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Chapter 1

Introduction

XSB is a research-oriented, commercial-grade Logic Programming system for Unix
and Windows-based platforms. In addition to providing nearly all functionality of
ISO-Prolog, XSB includes the following features:

• Evaluation of queries according to the Well-Founded Semantics [88] through full
SLG resolution (tabling with negation). XSB’s tabling implementation supports
incremental tabling, as well as call and answer subsumption.

• A fully multi-threaded engine with thread-shared static code, and that allows
dynamic code and tables to be thread-shared or thread-private. This engine
fully supports the draft ISO standard for multi-threading [39].

• Constraint handling for tabled programs based on an engine-level implementa-
tion of annotated variables and various costraint packages, including clpqr for
handling real constraints, and bounds a simple finite domain constraint library.

• A package for Constraint Handling Rules [32] which can be used to implement
user-written constraint libraries.

• A variety of indexing techniques for asserted code including variable-depth in-
dexing on several alternate arguments, fixed-depth indexing on combined argu-
ments, trie-indexing.

• A set of mature packages, to extend XSB to evaluate F-logic [43] through the
FLORA-2 package (distributed separately from XSB), to model check concur-
rent systems through the XMC system, to manage ontologies through the Cold

1
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Dead Fish package, to support literate programming through the xsbdoc pack-
age, and to support answer set programming through the XASP package among
other features.

• A number of interfaces to other software systems, such a C, Java, Perl, ODBC,
SModels [60], and Oracle.

• Fast loading of large files by the load_dync predicate, and by other means.

• A compiled HiLog implementation;

• Backtrackable updates through XSB’s storage module that support the se-
mantics of transaction logic [6].

• Extensive pattern matching packages, and interfaces to libwww routines, all of
which are especially useful for Web applications.

• A novel transformation technique called unification factoring that can improve
program speed and indexing for compiled code;

• Macro substitution for Prolog files via the xpp preprocessor (included with the
XSB distribution).

• Preprocessors and Interpreters so that XSB can be used to evaluate programs
that are based on advanced formalisms, such as extended logic programs (ac-
cording to the Well-Founded Semantics [2]); Generalized Annotated Programs
[44].

• Source code availability for portability and extensibility under the GNU General
Public Library License.

Though XSB can be used as a Prolog system, we avoid referring to XSB as such,
because of the availability of SLG resolution and the handling of HiLog terms. These
facilities, while seemingly simple, significantly extend its capabilities beyond those of
a typical Prolog system. We feel that these capabilities justify viewing XSB as a new
paradigm for Logic Programming. We briefly discuss some of these features; others
are discussed in Volumes 1 and 2 of the XSB manual, as well as the manuals for
various XSB packages such as FLORA, XMC, Cold Dead Fish, xsbdoc, and XASP.



CHAPTER 1. INTRODUCTION 3

Well-Founded Semantics To understand the implications of SLG resolution [16],
recall that Prolog is based on a depth-first search through trees that are built using
program clause resolution (SLD). As such, Prolog is susceptible to getting lost in an
infinite branch of a search tree, where it may loop infinitely. SLG evaluation, available
in XSB, can correctly evaluate many such logic programs. To take the simplest of
examples, any query to the program:

:- table ancestor/2.

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

ancestor(X,Y) :- parent(X,Y).

will terminate in XSB, since ancestor/2 is compiled as a tabled predicate; Prolog
systems, however, would go into an infinite loop. The user can declare that SLG
resolution is to be used for a predicate by using table declarations, as here. Alter-
nately, an auto_table compiler directive can be used to direct the system to invoke
a simple static analysis to decide what predicates to table (see Section 3.10.5). This
power to solve recursive queries has proven very useful in a number of areas, including
deductive databases, language processing [45, 46], program analysis [22, 17, 7], model
checking [63] and diagnosis [33]. For efficiency, we have implemented SLG at the
abstract machine level so that tabled predicates will be executed with the speed of
compiled Prolog. We finally note that for definite programs SLG resolution is similar
to other tabling methods such as OLDT resolution [86] (see Chapter 5 for details).

Example 1.0.1 The use of tabling also makes possible the evaluation of programs
with non-stratified negation through its implementation of the well-founded semantics
[88]. When logic programming rules have negation, paradoxes become possible. As
an example consider one of Russell’s paradoxes — the barber in a town shaves every
person who does not shave himself — written as a logic program.

:- table shaves/2.

shaves(barber,Person):- person(Person), tnot(shaves(Person,Person)).

person(barber).

person(mayor).

Logically speaking, the meaning of this program should be that the barber shaves the
mayor, but the case of the barber is trickier. If we conclude that the barber does not
shave himself our meaning does not reflect the first rule in the program. If we conclude
that the barber does shave himself, we have reached that conclusion using information
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beyond what is provided in the program. The well-founded semantics, does not treat
shaves(barber,barber) as either true or false, but as undefined. Prolog, of course,
would enter an infinite loop. XSB’s treatment of negation is discussed further in
Chapter 5.

Multi-threading From Version 3.0 onward, XSB has been thoroughly revised to
support multi-threading using POSIX or Windows threads. Detached XSB threads
can be created to execute specific tasks, and these threads will exit when the query
succeeds (or fails, or throws an exception) and all thread memory reclaimed. While
a thread’s execution state is, of course, private, it shares many resources with other
threads, such as static code and I/O streams. Dynamic code and tables can be either
thread-shared or thread-private by default or by explicit declaration.

Constraint Support XSB supports logic-based constraint handling at a low level
through attributed variables and associated packages (e.g. setarg/3). In addition,
constraints may be handled through Constraint Handling Rules. Constraint logic
programs that use attributed variables may be tabled; those that use Constraint
Handling Rules may be efficiently tabled if the CHRd package is used. Constraint
programming in XSB is mainly covered in Volume 2.

