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Abstract
The Hawkes self-exciting model has become one of the most popular point-process 
models in many research areas in the natural and social sciences because of its 
capacity for investigating the clustering effect and positive interactions among indi-
vidual events/particles. This article discusses a general nonparametric framework 
for the estimation, extensions, and post-estimation diagnostics of Hawkes models, in 
which we use the kernel functions as the basic smoothing tool.

Keywords Hawkes process · Kernel estimate · ETAS model · Earthquake · Crime · 
Expectation–maximization algorithm · Stochastic reconstruction

1 Introduction

Analyzing time series data has a core role in analyzing data series with an evolutionary 
characteristic. However, when we investigate the underlying processes at the microscale, 
most are continuous processes, point processes, or a mixture. For example, sales at a 
shop are not daily incomes, but a process of each trade, which includes trading times, 
amounts, and the types of goods. Point process models are common in research as a 
natural tool to model the patterns of discrete events that occur in a continuous space, 
time, or a space–time domain, such as urban fires, wild forest fires, crimes, earthquakes, 
diseases, tree locations, animal locations, communication network failures, and so on.

Depending on the type of the domain in which the events occur, researchers clas-
sify point into two classes: spatial point processes and spatiotemporal/temporal point 
processes. The difference between these two types of models is that the latter have a 
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special evolutionary time axis on which researchers can sort events according to their 
chronological order, and share many common features with time series sequences. Spa-
tial point processes do not have such evolutionary direction and are usually regarded 
as a permanent pattern of particle locations or a snapshot of a spatiotemporal point 
process. Spatial point processes are usually modeled using the moment intensities and 
the Papangelou intensity (e.g., Møller and Waagepetersen 2003). When a property or a 
characteristic is attached to each event, such as the magnitude of an earthquake or the 
burned area of a wild fire, the point process is then called a marked point process.

Among the different types of point processes, clustering point processes attracted 
much interest from mathematicians and statisticians. Typical clustering processes 
include the Neyman–Scott process (Neyman and Scott 1953, 1958), which has been 
used to describe the distribution of locations of galaxies in the universe, and the 
Bartlett–Lewis process to model the rainfall process (Bartlett 1963; Lewis 1964). 
Many spatiotemporal/temporal clustering point processes can be categorized as a 
Hawkes self-exciting process (Hawkes 1971a, b; Hawkes and Oakes 1974). In short, 
a Hawkes process consists of a series of discrete events that each stem from one 
of two subprocesses: the background subprocess or the clustering subprocess. The 
former is considered a Poisson process, which can be inhomogeneous in space and/
or nonstationary in time, while the latter consists of events from the exciting effect 
of all of the events that occurred in the past. Equivalently, each event, whether it is a 
background event or an excited event, triggers (“encourages”) the occurrence of the 
future events according to some probability rules.

The Hawkes excitating model has become one of the most popular models in 
point process data analysis in both natural and social sciences because of its capacity 
to investigate the clustering effect (positive interactions) among individual events/
particles, and to, thus, help determine the potential causal relationship among them. 
Nowadays, due to the rapid development of observation and data-storage technolo-
gies, big data is also a hot topic in point-process data analysis. With many sequences 
(datasets) or a long sequence (dataset) containing a huge number of discrete events, 
a quick tool or general framework to quantify and forecast the clustering or the trig-
gering effect among events is desirable. The Hawkes process model fits this purpose.

In seismological application, researchers use a special form of the Hawkes pro-
cess, called the epidemic-type aftershock sequence (ETAS) model (e.g., Ogata 
1988, 1998; Zhuang et al. 2002, 2004; Console et al. 2003; Helmstetter et al. 2003; 
Lombardi et al. 2010; Guo et al. 2015) to evaluate the probabilities of future earth-
quakes as well as analyzing the characteristics of seismicity. It has been adopted 
by many research institutions or governmental agencies in the United States, Swit-
zerland, Italy, New Zealand, Japan, China, and so on. (Schorlemmer et  al. 2018). 
The ETAS model is now accepted as the standard model for describing earthquake 
clusters (e.g., Schorlemmer et  al. 2018; Huang et  al. 2016). Such a model is also 
used in crime data analysis (see, e.g., Mohler et al. 2011) and in economics, where 
studies show that the interaction between prices has epidemic features (e.g., Bacry 
and Muzy 2014). In recent years, researchers applied this model for a data analysis 
of terrorists’ behavior (e.g, Tench et al. 2016), interactions in social networks (e.g., 
Zipkin et al. 2015), and genomes or neuronal activities (e.g., Truccolo et al. 2005), 
among others. In all of these areas, a big portion of the theories and methodologies 
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were originally developed using studies of earthquakes as an outcome of studies on 
the ETAS model. The second biggest source is crime data analysis. The applications 
of the Hawkes process in other areas are mainly for parameter estimation and results 
explanation.

