
24

Formal Specification and Design of
Distributed Systems

A. Diagni*) & P. Estraillier
Institut Blaise Pascal - Laboratoire MAS!- CNRS VA 818
4, place Jussieu, 75252 Paris Cedex 05, FRANCE
Phone Number: (33 1) 44 27 73 65, Fax Number: (33 1) 44 27 62 86
e-mail : { Alioune.Diagne,Pascal.Estraillier} @masi. ibp.fr

Abstract
To design Distributed Systems (DS), the advantages of integration of Petri Nets (PN) and
Object Oriented (00) concepts had been widely discussed in the literature. Some integrations
are mainly concerned with providing a formal basis for object oriented languages. Others focus
on combining the abstract data type of the object technology with Petri nets. In both
approaches the use of Petri nets is explicit so the resulting model diverges from the classical
00 technology. The aim of this work is to make use of the both paradigms in a multi-formal­
ism approach. We have a formal correspondence between a «pure>> 00 model derived from the
Reference Model of Open Distributed Processing (RM-ODP) and a Petri net modular model.
So specification, design and validation of DS can be considered in the 00 paradigm which is
most appropriate while verification is done in the PN paradigm for

Keywords
Distributed Systems, Specification, Design, RM-ODP, Petri Nets, Validation, Verification,
Simulation.

1 INTRODUCTION

Specification and design of complex Distributed Systems (DS) requires to undertake validation
and formal verification of such systems to manage their Quality Assurance (QA) [McG92].
Validation of a system consists of verifying the global coherence of its specification while ver­
ification consists of formal proof of structural and behavioral expected properties. The both
activities are necessary to build reliable systems and to perform tasks such as debugging and
testing at a symbolic level. They also allow one to enhance reuse of previously validated com­
ponents.

00 paradigm offers a seamless process along the DS life-cycle with a good correspondence
between its entities (class and objects) and the system's components. It gains also effective
legitimacy from standardizations such as RM-ODP to federate architectural needs [X901]. But

(*) This work is partially supported by the IRENA project (EU 389), involving MAS! Laboratory as academic
partner and Alcatel ISR, Emeraude and SLIGOS as industrial partners. IRENA has developed formal meth­
ods for quality engineering in distributed systems with added values Petri nets.

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

326 Part Eight Specification and Design Distributed Systems

it lacks of formal verification tools.

Our claim is not to define another 00 toolset supporting all phases from analysis to implemen­
tation. We aim to define an 00 template called OFClass. So we can shift from a classic 00
model to OFClass in order to undertake validation and verification (Figure 1).

The OFClass template supports the modeling of both structural and dynamical information.
Structural information is mainly the managed resources and dynamical information is local
transformations on those resources and interactions in the whole system. The integration of
these two conceptual modeling features allows smooth shift from many Object Oriented Anal­
ysis tool used for analyzing the domain requirements.

The model is solution oriented because first we do not deal with requirements analysis prob­
lems and second we aim to involve end-users as well as domain experts in the evaluation of the
proposed solution by early simulation.

The proposed object template - OFClass - supports design and specification of DS with an inte­
gration of the main concepts outlined in the RM-ODP framework. The requirement analysis is
supposed to have been done previously with another object model. OFClass is mapped to a
modular PN model called OF-CPN which supports the formal method and theory of the Petri
nets field. The OFC-PN model will be fully defined in Section 3. Properties are expressed on
the designed system and once the validation phase run successfully, they are formally verified.

Formal Methodology for Verification and Validation

Figure 1 The Go To and From between the OFClass Template and a given 00 Model

DS specification and design consist of describing the components, the interactions between
them and the properties expected from the system. A component is an entity managing
resources and performing processings which are its behavior. The components interact with
each other to exhibit the global behavior of the system. The properties we need to verify on
distributed systems are of two kinds:
• structural properties on the system components (resource conservation, service availability),
• behavioral properties on the whole system (deadlock-freeness, unreachable states, etc.).

These properties can be expressed as p-flows, liveness expectations and temporal logic asser­
tions on the underlying OF-CPNs and hence be formally proved using the PN theory and tools.
PN paradigm offers a powerful toolset dedicated to establish and prove properties dealing with
DS reliability and safety.

The formal specification of DS by means of PN is tackled by many authors:
• Sibertin-Blanc has defined a client-server model in [Sib93]. He points out in properties that
might be expected from interworking components such as honesty, discretion and reliability, a
class of concepts that suits particularly to DS components. These properties can be verified on
our OF-CPN model and will be conserved through their composition into a global PN.
• Lakos has also defined a generic modular PN model which supports the main concepts of
00 technology [Lak95]. The model has a descriptive power comparable to the 00 models. It
supports inheritance, polymorphism and dynamic binding. We choose to put those 00 concepts
on the OF-Class template but not on the PN model because they do not enhance the verification
phase.

Formal specification and design of distributed systems 327

In both cases, the global PN remains the sum of components and can have a very big size to
prevent using classical PN tools (the composition mode does not preserve local properties of
components except liveness of transitions in [Sib93]). We overcome this problem by the two­
level validation. In our approach, the OFC-PNs are first verified to check the structural and
some of behavioral expected properties. One this phase succeeded, we undertake simplifica­
tions on them by applying reduction rules [Had88]. Reduction is controlled to avoid loss of
necessary structural information. We then compose them by place fusion, so the previously
proved properties are conserved through all those transformations. The second level of verifi­
cation is achieved on the resulting global net to ensure the safety of interactions.

This paper demonstrates the suitability of building a specification framework based on the 00
and PN formalisms. The advantage of the multi-formalisms approach is to use in every phase
of the methodology the most appropriate paradigm. We specially target DS interworking by
demand-driven service invocation because of the class of interesting problems - directly
related to the quality of the design - it sets up but the methodology is still valid for any object
oriented specification and design for some adaptations.

Once the specification and design phases completed, we obtain a model of the DS as
OFClasses. The methodology (Figure 2) we propose is based on a semi-formal validation of
the global coherence an the completeness of the model in terms of fixed objectives and a for­
mal verification of expected properties after transformation in a dedicated PN formalism.