Indexing Methods Data oriented applications may require indices other than Pro-
log’s first argument indexing. XSB offers a variety of indexing techniques for asserted
code. Clauses can be indexed on a group of arguments or on alternative arguments.
For instance, the executable directive index(p/4,[3,2+1]) specifies indexes on the
(outer functor symbol of) the third argument or on a combination of (the outer func-
tion symbol of) the second and first arguments. If data is expected to be structured
within function symbols and is in unit clauses, the directive index(p/4,trie) con-
structs an indexing trie of the p/4 clauses using a depth-first, left-to-right traversal
through each clause. Representing data in this way allows discrimination of informa-
tion nested arbitrarily deep within clauses. Advantages of both kinds of indexing can
be combined via star-indexing. Star-indexing indicates that up to the first 5 fields in
an argument will be used for indexing (the ordering of the fields is via a depth-first
traversal). For instance, index(p/4,[*(4),3,2+1]) acts as above, but looks within
4th argument of p/4 before examining the outer functor of argument 3 (and finally
examining the outer functors of arguments 2 and 1 together. Using such indexing,
XSB routinely performs efficiently intensive analyses of in-memory knowledge bases
with millions of highly structured facts. Indexing techniques for asserted code are
covered in Section 6.14.
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Interfaces A number of interfaces are available to link XSB to other systems. In
UNIX systems XSB can be directly linked into C programs; in Windows-based system
XSB can be linked into C programs through a DLL interface. On either class of
operating system, C functions can be made callable from XSB either directly within
a process, or using a socket library. XSB can also inter-communicate with Java
through the InterProlog interface 1 or using YJXSB. Within InterProlog, XSB and
Java can be linked either through Java’s JNI interface, or through sockets. XSB
can access external data in a variety of ways: through an ODBC interface, through
an Oracle interface, or through a variety of mechanisms to read data from flat files.
These interfaces are all described in Volume 2 of this manual.

Fast Loading of Code A further goal of XSB is to provide in implementation
engine for both logic programming and for data-oriented applications such as in-
memory deductive database queries and data mining [69]. One prerequisite for this
functionality is the ability to load a large amount of data very quickly. We have
taken care to code in C a compiler for asserted clauses. The result is that the speed
of asserting and retracting code is faster in XSB than in any other Prolog system
of which we are aware, even when some of the sophisticated indexing mechanisms
described above are employed. At the same time, because asserted code is compiled
into SLG-WAM code, the speed of executing asserted code in XSB is faster than
that of many other Prologs as well. We note however, that XSB does not follow the
ISO-semantics of assert [51].

HiLog XSB also supports HiLog programming [14, 72]. HiLog allows a form of
higher-order programming, in which predicate “symbols” can be variable or struc-
tured. For example, definition and execution of generic predicates like this generic
transitive closure relation are allowed:

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- R(X,Z), closure(R)(Z,Y).

where closure(R)/2 is (syntactically) a second-order predicate which, given any
relation R, returns its transitive closure relation closure(R). XSB supports reading
and writing of HiLog terms, converting them to or from internal format as necessary
(see Section 4.2). Special meta-logical standard predicates (see Section 6.7) are also
provided for inspection and handling of HiLog terms. Unlike earlier versions of XSB
(prior to version 1.3.1) the current version automatically provides full compilation of
HiLog predicates. As a result, most uses of HiLog execute at essentially the speed

1InterProlog is available at www.declarativa.com/InterProlog/default.htm.

www.declarativa.com/InterProlog/default.htm
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of compiled Prolog. For more information about the compilation scheme for HiLog
employed in XSB see [72].

HiLog can also be used with tabling, so that the program above can also be written
as:

:- hilog closure.

:- table apply/3.

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- closure(R)(X,Z), R(Z,Y).

as long as the underlying relations (the predicate symbols to which R will be unified)
are also declared as Hilog. For example, if a/2 were a binary relation to which the
closure predicate would be applied, then the declaration :- hilog a. would also
need to be included.

Unification Factoring For compiled code, XSB offers unification factoring, which
extends clause indexing methods found in functional programming into the logic
programming framework. Briefly, unification factoring can offer not only complete
indexing through non-deterministic indexing automata, but can also factor elemen-
tary unification operations. The general technique is described in [21], and the XSB
directives needed to use it are covered in Section 3.10.

XSB Packages Based on these features, a number of sophisticated packages have
been implemented using XSB. For instance, XSB supports a sophisticated object-
oriented interface called Flora. Flora (http://flora.sourceforge.net) is available
as an XSB package and is described in its own manual, available from the same site
from which XSB was downloaded. Another package, XMC http://www.cs.sunnysb.edu/~lmc

depends on XSB to perform sophisticated model-checking of concurrent systems.
Within the XSB project, the Cold Dead Fish package supports maintenance of, and
reasoning over ontologies; xsbdoc supports literate programming in XSB, and XASP
provides an interface to Smodels to support Answer Set programming. XSB packages
also support Perl-style pattern matching and POSIX-style pattern matching. In ad-
dition, experimental preprocessing libraries currently supported are Extended logic
programs (under the well-founded semantics), and Annotated Logic Programs. These
latter libraries are described in Volume 2 of this manual.

http://flora.sourceforge.net
http://www.cs.sunnysb.edu/~lmc
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1.1 Using This Manual

We adopt some standard notational conventions, such as the name/arity convention
for describing predicates and functors, + to denote input arguments, - to denote
output arguments, ? for arguments that may be either input or output and # for
arguments that are both input and output (can be changed by the procedure). See
Section 3.10.5 for more details. . Also, the manual uses UNIX syntax for files and
directories except when it specifically addresses other operating systems such as Win-
dows.