The core of spatiotemporal point-process models is the conditional intensity, 
which gives the expectation of the number of events occurring in a unit time–space 
range in the near future, under the condition that we know the history of previous 
events in the process, and/or the history of one or more relevant processes, up to 
the current time, but not including it. Starting from the conditional intensity, we can 
conduct a parameter estimation, simulation, forecast, and even control. Many pow-
erful tools associated with the conditional intensity function have been developed 
for the Hawkes process, such as stochastic de-clustering, stochastic reconstruction, 
the expectation–maximization (EM) algorithm, first- and higher-order residuals, and 
Bayesian analysis, as well as the theories associated with asymptotic properties (see 
a review by Reinhart 2018).

This study focuses on the use of kernel functions to solve the estimation problem 
of this type of point processes. With these solutions, we provide a ready-to-use tool 
to perform modeling, analysis, and forecasting for different point-process data in dif-
ferent application areas by using the Hawkes-type point process. In the following, 
Sect. 2 provides the basic concepts and formulations of the Hawkes process and its 
variations. Section 3 describes the estimation methods related to parametric Hawkes 
Models, including the maximum likelihood estimate (MLE), (EM) algorithm, and 
stochastic declustering. Section  4 introduces the nonparametric kernel estimates 
of the nonparametric background rate and clustering response components, and 
Sect. 5 uses two examples to explain how to extend existing models in a data-driven 
manner.

2  Model and methodology

2.1  Hawkes process

We can determine a point process by its conditional intensity (e.g., Daley and Vere-
Jones 2003; Zhuang 2015). For a temporal point process with no overlapping events 
(a simple temporal point process), the conditional intensity is

where Ht denotes the �-algebra generated by the observational N before time t, but 
not including t. For any measurable set D ∈ ℝ,

(1)�(t) = lim
Δ↓0

1

Δ
Pr

{
N([t, t + Δ)) = 1 ∣ Ht

}
,

(2)�

[

∫D

f (s)N(ds) − ∫D

f (s) �(s) ds

]
= 0,
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where f(t) is a predictable function; that is, its value at t is determined by the obser-
vation history of N before t. This equality and its spatiotemporal (high dimensional) 
versions are the key to the theories and methods summarized in this article.

The Hawkes process describes the stochastic excitations among a series of events 
that occur in a continuous time domain or in a spatiotemporal domain. A temporal 
Hawkes process, supposing its realization N = {ti ∶ i ∈ ℤ} with ℤ being the set of 
all integers, has a conditional intensity in the form

where � is the rate of occurrence of spontaneous events (also called background 
events or immigrants), and g(t) is the rate of occurrence of the direct offspring gen-
erated by an event occurring at 0.

The criticality parameter, which is the average number of direct offspring per 
ancestor, is

A stable and stationary Hawkes process requires 𝜌 < 1 . Otherwise, the rate of 
occurrence grows to infinity with time. If 𝜌 < 1 , then this parameter is identical to 
the branching ratio, which is the proportion of non-spontaneous events in the whole 
process. In general, these two quantities are different (see Zhuang et  al. 2013 for 
details).

We can extend the Hawkes process easily to the spatiotemporal version

where x denotes the location in the space of ℝd . We can also generalize it the mul-
tivariate case where, if we have K types events in total, then each type has a condi-
tional intensity of

for k = 1,… ,K , where �k(x) represents the rate of occurrence of spontaneous events 
(also called background) for type-k events, and gk�(t − s, x − u) is the rate of occur-
rence of type-k events excited by a type-� event at (s, u).

We can also extend the space–time Hawkes process to cases of marked processes 
easily:

(3)𝜆(t) = 𝜇 + ∫
t

−∞

g(t − u)N(du) = 𝜇 +
∑

i∶ti<t

g(t − ti),

(4)� = ∫
∞

0

g(u) du.

(5)�(t, x) = �(x) + ∫(−∞,t)×ℝd

g(t − s, x − u) dN(ds × du),

(6)�k(t, x) = �k(x) +

K∑

�=1
∫(−∞,t)×ℝd

gk�(t − s, x − u) dN
�
(ds × du),

(7)

�(t,m) = �(x,m) + ∫(−∞,t)×ℝd×𝕄

g(t − s, x − u) f (m ∣ m�) dN(ds × du × dm�),
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where x and m denote the location in the space of ℝd and the mark in the space 
of � , respectively, and f (m ∣ m�) gives the p.d.f. for the magnitudes of direct off-
spring from an event of magnitude m′ . We can regard the multivariate case simply 
as a marked point process in which the mark takes only a finite number of values. 
In the above, we assume that the marks of triggered events are location- and time 
independent.

Linlin model The earliest version of the Hawkes mode used by Hawkes and Oakes 
(1974) had the following self- and mutually exciting process

where

K and L are two given non-negative integers, and X(t) denotes the external process 
that can trigger events in N, which can be a point process, a continuous process, or 
mixture of both. Its name, Linlin, came from Ogata’s FORTRAN program named 
“Linlin.f”, meaning a linear response effect for both internal and external responses. 
Ogata and Akaike (1982) use this model to investigate the temporal clustering pat-
terns of seismicity in different regions, and the correlation of seismicity among dif-
ferent regions. A technical problem is to keep g(t) and h(t) positive during the opti-
mization when fitting this model to the data.

