Shear and Moment Diagrams

$>$ We will develop a simpler method for constructing shear and moment diagrams.
> We will derive the relationship between loading, shear force, and bending moment.

Shear and Moment Diagrams

$>$ If the variation of \boldsymbol{V} and \boldsymbol{M} are written as functions of position, x, and plotted, the resulting graphs are called the shear diagram and the moment diagram.
> Developing the shear and moment functions for complex beams can be quite tedious.

Shear and Moment Diagrams

> Consider the beam shown below subjected to an arbitrary loading.
$>$ We will assume that distributed loadings will be positive (+) if they act upward.
,

Shear and Moment Diagrams

> Since the segment is chosen at a point x where there is no concentrated forces or moments, the result of this analysis will not apply to points of concentrated loading

Shear and Moment Diagrams

> Let's draw a free body diagram of the small segment of length Δx and apply the equations of equilibrium.

Shear and Moment Diagrams

$>$ Dividing both sides of the $\Delta \boldsymbol{V}$ and $\Delta \boldsymbol{M}$ expressions by Δx and taking the limit as Δx tends to 0 gives:

Shear and Moment Diagrams

$>$ The slope of the shear diagram at a point is equal to the intensity of the distributed loading $w(x)$ at that point

Shear and Moment Diagrams

$>$ The slope of the moment diagram at a point is equal to the intensity of the shear at that point.

Shear and Moment Diagrams

> If we multiply both sides of each of the above expressions by $d x$ and integrate:

$$
\Delta V=\int w(x) d x
$$

$\Delta M=\int V(x) d x$

Change in _ Area under the shear $=$ loading

$$
\text { Change in }=\text { Area under the }
$$

$\underset{\text { moment }}{\text { Change in }}=\begin{gathered}\text { Area under the } \\ \text { shear diagram }\end{gathered}$

Shear and Moment Diagrams

$>$ The change in shear between any two points is equal to the area under the loading curve between the points.

$$
\Delta V=\int w(x) d x
$$

Change in $=$ Area under the shear - loading
$\Delta M=\int V(x) d x$
Change in _ Area under the $\underset{\text { moment }}{\text { Change in }}=\begin{aligned} & \text { Area under the } \\ & \text { shear diagram }\end{aligned}$

Shear and Moment Diagrams

$>$ The change in moment between any two points is equal to the area under the shear diagram between the points.

Change in $=$ Area under the shear $=$ loading

$$
\Delta M=\int V(x) d x
$$

Change in _ Area under the moment $=$ shear diagram

Shear and Moment Diagrams

> Let's consider the case where a concentrated force and/or a couple are applied to the segment.

$\sum F_{y}=0=V+P-(V+\Delta V)$

Shear and Moment Diagrams

> Therefore, when a force P acts downward on a beam, $\Delta \mathbf{V}$ is negative so the "jump" in the shear diagrams is downward. Likewise, if P acts upward, the "jump" is upward.
> When a couple \boldsymbol{M} ' acts clockwise, the resulting moment $\Delta \mathrm{M}$ is positive, so the "jump" in the moment diagrams is up, and when the couple acts counterclockwise, the "jump" is downward.

Shear and Moment Diagrams

> Let's consider the case where a concentrated force and/or a couple are applied to the segment.

Shear and Moment Diagrams

$>$ Procedure for analysis - the following is a procedure for constructing the shear and moment diagrams for a beam .

1. Determine the support reactions for the structure.

Shear and Moment Diagrams

$>$ Procedure for analysis - the following is a procedure for constructing the shear and moment diagrams for a beam .
2. To construct the shear diagram, first, establish the \mathbf{V} and x axes and plot the value of the shear at each end of the beam.

Shear and Moment Diagrams

Procedure for analysis - the following is a procedure for constructing the shear and moment diagrams for a beam .

Since the $d V / d x=w$, the slope of the shear diagram at any point is equal to the intensity of the applied distributed loading.

Shear and Moment Diagrams

$>$ Procedure for analysis - the following is a procedure for constructing the shear and moment diagrams for a beam .

The change in the shear force is equal to the area under the distributed loading.

