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Abstract. Morphogenesis is the process by which plant tissues are orga-
nized and differentiated to determine the morphological structure of their
organs. Understanding leaf blade morphogenesis is a major unsolved
challenge in plant sciences. Despite the advances, until now there is no
a clear understanding of the physiological mechanisms underlying these
morphological changes. In this work, we present a novel automatic app-
roach to infer the geometrical structure of a leaf blade developmental
model out of samples of sequences of the leaf development. The main
idea is to infer the set of parameters of a non-linear ordinary differen-
tial equation model based on relative elementary rates of growth, which
better adjusts an empirical leaf blade developmental sequence that was
extracted from real images. From the resulting models leaf shape simu-
lations were calculated. These simulations were compared against the 12
real sequences of leaf blade growing. The results show that the proposed
method is able properly infer leaf blade parameters of leaf development
for a variety of leaf shapes, both in simulated and real sequences.
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1 Introduction

Morphogenesis is the process by which plant tissues are organized and differen-
tiated to determine the morphological structure of their organs [2]. The analysis
and modeling of plant morphogenesis, and in particular leaf morphogenesis, is a
paramount important problem in plant sciences, agriculture, industrial forestry
and ecology [4]. A better comprehension of leaf morphology is fundamental to
understand plant resilience capacity in response to adverse events, such as, global
warming, reductions in the water supply and soil contamination [2,6].

Leaf morphogenesis critically depends on the plant genetic information and
metabolic and hormonal regulation [3]. Nevertheless, this process can be severely
altered by changes in the environmental conditions and in the supply of sub-
strates and minerals [2]. In general, studies in leaf morphogenesis may require
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large and complex experimental settings, spanning along extensive time peri-
ods [13]. The use of computational models can be a complementary tool suitable
for the study to these dynamics in shorter times. In the recent years several
models have been proposed to simulate leaf development [7]. These models have
shown accurate visual results, however, they are highly dependent of parameters
and may lack of biological interpretability. In this paper, we present a novel com-
putational approach to model leaf growing dynamics out of real sample sequences
of leaf development. The proposed approach automatically extracts parameters
for a model of development, can be used to simulate accurately blade leaf devel-
opment process and provides a set of biologically interpretable parameters.

2 Background and Related Work

Leaf Morphogenesis. The foliar morphogenesis refers to the set of processes
that control the different aspects of the leaf growing [2]. Including, the regulation
of the initial grow, the determination of the foliar symmetry, the shape and the
definition of the leaf in subregions. The foliar shape is mainly determined by two
morphogenetical processes: primary and secondary. The primary one includes the
initiation of the lamina, the specification of their different domains (the mid vein,
the petiole and the leaf base) and the formation of lamina structures, including,
leaflets, lobes and serrations. In the secondary process leaf expansion occurs and
specific tissues complete their differentiation [2].

Computational Description of Leaf Growth. Leaf shape may range from
simple leaves with elliptical shapes to complex compound leaves with fractal
shapes [7]. Because of this large morphological variability understanding of leaf
development is still a major unsolved challenge in computational modeling and
pattern recognition. Geometry of a biological form results from the growth. Foliar
growing can be described in two ways: globally and locally. The first description
is based on the idea that forms of related but different organisms can be obtained
one from another by changing the coordinate system in which these shapes are
expressed. This idea can be computationally implemented by using, for instance,
shape deformation and morphing algorithms. These methods have been adapted
to model blade leaf growth and development of leaf venation networks [9]. This
approach provides consistent visual results, however, it is highly descriptive and
it does not provide a biologically interpretable description of the leaf growing.
Leaf development can also be described locally by considering how small regions
are organized to form more complex objects. In this case, the size and dimen-
sions of the regions can be characterized by using a single number, for example,
a growing rate that describe in any moment in space-time the development prop-
erties of the unit [7]. This kind of description is commonly used by biologists to
study plant development [6].

Geometric modeling of simple leaves was firstly explored by Scholten & Lin-
denmayer [11]. This model specifies the progression of the leaf shape over time.
A similar model was subsequently employed to simulate development of leaf
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venation patterns [9]. In this case, the complete surface of the leaf blade was
propagated across the domain. Branching structures as the ones observed in
compound leaves have been also modeled by using recursive structures, based for
instance in the L-system formalism [7]. Alternative approaches based on phys-
ically based expansion models have been also explored in literature [8]. More
recently, the dynamic of morphogens, which controls rate and direction of the
organ growth, have been also considered to account for serration patterns com-
monly observed in leaf borders [3]. These models provide accurate visual results.
However, their interpretability in biological terms can be limited.