The space–time Epidemic-Type Aftershock Sequence (ETAS) model The spati-
otemporal ETAS model has been used widely to describe the clustering features 
of earthquakes in space and time (see Ogata 1998; Zhuang et  al. 2002, 2004, 
2005; Zhuang and Ogata 2006; Ogata and Zhuang 2006; Console et  al. 2003; 
Sornette and Werner 2005a, b; Helmstetter et al. 2005). The conditional inten-
sity of this model is

where t, (x, y), and m represent the time of occurrence, spatial location, and magni-
tude of the earthquake, respectively. In the formula above,

represents the probability density of the earthquake magnitude, where mc is the mag-
nitude threshold of the earthquake, and

is the expectation of the number of children (productivity), which is a Poisson ran-
dom variable, from an event of magnitude m. Furthermore,

(8)�(t) = � + ∫
t−

0

g(t − s)N(ds) + ∫
t−

0

h(t − s)X(ds),

(9)g(t) =

K∑

k=0

ak t
k e−ct and h(t) =

L∑

k=0

bk t
k e−ct,

(10)𝜆(t, x,m) =s(m)

[
𝜇(x) +

∑

j∶tj<t

𝜅(mj) g(t − tj) f (x − xj,mj)

]
,

s(m) = � exp[−�(m − mc)], m ≥ mc,

(11)�(m) = A e�(m−mc), m ≥ mc,



 Japanese Journal of Statistics and Data Science

1 3

is the probability density function of the length of the time interval between a child 
and its parent, and

is the probability density function of the relative locations between the parent and 
children, where mc is the magnitude threshold.

Mohler et al.’s model for break-in burglary data  Mohler et al. (2011) analyze 
break-in burglary data from the Los Angeles Police Department. Their dataset 
consisted of 5,376 reported residential burglaries in an 18 km × 18 km region of 
San Fernando Valley, Los Angeles during 2004–2005. They use a model with a 
conditional intensity of

Mohler et  al. (2011) assume that the background rate is a function of space 
and time and use kernel functions to smooth the estimates of both � and g. In 
Mohler et al. (2011), �(t) , �(x, y) , and g(t, x, y) are all nonparametric functions. 
Later, Mohler (2014) use an exponential density and a Gaussian density for the 
decay of occurrence rate of triggered events in time and in 2D space.

Epidemic forecasting In modeling and forecasting routinely collected invasive 
meningococcal disease (IMD), Meyer et  al. (2012, 2016) and Meyer and Held 
(2014) use the following model

where �k,l is the intensity offset in the spatiotemporal grid (k,  l); (�(t), �(x, y)) is 
the grid index in which t, (x, y) is located; ��(t),�(x,y) is a linear predictor of endemic 
covariates on the grid that contains (t,  (x,  y)); �j is a predictor attached to each 
infected individual; g and f are the temporal and spatial response functions, respec-
tively; and I∗(t, x, y) = {j ∶ t − 𝜖 ≥ tj < t ∧ ||(x, y) − (xj, yj)|| ≤ 𝛿} with � and � being 
positive constants.

Social networks Fox et  al. (2016) and Zipkin et  al. (2015) use a multivariate 
Hawkes process to model the mail sent between pairs in a network of officers at the 
West Point military academy. The difference between these two studies is that the 
former uses the messages sent by the same sender as a component and the latter uses 
messages between each pair of officers as a component.

(12)g(t) =
p − 1

c

(
1 +

t

c

)−p

, t > 0,

(13)f (x,m) =
q − 1

�De�(m−mc)

(
1 +

||x||2

De�(m−mc)

)−q

(14)𝜆(t, x) = 𝜈(t)𝜇(x) +
∑

k∶tk<t

g(t − tk, x − xk)

(15)
�(t, x, y) =��(t),�(x,y) exp

(
�0(�) + ��

��(t),�(x,y)

)

+
∑

j∈I∗(t,x,y)

e�j g(t − tj | �j) f (x − xi, y − yi | �j),
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3  Parametric estimation

We can classify the forms of Hawkes models into three categories: parametric, 
nonparametric, and semiparametric. The parametric model can be estimated 
through the MLE method and the EM algorithm.

3.1  Likelihood function and MLE

Given the observation data of a spatiotemporal parametric Hawkes model in a 
space–time window S × T , the likelihood function can be written as

where �(t, x;�) is the conditional intensity of the process and � denotes the param-
eter vector in the model (Daley and Vere-Jones 2003). We can estimate the model 
parameters, supposing that they are regular, by maximizing the likelihood above; 
that is,

Rathbun (1996) discusses the asymptotic normality of the MLE for point processes.

3.2  Decomposing and reassembling the events: stochastic declustering

Consider a Hawkes process with conditional intensity

where �(t, x) is the background rate, which is different from the corresponding term 
in (5) as it can be time dependent, and g(t, x) is the rate of occurrence triggered by 
an event at time 0 and the location at the origin.