Refinements of the model can be led by the information produced by our methodology (Figure
1). In fact, the quality information combined with refinement on the knowledge domain can
introduce changes in some of the viewpoints and consequently in the model. The analysis
phase is not in our concerns but it can be restarted if the initial model is too poor in the eyes of
the quality information supplied on the model by our methodology.

Figure2

Quality Information
on the Model

The Distributed System Validation and Verification Formal Methodology

The OFClass template is presented in Section 2 through the DS specification needs while Sec­
tion 3 presents the PN formalism underlying the methodology. In Section 3 we also introduce
the formal correspondence between the two formalisms and the way properties on the OFClass
template are mapped on the OF-CPN model to be formally verified. The Section 4 presents the
validation an verification processes before conclusions in Section 5.

2 THE 00 SPECIFICATION AND DESIGN OF DISTRIBUTED SYSTEMS

Object Oriented technology is now widely used to specify and design DS because of the tight
similitudes between DS components and 00 entities (classes/objects) and the fact that 00
exhibits a seamless process along the whole life-cycle of the system. It is then possible to trace
requirements through the different phases of the DS life-cycle from analysis to maintenance
[Hay91]. Tracing the requirements allows an incremental evaluation and a smooth and safe
move from phase to phase. Several proposals had addressed providing better formality to 00
technology [Lop92], [Lin94] but none proposed a full support of QA in the earliest stages of
the life-cycle.

328 Part Eight Specification and Design Distributed Systems

ITU-T and ISO had proposed a RM-ODP as a framework for standardization and providing an
architecture for the support of distribution and interworking among other features [X901],
[902], [X903], [X904]. In [X903] It is stated that <<The RM-ODP is generic, that is, independ­
ent of, and equally applicable to, arbitrary application domains making use of, or requiring dis­
tributed systems technology. Specific application domains may consider refining and
specializing the RM-ODP to suit their particular needs, resulting in a model and standards for
the realization of functions and components identified in the specific reference model>>.

The OFClass template is derived from the RM-ODP while conserving a good level of general­
ity to stay a generic model for the DS specification. It is specially design to support the early
evaluation of expected properties from the designed systems. We will show how the RM-ODP
concepts are adapted to the OFClass as and when required in the remainder of the paper.

2.1 Specification and Design of a DS

Specification and design of a DS consists of describing the components one by one and the
properties expected from them and from the whole system. Some of the components of a DS
may already exist and then they are imported and make up the environment of the system.
They are accessed across bounded interfaces and are considered to be valid. The environment
of the current component (Figure 3) is the one of the system and the other system components
it is interworking with.

Each component manages resources, offers services to the environment and has an abstraction
on the others. This abstraction tells the way the remote resources might be accessed. It is
defined through offered services by the environment. Each component defines for that purpose
its user-manuals, i.e. the allowed sequences of its operations as services it offers. Each user­
manual gives a coherent partial view on the component behavior and determines some of its
usage constraints. It is first a compromise between the Enterprise viewpoint and the Infor·
mation viewpoint of the RM-ODP in the sense that it is determined by the global scope of the
DS to be designed and the semantics of informations handling in the DS.

In addition, a component must enhance the encapsulation towards a maximum locality on
specification and design but also on verification and validation. So it must have locally a truth­
ful abstraction of the interworking ones in order to proceed local evaluation by making hypoth­
eses on the environment. The hypotheses are made on the safety and reliability of the
mechanisms allowing to support distribution with the right technological choices. In other
words, the local abstraction also includes the Engineering and Technology viewpoints of the
RM-ODP.

The fact of localizing the main viewpoint at the component level is an arbitrary choice we
make in order to validate and verify components one by one before the whole DS. The choice
is warranted by the following statement in [X903]: <<Viewpoints can be applied, at an appropri­
ate level of abstraction, to a complete ODP system, in which case environment defines the con­
text in which the ODP system operate. Viewpoints can also be applied to individual
components of and ODP system, in which case the component environment will include some
abstraction of both the system environment and other system components>>. The component
correspond to a class -in the 00 paradigm sense - of basic computational objects of RM-
ODP. .

A DS can have integrity constraints - the properties it must exhibit - which might be observed
along its life. Properties expected from aDS can be expressed as invariants -like in RM-ODP
[X903]. Some information is added to the model of the DS in order to observe the properties
and functionalities it exhibits. This information is used to initiate interactions with the system.
They model the observation facilities (Figure 3).
A component in a DS is a set of isolated entities - called instances - managing similar
resources and offering similar services. Resources are the informations held by the component
whose values determine the state of that component. Services are allowed processings per­
formed on the resources on behalf of interworking environment with the usage constraints on
them (Figure 4).

Formal specification and design of distributed systems 329

Figure 3 The General Model of a Distributed System.

Processings on the resources are called operations like in RM-ODP and consist of a set of ele­
mentary actions - basically resources accesses and modifications - executing a given semanti­
cal transformation. Precedence between operations in a service allows to obey the integrity
constraints on the values of the resources and then make the component move safely from state
to state. A service is held by a component called provider (the RM-ODP server object) and
the components accessing it are called consumers (the RM-ODP clients objects). The service
concept is not depicted in RM-ODP but we need it to have more formal interfacing and hence
more reliable interworking.

2.2 Specification and Design of a Component
A component can also trigger some processings when reaching some meaningful states or
when some events occur during interworking with the environment. These processings are
slightly different from operations in the sense that they are not involved in services and can not
be invoked by consumers. They model the autonomy of a given component. They are called
triggers and exceptions and have no corresponding in RM-ODP concepts. Triggers bear even­
tually preconditions i.e. predicate on the resources values specifying the state in which they are
executed. Triggers and exceptions can undertake interworking with the environment. Opera­
tions, triggers and exceptions are called processes in short.

.... 1~1

Figure 4 The Basic Model of a Distributed System Component.