If the distributed loading is a curve of degree n, the shear will be a curve of degree $n+1$.

Shear and Moment Diagrams

$$
\begin{aligned}
& \stackrel{y}{ } \text { Find the support reactions } \\
& \sum M_{A}=0=-P(L+2 L)+B_{y}(3 L) \\
& \sum F_{y}=0=A_{y}+B_{y}-2 P \\
& \sum F_{x}=0=A_{x}
\end{aligned}
$$

Shear and Moment Diagrams

$>$ Establish the \boldsymbol{V} and x axes and plot the value of the shear at each end.
In this case, the values are: at $x=0, \boldsymbol{V}=\mathrm{P}$; and at $x=3 \mathrm{~L}, \boldsymbol{V}=-\mathrm{P}$.

Shear and Moment Diagrams

$>$ Draw the shear and moment diagrams for the following beam

Shear and Moment Diagrams

$>$ At a point $x=\mathrm{L}$, a concentrated load P is applied. The shear diagram is discontinuous and "jumps" downward (recall $\Delta \boldsymbol{V}=-P$).

Shear and Moment Diagrams

$>$ The slope of the shear diagram over the interval $\mathrm{L}<x<2 \mathrm{~L}$ is zero since, $w(x)=0$.

Shear and Moment Diagrams

$>$ At $2 \mathrm{~L}, \mathrm{P}$ is applied and the shear diagram "jumps" downward (recall $\Delta \boldsymbol{V}=-\mathrm{P}$).

Shear and Moment Diagrams

$>$ The slope of the shear diagram over the interval $2 \mathrm{~L}<x<3 \mathrm{~L}$ is zero since, $w(x)=0$.

The resulting shear diagram matches the shear at the right end determined from the equilibrium equations.

Shear and Moment Diagrams

$>$ The slope of the shear diagram over the interval $2 \mathrm{~L}<x<3 \mathrm{~L}$ is zero since, $w(x)=0$.

The resulting shear diagram matches the shear at the right end determined from the equilibrium equations.

Shear and Moment Diagrams

$>$ Establish the \boldsymbol{M} and x axes and plot the value of the moment at each end.
In this case, the values are: at $x=0, \boldsymbol{M}=0$; and at $x=3 \mathrm{~L}$, $M=0$.

Shear and Moment Diagrams

$>$ The slope of the moment diagram over the interval $0<x<\mathrm{L}$ is the equal to value of the shear; in this case $\boldsymbol{V}=\mathrm{P}$. This indicates a positive slope of constant value.

The change in moment is equal to the area under the shear diagram, in this case, $\Delta \boldsymbol{M}=\mathrm{PL}$.

Shear and Moment Diagrams

———_
$>$ The slope of the moment diagram over the interval $\mathrm{L}<x<$
2 L is the equal to value of the shear; in this case $\boldsymbol{V}=0$.

Shear and Moment Diagrams

> The slope of the moment diagram over the interval $2 \mathrm{~L}<x<3 \mathrm{~L}$ is the equal to value of the shear, $\boldsymbol{V}=-\mathrm{P}$.

The change in moment is equal to the area under the shear diagram, in this case, $\Delta \boldsymbol{M}=-\mathrm{PL}$.

Shear and Moment Diagrams

$>$ The slope of the moment diagram over the interval $2 \mathrm{~L}<x$ $<3 \mathrm{~L}$ is the equal to value of the shear, $V=-P$.

The change in moment is equal to the area under the shear diagram, in this case, $\Delta \boldsymbol{M}=-\mathrm{PL}$.

Shear and Moment Diagrams

> The shape of the shear and moment diagrams for selected loadings

Shear and Moment Diagrams

> The shape of the shear and moment diagrams for selected loadings

Loading
$w(x)$

Shear Diagram $\quad \frac{d V}{d x}=w$

Moment Diagram $\quad \frac{d M}{d x}=V$

Shear and Moment Diagrams

$>$ Draw the shear and moment diagrams for the following beam

Shear and Moment Diagrams

> Draw the shear and moment diagrams for the following beam

End of Internal Loads - Part 3

Any questions?

