} and for i > 1
set

Gi-" {IIv(p)C]CE]3((P|215 , D E G i _ , }

(where (P | Qi)lo• is the restriction (2.9) of P | Qi to O • Y(Qi) c
y (P | Qi), and IIv(p)C is the projection of C to V(P)).

The following theorem shows that (3.4) may be tested in time linear in
k provided each Qi is P-adic. The algorithm consists of consecutively test-
ing for emptiness the k sets Gi. This test has complexity O(km) where m =
m.ax IE(Qi)[, which, incidentally, is the same complexity as testing emptiness for

I

a deterministic Streett automaton P with k fairness constraints [Saf88].

231

3,14 T h e o r e m For P, Qi and Gi as above,

a) Gk = r :=~ s 1 7 4 q l | 1 7 4 qk) = r
b) s P | Q1 | | Qk) = r =r Gk = r provided each Qi is P-adic.

P r o o f .
a) Suppose x E L(P|174 "| has an accepting run v. Then v has the form

F(P)

o - - . %
I o . O . o . . , o~ "*%

i ," ", ', : t
I :' " "" . " I
I , " "'"'" l

i : : l
" o' t

/
% % . o ~ 1 7 6 / % " - - o ~ 1 7 6 /

Gi

t %. o~ I
I " ' ~ 1 7 6 I

I .~176 ".. I

% % oO' g

Fig. I . Situation in the proof of (3.14)

v = (v 0 , v l , . . . ,vk) for v0 an accepting run o f x in P and vi an accepting run of
x in Qi, for 1 < i < k. Thus, for some K e B(P| | "| #(v) c It" and
so, in particular, for some C1 e B(P | Q1), r r ~t(v0,vl) c Ilv(p| C C1
and thus

p(v0) C IYy(p)I(C IIv(p)C1 E G1 �9

Moreover, i f p (v 0) C Di C Di-1 C .. . C D1 with Dj E Gj for 1 < j < i,
l lv(p)K C Di and i < k, then, since Hv(p| is strongly connected and
contained in V(P | Qi+I) ~ for some Ci+l C B((P | Qi+l)lD.•

p(V0,V/+I) C -//|/(p| C C i + l

and thus Di+l =- 17v(p)Ci+l E Ci+I and #(v0) C Di+I C Di. Hence, by induc-
tion on k, Gk # r
(b) Suppose Dk e Gk. Then there is some x E L(PQQk) with a run (v0, vk) such
that p(v0, vk) C C E B((P | Q k)] D k - 1 xV(Ok)) for some C with IIv(p)C = Dk
and some Dk-1 E G~-I . Thus, p(v0) C Dk C Dk-1. Now, suppose p(v0) C

232

Dk C "" C Di with Dj E Gj, for i < j < k, and (v 0 , v i + l , . . . , v k) is an
accepting run o f x in P| | "| for some i, 1 < i < k. Since Di E Gi,
there exists some accepting run (w0, wi) in P | Q~ of (say) y E s | Qi),
with ~t(w0) C Di. Since Di = IIv(p)C for some C E B((P | Qi)[D,_~xV(QO)
where Di-1 E Gi-1, it follows that Di C Di-1. Since Dk C Di and Di is
strongly connected, we may suppose that in fact, for some n, woj = voj for
j >__ n (redefining w0j as necessary). Thus, for j > n, zj < P(voj, voj+l) <
sv(voj), while yj < P(voj, voj+l) * Qi(wlj, wij+l). In particular, yj < sp(voj)
and yj <_ Qi(wij, Wij+l), SO 8p(~30j) * Qi(Wij, Wij+l) • O, for all j _> n. Since
Qi is P-faithful, sp(voj) < Qi(wij,wij+l), whereas xj < sp(voj), and thus
zj < Qi(wij, wij+l) for all j > n. Since Qi is infinitary, x e s Let vi be an
accepting run of x in Qi. Then (v0, vi) is an accepting run of x in P | Qi and
so (v0, vi, V i + l , . . . , vk) is an accepting run of x in P | Qi | | Qk. It follows
by induction on k tha t x E s 1 7 4 Q1 | 1 7 4

