
Resource Sharing in Multicore Mixed-Criticality
Systems: Utilization Bound and Blocking Overhead
Jian-Jun Han, Member, IEEE, Xin Tao, Dakai Zhu, Member, IEEE, and Laurence T. Yang, Senior Member, IEEE,

Abstract—In mixed-criticality (MC) system, diverse application activities with various certification requirements (different criticality) can share
a computing platform, where multicore processors have emerged as the prevailing computing engines. Focusing on the problem of resource
access contention in multicore MC systems, we analyze the synchronization issues and blocking characteristics of the Multiprocessor Stack
Resource Policy (MSRP) with both priority and criticality inversions among MC tasks being considered. We develop the first criticality-aware
utilization bound under partitioned EDF (Earliest Deadline First) and MSRP by taking the worst case synchronization overheads of tasks into
account. The non-monotonicity of the bound where it may decrease when more cores are deployed is identified, which can cause anomalies in
the feasibility tests. With the objective to improve system schedulability, a novel criticality-cognizant and resource-oriented analysis approach
is further studied to tighten the bound on the synchronization overheads for MC tasks scheduled under partitioned EDF and MSRP. The
simulation results show that the new analysis approach can effectively reduce the blocking times for tasks (up to 30%) and thus improve the
schedulability ratio (e.g., 10% more). The actual implementation in Linux kernel further shows the practicability of partitioned-EDF with MSRP
(with run-time overhead being about 3% to 7% of the overall execution time) for MC tasks running on multicores with shared resources.

Index Terms—Mixed-criticality systems; Multicore; Shared resources; Resource access contention; Utilization bound; Run-time overhead;

�

1 Introduction

Modern complex embedded systems need to integrate multi-

ple functionalities into a shared computing platform due to

space, power and cost concerns. For instance, the IMA (Integrated

Modular Avionics) initiative for aerospace applications aims at

hosting multiple avionics components on a shared system. In such

integrated systems, activities with various certification require-

ments (different levels of criticality) can co-exist. Considering

the avionics certification standard DO-178C [1] as an example, it

defines five design assurance levels (A-E) that are categorized by

the degree of hazards arisen from run-time failures. To incorporate

such certification requirements, the concept of Mixed-Criticality
(MC) systems was proposed in [2] and the Mixed-Criticality

Scheduling (MCS) has been studied extensively for various system

and task patterns over the past decade [3], [4], [5], [6], [7], [8].

For the co-running tasks on a common platform, a task may

need to exclusively access a shared resource (e.g., data objects)

to protect its integrity. However, the synchronization requirements

due to resource access contention can cause priority inversion [9],

[10]. When a low-priority task exclusively accesses a resource,

a high-priority task will be blocked when it requests access to

the same resource where it has to wait until the low-priority task

completes using the resource. Such blocking caused by shared

resource access can lead to additional delays for high-priority tasks

and thus degraded system schedulability.

To tackle such problem of task synchronization, several lock

based resource access protocols have been investigated. For single

processor systems, the most notable protocols are Priority Ceiling

Protocol (PCP) [10] under fixed-priority scheduling and Stack

• J.-J. Han, X. Tao and L. T. Yang are with the School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan
430074, China. Email:jasonhan@hust.edu.cn, m201472823@hust.edu.cn,
ltyang@stfx.ca. Laurence T. Yang is the corresponding author.

• D. Zhu is with the Department of Computer Science, The University of
Texas at San Antonio, San Antonio, TX 78249. Email:dzhu@cs.utsa.edu

Resource Policy (SRP) [9] under dynamic-priority scheduling.

With the emergence of multiprocessor/multicore, there is a re-

nascent research interest in the resource access synchronization

problem since such problem becomes more salient and requires

more effective solutions. Specifically, an empirical study pointed

out that the contention for data structures would increase the

amount of an application’s execution time up to about 30 percent

on a system with sixteen cores due to busy-waiting for shared

resources [11]. Following the same principle, the above protocols

designed for uniprocessors have extended for multiprocessors, for

instance, MSRP (Multiprocessor SRP) [12], MPCP (Multipro-

cessor PCP) [13] and DPCP (Distributed PCP) [14]. Moreover,

spin locks have been widely applied in multiprocessor real-

time systems [15], e.g., AUTOSAR (AUTomotive Open System

ARchitecture) standard [16]. An empirical work further shows that

when compared to suspension scheme (e.g., [13], [14], [17]), the

spin lock based scheme (e.g., [12], [15]) can effectively improve

system schedulability in the context of multiprocessors [18].

Although extensive work has been done to handle the resource

access contention problem, the work on the task synchronization in

MC systems is quite limited. Here, in addition to priority inversion,

tasks in MC systems can experience criticality inversion [19], [20]:

if a low-criticality task is holding a resource when the system

switches to a higher criticality level, the task cannot be dropped

immediately and will block the executions of high-criticality

tasks. Such criticality inversion can significantly complicate the

problem of resource access contention and consequently affects

the schedulability analysis for MC systems.

To address the problem of task synchronization for MC sys-

tems with single processor, several recent studies on the resource

access protocols were reported in [19], [20], [21], [22]. Generally,

the principle of these protocols is to avoid unbounded criticality

inversions (in addition to priority inversions) caused by medium-

criticality tasks. Some recent studies have focused on the commu-

nication contention for multicore MC systems [5], [6]. However,

this paper targets at shared data (e.g., global variables) among

 
     



2

tasks [21], [22], [23], instead of hardware resources (e.g., network

and storage) that can be handled with their corresponding schemes.

Although EDF-VD (Earliest-Deadline-First with Virtual Dead-

lines) [24] was shown to be an effective scheduler for MC systems

when no shared resource is considered, additional priority inver-

sions can occur under EDF-VD with SRP in uniprocessors [21].

This comes from the scenario of preempt-then-block: for a dual-
criticality system where there are only two criticality levels, a high-

criticality task can be preempted by another high-criticality one

having a smaller virtual deadline; while when the system switches

to high-criticality mode where the original deadlines of high-

criticality tasks are restored, the preempted task can be blocked

again if another high-criticality one has a larger real deadline.

More importantly, additional global waiting times (as a por-

tion of blocking times) for tasks accessing shared resources in

multicores need to be considered [12], [15], [23]. Therefore, with

the synchronization overheads being considered in multicores, the

schedulability advantages of EDF-VD may be intuitively offset

when compared to EDF, especially for the scenarios where tasks

need to access and/or wait for resources for a long time.

To the best of our knowledge, there is no existing work on the

scheduling of MC tasks with multiple criticality that access shared

resources (e.g., data objects) in multicores. With the objective to

address this problem and reduce the impacts of resource access

contention on the tasks’ schedulability, we focus on EDF (instead
of EDF-VD which is left to our future work) as the base scheduler

for MC tasks under MSRP resource access protocol [12]. The

contributions of this work can be summarized as follows:

• We characterize the blocking issues of MSRP for MC tasks

running on multicores with shared resources: a task can be

blocked at most once due to priority inversion and at most
once due to criticality inversion at each valid level;

• We develop the first criticality-aware utilization bound
for MC tasks accessing resources under partitioned-EDF

and MSRP with WFD (Worst-Fit Decreasing) mapping;

• We identify the non-monotonicity of the bound, where the

bound can decrease with more deployed cores due to the

increased inter-core synchronization interference;

• We further explore a new analysis approach to tightening
the upper-bound on the synchronization overheads of MC

tasks scheduled by partitioned-EDF with MSRP.

• The empirical results from actual implementation in Lin-

ux show that the partitioned EDF scheduler with MSRP is

practically viable due to its acceptable run-time overhead.

The remainder of this paper is organized as follows. The relat-

ed work is briefly reviewed in Section 2. Section 3 presents system

models and preliminaries of MSRP. The blocking issues for MC

tasks under MSRP are analyzed in Section 4. The criticality-aware

utilization bound under partitioned-EDF with MSRP and its non-

monotonicity are discussed in Section 5. A new analysis approach

to reducing the bound of synchronization overheads for MC tasks

is given in Section 6. The implementation and evaluation results

are discussed in Section 7 and Section 8 concludes the paper.

2 Closely RelatedWork
To address the task synchronization problem, several lock-based

resource access protocols have been developed. For uniprocessor

systems, Sha et al. proposed a protocol PCP [10] under fixed-

priority scheduling (e.g., RMS (Rate-Monotonic Scheduling)) and

Baker investigated a protocol SRP [9] under EDF.

Based on the same principle, the above protocols applied in

single processor systems have been extended to multiprocessor

systems, e.g., MSRP [12], MPCP [13], etc. The Flexible Mul-

tiprocessor Locking Protocol (FMLP) [11] and a suspension-

based optimal locking protocol (OMLP) [25] were also studied.

Recently, the Multiprocessor resource sharing Protocol (MrsP) and

its feasibility analysis were developed for partitioned fixed-priority

scheduling [26]. Several recent studies on the spin lock mechanism

can be found in [15], [23]. In addition, under the constraints of

task synchronization due to shared resource access, several task

partitioning algorithms were reported in [27], [28], [29] and a few

energy management schemes were reported in [27], [30].

While extensive studies have been done to tackle the resource

access contention problem, the work on the task synchronization in

MC systems is quite limited. To deal with such problem for fixed

priority MC scheduling in uniprocessors, Burns exploited PCP and

incorporated blocking items due to shared resource access into

the response time analysis [22]. Lakshmanan et al. extended zero

slack scheduling to handle task synchronization and proposed two

protocols: Priority and Criticality Inheritance Protocol (PCIP) and

Priority and Criticality Ceiling Protocol (PCCP) [19]. Zhao et al.
proposed a Highest-Locker Criticality Priority Ceiling Protocol

(HLC-PCP) [20]. More recently, based on EDF-VD [24], Zhao

et al. [21] integrated SRP and the preemption threshold schedul-

ing [31], and studied a Mixed-Criticality Stack Resource Policy

(MC-SRP) for dual-criticality systems with single processor.

For multiprocessor MC systems, a resource access scheme,

where all shared resources are placed in designated servers and

any task requesting resources needs to contact the servers via

a MC Inter-Process Communication (MC-IPC) protocol, was

reported in [32]. Nonetheless, this scheme may not be appropri-

ate for shared-resource multicore systems, where the support of

the protocol and servers for such centralized resources have to

be developed [33]. A comprehensive review of mixed-criticality

scheduling can be found in [33].

3 System Models and Preliminaries
In this section, we first present the system and task models. The

MSRP protocol is briefly reviewed, followed by the introduction

of the schedulability condition for MC tasks running on multicores

with shared resources under partitioned-EDF and MSRP.