2.2.1 Specification and Design of the Resources managed by a Component.
The resources managed by component are simple - even composite - informational entities
with zero or many variables and the methods for their access and modification. The methods
attached to a given resource can issue invocations and announcements to the environment to
access other resources external to the component they belong to. They can also invoke directly
the access methods of other resources of the same component. These methods are the only

330 Part Eight Specification and Design Distributed Systems

access points to the corresponding resources and are encapsulated in the operations of offered
services. They are accessible from the environment through the operations.

A resource can be shared by the community of instances of the managing component or dupli­
cated, each instance managing one copy. Unless otherwise stated, the resources are duplicated.

2.2.2 Specification and Design of the Behavior of a Component

The behavior of a component is given by the structuring of its processes and services. The
processes are the sequences of elementary actions performed by the component on its local
resources and interactions with the environment. There are some differences between proc­
esses according to their aimed purpose:
• the operations are processes accessible from the interface of the component. They can be
invoked by the environment and have a return code. They can issue calls to access methods of
the local resources and terminations to the environment. The remote resources are accessed
through the operations of their managers,
• the exceptions are processes executed by the component on some terminations of invoked
external operations. They are local to the component and can not be invoked by the environment
but they can issue invocations and announcements to it. They have no return code,
• the triggers are processes automatically executed whenever the component reaches some
state. As for exceptions, they are not invoked by the environment but they can issue invocations
and announcements to it. They have no return code. Moreover they bear a precondition which
is a predicate on the values of the component resources and which specifies the triggering state.

Operations have one entry point and one or many exit points according to the execution con­
text at the provider side. The entry points of operations are accessible from the environment by
consumers of services encapsulating it. On the contrary of operations, exceptions and triggers
have one entry points but no exit points and their entry point are not accessible from the envi­
ronment.

Processes are specified by full description of:
• input/output parameters and local-variables (return code is an output parameter),
• for triggers, the eventual precondition guarding the availability,
• the sequence of elementary actions realizing the body of the process.

Parameters represent informations supplied by a consumer in order to invoke an operation of a
service while local variables are useful in actions description. Parameters and variables are
described by giving their name and the type of values they must bear.
Precondition is a predicate on values of resources. Precondition enforces integrity constraints
of a component. A trigger is executed if and only if holder is in a given state.

The description of the body for a process allows sequential and parallel compositions of ele­
mentary actions as well as loops and conditionals.

Service specification consists of giving the control-automata that describes the precedence
constraints between operations [Kat95] and their signature. The control-automata describes all
the parallel and sequential composition of operation-calls accepted by the provider. The con­
sumer must issue requests according to the allowed sequence only. The sequencing of opera­
tions is the way we put control on the integrity of resources managed by the component. The
accepted sequences of operations make the resources move between safe states.
A service can be attached to some instances which perform it; this is a way to design cooperat­
ing sub-systems such as replicated servers. The dedicated instances - if any - must then appear
in the description of the service. Otherwise, the policy of cooperation used by the provider
instances to handle incoming invocations must be defined at the provider side. The provider of
a service also gives the invocation semantics (see Section 2.2.3) that are allowed to the con­
sumers.
2.2.3 Specification and Design of the Interworking

Interworking is achieved by means of specification proxies which are the adaptation of the

Fonnal specification and design of distributed systems 331

stub-objects of RM-ODP. A specification proxy is an abstraction of a provider local to a con­
sumer. Interactions with a given provider are addressed to its proxy. The major interest of spec­
ification proxies is to have a truthful abstraction of environment local to each component. At
the design level local proxies can be overloaded in order to process invocations as if they were
forwarded to the provider (without ensuring any constraint at the provider side) and return ter­
minations, so stand-alone validation can be run with this abstraction respecting some given
hypotheses on environment.

The provider of a service creates and exports a specification proxy carrying information about
the service such as:
• the signature of the involved operations and their return code type to indicate their invocation
constraints,
• eventually instances to address for performing the operations of the service.

A consumer of a service imports the right specification proxy and add information on return
code treatment indicating processing that can be triggered after a call and the mode of invoca­
tion it would use (cf. the remainder of this Section). Some return codes can trigger exceptions
at the consumer side. An exception is an internal method that restores some local context or
performs some processing. The concept of interceptor which links the binding objects in RM­
ODP is not used in our model. It is assumed to correspond to the message passing mechanism
of the 00 technology.

The design of interworking includes also the definition of different semantics of invocation
between objects. The main problem one faces in designing DS is the asynchrony of events
occurring in it. It is then very important to fully specify the way occurring events, mainly inter­
actions, are handled. Interactions are basically invocations sent by consumers and termina­
tions sent by provider once the operation performed. Some invocations do not require any
termination and arc called announcement. Many terminations may correspond to one invoca­
tion for instance in the case of a consumer subscribing to an event that is delivered each time it
occurs. Invocation, terminations and announcement concepts are those of the RM-ODP.
The interworking is under respect of some invocation semantics:
• Synchronous RPC: the blocking of the consumer between the invocation and the termina­
tion allows one to model the synchronism at the consumer side,
• Asynchronous RPC: the consumer can keep on processing after sending an invocation and
while waiting for the termination; it realizes then asychronism,
• Synchronous Rendez-vous: such a need is pointed out in DS design in order to model a
strong synchronization between two components or instances to compute some «partial global
state». It is achieved by a <<rendez-vous» which requires the involved components to be in given
states to get place.

The invocation semantics attached to a service by its provider are contractual constraints
[Hel90] the consumers must observe. It is the environment contract in RM-ODP.
2.3 The Object Model: OFCiass Definition Template

The OFClass template integrates the main concepts of 00 paradigm. It allows one to build composite
components from simple ones or to refine existing components. Hereafter is the template for the OF­
Class(*):

<identifier> isa OFClass
interface

[refines <refined OFClass identifier>
[drop-processes {<.selector of operation to drop>}]
[drop-services {<selector of service to drop>}]
[drop-resources {<selector of atTribute to drop>}]]

[includes {<identifier of OF Class involved in composition> instances {instances of the component}} J

(*) [... j means that the enclosed item is mandatory. { ... } means that the enclosed item can be repeated once or many
times. < ... >means that the enclosed item is user-supplied.