Finally, we note that XSB is under continuous development, and this document
—intended to be the user manual— reflects the current status (Version 3.8) of our
system. While we have taken great effort to create a robust and efficient system, we
would like to emphasize that XSB is also a research system and is to some degree
experimental. When the research features of XSB — tabling, HiLog, and Indexing
Techniques — are discussed in this manual, we also cite documents where they are
fully explained. All of these documents can be found without difficulty on the web.

While some of Version 3.8 is subject to change in future releases, we will try to
be as upward-compatible as possible. We would also like to hear from experienced
users of our system about features they would like us to include. We do try to
accommodate serious users of XSB whenever we can. Finally, we must mention that
the use of undocumented features is not supported, and at the user’s own risk.



Chapter 2

Getting Started with XSB

This section describes the steps needed to install XSB under UNIX and under Win-
dows.

2.1 Installing XSB under UNIX

If you are installing on a UNIX platform, the version of XSB that you received may
not include all the object code files so that an installation will be necessary. The
easiest way to install XSB is to use the following procedure.

1. Decide in which directory in your file system you want to install XSB and copy
or move XSB there.

2. Make sure that after you have obtained XSB, you have uncompressed it by
following the instructions found in the file README.

3. Note that after you uncompress and untar the XSB tar file, a subdirectory
XSB will be created in the current directory. All XSB files will be located in
that subdirectory. In the rest of this manual, we use $XSB_DIR to refer to this
subdirectory. Note the original directory structure of XSB must be maintained,
namely, the directory $XSB_DIR should contain all the subdirectories and files
that came with the distribution. In particular, the following directories are
required for XSB to work: emu, syslib, cmplib, lib, packages, build, and
etc.

4. Change directory to $XSB_DIR/build and then run these commands:

8
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configure

makexsb

This is it!

In addition, it is now possible to install XSB in a shared directory (e.g., /usr/local)
for everyone to use. In this situation, you should use the following sequence of
commands:

configure –prefix=$SHARED_XSB

makexsb

makexsb install

where $SHARED_XSB denotes the shared directory where XSB is installed. In all
cases, XSB can be run using the script

$XSB_DIR/bin/xsb

However, if XSB is installed in a central location, the script for general use is:

<central-installation-directory>/<xsb-version>/bin/xsb

Important: The XSB executable determines the location of the libraries it needs
based on the full path name by which it was invoked. The “smart script” bin/xsb

also uses its full path name to determine the location of the various scripts that it
needs in order to figure out the configuration of your machine. Therefore, there are
certain limitations on how XSB can be invoked.

Here are some legal ways to invoke XSB:

1. invoking the smart script bin/xsb or the XSB executable using their absolute
or relative path name.

2. using an alias for bin/xsb or the executable.

3. creating a new shell script that invokes either bin/xsb or the XSB executable
using their full path names.

Here are some ways that are guaranteed to not work in some or all cases:

1. creating a hard link to either bin/xsb or the executable and using it to invoke
XSB. (Symbolic links should be ok.)
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2. changing the relative position of either bin/xsb or the XSB executable with
respect to the rest of the XSB directory tree.

The configuration script allows many different options to be specified. A full
listing can be obtained by typing $XSB_DIR/build/configure –help.

Type of Machine. The configuration script automatically detects your machine
and OS type, and builds XSB accordingly. On 64-bit platforms, the default
compilation of XSB will reflect the default for the C compiler (e.g. gcc) on
that platform. Moreover, you can build XSB for different architectures while
using the same tree and the same installation directory provided, of course, that
these machines are sharing this directory, say using NFS or Samba. All you will
have to do is to login to a different machine with a different architecture or OS
type, and repeat the above sequence of commands – or configure with different
parameters.

The configuration files for different architectures reside in different directories,
and there is no danger of an architecture conflict. In fact, you can keep using
the same ./bin/xsb script regardless of the architecture. It will detect your
configuration and will use the right files for the right architecture!

If XSB is being built on a Windows machine in which Cygwin is installed,
Cygwin and Windows are treated as separate operating systems, as their APIs
are completely different. On such a machine, XSB can be built either for Cygwin
or Windows.

Choice of the C Compiler and compiler-related options On Unix systems, XSB
is developed and tested mainly using gcc. Accordingly, the configure script
will attempt to use gcc, if it is available. Otherwise, it will revert to cc or acc.
Some versions of gcc are broken for particular platforms or gcc may not have
been installed; in which case you would have to give configure an additional
directive –with-cc (or –with-acc). If you must use some special compiler, use
–with-cc=your-own-compiler. You can also use the –with-optimization op-
tion to change the default C compiler optimization level. (or –disable-optimization

to disable all compiler optimizations). –enable-debug is mainly a devlopment
option that allows XSB to be debugged using gdb – there are many other
compiler-based options options. Type configure –help to see them all. Also
see the file $XSB_DIR/INSTALL for more details.

Word Size XSB’s configuration script checks whether the default compilation mode
of a platform is 32- or 64-bits, and will build a version of XSB accoringly. Some
platforms, however, support both 32-bit and 64-bit compilation. On such a
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platform, a user can explicitly specify the type of compilation using the options
with-bits32 and with-bits64.

XSB and Site-specific Information Using the option –prefix=PREFIX installs
architecture-independent files in the directory PREFIX, e.g. /usr/local, which
can be useful if XSB is to be shared at a site. Using the option –site-prefix=DIR

installs site-specific libraries in DIR/site. Other options indicate directories in
which to search for site-specific static and dynamic libraries, and for include
files.