3.1 System and Task Models

We consider a homogeneous multicore processor that consists of

M processor cores ({P1, . . . ,PM}) having identical capabilities and

functions. A set of N implicit-deadline MC tasks Ψ = {τ1, . . . , τN}
run on the system with their initial arrival being time 0. The subset

of tasks assigned to core Pm is denoted as Ψm and there is Ψ =

∪M
m=1Ψm. There are K (> 1) criticality levels for the tasks, where

the system starts its operation at level-1.

Every MC task τi is characterized by a tuple of parameters:

τi = {�i pi,Ci}. Here, �i (≤ K) denotes task τi’s criticality level

(i.e., its own criticality). With the focus on implicit-deadlines, pi

refers to task τi’s period as well as its relative deadline. The vector

Ci =< ci(1), . . . , ci(�i) > represents the worst case execution times

(WCETs) of task τi at each valid level: its WCET at higher level

is usually larger than that at lower level, i.e., ci(1) < . . . < ci(�i).
Following the common assumption for MC task system [2], any

task τi executes for no more than its maximum WCET ci(�i) at

run-time. Moreover, since there is only one active job (instance)



3

for each implicit-deadline task at any time, we use task and job

interchangeably in this paper unless otherwise specified.

Note that, in the context of MC systems, it is important that the

low-criticality tasks do not interfere with high-criticality tasks for

temporal and logic isolation between criticality levels, whereas it

is not clear to what extent data should flow across criticality [33].

Considering the shared memory multicores, we assume that every

resource can be shared by all tasks. However, our proposed

general approaches in this work can be easily altered to address

the special case, where only tasks of the same criticality can share

resources to promote isolation between criticality [21], [22], [32].

The system has R global resources R = {R1, . . . ,RR} that can

be shared by all tasks and are protected within critical sections.

At any time, a resource can be held by only one task within one

of its critical sections, i.e., the access to any resource by tasks

is exclusive. Moreover, non-nested lock accesses are the common

case in practice and the nested critical sections can be transformed

to non-nested ones with group lock [11], [15]. Therefore, we only

consider non-nested critical sections here: at any time, a task is

not allowed to request a resource while holding another one.

Note that, a task may need to access a resource multiple times

within its different critical sections. There are ni critical sections

in task τi and the xth critical section (x = 1, . . . , ni) is denoted as

zi,x that accesses resource ri,x (∈ R). Different from the assumption

where each critical section has varying execution time estimates

at different levels [22], here the largest size of any critical section

zi,x is assumed to be fixed [19], [21] and it is denoted as ci,x.

Moreover, we adopt a global variant of adaptive mixed criti-

cality (AMC) scheme [34], [35] in this work, where the system has

the ability to monitor the executions of individual jobs [7]. When

a task τi (�i > k) executes for more than its level-k WCET, the

system performs a global mode transition and switches to level-

(k+1): all tasks in the system with their own criticality level being

k will be dropped (after exiting all their critical sections [19], [20],

if applicable), and level-k tasks cannot be released until the system

becomes idle and returns to level-1 execution mode.

3.2 Resource Access Protocol MSRP

As one of the notable resource access protocols for multiproces-

sors, the protocol MSRP considered in this work can effectively

tackle task synchronization for multiprocessor applications, e.g.,

power-train controller for automotive activities [12] and GAP

(Generic Avionics Platform) task set for avionics activities [36].

First, for non-MC task system (i.e., conventional real-time task set

without criticality certification), we briefly review the principles

of MSRP with its basic rules being summarized as follows:

• Rule 1: On each processor core, tasks are scheduled by

the EDF scheduler. When a task τi issues a request for a

resource Ra, if Ra is free, it will lock and access resource

Ra non-preemptively; otherwise, if Ra is currently held by

another task on a different core, task τi will be added to

the FIFO queue of resource Ra and busy-waits for it;

• Rule 2: Once task τi finishes accessing a resource Ra, it

releases Ra and becomes preemptable again. If Ra’s FIFO

queue is not empty (i.e., there are tasks from other cores

waiting for accessing Ra), the header task is de-queued and

starts accessing the resource; otherwise, Ra is unlocked.

Note that, a task needs to start spinning until it gains access

to the resource required subject to the spin lock mechanism [12],

[15], [23]. From the above steps, we can see that the execution

of a non-MC task τi on core Pm can be blocked due to resource

access synchronization at two different occasions as follows:

• When task τi attempts to access a resource Ra that is

currently occupied by a task from another core, it has to

wait in the FIFO queue of resource Ra and such duration

caused by synchronization interference from other cores is

denoted as global waiting time;

• When a low-priority task on core Pm is holding or busy-

waiting for a resource that is currently held by a task on a

different core, task τi can be blocked and such duration is

denoted as local blocking time (due to priority inversion).

For non-MC tasks accessing resources in non-nested critical

sections under MSRP, we can have the following properties [12]:

Property 1. For any processor core at any given time, there
exists at most one task that is either holding or busy-waiting for a
resource that is currently occupied by a task on another core.

Property 2. A task can be blocked (due to priority inversion) by
a low-priority task on the same core at most once.

Property 3. A task’s local blocking time is upper bounded by the
longest duration of any low-priority task on the same core that
accesses (and waits for, if possible) one of its resources once.

We first review the schedulability condition for non-MC tasks
under partitioned EDF and MSRP. For the convenience of presen-

tation, some notations are first defined as follows:

• BWi,x: denotes the maximum amount of time that task τi

waits for accessing resource ri,x in its critical section zi,x;

• BWi: indicates the worst-case global waiting time taken by

task τi to access all its resources, i.e., BWi =
∑ni

x=1
BWi,x;

• Bi: refers to the maximum local blocking time for task τi.

Then, the feasibility condition for non-MC tasks under parti-

tioned EDF and MSRP can be summarized as follows [9], [12].

Theorem 1. For a given mapping of tasks to cores, the non-

MC tasks running on a multicore system with shared resources

are schedulable under partitioned-EDF and MSRP if, for every
processor core Pm (m = 1, . . . ,M), there is:

∀τi ∈ Ψm,
Bi

pi
+

p j≤pi∑
∀τ j∈Ψm

c j + BWj

p j
≤ 1 (1)

where for non-MC task τi, ci denotes its traditional WCET and Bi

only accounts for the local blocking time due to priority inversion.

3.3 Schedulability Condition for Partitioned-EDF and M-
SRP in MC Systems

We next review the schedulability condition for MC tasks under

partitioned-EDF when no shared resource is considered. A com-

prehensive review of static scheduling algorithms for multiproces-

sor systems can be found in [37].

Here, the level-k utilization of task τi (k ≤ �i) is defined as

ui(k) = ci(k)
pi

, and the total level-k utilization of tasks on core Pm

with their own criticality level being j (≥ k) is defined as:

UΨm
j (k) =

�i= j∧ j≥k∑
∀τi:τi∈Ψm

ui(k). (2)



4

For a set Ψ of MC tasks with K criticality levels running on a

system with M cores under the partitioned-EDF scheduler, the suf-
ficient schedulability condition for every core Pm (m = 1, . . . ,M)

can be given as follow (see Theorem 3.4 in [24]):

K∑
k=1

UΨm
k (k) ≤ 1. (3)

Basically, the equation says that if core Pm can accommodate the

maximum utilization demands of all its tasks at their own criticality

levels, the tasks on Pm are feasible under the EDF scheduler.

Finally, following the schedulability condition for MC tasks

under partitioned EDF as given in Equation (3) and the same rea-

soning of the feasibility results for non-MC tasks under partitioned

EDF and MSRP as given in Equation (1), we can obtain:

Proposition 1. For a set Ψ of MC tasks with K criticality levels
that access shared resources in a multicore system with M cores,
the task set is feasible under the partitioned-EDF scheduler with
MSRP if, for every core Pm (m = 1, . . . ,M), there is:

∀τi ∈ Ψm,
Bi

pi
+

p j≤pi∑
∀τ j∈Ψm

c j(� j) + BWj

p j
≤ 1. (4)

Essentially, the equation indicates that by incorporating the max-

imum utilization demands of MC tasks, when Equation (1) holds

for any core Pm (m = 1, . . . ,M), the task set Ψ is guaranteed to

be feasible under partitioned-EDF with MSRP. Here, Bi represents

the maximum local blocking time experienced by task τi due to

both priority and criticality inversions.

4 MSRP in Multicore Mixed-Criticality Systems
The resource access protocol MSRP does not consider MC sys-

tems where criticality inversion can occur. Basically, the principle

of a resource access protocol for MC systems is to ensure that the

blocking time for a task due to priority and criticality inversions

should be as little as possible to reduce the tasks’ synchronization

overheads for better system schedulability [19], [20], [21], [22].

Fortunately, the spin lock mechanism exploited by MSRP can

prevent MC tasks suffering from not only unbounded priority

inversions [12] but unbounded criticality inversions at each level.

In what follows, we discuss the detailed synchronization issues for

MC tasks that access shared resources under the partitioned-EDF

scheduler with MSRP.

4.1 The Blocking Characteristics of MSRP in MC Systems

When the system operates at criticality level-k and no task in the

system executes for more than its level-k WCET, we say that the

system is in normal mode at level-k.

With the focus on the spin lock mechanism in MSRP, a task

cannot be dropped immediately when it is holding or busy-waiting

for a resource, and it can be safely discarded only after exiting

all its critical sections [15], [19], [20]. Therefore, once a task τi

(�i > k) runs for more than its level-k WCET (i.e., ci(k)) without

indicating its completion, the system is in mode-change period at

level-k, which is defined as the time interval that starts when task

τi exceeds its ci(k) until all level-k tasks are dropped upon exiting

all their critical sections (if applicable). After such operations, the

system switches to level-(k + 1) execution mode.

Hence, for MC tasks scheduled under partitioned EDF and

MSRP, blocking occurs if any of the conditions below is satisfied:

• A high-priority task is blocked by a low-priority task on the

same core that is busy-waiting for (if possible) or accessing

a resource, which is called priority-inversion blocking and

abbreviated as pi-blocking;

• During mode-change period at any level-k (< K), a high-

criticality task is blocked when a low-criticality task with

its own criticality level being k or lower (which is dis-

cussed in the proof of Property 6) on the same core has

not exited all its critical sections, which is called criticality-

inversion blocking and abbreviated as ci-blocking.

For any task τi, we can classify tasks other than τi into four

categories: a) hpH(τi): the subset of tasks with both higher priority

and higher criticality level than task τi, i.e., for each task τ j (∈
hpH(τi)), there are p j < pi [9], [12] and � j > �i; b) hpL(τi): the

subset of tasks with higher priority but lower criticality level than

task τi; c) lpH(τi): the subset of tasks with higher criticality level

but lower priority than task τi; and d) lpL(τi): the subset of tasks

with both lower priority and lower criticality level than task τi.