3 Materials and Methods

The proposed approach is illustrated in figure 1. Firstly, an empirical sequence
of the leaf lamina border is extracted out of real samples of the leaf develop-
ment. Following, a local model of the leaf lamina growing is used to simulate
an instance of the leaf growing dynamic, this model is dependent on a set of
parameters θ. A cost function J(θ) that measures the similarity between the
empirical sequence and the simulated sequence is computed. Finally, a Monte
Carlo based optimization algorithm is used to find the optimal set of parameters
θ∗ that minimize the cost function.

Fig. 1. Proposed approach. An empirical sequence of the leaf lamina border is extracted
out of real samples of the leaf development. Following, a local model of the leaf lamina
growing is used to simulate an instance of the leaf growing dynamic depending on a
set of parameters θ. Finally, a cost function J(θ) that measures the similarity between
the empirical sequence and the simulated sequence is computed.

3.1 Leaves Data and Empirical Sequence Extraction

The sequence of leaf development was sampled for 12 plant species. Each
sequence contained 15 different leaf samples organized in an incremental way
according to their developmental stage. For each sample in the sequence, foliar
lamina was acquired at 300 ppp by using desktop scanner (MP250-Canon) [5].
Images were stored in RGB format. Figure 2 shows a sequence of example.
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Fig. 2. Example of a leaf development sequence.

The leaf borders were extracted by using binary thresholding and contour
tracing algorithms [12]. Spurious regions were removed by using morphological
operators. Leaf base for each contour was manually selected. The leaf contours
inside a sequence were reoriented to coincide in their basis by using principal
component analysis (PCA) and rigid transforms [12].

3.2 Leaf Blade Development Model

To simulate the leaf blade development a relative growth rate (RGR) model was
used. RGR is a standardized measurement of growth with the benefit of avoiding,
as far as possible, the inherent differences in scale when comparing contrasting
organisms. In plant studies RGR is an indicator of the plant productivity as
related to environmental stress and disturbance regimes. Applications of RGR
include the study of dry weight, biomass, leaf area, stem volume, basal area and
stem diameter. Relative growth rates are also pre-requisites for quantifying and
modeling allometric relationships in plants [6].

To define RGR we can start with a quantity of interest, for instance, the
leaf width w(t). Given two measures of leaf width in two different times ti and
ti+1, the absolute growth can be defined as Δw = w(ti+1) − w(ti), this quantity
is dependent on both the time difference ti+1 − ti and the initial size w(ti+1).
In order to have a growth description independent of these two quantities, the
absolute growth can be normalized, i.e., Δw

(ti+1−ti)w(ti)
. For instantaneous times,

this quantity is called RGR and can be defined at time t as RGR = w′(t)
w(t) . RGR

is the increase in size of some quantify relative to the size of the quantity present
at the start of a given time interval. Different RGR can be specified depending
on the growing direction. By using RGR, growth rates can be compared among
species and individuals that differ widely in size.

A number of plant growth functions have been proposed in the literature.
They are often combinations of power functions and exponential functions [6].
Most functions of relative growth rate have the advantage that they have fewer
model parameters than the corresponding functions of absolute growth rate.
In this work, we used RGRs proposed by Bilsborough et al [3], which were
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previously used to model leaf blade growth of Arabidopsis Thaliana. In this case,
two relative elementary rates of growth (RERG) depending on both directions
x (lateral) and y (longitudinal) directions are defined as:

RERGx(x, y) =

{
αx(1 − y

Thx
) 0 ≤ y < Thx

0 otherwise
RERGy(x, y) =

{
αy(1 − y

Thy
) 0 ≤ y < Thy

0 otherwise

where αx and αy represent maximum lateral and longitudinal growths, respec-
tively. Thx and Thy the longitudinal extents of lateral and longitudinal growth
inhibition. RERGy(x, y) (RERGx(x, y)) are functions that represents the
increase in leaf lamina width (length) relative to the size of the width (length)
present at the start of a given time interval. Note that these quantities can also be
interpreted also as a vector field of RGR. This vector field provides information
about the displacement of a wall (i, j) between cells i and j in the transversal
direction. This displacement can be obtained from the integration of RERGX

along the x-axis direction dx
dt =

∫ x

0
RERGx(s, y)ds with y is the ordinate of the

center of the wall between cells i and j. A similar expression can be obtained
for displacement for the longitudinal direction, dy

dt =
∫ y

0
RERGy(x, s)ds. These

two integrals can be solved analytically:

dx
dt =

{
αx(1 − y

Thx
)x 0 ≤ y < Thx

0 otherwise
dy
dt =

{
αy(y − y2

2Thy
) 0 ≤ y < Thy

αy
Thy

2 otherwise

These two equations describe the dynamic of the border displacement. By
solving numerically this system a leaf growing instance can be simulated. Note
that by choosing a different set of parameters θ = (αx, Thx, αy, Thy) a different
leaf shape can be obtained. Note that other leaf development models do not
account for the REGs parameters. Therefore, this work is focused on REGs
based growing models.