The probability that an event, say j, is a background event; that is, the background 
probability, is

and the probability that event j is triggered by another event i is

It is easy to see

(16)logL(⋅;�) =
∑

i∶ (ti,xi)∈S×T

log �(t, x;�) − ∫T ∫S

�(t, x;�) dx dt,

(17)�̂� = arg𝜃 max log L(⋅;𝜃).

(18)𝜆(t, x) = 𝜇(t, x) +
∑

k∶tk<t

g(t − tk, x − xk),

(19)�j = Pr{Event j is a background event} =
�(tj, xj)

�(tj, xj)

(20)�ij = Pr{Event j is triggered by i} =
g(tj − ti, xj − xi)

�(tj, xj)
.
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which implies that an event is always either a background event or is triggered by a 
previous event. Another explanation for (19) and (20) is that, once an event, say j, 
occurs at (t, x), we can say that, at (t, x), we observed �j background events, and that 
for each i = 1,… , j − 1 , event i triggers �ij direct offspring at (tj, xj) . In this way, we 
separate event j into background and offspring events from previous events (Zhuang 
et al. 2004).

We say that the above probabilities, �j, j = 1, 2, … , n, are background probabili-
ties because if we select each event j with probability �j , we can realize a Poisson pro-
cess with rate �(t, x) . To prove this point, we need only to show that the compensator 
for the resulting process is rate �(u, x) . For any measurable set B ∈ ℝ

d,

where X(t, x) is a random field that takes values of 1 and 0 with probabilities �(t,x)
�(t,x)

 
and 1 − �(t,x)

�(t,x)
 at (t, x), respectively. Since X(t, x) is independent of N conditional on 

Ht and �(t,x)
�(t,x)

 is a predictable function, then

In the above, Hs+ = ∩u>sHu represents the history of N up to time s and including s. 
Substituting the above equation into (22), we have

That is, the resulting process has a compensator with a deterministic rate �(t, x) . 
Thus, it is a Poisson process.

3.3  Expectation–maximization algorithm

A direct use of the background and triggering probabilities is to construct an expecta-
tion–maximization (EM) algorithm (Veen and Schoenberg 2008; Li et al. 2019). First, 

(21)�j +
∑

i

�ij = 1, for all j,

(22)�

[

∫[0,t]×B

X(s, x)N(ds × dx)

]
= �

[

∫[0,t]×B

�

(
X(s, x)N(ds × dx) ∣ Hs

)]
,

(23)

�

(
X(s, x)N(ds × dx) ∣ Hs

)

= �

[
�

(
X(s, x)N(ds × dx) ∣ Hs+

)
∣ Hs

]

= �

[
�(s, x)

�(s, x)
N(ds × dx) ∣ Hs

]

=
�(s, x)

�(s, x)
�(s, x) ds dx

= �(s, x) ds × dx.

(24)�

[

∫[0,t]×B

X(s, x)N(ds × dx)

]
= �

[

∫[0,t] ∫B

�(s, x) dx ds

]
.
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we treat the whole process as a missing data problem. The complete observation for 
each event j is (tj, xj, �j) , where �j takes a value 0 if it is a background event and i if it is 
triggered by event i. Thus, the complete likelihood for the whole process is

The parameters can be estimated with the following EM algorithm:
E-Step For each step k, calculate �

(k)

j
 and �

(k)

ij
 for j = 1, 2,… , n and 

i = 1, 2,… , j − 1.
M-Step Maximize the expected log-likelihood:

to obtain the model parameters.
The computational complexity of this algorithm is the same as the original MLE 

method, proportional to n2 , where n is the number of events in the process.

4  Kernel estimates

4.1  The nonparametric background rate

The EM algorithm is almost easy to implement when � and � are both paramet-
ric functions, with only some unknowns parameters. However, in many cases, the 
explicit form of the background rate � is usually unknown. Veen and Schoenberg 
(2008) divide the whole study region into several subregions, each with a constant 
background rate; that is, they assumed that the background rate was a 2D piecewise 
function, with all values for the background rate in each subregion being parameters 
to estimate. Using the MLE method, the background rate �k in each subregion can 
be estimated as follows:

Suppose the background rate

where K is the total number of subregions and the whole area A = ∪K
k=1

Sk , 
Sk ∩ Sl = ∅ for 1 ≤ k ≠ l ≤ K . Then, 

(25)
log Lcmplt =

n∑

j=1

[
I(�j = 0) log�(tj, xj) +

j∑

i=1

I(�j = i) log �(tj − ti, xj − xi)

]

− ∫T ∫S

�(t, x) dt dx

(26)
�

[
logL

(k+1)

cmplt

]
=

n∑

j=1

[
�
(k)

j
log�(tj, xj) +

j∑

i=1

�
(k)

ij
log �(tj − ti, xj − xi)

]

− ∫T ∫S

�(t, x) dx dt

(27)�(t, x, y) = �k, when (t, x, y) ∈ Sk, k = 1, 2,… ,K,

(28)
� logL

��k

=

N∑

i=1

I((ti, xi, yi) ∈ Sk)

�(ti, xi, yi)
− Sk;
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and 

yield

Multiplying both sides by �̂�k and rearranging the terms, we have

As discussed in Sect. 3.2, �j and �ij , i = 1, 2,… , j − 1 , quantify how event j is sliced 
into background and offspring from previous events. Equation (31) in fact provides a 
histogram estimator of the background rate function in an iterative manner.