Multi-threading Version 3.0 of XSB was the first version that supports multi-
threading. On some platforms, the multi-threaded engine is slightly slower
than the single-threaded engine, mostly due to its need for concurrency control.
To obtain the benefits of multiple threads on a platform that supports either
POSIX or Windows threads (i.e. nearly all platforms) users must configure
XSB with the directive enable-mt (see Section 7.8 for instructions specific to
Windows. The multi-threaded engine works with other configuration options,
multi-threading can be compiled with batched or local scheduling, with the
ODBC or InterProlog interfaces, and so on.

Interfaces Certain interfaces must be designated at configuration time, including
those to Oracle, ODBC, Smodels, Tck/Tk, and Libwww. However, the XSB-
calling-C interface interface does not need to be specified at configuration time.
If you wish to use the InterProlog Java interface that is based on JNI, you must
specify this at configuration time; otherwise if you wish to use the sockets-based
InterProlog interface, it does not need to be specified at configuration time. See
Volume 2 and the InterProlog site www.declarativa.com for details of specific
interfaces

While the XSB configuration mechanism can detect most include and library
paths, use of certain interfaces may require information about particular directo-
ries. In particular the –with-static-libraries option might be needed if com-
piling with support for statically linked packages (such as Oracle) or if your stan-
dard C libraries are in odd places. Alternately, dynamic libraries on odd places
may need to be specified at configuration time using the –with-dynamic-libraries

option. and finally, the –with-includes option might be needed if your stan-
dard header files (or your jni.h file) are in odd places, or if XSB is compiled
with ODBC support. Type configure –help for more details.

Type of Scheduling Strategy. The ordering of operations within a tabled eval-
uation can drastically affect its performance. XSB provides two scheduling
strategies: Batched Evaluation and Local Evaluation. Local Evaluation ensures
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that, whenever possible, subgoals are fully evaluated before there answers are
returned, and provides superior behavior for programs in which tabled negation
is used. Batched Evaluation evaluates queries to reduce the time to the first an-
swer of a query. Both evaluation methods can be useful for different programs.
Since Version 2.4, Local Evaluation has been the default evaluation method for
XSB. Batched Evaluation can be chosen via the –enable-batched-scheduling

configure option. Detailed explanations of the scheduling strategies can be found
in [30], and further experimentation in [12].

Other options are of interest to advanced users who wish to experiment with XSB,
or to use XSB for large-scale projects. In general, however users need not concern
themselves with these options.

2.1.1 Possible Installation Problems

Lack of Space for Optimized Compilation of C Code When making the op-
timized version of the emulator, the temporary space available to the C compiler for
intermediate files is sometimes not sufficient. For example on one of our SPARC-
stations that had very little /tmp space the "-O4" option could not be used for the
compilation of files emuloop.c, and tries.c, without changing the default tmp di-
rectory and increasing the swap space. Depending on your C compiler, the amount
and nature of /tmp and swap space of your machine you may or may not encounter
problems. If you are using the SUN C compiler, and have disk space in one of your
directories, say dir, add the following option to the entries of any files that cannot
be compiled:

-temp=dir

If you are using the GNU C compiler, consult its manual pages to find out how you
can change the default tmp directory or how you can use pipes to avoid the use of
temporary space during compiling. Usually changing the default directory can be
done by declaring/modifying the TMPDIR environment variable as follows:

setenv TMPDIR dir

Missing XSB Object Files When an object (*.xwam) file is missing from the lib

directories you can normally run the make command in that directory to restore it
(instructions for doing so are given in Chapter 2). However, to restore an object file
in the directories syslib and cmplib, one needs to have a separate Prolog compiler
accessible (such as a separate copy of XSB), because the XSB compiler uses most of
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the files in these two directories and hence will not function when some of them are
missing. For this reason, distributed versions normally include all the object files in
syslib and cmplib.

XSB on 64-bit platforms XSB has been fully tested on 64-bit Debian Linux, 64-
bit and Mac OS X. However, the sockets library may have problems in Version 3.8. If
this limitation prove a problem, please contact xsb-development@lists.sourceforge.net 1.

Typically, if the 64-bit system generates 32-bit code by default, XSB will run
just as in 32-bit mode (including 64-bit floats). 64-bit compilation can be forced for
XSB by configuring with the option –with-bits64, and in a similar manner 32-bit
compilation can be forced with the option –with-bits32. Users who employ either
option should be aware of issues that may arise when linking XSB to external C code.

• When XSB calls C code the C file must have been compiled with the same
memory option as XSB. This is done automatically if the C file is compiled via
a call from XSB’s compiler, but must be handled by the user otherwise. For
instance, if XSB were configured –with-bits32 on a 64-bit machine defaulting
to 64-bits, then C files called by XSB require the -m32 option in gcc (if not
compiled by XSB).

• The appropriate memory option must be used when embedding XSB into a C or
Java process. For instance, if a XSB is to be linked into a 32-bit application on
a 64-bit platform defaulting to 64-bits, XSB must be configured –with-bits32,
and the linking of xsb.o/so to the calling program must specify -m32.

2.2 Installing XSB under Windows

2.2.1 Using Cygwin32 and Cygwin64

This is easy: just follow the Unix instructions. XSB can be built under CygWin64
or CygWin32, but in the latter case CygWin32 must be installed on a 32 bit version
of Windows. XSB cannot be built under CygWin32 if the latter is installed on a 64
bit Windows.

Note: XSB is not fully functional under Cygwin—external C modules cannot be
linked and so several packages will not work.