332 Part Eight Specification and Design Distributed Systems

[uses
{<provider identifier> service <service~identifier>

{operation <requested operation selector> invocation-mode <synchlasynchlrendez-vous>
[{accept-return <return-value expected> do <continue/exception>} 1
default -return do <continue/exception>}

l
[exports

{service <service-ident(fier> operations <involved operations signature> automata <control-automata>
[performed-by (<identifier of instance that performs the service's operations>)]

invocation-mode <synchlasynchlrendez-vous>

structure
instances {<identifier of instance>}
resources { type <resource type> selector <resource selector> default< value> shared !duplicated

[composition {<previously defined resources of the current component>}]
{access~ methods <access-methods-selector> begin <access-method-body> end}

)
[constructor begin {<actions for initialization>} end]
[destructor begin {<actions for destruction>} end]
processes

[{<process selector>

)]

[triggered-on <predicate guarding the process execution in case of a trigger>]
[returns <return-code type of the process>]
[local-variables {type <local-variable type> selector <local-variable name>)]
finput-parameters {type <parameter type> selector <parameter name>}]
[output-parameters {type <parameter type>

selector <parameter name> default <default returned value>}]
begin [(<actions realizing the hody of the process>)] end

invariants
[{<equational statements on resources>}
[{<availability constraints on operations>} J

3 THE OF -CPN FORMALISM

The OFClass template is dedicated to design components of a DS and allows loose and tight
coupling between them. We now propose a method for validation and verification of
OFClasses based on the PN paradigm. It is then necessary to map formally the OFClass on a
modular PN, The structure of the used modular PN will allows us to model the main aspects of
the OFClass template (interface and structure), The invariants are assumed to be the expected
properties on the modeL They are expressed as flows and livelocks the OF-CPN must exhibit.

3.1 Some Modular Approaches in the colored Petri nets paradigm

Hierarchy and modularity supporting are two growing fields in the PN literature. These fea­
tures provide framework for modular specification of complex systems in both top-down and
bottom-up approaches. Their main objective is to fulfil lack of compositionality which is a
weakness raised against PN formalisms [Jen90]. Several formalisms are proposed such as:
• Modular Net [Bac93] is a version of the colored PN model dedicated to modeling behaviors
of active objects. Modules model internal states with attributes and communicate by interfacing
transitions.

Cooperating and Communicating Nets [Sib93], [Sib94] connect loosely-coupled compo­
nents with formal protocoL 00 concepts such as localization and communications across
bounded interfaces are implicit. Asynchronous semantic of objects interactions are the only
ones to be supported.
• The Object Petri Nets formalism [Lak95] supports complete integration of 00 concepts in­
cluding inheritance, polymorphism and dynamic binding to PN. Concepts of super places and
super transitions enable the support of synchronous and asynchronous communications.

For the scope of this work, we will choose an hybrid approach of those depicted below. We
will use both places merging and series transitions fusion (see Section 3.5) to achieve synchro­
nous, asynchronous and rendez-vous interactions between OFClasses for the convenience of

Formal specification and design of distributed systems 333

distributed systems needs. Tokens color domain allows an instance of an OFClass to choose
dynamically partners for interactions. OF-CPN is the modular colored Petri net we use to
model OFClass behavior.
Analyses can be performed on local sub-nets for almost all kind of composition in an more
efficient way than on the global nets [Buc94] , [Mur94], [Chr95]. The main results that can be
proved on sub-nets such as liveness and flows are preserved by the kind of composition we use
(places merging and series transitions fusion). So state explosion in complex systems modeled
by very big nets can be overcame by the <<divide and rule>> principle.
3.2 OF-CPN: Definition and General properties

We give here some notations on colored Petri(*) nets used throughout the remainder of the

paper. Given a set E, E* is the set U En where N is the set of natural. For two sets E and F,
nE N

E x F is the cartesian product. A color class is a finite non empty set whose elements are
called colors. There is one special color class which is an empty set called NULL. A domain
is one color class or a cartesian product of a finite number of color classes, its elements are also

called colors. If E is a set and f: E -7 N a function such C1 (N\ { 0}) cF- 0 and is finite, f is
called a multi-set and noted MSet(f) or I, f (e) · e. Bag(E) is the set of all finite multi-sets

e E E
over E.

A colored Petri net (CPN) is a 8-uple <P, T, Dom, Type, Pre, Post, Guard, M0 > where
• P is a finite and non empty set whose elements are called places,
• Tis a finite and non empty set whose elements are called transitions with (P n T) = 0,
• Dam is a finite and non empty set whose elements are domains,
• Type: PuT -7 Dam where Type(x) is the color domain of x,
• for each (p,t) E P x T, Pre(p,t), Post(p,t): Type (t) -7 Bag (Type (p)) the input and out­
put functions if they exist,
• for each t E T, Guard(t): Type (t) -7 {true, false} the predicate associated with transition
t. The default value is Guard (t) = true,
• for each p E P, M 0 (p) E Bag (Type (p)) , M0 is the initial marking of the net.

A marking of the net is an injection M: P -7 U Bag (Type (p)) which verifies:
pEp

M(p) E Bag(Type(p)) foreachpinP.

Firing rule: a transition is enabled for a color c in marking M - what we note M[t,c> - iff
Guard (t) (c) A 'If (p E P), M (p) ~Pre (p, t) (c) . The firing leads to a new marking N =
M[t,c> defined by N (p) = M (p) + Post(p,t) (c)- Pre(p,t) (c). The color cis often omit­
ted in the notation.

A sequence of transitions is an element ofT*. Given two sequences cr 1 and cr2, cr2 is a sub­
string of cr1 if there is cr3 and cr4 such that cr1 = cr3cr2cr4 . For a sequence cr and a subset T" ofT,

O'rr· is the set of substrings of cr which are elements ofT'*. FortE T, and cr a sequence, cr(t) is
the number of occurrences of t in cr. For two markings M and M', we note

L(M,N) = { crjM [cr > N]} i.e. the set of sequences leading from M toN. A sequences is
allowed iff there is M and N markings such that cr E L(M,N) .