This theorem gives a way to check (3.4) for arbi trary Qi's (irrespective of
whether each Qi is P-adic). The algorithm is as follows:

i = 0
while i < k "

i - - * i + l
if Gi = r report (3.4) holds; EXIT

find x E s with accepting run 3 V, /t(V) C D E Gk
i = 1
while i < k :

if x ~ s repeat 4 algorithm with P | Qi
in place of P, for {Qj IJ # i}

i - -- . i+ l
report (3.4) f a i l s - - x E s | Qx | | Qk)

The complexity of this algorithm is O(m k) for m = max [E(Qi)I, but reduces
i

to O(km) in case the Qi 's are P-adic. Moreover, even in the general case, the
empirical complexity often may look like O(km). The algorithm can be imple-
mented either through explicit s tate enumeration, or in terms of a BDD fixed
point routine, as in [TBK91].

4 C o n c l u s i o n

We have described a general algorithm for testing tha t a model P defined in
terms of L-processes satisfies its specification. This algorithm has complexity
which is linear in the number of component L-processes, when most of these

3 It always is possible to find x of the form x -- y ' �9 y~' for v of the form v = w' �9 w ~
with w, w' E V(P)*. By Lemma (3.6), if the Qi's are P-faithful, then the choice of
x for a given v is immaterial.

4 If the Qi's are all P-adic, then this recursive call is unreachable.

233

L-processes are P-adic, a class which generalizes strong fairness with sequential
constraints. Currently, this algorithm is being implemented into the verification
tool COSPAN [HK90]; however, as this implementation is not complete, there
are no concrete results to report. Nonetheless, the linear bound speaks for itself.

A c k n o w l e d g e m e n t The author thanks Ken McMillan for his careful reading
and helpful comments.

References

[G J79]

[GL91]

[GS911

[Hal74]
[HK90]

[HSB94]

[Koz77]

[Kur90]

[Lon93]

[saf88]

[Sik69]
[Tm~9~]

M, R. Garey and D. S. Johnson. Computers and Intractability. Freeman,
1979.
O. Grumberg and D. E. Long. Model Checking and Modular Verification. In
Proc. CONCUR'91, volume 527 of Lec. Notes Comput. Sci. (LNCS). Springer-
Verlag, 1991.
S. Graf and B. Steffen. Compositional Minimization of Finite State Systems.
Lec. Notes Comput. Sci. (LNCS) 531, pages 186-196, (1991).
P. tlalmos. Lectures on Boolean Algebras. Springer-Verlag, 1974.
Z. Har'El and R. P. Kurshan. Software for Analytical Development of Com-
munications Protocol. AT~JT Tech. J. 69, pages 45-59, (1990).
R. Hojati, V. Singhal, and R.K. Brayton. Edge-Street]Edge-Rabin Au-
tomata Environment for Formal Verification Using Language Containment.
LICS (to appear), 1994.
D. Kozen. Lower Bounds for Natural Proof Systems. Proe 18th Syrup. Found.
Comput. ScL (FOCS), pages 254-266, (1977).
R. P. Kurshan. Analysis of Discrete Event Coordination. Lec. Notes in Corn-
put. Sci. (LNCS) 430, pages 414-453, (1990).
D. E. Long. Model Checking, Abstraction, and Compositional Verification.
PhD thesis, CMU, 1993.
S. Safra. On the complexity of w-automata. In Proc. 29th Found. Comput.
Sci. (FOCS), pages 319-327, 1988.
R. Sikorski. Boolean Algebras. Springer-Verlag, 1969.
H. Touati, R. Brayton, and R. P. Kurshan. Testing Language Containment

for w-Automata Using BDD's. Lec. Notes in Cornput. Sci. (LNCS), 1991.