164-bit XSB was broken in a recent releases prior to Version 3.1 because for a time the developers
did not have access to a 64-bit machine.
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2.2.2 Using Microsoft Visual C++

1. Check XSB out from SVN:
svn checkout svn://svn.code.sf.net/p/xsb/src/trunk xsb-src

2. Compile XSB as described below. This requires that Microsoft Visual Studio is
installed.

3. After compiling XSB, it is OK to move it to some other place, if needed. How-
ever, make sure that the entire directory tree is moved — the XSB executable
looks for the files it needs relatively to its current position in the file system.

The first thing is to ensure that Microsoft Visual Studio that includes a C++
compiler, so download the free of charge Microsoft Visual Studio, Community Edition
from

https://www.visualstudio.com/vs/community/

Make sure you select the C++ compiler as one of the additional components to include
(e.g., choose “Desktop development with C++”). The installer will place the studio
in C:\Program Files\Microsoft Visual Studio\.

One way to compile XSB under Windows is to use the automatic installer:

cd $XSB_DIR

java -jar InstallXSB.jar

where $XSB_DIR is the XSB’s instalation directory, and follow the prompts. The
trickiest of these prompts will ask you to provide the full file name of the stu-
dio’s settings batch file. For Visual Studio 2017, Community Edition, that file is
vcvarsx86_amd64.bat (for 64 bit apps) or vcvars32.bat (for 32 bit apps), located
in the directory

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build

In other versions of the studio, that file is elsewhere and can be found using the
Windows search widget. For instance, in the 2015 version of the studio, that direc-
tory is C:\Program Files (x86)\Microsoft Visual Studio 2015\VC\bin

If the automatic method just described does not work or if one needs customized
installation, one has to compile XSB the “hard way,” as described below.

svn://svn.code.sf.net/p/xsb/src/trunk
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1. Find the settings file, which you need to execute in a command window in order
to set the compilation environment, as described above.

2. Open a Windows command prompt window and drag the appropriate batch file
(vcvarsx86_amd64.bat or vcvars32.bat) into it. Type <Enter> to execute
that batch file.

3. cd $XSB_DIR\build

4. To compile XSB as a 64 bit application, use the following command, where the
items in square brackets are optional and usually can be dropped:
makexsb64 ["CFG=opt"] ["ORACLE=yes"] ["MY_LIBRARY_DIRS=libs"] ["MY_INCLUDE_DIRS=opts"]

• The options for CFG are: release (default) or debug. The latter is used
when you want to compile XSB with debugging enabled.

• The ORACLE parameter (default is “no”) compiles XSB with native sup-
port for Oracle DBMS. If ORACLE is specified, you must also specify the
necessary Oracle libraries using the parameter SITE_LIBS. Native Oracle
support is rarely used and ODBC is the recommended way to connect to
databases.

• MY_LIBRARY_DIRS is used to specify the external libraries and libs there
has the form /LIBPATH:"libdir1" /LIBPATH:"libdir2" ....

• MY_INCLUDE_DIRS is used to specify additional directories for included files.
Here opts has the form /I"incdir1" /I"incdir2" ....

Instead of specifying the options on command line, it might be more convenient
(and more general) to create the file

XSB\build\windows64\custom_settings.mak

and put the required options there. For instance,

XSB_INTERPROLOG=yes

MY_INCLUDE_DIRS=/I"C:\Program Files\Java\jdk1.8.0_131\include" \

/I"C:\Program Files\Java\jdk1.8.0_131\include\win32"

MY_LIBRARY_DIRS=/LIBPATH:"C:\pthreads\pthreadVC1.lib" /libpath:"C:\oracle"

ORACLE=yes

Make sure you do not misspell the name of that file or else none of the specified
options will take effect!
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5. The above command will compile XSB as requested and will put the XSB
executable and its DLL in:

$XSB_DIR\config\x64-pc-windows\bin\xsb.exe

$XSB_DIR\config\x64-pc-windows\bin\xsb.dll

6. To compile XSB as a 32 bit application (not recommended), use makexsb in-
stead of makexsb64. The compiled code will be installed in

$XSB_DIR\config\x86-pc-windows\bin\xsb.exe

$XSB_DIR\config\x86-pc-windows\bin\xsb.dll

The custom_settings.mak file must then be in

XSB\build\windows\custom_settings.mak

Note: if you compiled XSB with one set of parameters and then want to recompile
with a different set, it is recommended that you run

makexsb64 clean

in between the compilations (or makexsb clean in the 32-bit case). This also applies
to recompilations for 64/32 bits.

2.3 Invoking XSB

Under Unix, XSB can be invoked by the command:

$XSB_DIR/bin/xsb

if you have installed XSB in your private directory. If XSB is installed in a shared
directory (e.g., $SHARED_XSB for the entire site (UNIX only), then you should use

$SHARED_XSB/bin/xsb

In both cases, you will find yourself in the top level interpreter. As mentioned above,
this script automatically detects the system configuration you are running on and will
use the right files and executables. (Of course, XSB should have been built for that
architecture earlier.)
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Under Windows, you should invoke XSB by typing:

$XSB_DIR\bin\xsb

This script tries to find the XSB executable and invoke it. If, for some reason, it fails
to do so, the user should call the executable directly.

$XSB_DIR\config\x86-pc-windows\bin\xsb.exe

You may want to make an alias such as xsb to the above commands, for conve-
nience, or you might want to put the directory where the XSB command is found in
the $PATH environment variable. However, you should not make hard links to this
script or to the XSB executable. If you invoke XSB via such a hard link, XSB will
likely be confused and will not find its libraries. That said, you can create other
scripts and call the above script from there.

ISO“standard” Prolog predicates are supported by XSB, in addition to many other
predicates: so those of you who consider yourselves champion entomologists, can try
to test them for bugs now. Details are in Chapter 6.

2.4 Compiling XSB programs

One way to compile a program from a file, such as myfile.P in the current directory
and load it into memory, is to type the query:

[my_file].

where my_file is the name of the file. Chapter 3 contains a full discussion of the
compiling and consulting.