We can see that any task in the subset hpH(τi) cannot block

the execution of task τi, any task in in the subset hpL(τi) can cause

only ci-blocking for task τi during mode-change period, any task

in in the subset lpH(τi) can lead to only pi-blocking for task τi,

and any task in in the subset lpL(τi) can result in both pi-blocking

and ci-blocking for task τi.

Obviously, Property 1 still holds for MSRP in MC systems

due to its inherent spin lock mechanism. Also, by exploiting the

spin lock mechanism, Property 2 holds for MC tasks in the set Ψ

scheduled by partitioned-EDF and MSRP as follows.

Property 4. Any MC task that accesses shared resources in a
multicore system can experience pi-blocking at most once under
the partitioned-EDF scheduling with MSRP.

Property 5. No MC task can be blocked due to pi-blocking after
it starts execution under partitioned-EDF and MSRP.

However, Property 3 fails due to additional ci-blocking arisen

in MC systems. As for the ci-blocking under partitioned-EDF and

MSRP, we can obtain the property as follows.

Property 6. For any MC task τi that accesses shared resources in
a multicore system, it can experience ci-blocking at most once at
any level-k (k = 1, . . . , �i − 1) under partitioned-EDF and MSRP.

Proof. Suppose that the system operates at level-k mode and a

high criticality task τi (�i > k) is released on core Pm. When the

mode transition occurs (i.e., a task runs for more than its level-k
WCET), we assume that task τi has not completed its execution

and a low criticality task τ j (� j ≥ k∧� j < �i) on Pm is busy-waiting

for or holding a resource Ra in its critical section z j,y. Here, task

τ j cannot be considered as blocking task τi due to ci-blocking if

task τ j’s own criticality level is higher than k (i.e., � j > k).

Otherwise, when there is � j = k, τi is blocked by τ j due to ci-

blocking. For such case, τ j continues accessing Ra due to the spin

lock mechanism of MSRP, and it is immediately dropped upon

exiting its critical section z j,y. After that, based on Property 1 and

the AMC scheme, there is no level-k task on core Pm any more,

until the system becomes idle and gets back to level-1 mode.

Note that, before task τ j finishes using resource Ra, the system

can switch to a higher level (i.e., k+2) once a task exceeds its level-

(k + 1) WCET. For such case, when there is � j = k, the property

still holds based on Property 1 as there is only one task (i.e., τ j)

that is executing (in its critical section) on core Pm now: either τi



5

is blocked by τ j during mode-change periods at level-k and level-

(k + 1) if �i > k + 1, or τi itself is dropped if �i = k + 1 (here

τi experiences ci-blocking during mode-change period at level-k).

Also, once τ j exits critical section z j,y, there is no level-(k+1) task

on core Pm any more until the system returns to level-1 mode. �

Therefore, based on the above analysis, we can directly obtain

the properties related to the blocking characteristics for MC tasks

scheduled under partitioned-EDF and MSRP as follows.

Property 7. For any MC task τi that accesses shared resources in
a multicore system, it can experience ci-blocking at most (�i − 1)

times under partitioned-EDF and MSRP.

Property 8. Whichever blocking (i.e., pi-blocking or ci-blocking)
happens, any job of a MC task can be blocked for at most one

critical section by a job of other tasks on the same core under
partitioned-EDF and MSRP.

In summary, by exploiting spin lock mechanism, the resource

access protocol MSRP can avoid both unbounded pi-blocking and

unbounded ci-blocking for MC tasks scheduled by partitioned

EDF that access shared resources in multicore systems.

4.2 Synchronization Overheads of MC Tasks under MSRP

Now we formalize the bound on the synchronization overheads of

MC tasks scheduled by partitioned-EDF with MSRP.

For a given task-to-core partition, the maximum global waiting

time BWi,x taken by task τi on core Pm to access Ra in its critical

section zi,x (ri,x = Ra) under MSRP can be calculated as [12]:

BWi,x =

j�m∑
j=1,··· ,M

tpmax
j (Ra) (5)

where tpmax
j (Ra) is the longest time of any task from another core

P j ( j � m) spent in accessing resource Ra once. That is, in the

worst case scenarios, task τi may have to wait for the longest

access time of resource Ra by tasks on all other cores, and thus

tpmax
j (Ra) can be further computed as:

tpmax
j (Ra) = max{ttmax

l (Ra)|∀τl ∈ Ψ j}
ttmax

l (Ra) = max{cl,y|∀zl,y : rl,y = Ra} (6)

where ttmax
l (Ra) denotes the maximum amount of time for task τl

(∈ Ψ j) to access resource Ra once.

Then, based on BWi,x, the worst case total global waiting time

BWi taken by task τi to access all its resources required can be

simply accumulated as BWi =
∑ni

x=1
BWi,x.

Note that, the local blocking time Bi of task τi is comprised

of two parts: local pi-blocking time Bpi
i and local ci-blocking time

Bci
i . Based on Property 4, the maximum local pi-blocking time

experienced by task τi can be found as [12]:

Bpi
i = max{BWj,y + c j,y|∀z j,y : τ j ∈ Ψm ∧ pj > pi}. (7)

We denote the maximum local ci-blocking time for task τi during

mode-change period at level-k (< �i) as Bci
i (k). Based on Proper-

ty 6, it can be calculated as:

Bci
i (k) = max{BWj,y + c j,y|∀z j,y : τ j ∈ Ψm ∧ � j = k}. (8)

Then, the maximum local ci-blocking time experienced by task τi

can be simply accumulated as Bci
i =
∑�i−1

k=1
Bci

i (k).

Finally, the worst-case local blocking time Bi for task τi due to

both pi-blocking and ci-blocking can be found as Bi = Bpi
i + Bci

i .

5 Criticality-Aware System Utilization Bound
For real-time task systems without shared resource access, López

et al. have studied the utilization bounds for partitioned-EDF with

various mapping heuristics, such as WFD [38]. As long as the total

utilization of a task set does not exceed such bounds, the partitions

generated by these heuristics are guaranteed to be schedulable,

which can be utilized for efficient feasibility test. Specifically,

such bounds increase monotonically with more available proces-

sors [38]. Below, we study a criticality-aware utilization bound

for MC tasks under partitioned-EDF and MSRP with its non-

monotonicity being identified.

5.1 Criticality-Aware Utilization Bound with MSRP

We can see that the schedulability condition given in Equation (3)

considers the tasks’ maximum utilizations at their own criticality,

which is quite different from the feasibility results for non-MC task

system where no criticality certification needs to be considered.

Since each MC task has basic level-1 WCET, we first convert

the sufficient condition presented in Equation (3) to the simplified
schedulability condition for the total level-1 utilization of tasks on

any core (i.e., level-1 core utilization limit). Then, based on such

limit, we study a criticality-aware utilization bound for MC tasks

accessing shared resources under partitioned-EDF and MSRP.

Define ω as the maximum ratio of WCETs between consecu-

tive criticality levels for any task, that is, ω = max∀τi { ci(k+1)
ci(k)
|k =

1, . . . , �i−1} where ω > 1. Based on the definition of ω, we can ob-

tain the following theorem regarding to the level-1 core utilization

limit for any core when no shared resource is considered.

Theorem 2. Without the consideration of shared resource access,
for a setΨm of MC tasks assigned to core Pm, the tasks are feasible
under EDF if, the total level-1 utilization of tasks satisfies:

K∑
j=1

UΨm
j (1) ≤ θ = 1

ωK−1
ω−1
− (K − 1)

. (9)

Proof. We conduct the proof by contrapositive. Based on Equa-

tion (2) and the definition of ω, we can get UΨm
k (k) ≤ ωk−1 ·UΨm

k (1)

(k = 2, . . . ,K) and
∑K

k=1 UΨm
k (k) ≤ UΨm

1
(1)+ω·UΨm

2
(1)+. . .+ωK−1 ·

UΨm
K (1). If the sufficient schedulability condition in Equation (3)

fails for core Pm (i.e.,
∑K

k=1 UΨm
k (k) > 1), we can obtain:

K∑
j=1

UΨm
j (1) +

[
(ω − 1) · UΨm

2
(1) + . . . + (ωK−1 − 1) · UΨm

K (1)
]
> 1.

Since UΨm
x (1) ≤ ∑K

j=1 UΨm
j (1) (x = 1, . . . ,K), we can further have:

K∑
j=1

UΨm
j (1) + (ω − 1 + . . . + ωK−1 − 1) ·

K∑
j=1

UΨm
j (1) > 1

⇒
K∑

j=1

UΨm
j (1) >

1

1 +
∑K−1

k=1 (ωk − 1)
=

1
ωK−1
ω−1
− (K − 1)

= θ. (10)

Taking its contrapositive, we have
∑K

k=1 UΨm
k (k) ≤ 1 when there

is
∑K

j=1 UΨm
j (1) ≤ θ, which concludes the proof. �

Property 9. The level-1 core utilization limit θ for any core Pm

(m = 1, . . . ,M) decreases when K or ω increases.

Proof. Let f (K) = 1+
∑K−1

k=1 (ωk − 1). From Equation (10), there is

θ = 1
f (K)

. We can see that f (K) increases when K increases and ω



6

is fixed. Re-define f (ω) = 1+
∑K−1

k=1 (ωk − 1). Thus, f (ω) increases

when ω increases and K is fixed, which concludes the proof. �

Based on the level-1 core utilization limit θ for any core and

the same reasoning of feasibility results for SRP under EDF (see

Theorem 10 in [9]), we can obtain the proposition as follows.

Proposition 2. For a setΨ of MC tasks accessing shared resources

on an M-core system, the task set is schedulable under partitioned
EDF and MSRP if, for every core Pm (m = 1, . . . ,M), there is:

∀τi ∈ Ψm,
Bi

pi
+

p j≤pi∑
∀τ j∈Ψm

c j(1) + BWj

p j
≤ θ (11)

where the maximum synchronization overheads of MC tasks are

incorporated into the level-1 core utilization limit. Therefore,

when compared to Equation (4), Equation (11) stands for a much

pessimistic sufficient condition regarding to tasks’ schedulability.

From the discussions in Section 4.2, a task’s synchronization

overhead rather depends on a specific partition of tasks to cores.