Places and transitions are also called nodes. For a given node x, X. denotes the set

(*) For the Petri nets vocabulary and basic notations see respectively [Mur89] and [Sib93].

334 Part Eight Specification and Design Distributed Systems

{y E P, Pre(y,x)exists} which is the set of its predecessors the and ~ the set
{y E P,Post(x,y)exists} which is the set of its successors.

Definition 1: The OF-CPN Model.
An OF-CPN is a 7-uple 0 = <Net, AcP, De?, ReP, GeP, BeT, ReT> where:

Net is a Petri net,
AcP is a subset of the set of places of Net whose elements are called the accept-places
and for each p in AcP, p is a single included in BeT and p = 0,

DeP is a subset of the set ofplaces of Net whose elements are called the deliver-plac­
es and for each pin DeP, p is included in ReT and p = 0,

ReP is a subset of the set of places of Net whose elements are called the request-plac­
es and for each p in ReP, p = 0,
GeP is a subset of the set of places of Net whose elements are called the get-places
and for each pin GeP, p = 0 and p is included in ReT,

BeT is a subset of the set of transitions of Net whose elements are called the begin­
transitions and for each tin BeT, ! is a single included in AcP,
ReT is a subset of the set of transitions of Net whose elements are called the return­

transitions and for each tin ReT, t is a single included in DeP,
there is a bijectionS: AcP ---7 DeP,
there is a bijection R: ReP ---7 GeP,

AcP, DeP, ReP and GeP are pairewise disjoints as well as BeT and ReT.

The OF-CPNs are individual components interfaced with the environment (other OF-CPNs)
by sink (i.e. without successors) and source (i.e. without predecessors) places, and transitions
connected to those places. Source places model incoming informations (invocations and
announcements) while sink places model outgoing informations (invocations and termina­
tions).

Places merging and series transitions fusion is the way we make components interwork
because it preserves local properties on components [Mur89], [Sou90], [Val94]. Merging sink
places at the consumers side with right source places at the provider side achieve the interac­
tions between them by message passing (cf. Section 3.5).

There is a one to one correspondence between the accept-places and the deliver-places called S
and another one between the request-places and the get places called R. The inverse of these
bijections are equally called with the same names. Their signification will be highlighted later
in Section 3.4. The set of all OF-CPNs is noted e.

We are now able to deal with the properties Sibertin-Blanc points out on components in
[Sib93]. We must before establish the correspondence with specification concepts on the
OFClass model.

3.3 Tracing Component Properties from OFCiass to OF-CPN

Reliability properties are defined on components and influence the global interworking in the
system. They determine the correctness of interworking sequences. ·

Definition 2: Consumer Basic Properties
An OFClass acting as consumer is honest if each expected termination of an operation
call from a provider corresponds to one and only one previous invocation of that oper­
ation. An OF Class acting as consumer is discreet if any termination sent by a provider
corresponds to one and only one expectation of that termination.

A honest consumer only expects terminations for the previous invocations it sends to its pro­
viders. The discretion property enforces consumers to request all the terminations issued by the
providers in response to their invocations.

Formal specification and design of distributed systems

Definition 3: Provider Basic Properties
An OFClass acting as a provider is honest if each outgoing termination corresponds to
one and only one previous invocation of that operation. An OFClass acting as a provider
is reliable if each accepted invocation of an operation from a consumer corresponds at
least to one later termination.

335

A reliable provider gives at least one termination for each accepted invocation from its con­
sumers. The reliability of providers is a vital property to the non-blocking of the whole DS. A
honest provider does not issue undue terminations.

We now define the honesty, discretion and reliability on the OF-CPN model.

Definition 4: Consumer Basic Properties in OF-CPN
An OF-CPN modeling a consumer is honest iff for each allowed a in T, a verifies:

'li (p E GeP) 'li (t 1 E p) (a (t1) ~ L a (t2)} In other words, the allowed se­
t2eS(p)

quences of transitions contain less terminations scans than invocations.
An OF-CPN modeling a consumer is discreet iff:

'li(p 1 e ReP)'Iih e p1)(3(ae T*)) (3(t2 e R(p))) (t1at2) is an allowed se­

quence. In other words, each invocation corresponds to a termination scan.

Definition 5: Provider Basic Properties in OF-CPN
An OF-CPN modeling a provider is honest iff for each allowed a in T, a verifies:

'li (p 1 e AcP) 'li(t 1 e p1)(a (t1) ~ L a (t2)). In other words, the allowed se­
t2e S(_P)

quences of transitions contain less return-transitions than begin-transitions.
A OF-CPN modeling a provider is reliable iff:

'li(p1 e AcP)'Ii(t 1 e p1)(3(ae T*)) (3(t2 e S(p))) (t1at2) is an allowed se­

quence. In other words, each accepted invocation can be processed.

Honesty is a very strong property for instance in case of subscribing to an event which is noti­
fied whenever it occurs. In such case there are many terminations sent for one invocation at the
provider side and the consumer must scan them all, so it has many termination scans for the
same invocation.

3.4 Modeling the Dynamics of an OFClass with OF -CPN

In [Hei92], Heiner studies thoroughly the transformation of code statements into PN concepts.
The correspondence between basic code statements (like sequencing, loops and conditionals)
and interworking semantics (like many variations of synchronism and asychronism) in one
hand and PN concepts in the other is shown. We will use those correspondences to transform
the statements in the language of our template into PN concepts.

Transformations into PN Concepts

From the interface of an OFClass, we can extract the contracts established between compo­
nents. Each exported service is associated with a non-empty set of access semantics. Each user
of that service declares the access-semantic chosen in that set for each of the operations. So we
know for each operation the set of clients and how they use it.

Each operation at the server side is associated to an access-channel. The access-channel is
exported to the community of clients. At client side we state the following rule:
• for synchronous and asynchronous accesses, the access-channel is shared by the community
of clients. Invocations are distinguished by the color of circulating tokens (invocations carry the
identity of sender and terminations carry the identity of the recipient).