If you are eccentric (or you don’t know how to use an editor) you can also compile
and load predicates input directly from the terminal by using the command:

[user].

A CTRL-d or the atom end_of_file followed by a period terminates the input stream.

2.5 Sample XSB Programs

There are several sample XSB source programs in the directory: $XSB_DIR/examples

illustrating a number of standard features, as well as a number of non-standardized
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or XSB-specific features including plain tabling, incremental tabling, tabling with
negation, attributed variables, annotated programs, constraint handling rules, XSB
embedded in a C program, XSB calling C functions, sockets, and various semantic
web appliation

Hence, a sample session might look like (the actual times shown below may vary
and some extra information is given using comments after the % character):

my_favourite_prompt> cd $XSB_DIR/examples

my_favourite_prompt> $XSB_DIR/bin/xsb

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word size: 32]

| ?- [queens].

[queens loaded]

yes

| ?- demo.

% ...... output from queens program .......

Time used: 0.4810 sec

yes

| ?- statistics.

memory (total) 1906488 bytes: 203452 in use, 1703036 free

permanent space 202552 bytes

glob/loc space 786432 bytes: 432 in use, 786000 free

global 240 bytes

local 192 bytes

trail/cp space 786432 bytes: 468 in use, 785964 free

trail 132 bytes

choice point 336 bytes

SLG subgoal space 0 bytes: 0 in use, 0 free

SLG unific. space 65536 bytes: 0 in use, 65536 free

SLG completion 65536 bytes: 0 in use, 65536 free

SLG trie space 0 bytes: 0 in use, 0 free

(call+ret. trie 0 bytes, trie hash tables 0 bytes)

0 subgoals currently in tables

0 subgoal check/insert attempts inserted 0 subgoals in the tables

0 answer check/insert attempts inserted 0 answers in the tables

Time: 0.610 sec. cputime, 18.048 sec. elapsetime

yes

| ?- halt. % I had enough !!!
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End XSB (cputime 1.19 secs, elapsetime 270.25 secs)

my_favourite_prompt>

2.6 Exiting XSB

If you want to exit XSB, issue the command halt. or simply type CTRL-d at the
XSB prompt. To exit XSB while it is executing queries, strike CTRL-c a number of
times.



Chapter 3

System Description

Throughout this chapter, we use $XSB_DIR to refer to the directory in which XSB
was installed.

3.1 Entering and Exiting XSB from the Command

Line

After the system has been installed, the emulator’s executable code appears in the
file:

$XSB_DIR/bin/xsb

If, after being built, XSB is later installed at a central location, $SHARED_XSB, the
emulators executable code appears in

$SHARED_XSB/bin/xsb

Either of these commands invokes XSB’s top-level interpreter, which is the most
common way of using XSB.

XSB can also directly execute object code files from the command line interface.
Suppose you have a top-level routine go in a file foo.P that you would like to run
from the UNIX or Windows command line. As long as foo.P contains a directive,
e.g. :- go., and foo.P has been compiled to an object file (foo.xwam), then

$XSB_DIR/bin/xsb foo

20
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will execute go (and any other directives), loading the appropriate files as needed 1.
In fact the command $XSB_DIR/bin/xsb is equivalent to the command:

$XSB_DIR/bin/xsb -B $XSB_DIR/syslib/loader.xwam

There is one other way to execute XSB from a command line. Using the -e command-
line option any goal can be can be executed, up to 1024 characters. For instance

$XSB_DIR/bin/xsb -e "writeln(’hello world’),halt."

writes “hello world” and exits XSB. Within the 1024 character limit, any query or
command can be executed, including consulting files, so this method is actually quite
general footnoteVarious options can suppress XSB’s startup and end messages, as
discussed below..

There are several ways to exit XSB. A user may issue the command halt. or
end_of_file., or simply type CTRL-d at the XSB prompt. To interrupt XSB while
it is executing a query, strike CTRL-c.

3.2 The System and its Directories

When installed, the XSB system resides in a single directory that contains several
subdirectories. For completeness, we review the information in all subdirectories.
Normally, only the documentation and files in the Prolog subdirectories, particularly
examples, lib, and packages will be of interest to users.

1. bin contains scripts that call XSB executables for various configurations.

2. build contains XSB configuration scripts. You may already be familiar with
the build directory, which is used to build XSB.

3. config contains executables and other files specific to particular configurations.

4. docs contains the user manuals and other documentation, including the tech-
nical documentation manual for developers.

1In XSB, all extensions except ’.pl’ and ’.prolog’ — (default ’.P’, ’.H’, ’.xwam’, ’.D’ (output by
mode inferencing), and ’.A’ (assembly dump) — are defined in C and Prolog code using macros in
$XSB_DIR/emu/extensions_xsb.h and can be changed by a user if desired. Of course, such a step
should not be taken lightly, as it can cause severe compatibility problems.
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5. emu contains the C source code for the XSB emulator, for I/O and for various
interfaces.

6. etc contains miscellaneous files used by XSB.

7. examples contains some examples for Prolog, tabling, HiLog and various inter-
faces.

8. cmplib contains Prolog source and object code for the compiler.

9. gpp contains a copy of the Gnu pre-processor used to preprocess Prolog files.

10. lib contains Prolog source and object code for extended libraries.

11. packages The directory packages contains the various applications, such as
FLORA, the XMC model checker and many others. These applications are
written in XSB and can be quite useful, but are not part of the XSB system
per se.

12. Prolog_includes contains include files for the Prolog libraries, which are pre-
processed using GPP.

13. syslib contains Prolog source and object code for core XSB libraries.