To find the upper-bounds for such overheads and then obtain the

utilization bound, we first define some notations as follows:

• pmin: the minimum period of tasks under consideration;

• nmax,cs: the maximum number of critical sections for a task;

• cmax,cs: the largest size of critical sections among all tasks;

• BWub: the upper-bound on the overall global waiting time

taken by any task to access all its required resources. Based

on Equation (5), we can get BWub = nmax,cs ·(M−1)·cmax,cs;

• Bub: the upper-bound on the local blocking time (due to

priority and criticality inversions) that can be experienced

by a task; Based on Properties 4 and 6, we can safely have

Bub = K · (cmax,cs + (M − 1) · cmax,cs) = K · M · cmax,cs;

• α: the maximum synchronization-aware level-1 utilization

of tasks, which is defined as α = max{ ci(1)+BWub

pi
|∀τi ∈ Ψ};

• β: the minimum number of MC tasks that can feasibly fit

into one core under EDF and MSRP when taking the worst

case synchronization overheads into account;

• γ: the upper-bound for additional utilization on any core

due to local blocking time, which is defined as γ = Bub

pmin ;

• σ: the criticality-cognizant synchronization overhead fac-

tor, which is defined as max{ Bub

pmin ,
BWub

pmin } = max{γ, BWub

pmin }.
Based on Proposition 2, by incorporating BWup and Bup into

Equation (11), we can obtain the lemma related to the feasibility

condition for MC tasks under partitioned-EDF and MSRP below.

Lemma 1. For a set Ψ of MC tasks that access shared resources

in a multicore system with M cores, a task-to-core partition is
schedulable under partitioned-EDF with MSRP if, for every core
Pm (m = 1, . . . ,M), there is:

∀τi ∈ Ψm,
Bub

pmin +

p j≤pi∑
∀τ j∈Ψm

c j(1) + BWub

p j
≤ θ. (12)

Based on Lemma 1 and the definitions of α and γ, we can have

β = 	 θ−γ
α

. Then, following the similar reasoning as in [38], we

can easily obtain the lemma with regard to the number of tasks

and system schedulability as follows.

Lemma 2. For a set of N implicit-deadline MC tasks running on
an M-core system with shared resources, the task set is guaranteed
to be schedulable under partitioned-EDF and MSRP if N ≤ β ·M.

Finally, based on Equation (12), we can obtain the following

theorem with respect to the criticality-aware level-1 utilization

bound (Uca,bound) for MC tasks that access shared resources under

partitioned-EDF and MSRP with the WFD heuristic.

Theorem 3. For a set of N implicit-deadline MC tasks with K
criticality levels that access shared resources in a multicore system
with M cores where the number of tasks N > β ·M, the criticality-
aware level-1 utilization bound Uca,bound for partitioned-EDF and
MSRP with the WFD mapping heuristic can be found as:

Uca,bound = min{Ub1,Ub2}, (13)

Ub1 =
β · M + 1

1 + β
· (θ − σ) − (β · M + 1) · σ, (14)

Ub2 =
M · N

M + N − 1
· (θ − σ) − N · σ. (15)

Proof. With the focus on the WFD mapping, we assume that tasks

have been ordered by their non-ascending level-1 utilizations.

Suppose task τn is the first task that fails the feasibility condition

for each core as given in Equation (12) when it is assigned to any

core. Then, for each core Pm (m = 1, · · · ,M), we can obtain:

Bub

pmin +
cn(1) + BWub

pn
+
∑
∀τ j∈Ψm

c j(1) + BWub

p j
> θ

where the subset Ψm contains the tasks on core Pm after assigning

the first (n − 1) tasks. Note that pmin ≤ pi (i = 1, . . . ,N). Based on

the definition of σ, the above inequality on every core Pm can be

transformed as follows :

un(1) + 2σ +
∑
∀τ j∈Ψm

u j(1) + |Ψm| · σ > θ

where |Ψm| corresponds to the number of tasks in the subset Ψm.

Adding up all these M inequalities, there is:

(M − 1) · un(1) +

n∑
j=1

u j(1) + (2M + n − 1) · σ > M · θ.

By the assumption that tasks are sorted in non-ascending order of

their level-1 utilizations, there is un(1) ≤
∑n

j=1 u j(1)

n . Then, the above

inequality can be further transformed as:(
M − 1

n
+ 1

) n∑
j=1

u j(1) + (2M + n − 1) · σ > M · θ

⇒
n∑

j=1

u j(1) >
n

M + n − 1
· [M · θ − M · σ − (M + n − 1) · σ] .

Define U(1) as the overall level-1 utilization of task set Ψ, that

is, U(1) =
∑N

j=1 u j(1). As U(1) ≥ ∑n
j=1 u j(1), we can further have:

U(1) >
M · n

M + n − 1
· (θ − σ) − n · σ = f (n) (16)

where f (n) is a function of n. Note that β · M + 1 ≤ n ≤ N. To

obtain a meaningful utilization bound, we need to have f (n) > 0,

that is, θ−σ
σ
> M+n−1

M ≥ M+(β·M+1)−1

M = 1 + β. Therefore, we need to

have σ < θ
2+β
< 1. Also, there is θ > σ because β ≥ 1.

Since the values of θ and σ are not related to n and M ≥ 2, we

can get the second derivative of f (n) with respect to n as:

f ′′(n) = −2 · M · (M − 1) · (θ − σ)

(M + n − 1)3
< 0.

Therefore, the function f (n) is a concave function and thus its

minimum value can be found when either n = β · M + 1 or n = N:

f (β · M + 1) =
β · M + 1

1 + β
· (θ − σ) − (β · M + 1) · σ = Ub1,

f (N) =
M · N

M + N − 1
· (θ − σ) − N · σ = Ub2.



7

(a) β = 3, θ = 0.9 and N = 100 (b) β = 3, θ = 0.9 and σ = 0.05 (c) β = 4, σ = 0.03 and N = 100 (d) Non-monotonicity of the bound

Fig. 1: Criticality-aware utilization bound and its non-monotonicity for partitioned-EDF and MSRP with the WFD mapping.

Hence, the level-1 utilization bound Uca,bound can be found as

Uca,bound = min{Ub1,Ub2}, which concludes the proof. �

Note that, for non-MC task system when no task needs to

access any resource, there are σ = 0 and θ = 1. For the function

f (n) defined in Equation (16), we can get its first derivative with

respect to n as f ′(n) = M·(M−1)

(M+n−1)2 > 0. Therefore, the minimum

value of f (n) can be found as
β·M+1

β+1
when n = β · M + 1, which

exactly reduces to the bound for non-MC tasks scheduled under

partitioned-EDF with WFD when no shared resource access is

considered [38]. More specifically, for non-MC tasks that access

shared resources under partitioned-EDF and MSRP with WFD

(i.e., θ = 1), the utilization bound represented by Equation (13)

actually reduces to that as derived in [28].

5.2 Non-Monotonicity of the Utilization Bound

The relationship between the utilization bound Uca,bound and other

system parameters can be more clearly shown in Figure 1.

From the figures, we can see that the utilization bound Uca,bound

can decrease dramatically as the synchronization overhead factor

σ increases (e.g., when there are more and/or larger sized critical

sections for tasks). For task systems with higher resource access

contention (e.g., σ > 0.05), the bound can be extremely low as

shown in Figure 1(a), which rather constrains its applicability.

With other parameters being fixed, when there are more tasks

(thus usually more synchronization requirements) in the system,

Uca,bound can also decrease (see Figure 1(b)). In addition, when

there are more available cores in the system and there are smaller

ω and K (i.e., a larger θ based on Property 9), Uca,bound can

increase significantly as shown in Figure 1(c).

In general, when there are more available cores (i.e., a larger

M), Uca,bound becomes larger. Nonetheless, for a given configura-

tion of MC task set, the increased σ (due to increased M) and thus

increased synchronization overheads of tasks can in turn result in

reduced Uca,bound. Such anomaly can be more explicitly illustrated

for task sets with N = 50, pmin = 160, nmax,cs = 4, K = 2, θ = 0.9
and the maximum level-1 task utilization being 0.075 as shown in

Figure 1(d). Here, for a given maximum length of critical sections

among tasks (e.g., cmax,cs = 0.45), Uca,bound can become smaller

when M increases (e.g., from 8 to 9 and from 11 to 12). For

the cases of cmax,cs = 0.3 (cmax,cs = 0.35 resp.), it turns out that

there is N ≤ β · M when M > 8 (M > 10 resp.). Therefore,

based on Lemma 2, any task set satisfying above configurations is

guaranteed to be feasible under the partitioned-EDF scheduler and

MSRP with the WFD mapping heuristic.

Below, we formally identify the non-monotonicity of the bound

Uca,bound. First, we can obtain lemmas related to β as follows.

Lemma 3. The minimum number of cores required to feasibly
allocate task set Ψ under partitioned-EDF is Mmin =

⌈∑N
i=1 ui(1)

⌉
.

Lemma 4. β cannot decrease when the number of deployed cores
decreases and other parameters are fixed.

Proof. Note that β = 	 θ−γ
α

 and θ is not related to M. We can see

that θ − γ = θ − cmax,cs ·M·K
pmin increases when M decreases. For each

task τi, the function ci(1)+BWup

pi
=

ci(1)+nmax,cs ·cmax,cs ·(M−1)
pi

decreases

when M decreases. Therefore, α also decreases when M decreases.

With its floor function being considered, β cannot decrease when

fewer cores are deployed, which concludes the proof. �

For a given M, due to the floor function of β, we can see that

there exists an integer ρ and an interval [M,M − 1, · · · ,M − ρ],
in which β remains invariant when M decreases. We define such

interval as the constant interval of β and ρ as its maximum range.

A feasible method to compute ρ is given by the lemma as follows.

Lemma 5. For given number of cores M (≥ Mmin) and MC task
set Ψ, the value of ρ can be determined as:

ρ = min{max{�ϕ
, 0},M − Mmin} (17)

where

ϕ =
(1 + β) · α − (θ − γ)
ι + (1 + β) · λ − 1, ι =

K · cmax,cs

pmin ,

κ + λ · (M − 1) = max
∀τi∈Ψ

{
ci(1) + nmax,cs · cmax,cs · (M − 1)

pi

}
,

and κ and λ are defined in the proof.

Proof. Define g(M) as α = max∀τi { ci(1)+nmax,cs ·cmax,cs ·(M−1)
pi

} and f (M)

as
θ−γ
α
= θ−ι·M

g(M)
where ι = K·cmax,cs

pmin . For given M and MC task set

Ψ, there must exist a task τi such that κ + λ · (M − 1) = α, where

κ = ci(1)
pi

and λ = nmax,cs·cmax,cs

pi
. From the definition of g(M), we can

get κ + λ · (M − (ρ + 1) − 1) ≤ g(M − (ρ + 1)).

Note that, β = 	 θ−γ
α

 = 	 θ−ι·Mg(M)


 = 	 f (M)
 and ρ is defined as

the range of constant interval for β. Based on Lemma 4, there is:

f (M − (ρ + 1)) ≥ 1 + β⇒ θ − ι · (M − (ρ + 1))

g(M − (ρ + 1))
≥ 1 + β

⇒ θ − γ + ι · (ρ + 1)

κ + λ · (M − (ρ + 1) − 1)
≥ 1 + β⇒ θ − γ + ι · (ρ + 1)

α − λ · (ρ + 1)
≥ 1 + β

⇒ ρ ≥ (1 + β) · α − (θ − γ)
ι + (1 + β) · λ − 1 = ϕ.