336 Part Eight Specification and Design Distributed Systems

• for rendez-vous accesses the access-channel is duplicated as many as there is such clients.
For each client, the channel is again duplicated as many as it is invoked. The rendez-vous se­
mantic is realized by a series-transitions fusion [Had88].

Places of access-channels have color domains determined by the parameters of the correspond­
ing operation. The automaton for an offered service is transformed into a free-choice Petri net
and exported to the clients.

The structure transformation is based on the method developed by Heiner in [Hei92]. This
method studies thoroughly the transformation of the main of code statements into Petri net
items.

Resources of a component, parameters and variables of its operations and triggers are modeled
by places. The color domains of such places are determined by their types.

The elementary local actions of operations and triggers are transformed to transitions. Places
are connected to transitions according to transformations performed. Arcs are valuated by
color functions that traduce those transformations.

The transitions corresponding to invocation issues and termination scans are connected to
places of access-channels imported from the right server. They are also connected to places
modeling parameters of the interactions. These transitions are merged with the ones modeling
the corresponding operation (or its duplicate in case of multiple invocations) in the Petri net
describing the automaton of the enclosing service. So the component respects the contractual
constraints on the interworking.

For each operation, a begin-transition is added. It has the input-place of the access-channel as
input place and the places corresponding to input parameters as output places to perform their
initialization. The arcs are correctly valuated to propagate the values of parameters. Each tran­
sition corresponding to the action return that ends an operation is connected to the output place
of the right access-channel.
Coloration
Once the structure of the OF-CPN built, we take into account the features related to circulating
information. For instance, many requests issued by different clients must be distinguished at
the server side. For that reason, we apply the coloration procedure. It is useful to give to circu­
lating tokens a color that indicates their origin and destination. The coloration procedure has
three constraints to fulfil:
• duplicated local resources are colored to know their managing instance,
• parameters are colored to know which client had sent them in an invocation,
• variables are colored to know to which operation or trigger they are attached.

The coloration procedure modifies color domains of places according to these three constraints
above. It allows one to make the many instances of a given OF-CPN to share the same struc­
tural skeleton.

3.5 Modeling lnterworking with OF-CPNs
Interworking is achieved by merging the access-channels of providers and consumers with
respect of the typing (color domains for places). This composing procedure is called inter­
working-composition. Source places at one side are merged with sink places at the other and
vice versa.

Definition 6: lnterworking in the OF-CPN Model
lnterworking is defined by the binary relation Uses on 0 X 0 as following:

Op 02 E e' 01 Uses02 {=} 3 (u) ReP(01) 4 Acp (Oz) vl p E u - 1 (AcP (Oz))).

wehave: (Type(p) =Type(u(p))) A (Type(R(p)) =Type(S(u(p)))).

The binary relation Uses maps access-channels of consumers on those of providers in way that
enables the merging. The correspondence between request-places of the consumer with accept-

Formal specification and design of distributed systems 337

places of the provider is extended to their associated get-places and deliver-places respectively.
The type matching associated with the application u through the bijections R and S enables to
merge the places.

For a given OF-CPN 0 1, we note Uses(Op E>) = { 0 2 e E>IUses(Op 0 2)} the set of pro­

viders for 0 1, and Uses(E>, 0 2) = {01 e E>1Uses(Op 0 2)} the set of consumers for 0 2.

The resulting OF-CPN after interworking-composition of 0 1 and 0 2 is noted U(01, 0 2).

3.6 Local Properties Preservation by Interworking

We now have to show that the local properties of components are conserved by the place
fusion we use to compose them into clusters of interworking components. An OF-CPN mode­
ling a provider (resp. a consumer) is told «Well behaving>> if it is honest and reliable (resp. hon­
est and discreet).

Proposition 1: Conservation of the Basic Properties of a Consumer through lnterworking

For an OF-CPN modeling a consumer, honesty and discretion are conserved through interwork­
ing-composition with one or many well behaving providers.

Proof

We will give the proof for one consumer composed with one provider and the generalization is
straightforward.

Let cons be an OF-CPN modeling a consumer, we consider here that Uses(cons, E>) is not
empty and let prove Uses (cons, E>).

Let us prove first the honesty conservation. We have Uses(cons, prov), hence there is an appli­
cation

u: ReP (cons) --7 AcP (prov) that defines the merging.

We consider the sets:

-1
Po= (ReP(cons) uAcP(prov)) -u (AcP(prov)) and

P1 = (GeP (cons) u DeP (prov)) - R(u -l(AcP (prov))) where u is the application defined
above. We must prove the honesty on the sets P 0 and P 1.

Let p e P 1 , t e p and cr e T* where T is the set of transitions on the resulting OF-CPN after

interworking composition, we consider cr, = <Jrr(prov) and Oz = <Jrr(cons):

cr1 respects honesty on prov and cr2 respects it on cons. Hence cr respects honesty.

Let us prove now the discretion always on Po and P1.

Let p e P 1 and t e p, discretion is respected with some sequence in T(prov) or in T(cons)

which are subsets ofT. Hence discretion is respected.

The generalization to Uses(cons, E>) is possible because if prov1 and prov2 are providers for
cons then prov2 is still a provider for U(cons, prov1).

Proposition 2: Conservation of the Basic Properties of a Provider through lnterworking

For an OF-CPN modeling a provider, reliability and honesty are conserved through interwork­
ing-composition with one or many well behaving consumers.

Proof

As for the previous proposition, the proof is given for one provider composed with one consumer. The
proof here is exactly the same that in Proposition 7.

338 Part Eight Specification and Design Distributed Systems

4 THE VALIDATION AND VERIFICATION OF A DS

4.1 Validation of a DS

Validation of a DS is run on the OFClasses to check the global coherence and completeness of
the model. It is done part with non PN oriented tools and is semi-formal. It consists of:
• check the coherence of interfaces to see if the model is fully specified,
• compute the graph of invocations to detect in the earliest faults like trivial deadlocks.