We can modify such histogram estimates easily into kernel estimates. For exam-
ple, Zhuang et al. (2002, 2004) use a weighted kernel function estimate of �(⋅, ⋅) in 
combination with variable bandwidths

where hj is the bandwidth for the kernel function corresponding to event j, equal to 
its distance to the np th closest neighboring event, np = 2–15. When � is also time 
dependent, when we can also estimate it using a weighted kernel estimation, for 
example, as follows

where Z(t)

ht
(⋅) is the temporal kernel with bandwidth ht.

4.2  The nonparametric triggering term

We can estimate the triggering term g(⋅, ⋅) by

where the denominator is for normalizing purposes, Zh is the Gaussian kernel with 
bandwidth h, and �ij is as defined in (20).

We can verify the estimator above in the following way. First, the spatiotemporal 
version of (2),

(29)
𝜕 logL

𝜕𝜇k

||||�k=�̂�k

= 0,

(30)
N∑

i=1

I((ti, xi, yi) ∈ Sk)

�̂�(ti, xi, yi)
= Sk.

(31)�̂�k =
1

Sk

N∑

i=1

�̂�kI((ti, xi, yi) ∈ Sk)

�̂�(ti, xi, yi)
=

1

Sk

N∑

i=1

�̂�i I((ti, xi, yi) ∈ Sk).

(32)�̂�(x) =
1

T

∑

j

𝜑j Z(|x − xj|;hj),

(33)�̂�(t, x) =
∑

𝜑jZhj (x − xj)Z
(t)

ht
(t − tj),

(34)ĝ(t, x) =

∑
i,j 𝜌ij I(�tj − ti − t� < 𝛿t) I(�xj − xi − x� < 𝛿x)

4𝛿t 𝛿x
∑

i,j 𝜌ij
,
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holds for any predictable process f(t, x), any given time interval [T1, T2] , and any 
area S, provided that the integral on either side exists, or that f is nonnegative. Sec-
ond, let

Regarding t, x, ti , and xi as fixed and substituting 
f (ti, xi, s2, u2) = 𝜚(ti, xi, s2, u2, ) I(s2 − ti ∈ [t − Δt, t + Δt], |u2 − xi − x| < 𝛿x) as a 
predictable function of s2 and u2 into (35) yields

if the area of S and the length of [T1, T2] are sufficiently large, where �x is a small 
positive real number and |B(x, �x)| is the volume of the ball centered at x with a 
radius of �x . Thus, we can estimate g(t) by

where

If g(t, x) is separable; that is, g(t, x) = g1(t) g2(x) , then

where Δx and Δy are small positive numbers. These estimates can be revised into 
their kernel function version correspondingly.

(35)�

[

∫[T1,T2]×S

f (t, x) dN(t, x)

]
= �

[

∫
T2

T1
∫S

f (t, x) �(t, x) dt dx

]
,

(36)�(s1, u1, s2, u2) =

{
g(s2 − s1, u2 − u1)∕�(s2, u2), s2 ≥ s1;

0, otherwise.

(37)

∑

j

𝜚(ti, xi, tj, xj) I(tj − ti ∈ [t − Δt, t + Δt], |xj − xi−x| < 𝛿u)

≈ ∫
T2

T1
∬S

𝜚(ti, xi, s, u) �(s − ti ∈ [t − Δt, t + Δt], |x − xi−u| < 𝛿x) 𝜆(s, u) ds du

≈ 2 g(t, x) Δt |B(x, 𝛿x)|
∝ g(t, x)

(38)ĝ(t, x) ∝
∑

i,j

𝜌ij I(tj − ti ∈ [t − Δt, t + Δt], |xj − xi−x| < 𝛿x)

(39)𝜌ij = g(tj − ti, xj − xi)∕𝜆(tj, xj), i < j.

(40)ĝ1(t) ∝
∑

i,j

𝜌ij I(tj − ti ∈ [t − 𝛿t, t + 𝛿t])

(41)ĝ2(x) ∝
∑

i,j

𝜌ij I(|xj − xi − x| < 𝛿x),
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4.3  When both the background rate and triggering term are nonparametric

In the above, when estimating �(t, x) and g(t, x), we need to know �i and �ij , and 
when estimating �i and �ij , we need to know � and g. We can resolve this loop using 
an iterative algorithm. Given an observed process of events {(ti, xi) ∶ i = 1,… , n} in 
a time–space window T × S , by guessing some initial value of � and g, we obtain �i 
and �ij for all possible i, j. Then, we estimate the background rate � and each compo-
nent in the clustering part g using �i and �ij with some nonparametric methods, such 
as kernel estimates or histograms. Once we update � and g, we go back to the step 
of calculating �

⋅
 and �

⋅⋅
 , or stop if convergence is reached. In summary, the iterative 

estimation procedure includes the following three integrants:

Algorithm 1

1. Stochastic declustering (Expectation). Calculate the background probability 
and triggering probabilities.

2. Reconstruction (Maximization I). Estimate the nonparametric function in the 
model using nonparametric methods such as kernel functions.