As ρ ≤ M − Mmin based on Lemma 3 and ρ is a positive integer,

we can get Equation (17) such that f (M) < . . . < f (M − ρ) ≤ β
and f (M − (ρ + 1)) ≥ β + 1, which concludes the proof. �



8

Based on the invariance of β within its constant interval, we

can obtain the sufficient condition for the non-monotonicity of the

utilization bound Uca,bound as follows.

Theorem 4. For a given set Ψ of MC tasks that access shared
resources in a multicore system with M cores, the criticality-aware
utilization bound under partitioned-EDF and MSRP with WFD as
given in Equation (13) can decrease when the number of deployed
cores increases if there is θ

3+β
≤ σ < θ

2+β
.

Proof. We define ς = nmax,cs·cmax,cs

pmin , g(M) = Ub1 =
β·M+1

1+β
· (θ −

σ) − (β · M + 1) · σ based on Equation (14) and h(M) = Ub2 =
M·N

M+N−1
· (θ − σ) − N · σ based on Equation (15).

First, suppose that BWub ≥ Bub. We can get σ = BWub

pmin =
(M−1)·nmax,cs ·cmax,cs

pmin = (M − 1) · ς. Note that, ς and θ are not related to

M, and β can be considered as a constant based on Lemma 5. For

g(M), we can compute its first derivative with respect to M as:

g′(M) = β · θ − σ
1 + β

− ς · β · M + 1

1 + β
− (β · M + 1) · ς − β · σ.

Substitute ς = σ
M−1

into the above equation, there is:

g′(M) = β · θ − σ
1 + β

− β · σ − β · M + 1

M − 1
·
(
σ

1 + β
+ σ

)
.

As
β·M+1

M−1
> β, the above equation can be transformed as:

g′(M) <
β · (θ − 4σ − 2β · σ)

1 + β
.

We can obtain g′(M) < 0 if θ
2·(2+β) ≤ σ. Moreover, from the proof

in Theorem 3, we get σ < θ
2+β

. Therefore, when θ
2·(2+β) ≤ σ < θ

2+β

holds, g(M) decreases as M increases.
For h(M), its first derivative with regard to M can be found as:

h′(M) = N ·
(

(N − 1) · (θ − σ)

(M + N − 1)2
− 2M + N − 1

M + N − 1
· ς
)
.

Substitute ς = σ
M−1

into the above equation, we can obtain:

h′(M) = N ·
(

(N − 1) · (θ − σ)

(M + N − 1)2
− 2M + N − 1

M + N − 1
· σ

M − 1

)

<
N

M + N − 1
·
(
(θ − σ) − 2 · σ − (N − 1) · σ

M − 1

)
.

As N ≥ β · M + 1, the above inequality can be simplified as:

h′(M) <
N

M + N − 1
· (θ − 3 · σ − β · σ) .

Therefore, we can get h′(M) < 0 when there is θ
3+β
≤ σ. Note that

there is 1
2·(2+β) <

1
3+β

as β ≥ 1. Hence, if there are BWub ≥ Bub and
θ

3+β
≤ σ < θ

2+β
, both g(M) and h(M) (thus the bound Usc,bound) can

decrease when the number of deployed cores M increases.
For the other case where BWub < Bub, by re-defining ς = cmax,cs

pmin ,

there is σ = Bub

pmin = K · M · ς. For g(M), its first derivative is:

g′(M) = β · θ − σ
1 + β

− K · ς · β · M + 1

1 + β
− (β · M + 1) · K · ς − β · σ

⇒ g′(M) = β · θ − σ
1 + β

− β · σ − β · M + 1

M
·
(
σ

1 + β
+ σ

)
.

Similarly, for h(M), its first derivative with respect to M is:

h′(M) = N ·
(

(N − 1) · (θ − σ)

(M + N − 1)2
− 2M + N − 1

M + N − 1
· σ

M

)
.

Hence, following the similar steps, we can also get that both g(M)

and h(M) decrease when M increases if θ
3+β
≤ σ < θ

2+β
holds. �

6 Bounds on the MC Tasks’ Synchronization Overheads
From the above discussions, we can see that the rather pessimistic

blocking items of tasks are incorporated in the utilization bound,

e.g., the pessimistic ω is utilized for the level-1 core utilization

limit as given in Equation (9), both Bub and BWub are based on the

largest size and the maximum number of critical sections for any

task, etc. Such pessimistic synchronization overheads of tasks can

significantly affect the bound and limit its usability. On the other

hand, the non-monotonicity of the bound can cause anomalies in

feasibility tests when more cores are deployed due to increased

inter-core synchronization interference among tasks.

Recall that the basic computation of the maximum synchro-

nization overheads of MC tasks is given in Section 4.2. To reduce

the pessimism in the bound and improve tasks’ schedulability, in

what follows, we study a criticality-aware and resource-oriented
analysis approach to tightening the bound on the synchronization

overheads for MC tasks under partitioned EDF and MSRP.

Considering the fact that the system mode transitions are step-
wise based on the AMC scheme, for any task, the basic steps of

the new analysis approach are summarized as follows.

• We first get its maximum busy-waiting time at each level;

• Then, the bound of total global waiting time is reduced by

considering its each resource (instead of critical section);

• Finally, the tightened bound on local blocking time can be

obtained by reducing the scope of tasks that can block it.

6.1 Tightened Bound on the Global Waiting Time

Here, the first step is to consider a task’s individual global waiting

time at each valid level. For a given task partition, based on the

AMC scheme and Property 1, the maximum global waiting time

BWi,x(k) of task τi on core Pm for accessing resource Ra in its

critical section zi,x (ri,x = Ra) at level-k (≤ �i) can be found as:

BWi,x(k) =

j�m∑
j=1,··· ,M

tpmax
j,Ra

(k) (18)

where tpmax
j,Ra

(k) denotes the maximum amount of time for any task

on other core P j ( j � m) spent in accessing resource Ra once at

level-k. Moreover, tpmax
j,Ra

(k) can be further calculated as:

tpmax
j,Ra

(k) = max{ttmax
l,Ra

(k)|∀τl ∈ Ψ j : �l ≥ k}
ttmax

l,Ra
(k) = max

∀τl:�l≥k
{cl,y|∀zl,y : rl,y = Ra} (19)

where ttmax
l,Ra

(k) denotes the maximum amount of time for task τl

(�l ≥ k) on a different core to access resource Ra once at level-k.

Based on BWi,x(k), as the largest size of any critical section

is fixed, we can see that BWi,x(k) ≥ BWi,x(k + 1) (k = 1, . . . , �i −
1). Note that, the system mode transition can happen during the

execution of task τi. Thus, by assuming that task τi is released at

level-k mode, BWi,x(k) essentially means the maximum amount of

time that task τi waits before executing its critical section zi,x .

Hence, BWi,x can be found as max{BWi,x(k)|k = 1, . . . , �i} =
BWi,x(1), which is the same as that in Equation (5). By exploiting

such global waiting time at each valid level, we can tighten the

bound on the local blocking times for MC tasks in next section.

Next, instead of simply accumulating BWi,x (x = 1, . . . , ni),

we propose a resource-oriented method to reduce the worst-case

overall global waiting time for task τi. For such a purpose, we

first analyze the limits on inter-core synchronization interference

(due to accessing the same resource) for MC tasks on different



9

Algorithm 1: CalBWMax(τi (∈ Ψm), k (≤ �i), Ra (∈ Φi))

Input: τi, Sa(k) and {Ψ1, · · · ,ΨM};
Output: BWmax

i,Ra
(k);

1: BWmax
i,Ra

(k) = 0; limit[x] = |Si,a| (x = 1, . . . ,M ∧ x � m);

2: for (z j,y ∈ Sa(k) (τ j ∈ Ψx ∧ x � m)) do
3: num = min{πi, j, limit[x]};
4: if (num == 0) then
5: continue;

6: else
7: BWmax

i,Ra
(k)+ = num · c j,y; limit[x]− = num;

8: end if
9: end for

cores. Recall that the initial arrival time of any task is 0. Then, the

inter-core interference among tasks under partitioned EDF can be

given by the following proposition [28].

Proposition 3. For any two implicit-deadline tasks τi and τ j on
different cores scheduled under partitioned-EDF, the maximum
number of τ j’s jobs that can interfere with the execution of any
job of τi due to shared resource access is:

πi, j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , pi < p j ∧ mod(p j, pi) = 0
pi
p j

, pi ≥ p j ∧ mod(pi, p j) = 0⌈
pi
p j

⌉
+ 1 , otherwise

(20)

where mod(x, y) is defined as the remainder of dividing x by y.

DefineΦi as the subset of resources that task τi needs to access.

Note that, a MC task may access the same resource multiple times

in its different critical sections. For a resource Ra (∈ Φi), we denote

the subset of critical sections where task τi accesses it as Si,a =

{zi,x|∀ri,x = Ra}. Then, based on Property 1, for any job of task τi

on core Pm, the number of interference from any other core Px

(x � m) due to global waiting for accessing resource Ra at level-k
(k ≤ �i) has the following two limits:

|Si,a|: the number of critical sections in the set Si,a, i.e., the

number of times that any job of task τi accesses resource Ra;

πi, j: the maximum number of jobs of any task τ j (� j ≥ k) on

Px that need to access Ra during the execution of τi’s any job.

With the above limits on inter-core interference among tasks

being considered, we study a resource-oriented approach to reduc-

ing task τi’s maximum total global waiting time BWmax
i,Ra

(k) spent

in accessing its each resource Ra at each valid level-k, rather

than simply accumulating the maximum busy-waiting times of

individual critical sections where task τi accesses resource Ra.

We further define Sa(k) as the subset of critical sections of all

tasks where Ra can be accessed at level-k, i.e., Sa(k) = ∪� j≥k
∀τ j∈ΨS j,a.

Here, the critical sections in the subset Sa(k) are sorted in non-

increasing order of their sizes and the tie is broken arbitrarily.

Based on the definition of Sa(k), for any resource Ra, we can

obtain Sa(k) ⊇ Sa(k + 1) (k = 1, . . . ,K − 1).

For a given task-to-core mapping, the detailed steps to estimate

the worst-case global waiting time BWmax
i,Ra

(k) taken by task τi on

Pm to access resource Ra at level-k are summarized in Algorith-

m 1. Here, based on Proposition 1, the remaining limits on the

number of interference from other cores are first initialized (line

1). Then, by non-ascending order of their sizes, the critical sections

in Sa(k) are processed one at a time (line 2). For critical section

z j,y where task τ j accesses resource Ra on another core Px (x � m)

(i.e., task τ j can interfere with task τi when accessing resource

Ra at level-k), its number of interference on τi is subject to the

limits from τ j (i.e., πi, j) and the remaining limits from core Px

(i.e., limit[x]) (line 3). If there is no such interference (line 4), the

next critical section in Sa(k) is to be processed (line 5); otherwise,

BWmax
i,Ra

(k) accumulates and the remaining interference limits from

core Px is accordingly updated (line 7). Finally, the resulting

BWmax
i,Ra

(k) is obtained and returned after all critical sections in

the subset Sa(k) have been processed.