Validation gives a first information about the quality of the model. It is not worth to undertake
formal proving activities on a model that does not fulfil expectations like completeness and
global coherence. This first step is non-formal but it is a previous and necessary step to the
more formal ones.

4.2 Verification of a DS

The verification of DS in run using PN tools. Its objective is to prove properties expected from
the target system such as resources conservation, existence of some interesting states for the
DS and safety of interworking. Verification of specifications consists of:
• prove formally local properties such as resources conservation, availability of offered servic­
es and respect of directions of use enforced by providers on required services,
• prove formally global properties such as safety of interactions (i.e. detect non trivial dead­
locks caused by concurrence) and also find the meaningful states,
• perform simulation on the model to make sure it matches the logical expectations of its end­
users.

The major drawback of PN tools is the combinatorial explosion for complex systems modeled
by big nets. To shape it, we will undertake a two-level verification. OFClasses carry sufficient
informations to have a local and truthful abstraction of the whole system for some postulates. It
is hence interesting to use such informations in order to verify properties on a component that
are conserved on the whole system. This level is called fine-grained verification. Once those
properties verified, simplifications can be made on components. For instance, it is no longer
worthy to deal with the detailed design of processes because the main concern now is the inter­
working between components, we can therefore consider interactions between components as
the atomic verification step. This second level is the coarse-grained verification.

4.2.1 Fine-Grained Verification

At this first level, we deal with properties local to a given component. We can compute p-fiows
[Cou93] that model resources conservation and reachability graph for liveness properties. The
p-fiows are conserved through interworking composition [Sou90]. The graph local to a compo­
nent carries information about liveness of local transitions and reachability of states of the
component.

We can complete the local graph by an abstraction of the environment, so we obtain a self con­
tained component for the postulate that the environment is well-behaving. We sketch the infor­
mation expected from environment by overloading the specification proxies but we do not
ensure how this information is produced. This postulate allows one to enforce continuity
among operations according to defined exported services. Further information can be deduced
from the completed component like some new reachable states introduced by the interactions.
Moreover, the basic properties of components (honesty, reliability and discretion) [Sib93] can
be proved at this level on the reachability graph. We can detect local deadlocks in a component.
The local home state, if any, predict the ability of a given component to restart and make some
services always available.

4.2.2 Coarse-Grained Verification
Once the fine grained level verification achieved, behaviors of components can be shrunk to
simplify local features. For instance it is no longer worthy to deal with detailed operations exe­
cution including elementary actions as processing steps. The OF-CPNs can then be simplified.

Simplification consists of applying the reduction rules [Hadd88] while respecting the follow-

Formal specification and design of distributed systems 339

ing principles:
• we avoid the reduction rules which skip away shared places or transitions. This allows to
continue to clearly identify the interworking,
• we avoid the reductions rules which skip away transitions with guards because they model
the control on components and hence on the application.

Here the major concern is safety of interactions between components. In [Chr95], Petrucci &
Christensen have proposed a way to compute global properties from the local reachability
graphs. We prefer this method to the ones exposed by Murata & Notomi in [Mur94] and by
Valmari in [Val94] because it shapes infinite state spaces and it handles place fusion.

Global properties worth to be studied are:
• home state for the whole system (i.e. state interesting for restarting),
• deadlock freeness of interactions (i.e. no global deadlocks caused by concurrence),
• fairness of resources access in the whole system (i.e. accesses do not suffer from starvation),
• liveness properties through interworking (i.e. allowed sequence of service execution).

Simulation of the whole system can stand for model animation. It is a way to involve end-users
in evaluating the behavior of the specified system. Eventual faults in the design can then be
detected and corrected in the earliest by refining the model.

5 CONCLUSIONS AND FUTURE WORKS

This work has enhanced the RM-ODP with a formal basis for validation and verification. The
multi-formalisms approach undertakes each of the processes in the most appropriate field of
study. So specification, design and validation are achieved in the 00 domain while verification
is formally done in the PN domain. Specification must be oriented towards the expected results
i.e. that concepts like safety and reliability must be expressed as properties and verified in the
earliest phases of the life-cycle. These concepts are often known from the analysis of the
requirements domain as expected properties on the target system. We guarantee that the built
systems will not diverge from those properties. The use of PN is implicit and the correspond­
ence with 00 is made formal. So engineers involved in the specification and design activities
do not need to win up the PN theory and practise.
Instead of modeling complex systems by big nets, we use the two-level approach in verification to man­
age them, what was not possible before when using the analysis tools - reachability graph for instance -
on the raw net. This two-level approach enhances the possibility to store validated components as reus­
able libraries. Enhancing reuse in OS specification and design is way to involve more experts working
independently from each other at this stage.

Components structure and dynamics are modeled in a solution-oriented way that allows via simulation
to involve end-users in early phases of analysis and modeling. Components validation with abstraction
of it's environment is a way towards managing libraries of validated entities and enforcing of reuse in
specification and modeling.

This model is under stand-alone development and test before integration in the MARS Methodology
[Est92] supported by the AMI framework. Prototyping can be achieved in a satisfactory way because of
the formal semantic of the template and will be one of our next concerns. We therefore need to transform
OFClass into a more operational formalism called H-COSTAM (Hierarchical COmmunicating STAte
Machine) developed in our laboratory and which is better oriented towards code generation [Kor94].

Our approach is led by the RM-OOP one. We do not have any expectations neither from the domain of
the target systems nor from the software engineering methodology. We can therefore prove properties
suited to any OS in the limits of the semantic of PN structural and dynamic properties. We are foreseeing
integration of other formal methods (theorem provers) for validation of elaborated collaboration in OS
like negociation.

The current model does not take in account the stream and signal interactions outlined in RM-OOP. It is
because we only target OS interworking by service invocations. We are now extending the model toward
these features to support specification of applications like telecommunication services that handle them.

340 Part Eight Specification and Design Distributed Systems

6 REFERENCES

[Bac93] H. Bachatene & J.M. Couvreur, «A Reference Model for Modular Colored Petri Nets», In
Proc. IEEE/System Man and Cybernetics Int. Conf., Le Touquet, France, October 1993.