3. Parametrization (Maximization II). Use the MLE method or EM algorithm to 
estimate the parameters in the parametric functions.

In an iterative algorithm such as the one above, the feedback should be negative. 
However, we cannot be assured of negative feedback if we use a nonparametric 
estimate. For example, consider that we use only

to estimate � and g in the conditional intensity

If all �ij , j = 1, … ,N and i < j increase at some time, then we obtain a large ĝ(t) , 
which yields a larger �ij in the next step. This positive feedback finally yields a triv-
ial solution with �̂�(t) = 0 . To avoid this positive feedback, Zhuang et al. (2002) and 
Zhuang and Mateu (2019) introduce relaxation coefficients to prevent positive feed-
back. Instead of (43), they use

as the conditional intensity function, and the estimates for � and g become

(42)�̂�(t) =
∑

i

𝜑i Zh1 (t − ti) and ĝ(t) =
∑

i,j

𝜌ijZh2(tj − ti − t).

(43)𝜆(t) = 𝜇(t) +
∑

i∶ti<t

g(t − ti).

(44)𝜆(t) = 𝜈𝜇(t) + A
∑

i∶ti<t

g(t − ti)

(45)�̂�(t) ∝
∑

i

𝜑i Zh1 (t − ti) and ĝ(t) ∝
∑

i,j

𝜌ijZh2(tj − ti − t).
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with restrictions ∫ T

0
�̂�(t) dt∕T = 1 and ∫ ∞

0
ĝ(t) dt = 1 . In the above equations, the 

parameters � and A are the relaxation coefficients and are estimated by the MLE or 
EM method, as given in Sects. 3.1 and 3.3.

Introducing the relaxation coefficients changes Algorithm 1 into the following 
new algorithm.

Algorithm 2

1. Stochastic declustering (Expectation). Calculate the background probability 
and triggering probabilities.

2. Reconstruction (Maximization I). Estimate the nonparametric function in the 
model using nonparametric methods such as kernel functions.

3. Parametrization (Maximization II). Use the MLE method or EM algorithm to 
estimate the parameters in the parametric functions and the relaxation coefficients 
for the nonparametric functions.

4.4  Choice of bandwidth

Bandwidth selection is always an unavoidable topic with kernel estimation. Many 
previous works discuss fixed bandwidth, such as Silverman’s rule of thumb in Sil-
verman (1986) and Scott (2009). Alternatively and technically, this can be done 
with the cross-validation method (e.g., Hall and Wehrly 1991) or using the forward 
predictive likelihood (e.g., Chiodi and Adelfio 2011). In principle, the bandwidth 
should be selected according to data resolution, which is at the order of 1–10 times 
of the nearest neighboring distance. Zhuang (2011) reduces np to 3 or 4. Xiong 
et al. (2019) compare two variable bandwidth kernel estimates, with their optimal 
bandwidth parameters obtained using cross-validation, with two other nonparamet-
ric methods, a Bayesian smoothing procedure on a tessellation configuration with 
smoothness prior, and a newly proposed incomplete centroidal Voronoi tessellation 
method. They find that the performance differences among the methods are marginal 
in estimating the seismicity rate.

4.5  Boundary effect correction

The second problem is boundary correction. In most cases, observations lie within 
some specific range, while the kernel function distributes the mass of an event over 
a much larger, or even infinite, range. The observation range makes the total weight 
for an event not equal to 1 and the estimates for the values near the boundary depend 
on the shape of the boundary. In this study, we adopt the weight-based correction 
(Hall and Turlach 1999), which can also be called the truncated kernel function. 
For each event, we use a truncated density Zh(⋅ − xi)∕ ∫S Zh(u − xi)du instead of 
Zh(⋅ − xi) as the kernel for event i, for which S is the support range of observation.
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5  Extending the Hawkes model

We should note that a useful model reflects only partial information about the 
observation. One of the tasks in statistical analysis is to extend a model such that it 
includes more predictable information. This requires not only for statistical analysis, 
but also to obtain a good understanding of the observed phenomena. In this section, 
we provide two examples to illustrate how to extend the Hawkes model to accom-
modate the need for better modeling the data.

5.1  Example 1: Building more physics into the model—incorporating earthquake 
source geometry into seismicity modeling

In the space–time ETAS model, all of the earthquake events are regarded as a point 
in space–time–magnitude domain. In fact, the rupture of each earthquake has a spa-
tial extension on the earthquake fault, from several kilometers for a M5.5 event up to 
about 500 km for a M8.0 event. When we regard the focal source of an earthquake 
as a point and describe the spatial response to the triggering effect an isotropic func-
tion of distance from the epicenter of the parent location, as in (13), biased results will 
be obtained in data analysis, since aftershocks are usually distributed along the rup-
ture fault, especially for large earthquakes. For example, Hainzl et al. (2008) discuss 
the impact of the rupture extension of the 1992 M7.3 Landers, California earthquake 
on parameter estimations of the point-process model by comparing the results from 
space–time and purely temporal ETAS models. They find that ignoring the rupture 
extensions of earthquakes and assuming an isotropic aftershock response could lead 
to a significant bias in the parameter estimations, especially an underestimated � value.