3.3 Cost Function

Dynamic Time Warping. As cost function we used dynamic time warping
(DTW). This is an algorithm for measuring similarity between two temporal
sequences which may vary in time or speed [10]. Suppose we have two time
series X and Y θ not necessarily of the same length, as follows

X = x1, x2, . . . , xn Y θ = yθ
1 , y

θ
2 , . . . , y

θ
m

here X corresponds to the empirical sequence and Yθ to the sequence of devel-
opment obtained by using the blade development model described in section 3.2.
To align both sequences first a local dissimilarity function d(i, j) between the
empirical blade border xi and the simulated blade border yθ

j is computed. Using
these distances a matrix distance with n×m can be constructed. To find the best
match between these two sequences a warping path can be defined. A warping
path W is a set of elements that defines a mapping between X and Y θ. The
k-th element of W is defined as wk = (i, j)k, therefore W can be written as
W = w1, w2, . . . , wK , max(m,n) ≤ K < n+m+1. The warping path is subject
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to different constraints, namely, boundary conditions, continuity and monotic-
ity. Boundary conditions refers to the fact that W should start and finish in
the diagonally opposite corner cells of the distance matrix, i.e., w1 = (1, 1) and
wK = (n,m). Continuity restricts the allowable steps in the warping path to
adjacent cells (including diagonally adjacent cells), i.e., given w = (a, b) then
wk−1 = (a′, b′) where (a − a′) ≤ 1 and (b − b′) ≤ 1. Monoticity forces the
points in W to be monotonically spaced in time, i.e., given wk = (a, b) then
wk−1 = (a′, b′) where aa′ ≥ 0 and b − b′ ≥ 0. Figure 3 illustrates a path W that
satisfies the above conditions. Given these conditions, we are interested in the
warping that minimizes the following warping costs:

DTW (X,Y θ) = min
{√∑K

k=1 wk/K

}
(1)

the K in the denominator compensate warping paths that may have differ-
ent lengths. An efficient solution to problem 1 can be found by computing the
cumulative distance γ(i, j) between cells i and j. This distance can be defined
recursively as the distance d(i, j) found in the current cell and the minimum of
the cumulative distances of the adjacent elements γ(i, j) = d(xi, y

θ
j )+min{γ(i−

1, j − 1), γ(i − 1, j), γ(i, j − 1)}. This problem can be solved by using dynamic
programming [10], the path W can be reconstructed by using a backtracking
algorithm.

To compute the local dissimilarity function d(i, j) we reparametrized both
curves xi and yθ

j to have 200 points equally spaced by using a linear interpo-
lation. Following we defined the distance as the Frobenious norm between the
corresponding reparametrized point sequences.

Fig. 3. Distance time warping.

Monte Carlo Optimization. In order to find the set of model parameters θ∗
associated to the data the following optimization problem θ∗ = argmin

θ
J(θ) =

argmin
θ

DTW (X,Y θ). Because of the non-linear nature of the blade development

model herein used a Monte Carlo optimization method was used to find the
optimal set of parameters θ∗ [1]. In particular, we used Simulated annealing
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Fig. 4. Inferred sequences (blue) for an empirical sequences of leaf development (green).

Fig. 5. Distribution plots of the inferred model parameters (αx, Thx, αy, Thy) and the
corresponding error (value of DTW) distribution for each leaf development sequence
considered. Red lines indicate mean and standard deviations.

with 100 iterations. For the optimization, model parameters ranged uniformly
between 0.01 and 0.18 for αx, 100 and 700 for thx, 0.14, 0.25 for αy and 60
and 250 for thy. To probe stability of the proposed method this experiment was
repeated 30 times.

4 Results

Figure 4 shows three simulated sequences for three examples of the leaf devel-
opment process. As observed, the method was able to properly infer the general
developmental structure for the first two sequences. In the third sequence, the
training sequence (green) does not reflect the leaf growing dynamic affecting the
algorithm performance. Figure 5 shows the distribution of the model parameters
estimated for the 12 development sequences (x-axis) for 30 runs. The proposed
strategy provided different and stable parameter estimations for all the param-
eters. Interestingly, sequences 3 (last sequence of figure 4), 7 and 11 where the
training samples do not reflect the leaf growing resulted in a higher approxima-
tion errors.
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5 Conclusions

We have introduced a method to infer the geometrical structure of a leaf blade
developmental model out of samples of sequences of the leaf development out
of real leaf samples. The method is based on a non-linear ordinary differential
equation model of relative elementary rates of growth. Experimental results indi-
cate that the proposed method is able to extract stable parameters that may
properly reconstruct the dynamic of the leaf growing.
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