All Prolog source programs are written in XSB, and all object (byte code) files contain
SLG-WAM instructions that can be executed by the emulator. These byte-coded
instructions are machine-independent, so usually no installation procedure is needed
for the byte code files.

If you are distributing an application based on XSB and need to cut down space,
the packages, examples and docs directories are not usually needed (unless of course
you are using one of the packages in your application). lib may not be needed,
(most core system files are in syslib) nor are Prolog source files necessary. Unless
your application needs to rebuild XSB, the emu and build directories do not need to
be distributed.

3.3 How XSB Finds Files: Source File Designators

Three files are associated with Prolog source code in XSB 2.

2Other types of files may be associated with foreign code — see Volume 2.
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• A single source file, whose name is the base file name plus an optional extension
suffix .P, .pl, or .prolog.

• An object (byte-code) file, whose name consists of the base file name plus the
suffix .xwam.

• An optional header file, whose name is the base file name plus the suffix “.H”.
When used, the header file normally contains file-level declarations and direc-
tives while the source file usually contains the actual definitions of the predicates
defined in that module. However, such information can be equivalently put into
the .P (.pl, or .prolog) file.

Most of the XSB system predicates for compiling, consulting, and loading code, such
as consult/[1,2], compile/[1,2], load_dyn/1 and others are somewhat flexible
in how they designate the file of interest. Each of these predicates take as input a
source file designator which can be a base file name, a source file name; or the relative
or absolute paths to a base or source file name. Unfortunately, the exact semantics
of a file designator differs among system predicates in Version 3.8, as well as among
platforms.

In general, however, when given a source file designator, system predicates perform
name resolution. There are two steps to name resolution: determining the proper
directory prefix and determining the proper file extension. When FileName is absolute
(i.e. it contains a path from the file to the root of the file system) determining the
proper directory prefix is straightforward. If FileName is relative, i.e. it contains
a ’/’ in Unix or ’/’ in Windows, FileName is expanded to a directory prefix in
an OS-dependent way, resolving symbols like ’.’, ’..’ and ’˜’ when applicable.
However, the user may also enter a name without any directory prefix. In this case,
XSB tries to determine the directory prefix using a set of directories it knows about:
those directories in the dynamic loader path (see Section 3.6). As it searches through
directory prefixes, different forms of the file name may be checked. If the source file
designator has no extension the loader first checks for a file in the directory with
the .P extension, (or .c for foreign modules) before searching for a file without the
extension, and finally for a file with a .pl or .prolog extension. Note that since
directories in the dynamic loader path are searched in a predetermined order (see
Section 3.6), if the same file name appears in more than one of these directories, the
first one encountered will be used.
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3.4 The Module System of XSB

XSB has been designed as a module-oriented Prolog system. Modules provide a
step towards logic programming “in the large” that facilitates the construction of
large programs or projects from components that are developed, compiled and tested
separately. Also, module systems support the principle of information hiding and
can provide a basis for data abstraction. And modules form the basis for XSB’s
implementation of its standard predicates.

The module system of XSB is file based – one module per file – and flat – modules
cannot be nested. In addition, XSB’s module system is essentially atom-based (or
structure-symbol-based), where any symbol in a module can be imported, exported
or be a local symbol, as opposed to a predicate-based one where this can be done
only for predicate symbols 3. Every structure symbol (and thus structured term) is
associated with a module, and structure symbols with the same name but in different
modules are different symbols and thus do not unify. As we will discuss, this leads to
certain differences of XSB’s module system from those of some other Prologs, and to
certain incompatibilities with the (proposed) ISO standard for modules (which is not
supported by most Prologs). At the same time, XSB’s module system has enough
commonalities with those of other Prologs to be able to support the Prolog Commons
libraries.

In XSB (as in all Prolog systems) predicate definitions (aka Clauses) are associated
with structure symbols. A predicate is a structure symbol with an associated defini-
tion. Predicates are either static or dynamic. Static predicates get their definitions
from source code files that are compiled and loaded into memory. Dynamic predicates
get their definitions from the execution of the builtin meta-predicate assert/1 (and
friends).

In XSB every structure symbol is associated with a module. A term is said to be
in the module of its main structure symbol. Terms in different modules are different
terms and do not unify. So two terms whose main structure symbols (or any structure
symbols) have the same name but different modules, are different terms and do not
unify. So, for example, terms printed as p(a,b) and p(a,b) would not unify if the
first structure symbol named p/2 is in a different module from the second structure
symbol named p/2.

The “default” module is named usermod. Whenever a term is constructed, and a
module is not explicitly provided, usermod is the module used. For example, when
functor/3 (or univ/2) is used to construct a term, that term is put in usermod.

3Operator symbols can be exported as any other symbols, but their precedence must be redeclared
in the importing module.
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Any term that is read from a file (or at the top-level prompt) is put in usermod. All
(usual) XSB source files, when compiled and loaded, define predicates in usermod.

So how are terms that are not in usermod constructed? The most important use
of modules by far is to organize predicates (and thus their definitions.) So a module
is associated with a set of predicate definitions, which in XSB is a Prolog source file,
a file with .P extension. In XSB, a source file is compiled (to a .xwam file) and then
loaded into memory to provide definitions for the predicates with clauses in that file.
For “usual” XSB source files, all the defined predicates are in usermod. However
when a source file includes an export directive, such as:

:- export Pred/Arity.

the definitions in that source file will be interpreted as defining predicates in a module.
The name of the module is the name of the XSB source file (without the extension
.P). Predicates that have definitions in such a file will all be put in the module of
that name. A predicate that is exported must be defined in the source file and will
be made available for use in other source files, when imported. An import directive,
such as:

:- import Pred/Arity from Module.

in another source file allows its definitions to use that exported predicate. For exam-
ple, the file:

%% file: mod1.P

:- export p/2.

p(a,b).

p(X,Y) :- q(X,Y).

q(b,c).

when compiled and loaded, defines a predicate p/2 in mod1 (i.e., p/2 terms that
define the facts have their main structure symbols put in module mod1, and the code
implementing those clauses are associated with that structure symbol in that module.)
It also defines a predicate q/2 in the same module. (And, of course, the call to q(X,Y)

in the body of the rule for p/2 is also put in that same module.) The predicate p/2

is exported and is thus available for use by other code.