Several researchers attempted to correct such biases. As early as in 1998, Ogata 
(1998) suggested that the aftershock rate is spatially elliptically distributed and that the 
centroid of the ellipsoid formed from the aftershock cluster should be used as the loca-
tion of the main shock instead of the initial fracture point. Considering such anisotropy, 
(13) was replaced by a general bivariate Guassian density and takes different values 
for different clusters. The aftershock cluster from each main shock was determined by 
the MBC algorithm (Ogata et al. 1995). The modified elliptic distribution model out-
puts better results for observed seismicity. However, the MBC algorithm is quite sub-
jective and empirical in terms of dividing aftershock clusters, and the location of the 
main shock is still a point, either the epicenter or the centroid of the aftershock epicent-
ers. Marsan and Lengliné (2010) and Bach and Hainzl (2012) propose an alternative 
treatment for the anisotropic response as a function of the distance to earthquake fault, 
instead of a function of the epicenter distance.

Instead of regarding large earthquakes to have point sources, Guo et al. (2015, 2017) 
develop a finite-source ETAS model to incorporate the spatial extensions of their rup-
tures. Each earthquake rupture consists of many small patches, and each patch triggers 
its own aftershocks isotropically and independently as a usual mainshock. The super-
position of triggering effects from all patches produces an anisotropic pattern of the 
aftershock locations, mainly distributed along the rupturing fault. In mathematics, the 
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spatial response of the production of direct offspring to a large earthquake with source 
body Si is

where �i(u) is the productivity density at location u in the focal zone and the numera-
tor is used for normalization. The model parameters, the unobserved fault geometry, 
and the background rate are estimated simultaneously through an EM-type iterative 
algorithm similar to Algorithm  1. We can use their treatment to invert the earth-
quake fault from seismicity.

In the estimation, the productivity density �(u) is also implemented using stochastic 
reconstruction, which has a histogram version of estimation of

where

represents the probability that event k is triggered by patch Cj , which contains loca-
tion u in the rupture of event i. Similar to the background rate � , the function � can 
also be estimated iteratively (Guo et al. 2017; Zhuang et al. 2019).

This model has been applied to seismicity in different regions, such as South-
western China (Guo et  al. 2015), Japan (Guo et  al. 2017), and Italy (Zhuang 
et al. 2019). Figure 1 shows the surface projection of the spatial variation of the 
productivity density along the Nocia earthquake (2016-10-30 08:40 local time, 
13.11◦ E, 42.83◦ N, Mw 6.5) rupture fault obtained by Zhuang et al. (2019). The 
main coseismic slip area is to the updip from the hypocenter. The major parts of 
the direct aftershocks are located on the north and south of the area with biggest 
coseismic slip. These patches of high productivity situated are close to but do not 
overlap with the area of the high coseismic slips. The feature has been observed 
for many large earthquakes.

5.2  Example 2: Complexity in the background rate: crime modeling

This example is related to the model used by Molher and others in modeling crime 
behavior. Studies using crime data based on point processes do not consider the peri-
odic components in the background rate. Since criminals are also human beings, their 
behaviors should be controlled by their biological clock and could be influenced by 
periodic social activity (Felson and Boba 2010). Thus, studies should account for peri-
odicity, for instance, daily periodicity and weekly periodicity, to build a more precise 
model.

(46)f (x;Si) =
∫
s
f (x − u) �i(x)�(dx)

∫
S
�i(x)�(dx)

,

(47)�i(u) ∝
∑

k

�ijkI(u ∈ Cj),

(48)�ijk =
�(mi) g(tk − ti) ∫Cj

f (xk − u;Si)�i(u)du

�(tk, xk) ∫Si �i(u)du
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Zhuang and Mateu (2019) use the following space–time point process model to 
describe the robbery data in Castollen, Spain, which they specify completely using a 
conditional intensity function

where A and �0 are the relaxation coefficients to estimate, the average values of the 
trend term �t(t) , daily periodicity �d(t) , weekly periodicity �w(t) , and spatial back-
ground heterogeneity �b(x, y) are all normalized to 1, and the temporal response g1 
and the spatial response g2 are normalized as p.d.f.s.