Based on the definition of Sa(k), for any resource Ra, there is

BWmax
i,Ra

(k) ≥ BWmax
i,Ra

(k + 1) (k = 1, . . . , �i − 1). Similarly, BWmax
i,Ra

(k)

indicates the maximum total busy-waiting time for task τi to access

resource Ra, providing that task τi arrives at level-k mode.

Therefore, the worst-case global waiting time BWi(k) for task

τi to access all its resources required at level-k can be found as:

BWi(k) =
∑
∀Ra∈Φi

BWmax
i,Ra

(k). (21)

Finally, the bound on the overall global waiting time of task τi

spent in accessing all its resources can be tightened as:

BWi = max{BWi(k)|k = 1, . . . , �i} = BWi(1). (22)

Recall that the maximum number of critical sections for a task

is nmax,cs as defined in Section 5.1. We can see that for any resource

Ra that task τi needs to access, there are at most N · nmax,cs critical

sections in both the set Sa(k) and the task system considered. Thus,

the time complexity of both Algorithm 1 and the computation of

BWi for task τi (see Equation (22)) can be found as O(N · nmax,cs).

6.2 Tightened Bound on the Local Blocking Time

Based on the analysis in Section 4.1, task τi can be blocked due

to pi-blocking at most once and such blocking can occur at any

criticality level-k (≤ �i) regarding to pi-blocking. After that, task

τi cannot experience pi-blocking any more but can only encounter

ci-blocking at most once during mode-change period at its each

valid criticality level-k (k < �i) regarding to ci-blocking.

Hence, to avoid pessimistic estimates of synchronization over-

heads due to repeated computation of blocking items, the key point

to reduce the bound on the local blocking time for a MC task is:

more precisely ascertaining the scope of tasks that can block it at

each valid level regarding to pi-blocking and ci-blocking.

With the focus on the step-wise system mode transitions, we

first consider the scenarios where pi-blocking for a task occurs at
its each valid level individually. Assume that task τi executes on

core Pm and the system operates at level-k (≤ �l). Based on the

reduced global waiting times of tasks discussed in Section 6.1, for

a given task-to-core partition, the maximum local pi-blocking time

for task τi on core Pm in normal mode at level-k can be found as:

Bpi
i (k) = max{BWj,y(k) + c j,y|∀z j,y : τ j ∈ Ψm (23)

∧τ j ∈ {lpH(τi) ∪ lpL(τi)} ∧ � j ≥ k}
where BWj,y(k) is defined in Equation (18). Recall that if τ j ∈
{lpH(τi)∪ lpL(τi)}, there is p j > pi. When there is no such task τ j

on core Pm at level-k, we can have Bpi
i (k) = 0.

We can obtain the properties with respect to the ci-blocking

for MC tasks under partitioned-EDF and MSRP as follows.

Property 10. If τi encounters pi-blocking by a task (∈ lpH(τi)) in
normal mode at level-k, it cannot experience ci-blocking by any
task (∈ lpL(τi)) under partitioned-EDF and MSRP.



10

TABLE 1: The timing parameters of MC tasks and the maximum synchronization overheads based on the basic analysis approach

τi �i ci(�i) pi ni {ri,x}(x = 1, . . . , ni) {ci,x}(x = 1, . . . , ni)
ci(�i)

pi
P(τi) BWi,1 BWi,2 BWi Bpi

i Bci
i (1) Bci

i (2) Bci
i Bi

τ1 1 13 71 1 {R1} {6} 0.183 P1 5 − 5 0 − − 0 0
τ2 3 11 57 1 {R2} {2} 0.193 P1 0 − 0 11 11 0 11 22
τ3 3 19 62 2 {R1,R3} {3, 1} 0.307 P1 5 5 10 11 11 0 11 22

τ4 2 22 72 2 {R3,R1} {5, 2} 0.306 P2 1 6 7 11 11 − 11 22
τ5 1 13 88 2 {R1,R1} {5, 1} 0.148 P2 6 6 12 0 − − 0 0
τ6 1 15 62 2 {R3,R3} {5, 1} 0.242 P2 1 1 2 11 − − 0 11

Proof. Assume that task τi experiences pi-blocking by task τx

(∈ lpH(τi)) in normal mode at level-k, and experiences ci-blocking

by another task τy (∈ lpL(τi)) during mode-change period at level-l
(l < �i). From the definition of the subset lpL(τi), task τi is blocked

due to pi-blocking twice, which contradicts Property 4. �

Property 11. If τi encounters pi-blocking by a task (∈ lpL(τi))
in normal mode at level-k, it cannot experience ci-blocking by
another task (∈ lpL(τi)) under partitioned-EDF and MSRP.

Property 12. Suppose that τi is blocked by a task τ j (∈ lpL(τi))
during mode-change period at level-k. Task τi can be blocked only

by task τ j due to both pi-blocking and ci-blocking at level-k under
the partitioned-EDF scheduler with MSRP.

Properties 10 to 12 indicate that once τi encounters pi-blocking

at level-k, it can experience ci-blocking only by tasks pertaining

to the subset hpL(τi) on core Pm. Therefore, we can obtain the

theorem with respect to the maximum ci-blocking time for task τi

at its each valid level regarding to ci-blocking as follows.

Theorem 5. Suppose that task τi experiences pi-blocking on core
Pm at level-k. The maximum ci-blocking time Bci

i (x) for task τi at
any valid level-x regarding to ci-blocking can be found as:

Bci
i (x) = max{BWj,y(x) + c j,y|∀z j,y : τ j ∈ Ψm (24)

∧τ j ∈ hpL(τi) ∧ � j = x}, x = 1, . . . , �i − 1

where Bci
i (x) = 0 if there is no such task τ j. By exploiting the busy-

waiting time of any task at each valid level in Equation (18) and

considering the reduced range of tasks that can cause ci-blocking

for task τi, we can see that Equation (24) typically represents a less

pessimistic estimate of ci-blocking time compared to Equation (8).

Hence, by assuming that pi-blocking for task τi occurs at level-

k, the maximum local blocking time Bi(k) for τi can be found as

Bi(k) = Bpi
i (k)+

∑�i−1
x=1

Bci
i (x). As pi-blocking for τi can occur at any

level-k (≤ �i), the maximum local blocking time for τi is computed

as Bi = max{Bi(k)|k = 1, . . . , �i} and can be further simplified as:

Bi = Bpi
i + Bci

i = max{Bpi
i (k)|k = 1, . . . , �i} +

�i−1∑
x=1

Bci
i (x). (25)

Next, for the other case where no pi-blocking occurs during

the execution of τi, only ci-blocking for τi needs to be considered.

Here, the maximum local blocking time for task τi is denoted as

Bi. Since there is no pi-blocking for task τi, only tasks in the subset

hpL(τi) on core Pm can cause ci-blocking for τi. Therefore, we can

have Bi =
∑�i−1

x=1
Bci

i (x) where Bci
i (x) is defined in Equation (24),

and we can directly obtain the following property.

Property 13. For a given task-to-core mapping, there is Bi ≥ Bi

for any MC task τi scheduled under partitioned-EDF and MSRP.

Finally, taking the worst-case scenarios for the synchronization

overheads into consideration, the new tightened bound for the local

blocking time experienced by any MC task under partitioned EDF

and MSRP can be obtained based on Equations (18) and (23)-(25).

An Example: We consider six MC tasks with three criticality

levels that run on a dual-core system with three shared resources.

The resource access patterns of tasks are shown in Figure 2 and

their timing parameters are provided in Table 1, where P(τi) refers

to the core where task τi is allocated.

Fig. 2: An example of MC tasks and resource access patterns.

The task-to-core partition follows the WFD heuristic: tasks are

ordered by their descending maximum utilizations at their own

criticality and the tie is broken by favoring the task with smaller

index, which is τ3, τ4, τ6, τ2, τ1, τ5; the tasks are processed one at a

time; any task is assigned to the core with the maximum available

utilization and thus there areΨ1 = {τ1, τ2, τ3} andΨ2 = {τ4, τ5, τ6}.
First, we consider the basic analysis approach to computing

the synchronization overheads of tasks as presented in Section 4.2.

For task τ2 on core P1, we can get BW2,1 = 0 from Equation (5),

BW2 = 0, Bpi
2
= max{BW1,1 + c1,1, BW3,1 + c3,1, BW3,2 + c3,2} =

max{5+6, 5+3, 5+1} = 11 from Equation (7), and Bci
2
= Bci

2
(1) =

max{BW1,1 + c1,1} = 5 + 6 = 11 from Equation (8). Hence, the

maximum blocking time for τ2 is B2 = Bpi
2
+ Bci

2
= 22. Following

the similar steps, the maximum synchronization overheads of other

tasks can be obtained and are shown in Table 1. For task τ3 on

core P1, we can have B3

p3
+

c2(3)+BW2

p2
+

c3(3)+BW3

p3
= 1.016 > 1, which

violates the schedulability condition in Equation (4).

Next, we consider the new analysis approach as discussed in

this section. Based on Equation (18), BWi,x(k) (i = 1, . . . , 6; x =
1, 2; k = 1, 2, 3) for any critical section of any task at its any valid

level can be obtained and are shown in Table 2. Note that, based

on Algorithm 1 and Equations (20) to (22), we can have BW6 = 1,

because task τ3 on core P1 has the same period as τ6 and thus τ3

interferes with τ6 only once when τ6 accesses resource R3 twice.