[Buc94] P. Buchholz, <<Hierarchical High Level Petri Nets for Complex System Analysis», In Proc. 15th
Int. Conf. on Applications and Theory of Petri Nets, Spain, June 1994, LNCS 815 PP. 119-138.
[Chr95] S. Christensen & L. Petrucci, <<Modular State Space Analysis of Colored Petri Nets», In Proc.
16th Int. Conf. on Application and Theory of Petri Nets 1995, Italy, June 1995, LNCS 935, PP 201-217.
[Cou93] J.M. Couvreur, S. Haddad & J.F. Peyre, <<Generative Families of Positive Invariants in col­
ored Nets Sub-Classes», In Advances in Petri Nets 1993, G. Rozen berg Ed. LNCS 674, PP. 51-70.
[Est92] P. Estraillier & C. Girault, <<Applying Petri Net Theory to the Modeling, Analysis and Proto­
typing of Distributed Systems», In Proc. IEEE/SICE Int. Workshop on Emerging Technology for Factory
Automation, Australia, August 1992.
[Had88] S. Haddad, <<A Reduction Theory for Colored Petri Nets», In Proc. 9th European Workshop
on Application and Theory of Petri Nets, Venice, Italy, June 1988, LNCS 424, PP. 209-235.
[Hay91] F. Hayes & D. Coleman, <<Coherent Models for Object Oriented Analysis», In Proc. OOPS­
LA'l991, Phoenix, Arizona, USA, PP. 171-183.
[Hei92] M. Heiner, <<Petri Net Based Software Validation, Prospects and Limitations», Technical Re­
port TR92-022, GMD/First at Berlin Technical University, Germany, March 1992.
[Hel90] R. Helm, l.M. Holland & D. Gangopadhyay, <<Contracts: Specifying Behavourial Composi­
tion In Object Oriented Systems», In Proc. OOPSLA'l990, Ottawa, Canada, October 1990, PP.l69-180.
[Hen90] B. Henderson-Sellers & J.M. Edwards, <<The Object Oriented Systems Life Cycle>>, In Com­
munications ACM, 33(9), September 1990, PP. 142-159.
[Jen90] K. Jensen, <<Colored Petri Nets: A High Level Language for System Design and Analysis>>, In
Proc. Advances in Petri Nets 1990, New York. 1990, LNCS 483, PP. 342-416.

[Kat95] J.P. Katoen, «Causal Behaviours and Nets», In Proc. 16th Int. Conf. on Application and The­
ory of Petri Nets 1995, Torino, Italy, June 1995, LNCS 935, PP 258-277.
[Kor95] F. Kordon & W. El-Kaim, <<H-COSTAM, a Hierarchical COmmunicating STAte-Machine
Model for Generic Prototyping>>, In Proc. of the 6th Int. Workshop on Rapid System Prototyping, Trian­
gle Park Institute, N. Kanopoulos Ed., IEEE Comp. Soc. Press 95CS8078, PP 131-138.

[Lak95] C.A. Lakos, <<From Colored Petri Nets to Object Petri NetS>>, In Proc. 16th Int. Conf. on Ap­
plication and Theory of Petri Nets 1995, Torino, Italy, June 1995, LNCS 935, PP 278-297.
[Lop92] O.P. Lopez, F. Hayes & S. Bear, <<OASIS: An Object Oriented Specification Language>>, In
Proc. 4th Conf. CAiSE'92, Manchester, UK, May 1992, LNCS 593, PP.348-363.
[Lin94] F.J. van der Linden, <<Formal Methods: From Object-Based to Object-Oriented», In ACM
Sigplan Notices, 29(7), PP. 29-38, July 1994.

[McG92] S. McGinnes, <<How Objective Is Object Oriented Analysis>>, In Proc. 4th Conf. CAiSE'92,
Manchester, UK, May 1992, LNCS 593, PP.1-16.
[Mur89] T. Murata, <<Petri Nets: Properties, Analysis and Applications>>, In Proc. IEEE, 77(4), April
1989, PP.541-580.
[Mur94] T. Murata & M. Notomi, <<Hierarchical Reachability Graph of Bounded Nets For Concurrent
Software Analysis>>, In Transactions IEEE on Software Engineering, 20(5), May 1994, PP.325-336.

[Sib93] C. Sibertin-Blanc, <<A Client-Server Protocol for the Composition of Petri Nets>>, In Proc. 14th
Int. Conf. on Application and Theory of Petri Nets 1993, Chicago, June 1993, LNCS 691, PP. 377-396.

[Sib94] C. Sibcrtin-Blanc, <<Cooperative Nets», In Proc. 15th Int. Conf. on Application and Theory of
Petri Nets 1994, Zaragoza, Spain, June 1994, LNCS 815, PP. 471-490.
[Sou90] Y. Souissi, G. Memmi, <<Composition of Nets via a Communication Medium>>, In Proc. Ad­
vances in Petri Net 1990, LNCS 483, G. Rozen berg Ed. PP. 457-470.

[Val94] A. Valmari, <<Compositional Analysis with Place-Bordered Subnets», In Proc. 15th Int. Conf.
on Application and Theory of Petri Nets 1994, Zaragoza, Spain, June 1994, LNCS 815, PP. 531-547.
[X901] ITU X.901 & 1SO/IEC 10746-1, <<Basic Reference Model of Open Distributed Processing,
Part 1: Overview and Guide to Use>>, Committee Draft, July 1994.
[X902] ITU X.902 & ISO/IEC 10746-2, <<Basic Reference Model of Open Distributed Processing.
Part 2: Descriptive Model», Committee Draft, April1994.
[X903] ITU X.903 & ISO/IEC 10746-3, «Basic Reference Model of Open Distributed Processing,
Part 3: Prescriptive Model>>, Committee Draft, February 1994.
[X904] ITU & ISO/IEC JTC!/SC 21/WG 7, «Basic Reference Model of Open Distributed Processing,
Part 4: Architectural Semantics, Specification Techniques and Formalisms>>, Committee Draft , July
1994.