Though we cannot estimate the periodic components of the background rate in 
our model formulation directly using the stochastic reconstruction method, we can 
solve this problem using the spatiotemporal version of (2). Given a realization of the 
point process {(ti, xi) ∶ i = 1, 2, … , n} in a time–space range [T1, T2] × S , where t 
and x = (x(1), x(2)) denote time and location, respectively, the long-term trend term 
�t(t) in the background component can be reconstructed in the following way. Let

(49)�(t, x) = �0 �t(t)�d(t)�w(t)�b(x) + A∫
t

−∞ ∫S

g1(t − s) h(x − u) dN(s, u),

w(t)(t, x) = �t(t)�b(x)∕�(t, x)

0

1

2

3

4

13.0 13.1 13.2 13.3
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Umbria
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Lazio Abruzzi
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Mt. Gorzano

fault system

Max slip: 2.59 m

Fig. 1  (c.f. Zhuang et al. 2019) Comparison between the pattern of the productivity of direct offspring 
along the rupture areas (contour images) inferred by the finite-source ETAS model and coseismic slip 
(contour lines) for the Norcia earthquake (2016-10-30, Mw 6.5). The values of the coseismic slip from 
zero to the maximum for each event are indicated by contour lines from green to red in rainbow colors. 
The red stars represent the epicenter of the corresponding major earthquake, and the blue dots represent 
the locations of towns and cities in the area. The small black dots mark the locations of small events that 
occurred shortly after the corresponding major events. The traces of active faults are also plotted in black 
lines. The kinematic model adopted for the earthquake of Norcia (2016-10-30) is based on Chiaraluce 
et al. (2017)
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and f (t, x) = w(t)(t, x) , and substitute f into (35). Then, assuming that �t is smooth 
enough,

where Δt is a small positive number. For ease of writing, define

Then,

Similarly, we can reconstruct the other components in the background rate as follows

and

where

(50)

∑

i

w(t)(ti, xi) �(ti ∈ [t − Δt, t + Δt])

≈ ∫
T2

T1
∫S

w(t)(s, x)�(s, x) �(s ∈ [t − Δt, t + Δt]) ds dx

= ∫
t+Δt

t−Δt

�t(s) ds∫S

�b(x) dx

∝ ∫
t+Δt

t−Δt

�t(s) ds

≈ 2�t(t) Δt,

(51)w
(t)

i
= �t(ti)�b(xi, yi)∕�(ti, xi, yi);

(52)�̂�t(t) ∝
∑

i

w
(t)

i
�(ti ∈ [t − Δt, t + Δt]).

(53)�̂�d(t) ∝
∑

i

w
(d)

i
I

(
ti ∈

⋃

k∈ℤ

[t + k − Δt, t + k + Δt]

)
, t ∈ [0, 1],

(54)�̂�w(t) ∝
∑

i

w
(w)

i
I

(
ti ∈

⋃

k∈ℤ

[t + 7k − Δt, t + 7k + Δt]

)
, t ∈ [0, 7],

(55)�̂�b(x, y) ∝
∑

i

𝜑i �(xi ∈ [x − Δx, x + Δx]) �(yi ∈ [y − Δy, x + Δy]),

(56)w
(d)

i
= �d(ti)�b(xi, yi)∕�(ti, xi, yi),

(57)w
(w)

i
= �w(ti)�b(xi, yi)∕�(ti, xi, yi),



 Japanese Journal of Statistics and Data Science

1 3

(a) (b)

(c)

(d) (e)

(f) (g)

Fig. 2  (Modified from Zhuang and Mateu 2019) a A 3D plot of robbery-related violence in Castellon, 
Spain, 2012–2013. The rainbow colors show the times of occurrence, with red-colored points represent-
ing the earliest events and magenta ones the latest. b Estimated spatial background rate �b(x, y) . c Esti-
mated trend function. d Estimated weekly periodicity. e Estimated daily periodicity. f Estimated temporal 
response function. g Estimated spatial response function
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and Δt , Δx , and Δy are small positive numbers.
We can improve the above estimates, as well as the histogram estimate of the 

excitation terms, by introducing kernel smoothing with a correction of the edge 
effect. The details are available in Zhuang and Mateu (2019) and omitted here.

Zhuang and Mateu (2019) analyze robbery crimes in Castellon, Spain from 2012 
to 2013 and disentangle the different background components using the method 
described in this subsection, as in Fig. 2. Their results show that robbery crime is 
highly influenced by daily life rhythms, revealed by its daily and weekly periodicity, 
and that clustering can explain about 3% of such crimes.

6  Conclusion

In summary, this article discusses techniques for using the Hawkes process to inves-
tigate the causal encouraging correlation among discrete events. We can divide the 
whole process into 4 steps:

1. Model design. Design the model according to the features of the observation data, 
specifically the particular mathematical form of the Hawkes model (paramet-
ric, nonparametric, or semiparametric), which depend on the available empirical 
knowledge of the studied process.

2. Estimation design. Design the estimation according to the types of model forma-
tion, use the MLE method or the EM algorithm to estimate parametric model, 
and use stochastic reconstruction or Equation (2) to reconstruct the nonparametric 
components.

3. Improvement. Improve the estimation using kernel estimates or the Bayesian 
method.

4. Diagnosing the new model. The reconstruction method can be naturally used as 
a diagnostic tool to check whether it is possible to improve the model or not.

From the two examples in Sect. 5, we can see that a good rule to extend a Hawkes 
model is to account for the data features and physical mechanisms of each specific 
individual process. Once the direction of the model extension is determined, we can 
construct, estimate, and diagnose a new model using the stochastic reconstruction 
techniques together with some nonparametric estimation methods, among which the 
kernel function is efficient, straightforward, and easy to implement.
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