For task τ4 on core P2, based on Equation (23), there is Bpi
4
=

Bpi
4

(1) = max{BW5,1(1) + c5,1, BW5,2(1) + c5,2} = max{6 + 5, 6 +
1} = 11. Also, based on Equation (24), we can have Bci

4
(1) =

max{BW6,1(1)+c6,1, BW6,2(1)+c6,2} = max{1+5, 1+1} = 6 because

there is only one task (i.e., τ6) in the subset hpL(τ4) on core P2



11

TABLE 2: The tightened bound of synchronization overheads based on the new analysis approach

τi BWi,1(1) BWi,1(2) BWi,1(3) BWi,2(1) BWi,2(2) BWi,2(3) BWi Bpi
i (1) Bpi

i (2) Bpi
i (3) Bpi

i Bci
i (1) Bci

i (2) Bci
i Bi

τ1 5 − − − − − 5 0 − − 0 − − 0 0
τ2 0 0 0 − − − 0 11 6 3 11 0 0 0 11
τ3 5 2 0 5 5 0 10 11 0 0 11 0 0 0 11
τ4 1 1 − 6 3 − 7 11 0 − 11 6 − 6 17
τ5 6 − − 6 − − 12 0 − − 0 − − 0 0
τ6 1 − − 1 − − 1 11 − − 11 − − 0 11

(a) Improvement with varying M (b) Improvement with varying K (c) Improvement with varying R (d) Improvement with varying CS R

Fig. 3: Performance of the new analysis approach to reducing the bound on local blocking time.

when system operates at level-1. As the own criticality level of task

τ4 is 2, we can get Bci
4
= Bci

4
(1) = 6 and B4 = Bpi

4
+Bci

4
= 11+6 = 17

based on Equation (25). Following these steps, the synchronization

overheads of other tasks can be calculated as shown in Table 2.

Based on the schedulability condition in Equation (4), all tasks are

feasible with the reduced bound of synchronization overheads.

7 Performance Evaluations and Discussions
To the best of our knowledge, the scheduling of MC tasks that

access shared resources in multicores under EDF-VD [24], [35]

is unexplored so far. Here, we evaluate the performance of the

new analysis approach and partitioned-EDF with MSRP: the sim-

ulations in Section 7.2 assess the new analysis approach in terms

of blocking time reduction and schedulability ratio improvement;

while the implementation in Linux (see Section 7.3) measures the

usability of partitioned-EDF with MSRP regarding to the run-time

overhead. Moreover, in the experiments, the task-to-core mapping

follows WFD without considering shared resource access.

7.1 Parameter Settings

The full ranges for system parameters are first provided in Table 3,

including the number of cores M, the system criticality level K,

the normalized system utilization NS U (defined as the ratio of

total maximum utilization of tasks at their own criticality to the

number of cores) and the number of shared resources R. Table 3

also shows full ranges for task parameters, i.e., the number of tasks

N, the periods of tasks P, the critical section ratio CS R (defined

as the overall size of critical sections in a task over its maximum

WCET) and the number of critical sections ni in any task τi.

The synthetic task sets are generated as follows. The number of

shared resources in the system R is uniformly selected in the range

[2, 8]. For given NS U, M and N, the base maximum utilization of

τi is set as ubase
i = NS U·M

N . Then, its period is randomly selected

in one of the three period ranges as given in Table 3, its own

criticality level �i is chosen uniformly within [1,K] and ci(�i) is

obtained uniformly in the range [0.2 · pi ·ubase
i , 1.8 · pi ·ubase

i ]. Next,

the number of critical sections ni in task τi is obtained uniformly

in the range [1, 16] where the resource accessed in each critical

section is randomly selected. Finally, the size of a critical section

is generated uniformly within
[

0.2·ci(�i)·CS R
ni

, 1.8·ci(�i)·CS R
ni

]
.

TABLE 3: System and task parameters for the experiments

Parameters Values/ranges

Number of cores (M) [2, 16]
System criticality level (K) [2, 6]

Normalized system utilization (NS U) [0.3, 0.78]
Number of resources (R) [2, 8]

Number of tasks (N) [20, 160]
Task periods (P) [50, 200],[200, 500],[500, 2000]

Critical section ratio (CS R) [0.01, 0.1]
Number of critical sections in a task (ni) [1, 16]

7.2 Simulation Performance of the New Approach

Unless otherwise noted, the default values of parameters are: M =
4, N = 40, K = 4, NS U = 0.72, R = 4 and CS R = 0.05. For the

results reported below, each data point corresponds to the average

result of 30, 000 task sets. Moreover, the number of tasks N is set

as 10 · M when M can vary as shown in Figures 3(a) and 4(a) .

7.2.1 Reduction in Local Blocking Time
Figure 3 shows the performance of the new analysis approach in

terms of the percent of reduced blocking time (i.e., improvement

ratio) compared to the basic analysis approach (see Section 4.2).

In general, more available cores (i.e., larger M) with fixed

number of tasks per core, higher system criticality level (i.e.,

larger K), fewer shared resources (i.e., smaller R) and larger size of

critical sections (i.e., larger CS R) represent higher resource access

contention among tasks and more synchronization requirements in

the system. Recall that for any MC task, the new approach com-

putes its individual global waiting time at each level and reduces

the scope of tasks that can block it at each valid level regarding

to ci-blocking. Therefore, for such cases, the new approach can

effectively reduce the bound on the local blocking times for tasks,

and thus can achieve more improvements (up to 30%) compared

to the basic approach as shown in Figures 3(a) to 3(d).



12

(a) Schedulability with varying M (b) Schedulability with varying K (c) Schedulability with varying R (d) Schedulability with varying CS R

Fig. 4: Schedulability performance of the two analysis approaches.

7.2.2 Schedulability Performance
Figure 4 further shows the schedulability comparison for the two

approaches based on the schedulability condition in Equation (4).

Similar to the trends for blocking time reduction as shown in

Figure 3, when other parameters are fixed, larger values of M,

K and CS R and smaller value of R normally correspond to more

synchronization requirements and thus degraded acceptance ratios

for the two approaches. Recall that, the new analysis approach tries

to reduce the maximum total global waiting times of tasks using a

resource-oriented method as presented in Section 6.1. Moreover,

as explained above, the new approach can tighten the bound on the

local ci-blocking times for tasks by exploiting the busy-waiting

time of any task at its each valid level. Note surprisingly, for such

cases, the new analysis approach can achieve better schedulability

ratio (e.g., 10% more) as shown in Figures 4(a) to 4(d).

7.3 Empirical Results for partitioned-EDF with MSRP

To measure the usability of the partitioned-EDF scheduler with M-

SRP empirically, we implemented them in Linux kernel 2.6.38.8,

which run on a PC with a 32nm AMD FX-8320 processor (8 cores,

3.5Ghz clock speed, 8M L2 and L3 cache) and 8G RAM.

We followed the design paradigms of LITMUSRT [18] and

exploited the available Linux infrastructure to establish partitioned

EDF scheduler: a new scheduling class with the highest priority is

added to the traditional Linux scheduler. We also provided a user

space library to create MC tasks by means of multi-threading.

The tasks are initially created as non real-time where each task

executes the same function codes by accumulating a local variable

in while-loop to stress the OS. The system call is used to pass the

timing parameters of tasks from user space to kernel space and

then per-task data structures are constructed in kernel.

Specifically, we implemented two additional global synchro-
nization mechanisms designed for MC systems: the first is used

to synchronize the tick counters for cores; based on the first one,

the second mechanism is exploited to address the issues when the

system mode transition occurs, such as dropping low-criticality

jobs upon exiting all their criticality sections (if possible).

Parameter Settings: The period range for any task is set to [50ms,

1s] and each task set executes for 10 seconds. Moreover, there are

two additional parameters necessary for the measurements.

The first is increment factor (IFC) defined as the increasing

ratio of WCETs between consecutive criticality levels for any task.

Following the similar steps to generate task sets in Section 7.1, for

any task τi, we first obtain its ci(�i) and then its WCETs at other

valid levels can be generated according to ci(�i) and IFC.

The second is mode-change probability (MCP) that is ranged

from 0.01 to 0.1 and accounts for the online execution variations

of tasks. We first compute the total number of jobs for all tasks

executed in 10 seconds, which is multiplied by MCP for obtaining

the number of jobs that can cause mode transition. After randomly

selecting such jobs (with their own criticality levels being higher

than 1), the actual execution times of these jobs can be uniformly

chosen from their minimum WCETs to the maximum ones.

The metric of measurement performance is run-time overhead,

including context switching overhead, scheduling overhead caused

by the operations for individual job queues of cores and resources,

the additional overhead for global synchronization mechanisms,

etc. The default parameter values are IFC = 0.2, MCP = 0.05

and the others are the same as those in the simulations. For the

results given below, each data point represents the average result

of 1000 schedulable task sets based on the new analysis approach

and the schedulability condition given in Equation (4).

Empirical Results: The measurement results for the run-time

overhead (in s) of partitioned-EDF with MSRP are shown in

Figure 5. The results show its applicability: the overhead normally

consumes about 3% to 7% of the total execution time, which is

approximate to that (i.e., 5%) for partitioned EDF-VD [24] on

Core i5 platform where no shared resource is considered [7].

Figure 5(a) shows the measured overhead for partitioned-EDF

and MSRP with varying normalized system utilizations (NS U).

In general, a larger NS U means heavier workload and thus higher

run-time overhead. Therefore, when NS U increases, higher over-

head can be experienced by partitioned-EDF with MSRP. Note

that, the mode-change probability MCP is relatively large here

(i.e., 0.05). This indicates that when system workload becomes

heavier, the tasks with higher utilizations can be discarded earlier

due to the AMC scheme. For this reason, when NS U reaches a

large value (e.g., 0.66), the overhead can decrease.

Next, the impacts of different system criticality levels (K)

on the overhead for partitioned-EDF with MSRP are evaluated

and the results are shown in Figure 5(b). Generally, a larger K
implies higher utilizations of tasks at higher levels and thus higher

overhead. Similar to the trends as those for varying NS U, when K
increases, the partitioned-EDF scheduler with MSRP has higher

overhead; whereas when K reaches a large value (e.g., 5), the

overhead incurred by partitioned-EDF with MSRP can decrease.

Figure 5(c) shows the overhead for partitioned-EDF with

MSRP when the critical section ratio (CS R) can vary. Generally,

larger size of critical sections in tasks (i.e., a larger CS R) can result

in more synchronization requirements and thus higher overhead

caused by the operations for job queues of resources. With a

relative large MCP being considered, the overhead for partitioned-

EDF with MSRP usually increases when CS R increases and can

decrease when CS R reaches a large value (e.g., 0.08).

We further evaluate the impacts of mode-change probability



13

(a) Overhead with varying NS U; (b) Overhead with varying K; (c) Overhead with varying CS R;

(d) Overhead with varying MCP; (e) Overhead with varying M; (f) Overhead with varying R;

Fig. 5: Run-time overhead of partitioned-EDF with MSRP for MC tasks running on multicores with shared resources.

(MCP) on the measured overhead for partitioned-EDF with MSRP

and the results are shown in Figure 5(d). With other parameters be-

ing fixed, when MCP increases, more tasks could be dropped that

leads to less context switching, fewer operations for job queues of

cores and resources (and thus lower overhead). Nonetheless, when

MCP becomes large (e.g., MCP > 0.8), the overhead reduction

begins to stagnate due to the AMC scheme: some jobs of the same

own criticality that are expected to cause running mode transition

multiple times can be dropped simultaneously.

Figure 5(e) shows the overhead performance for partitioned-

EDF with MSRP when the number of cores (M) can vary. Here,

the number of tasks N is set as 5 · M to measure the overheads

caused by the global synchronization mechanisms designed for

MC systems as well as the operations for job queues of resources.

Not surprisingly, the overhead incurred by partitioned-EDF with

MSRP increases when there are more available cores in the system

due to more operations for job queues of resources and more times

consumed to address the issues for system mode transitions.

Finally, the overhead performance for partitioned-EDF with

MSRP with different number of shared resources (R) is shown in

Figure 5(f). When other parameters are fixed, as more available

shared resources commonly account for relatively less resource

access contention among tasks, the overhead experienced by

partitioned EDF with MSRP typically decreases when R increases.

8 Conclusion
For periodic mixed-criticality tasks that access shared resources in

multicores, we characterize the blocking issues due to both priority

and criticality inversions for MSRP under the partitioned EDF

scheduler. Based on level-1 utilization limit on any core, we study

a criticality-cognizant utilization bound under partitioned EDF and

MSRP with WFD. Then, we discuss its non-monotonicity with re-

gard to the number of cores, which implies that the schedulability

performance may be improved when fewer cores are deployed due

to the reduced inter-core synchronization interference.

With the focus on the step-wise system mode transitions, we

develop a novel analysis approach to computing the individual

global waiting time of a task at its each valid level, and then

exploit a resource-oriented technique to tighten the bound of

synchronization overheads for MC tasks scheduled by partitioned-

EDF with MSRP. The extensive simulation results and empirical

results validate the effectiveness (i.e., better schedulability ratio)

of the new analysis approach and the usability (i.e., acceptable

run-time overhead) of the partitioned-EDF scheduler with MSRP.

Acknowledgments
This work is supported in part by the National Natural Science

Foundation of China (NSFC) Awards 61472150 and 61173045,

the Fundamental Research Funds for the Central Universities (Chi-

na) Awards HUST: 2016YXMS081 and 2015TS072, US National

Science Foundation Awards CNS-1422709 and CNS-1421855.

References
[1] I. RTCA, “Do-178c: Software considerations in airborne systems and

equipment certification,” 2011.
[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-

ing degrees of execution time assurance,” in Proc. of the IEEE Real-Time
Systems Symposium, pp. 239–243, 2007.

[3] P. Ekberg and W. Yi, “Schedulability analysis of a graph-based task
model for mixed-criticality systems,” Real-Time Systems, vol. 52, no. 1,
pp. 1–37, 2016.

[4] Z. Guo, L. Santinelli, and K. Yang, “Edf schedulability analysis on
mixed-criticality systems with permitted failure probability,” in Proc. of
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 187–196, 2015.

[5] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case latency
improvements in mixed-criticality wormhole networks-on-chip,” in Proc.
of the Euromicro Conference on Real-Time Systems, pp. 47–56, 2015.

[6] A. Kostrzewa, S. Saidi, and R. Ernst, “Dynamic control for mixed-critical
networks-on-chip,” in Proc. of Real-Time Systems Symposium, pp. 317–
326, 2015.

[7] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele, “Mixed-
criticality runtime mechanisms and evaluation on multicores,” in Proc.
of Real-Time and Embedded Technology and Applications Symposium,
pp. 194–206, 2015.

[8] N. Zhang, C. Xu, J. Li, and P. M, “A sufficient response-time analysis for
mixed criticality systems with pessimistic period,” Journal of Computa-
tional Information Systems, vol. 11, no. 6, pp. 1955–1964, 2015.



14

[9] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time
System, vol. 3, no. 1, pp. 67–99, 1991.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Transactions on
Computer, vol. 39, no. 9, pp. 1175–1185, 1990.

[11] A. Block, H. Leontyev, B. B. Brandenburg, and J.-H. Anderson, “A
flexible real-time locking protocol for multiprocessors,” in Proc. of the
IEEE Int’l Conference on Embedded and Real-Time Computing Systems
and Applications, 2007.

[12] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca,
“A comparison of mpcp and msrp when sharing resources in the janus
multiple-processor on a chip platform,” in Proc. of Real-Time and
Embedded Technology and Applications Symposium, pp. 189–198, 2003.

[13] K. Lakshmanan, D.-d. Niz, and R. Rajkumar, “Coordinated task schedul-
ing, allocation and synchronization on multiprocessors,” in Proc. of the
IEEE Real-Time Systems Symposium, pp. 469–478, 2009.

[14] R. Rajkumar, “Real-time synchronization protocols for shared memory
multiprocessors,” in Porc. of the International Conference onDistributed
Computing Systems, pp. 116–123, 1990.

[15] A. Wieder and B. B. Brandenburg, “On spin locks in autosar: Blocking
analysis of fifo, unordered, and priority-ordered spin locks,” in Proc. of
Real-Time Systems Symposium, pp. 45–56, 2013.

[16] S. Bunzel, “Autosar–the standardized software architecture,” Informatik-
Spektrum, vol. 34, no. 1, pp. 79–83, 2011.

[17] M. Yang, A. Wieder, and B. B. Brandenburg, “Global real-time
semaphore protocols: A survey, unified analysis, and comparison,” in
Proc. of Real-Time Systems Symposium, pp. 1–12, 2015.

[18] B. B. Brandenburg and J. H. Anderson, “A comparison of the m-pcp, d-
pcp, and fmlp on litmusrt,” in Principles of Distributed Systems, pp. 105–
124, 2008.

[19] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Mixed-criticality task
synchronization in zero-slack scheduling,” in Proc. of the Real-Time and
Embedded Technology and Applications Symposium, pp. 47–56, 2011.

[20] Q. Zhao, Z. Gu, and H. Zeng, “Hlc-pcp: A resource synchronization
protocol for certifiable mixed criticality scheduling,” IEEE Embedded
Systems Letters, vol. 6, no. 1, pp. 8–11, 2014.

[21] Q. Zhao, Z. Gu, and H. Zeng, “Resource synchronization and preemption
thresholds within mixed-criticality scheduling,” ACM Transactions on
Embedded Computing Systems, vol. 14, no. 4, p. 81, 2015.

[22] A. Burns, “The application of the original priority ceiling protocol to
mixed criticality systems,” in Proc. of International Conference on Real-
Time Computing Systems and Applications, pp. 7–11, 2013.

[23] Y. Cui, Y. Wang, Y. Chen, and Y. Shi, “Requester-based spin lock: A
scalable and energy efficient locking scheme on multicore systems,”
IEEE Transactions on Computers, vol. 64, no. 1, pp. 166–179, 2015.

[24] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “Preemptive uniprocessor scheduling
of mixed-criticality sporadic task systems,” Journal of the ACM, vol. 62,
no. 2, p. 14, 2015.

[25] B. B. Brandenburg and J.-H. Anderson, “Optimality results for multi-
processor real-time locking,” in Proc. of the IEEE Real-Time Systems
Symposium, pp. 49–60, 2010.

[26] A. Burns and A. J. Wellings, “A schedulability compatible multipro-
cessor resource sharing protocol–mrsp,” in Proc. of the 25th Euromicro
Conference on Real-Time Systems, pp. 282–291, 2013.

[27] J.-J. Han, X. Wu, D. Zhu, H. Jin, L. T. Yang, and J.-L. Gaudiot,
“Synchronization-aware energy management for vfi-based multicore
real-time systems,” IEEE Trans. on Computers, vol. 61, no. 12, pp. 1682–
1696, 2012.

[28] J.-J. Han, D. Zhu, X. Wu, L. T. Yang, and H. Jin, “Multiprocessor real-
time systems with shared resources: Utilization bound and mapping,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 11,
pp. 2981–2991, 2014.

[29] P.-C. Hsiu, D.-N. Lee, and T.-W. Kuo, “Task synchronization and
allocation for many-core real-time systems,” in Proc. of the ACM Int’l
Conf. on Embedded software, pp. 79–88, 2011.

[30] Y.-S. Chen, C.-Y. Yang, and T.-W. Kuo, “Energy-Efficient Task Syn-
chronization for Real-Time Systems,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 3, pp. 287–301, 2010.

[31] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemp-
tion threshold,” in Proc. of the Sixth International Conference on Real-
Time Computing Systems and Applications, pp. 328–335, 1999.

[32] B. B. Brandenburg, “A synchronous ipc protocol for predictable access
to shared resources in mixed-criticality systems,” in Proc. of the IEEE
Real-Time Systems Symposium, pp. 196–206, 2014.

[33] A. Burns and R. I. Davis, “Mixed criticality systems-a review,” in
Department of Computer Science, University of York, Tech. Rep., 2016.

[34] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis
for mixed criticality systems,” in Proc. of the IEEEReal-Time Systems
Symposium, pp. 34–43, 2011.

[35] H. Li and S. Baruah, “Global mixed-criticality scheduling on multipro-
cessors,” in Proc. of 24th Euromicro Conference on Real-Time Systems,
pp. 166–175, 2012.

[36] J. Ras and A. M. Cheng, “An evaluation of the dynamic and static multi-
processor priority ceiling protocol and the multiprocessor stack resource
policy in an smp system,” in Real-Time and Embedded Technology and
Applications Symposium, 2009. RTAS 2009. 15th IEEE, pp. 13–22, 2009.

[37] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, pp. 406–471, 1999.

[38] J. M. López, J. L. Dı́az, and D. F. Garcı́a, “Utilization bounds for edf
scheduling on real-time multiprocessor systems,” Real-Time Systems,
vol. 28, no. 1, pp. 39–68, 2004.

Jian-Jun Han received the PhD degree in comput-
er science and engineering from Huazhong Univer-
sity of Science and Technology (HUST), in 2005.
He is now an Associate Professor at the School
of Computer Science and Technology in HUST. He
worked at the University of California, Irvine as a
visiting scholar between 2008 and 2009, and at the
Seoul National University between 2009 and 2010.
His research interests include real-time systems,
parallel processing and green computing.

Xin Tao is now a Master Candidate in the School
of Computer Science and Technology at HUS-
T. His current research interests include real-time
scheduling algorithm, embedded systems and op-
erating systems.

Dakai Zhu received the PhD degree in Computer
Science from University of Pittsburgh in 2004. He is
currently an Associate Professor in the Department
of Computer Science at the University of Texas at
San Antonio. His research interests include real-
time systems, power aware computing and fault-
tolerant systems. He was a recipient of the US
National Science Foundation (NSF) Faculty Early
Career Development (CAREER) Award in 2010.

Laurence T. Yang received the PhD degree in
computer science from the University of Victoria,
BC, Canada. He is currently a Professor at School
of Computer Science and Technology, Huazhong
University of Science and Technology, China and
at Department of Computer Science, St. Francis
Xavier University, Canada. His current research in-
terests include parallel and distributed computing,
embedded and ubiquitous/pervasive computing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