For example, we can create another file (not a module in this case), which uses
the definition of p/2 above:

%% file: my_code.P
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:- import p/2 from mod1.

q(X,Y) :- p(X,Y).

Here there is no export directive, so all definitions in this file will go into module
usermod. The clause here defines q/2 in usermod, which is a different predicate from
the q/2 defined above in the module mod1. The import of p/2 in this file causes the
p(X,Y) term in the body of the rule for q/2 to be interpreted as being in module
mod1. Thus, when this file is compiled and loaded, q/2 is defined in usermod and its
code calls p/2 in module mod1.

A module source file may want to access a predicate defined in usermod, which
can be done by explicitly importing the predicate from usermod.

There are situations in which a programmer wants to explicitly provide a module
name to “override” the module associated with a term. For example, one might want
to call the goal p(X,Y) to invoke the code associated with p/2 in module mod1 at the
top level, regardless of what module the p/2 structure symol is associated with. In
this case, one can write:

| ?- call(mod1:p(X,Y)).

Here call will construct the term p(X,Y) with structure p/2 in module mod1 (ignoring
the module associated with the p/2 structure symbol) and then call that term, which
accesses the code of p/2 in module mod1. In this particular case the original term
mod1:p(X,Y) had the p/2 structure in usermod, since that’s where the top-level read
puts it. But call/1 interprets this term (with main structure symbol :/2) as a
coercion of the term p(X,Y) into the module mod1. In XSB, in most contexts in
which a term is interpreted as a goal, the syntax of Mod:Goal is interpreted as a
coercion of term Goal into the module Mod. And in fact, the top-level goal:

| ?- mod1:p(X,Y).

is equivalent to the goal above.

And instead of:

:- import pr/2 from mod3.

...

q(X,Y) :- ... pr(X,Z), ....

one can directly write:

q(X,Y) :- ... mod3:pr(X,Z), ....
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In general, the use of import is recommended, even though it may sometimes
be more verbose. The use of imort allows for better visibility and easier analysis of
module dependencies.

In XSB, the declaration:

:- module(filename,[sym1, ..., syml.]).

is syntactic sugar for:

:- export sym1, ..., syml.

as long as the filename is the same as the name of the file in which it was contained.
Similarly,

:- use_module(module,[sym1, ..., syml.]).

is treated as semantically equivalent to

:- import sym1, ..., symn from module.

Accordingly, use_module/2 and module/1 can be used interchangibly with import/2

and export/1. However the declaration

:- use_module(module).

which is often used in other Prolog systems, is not equivalent to an XSB import
statement, as each XSB import statement must explicitly declare a list of predicates
that are used from each module. Such a declaration will raise a compilation error.

The declaration

:- import sym from module as sym′.

allows a predicate to be imported from a module, but renamed as sym′ within the
importing module. In this case the structure symbol sym′ is placed in the current
module and its code pointer is identified with that of the structure symbol sym in
module module. Such a feature is useful when porting a library written for another
Prolog (e.g. a constraint library) to XSB. It is also useful when one wants to import
two predicates with the same name from different modules. In that case (at least)
one of the names needs to be changed on import.

For modules, the base file name is stored in its byte code (.swam file, so that
renaming a byte-code file for a mule may cause problems, as the renaming will not
affect the information within the byte-code file. However, byte code files generated
for non-modules can be safely renamed.
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3.4.1 How the Compiler Determines the Module of a Term

When XSB compiles a source code file, it must determine the module for every term
it encounters. For non-module source files (i.e., those with an export directive),
all terms are associated with usermod except for those whose structure symbols are
imported. Any occurrence of an imported structure symbol is associated with the
module from which it is imported.

For module source code files, i.e., those containing at least one export directive,
the process of determining the module of a structure symbol is more complicated. The
idea is that all terms in the source file that refer to predicates are placed in the module
of the file, and all terms that are record structures are by default placed in usermod.
All occurrences of the same structure symbol in a file are normally associated with
the same module4 So if a structure symbol appears both as a predicate symbol (e.g.,
as a subgoal in the body of a rule) and as a record structure (perhaps to be passed
to some other predicate to later be called), both occurrences will be associated with
the current module. Of course, imported structure symbols are associated with the
module from which they are imported.

The compiler recognizes as predicate symbols any symbol that:

1. appears as the main structure symbol in the head of a rule,

2. appears as a subgoal in the body of a rule,

3. appears as the main structure symbol of terms passed to known meta-predicates,
such as assert/1 and retract,

4. is declared as dynamic.

Otherwise a structure symbol is associated with usermod.

Note that these rules imply that all structure symbols used just for record struc-
tures are placed by default in usermod. This is usually what a user wants. But there
are times a user might want a record structure to be associated with the current
module. This can be used to provide a measure of information hiding: Since no other
module (or usermod) will construct a term associated with this module, another mod-
ule can’t use unification to look at the subfields inside such a term. So in this way, a
module can return to a caller a complex term, and the caller can pass it around and
back to the module in a later call, and only the module code can manipulate that

4but see import .. as .. for an exception.
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data structure.5 The programmer can tell the compiler to place a particular structure
symbol in the current module by using the local directive:

:- local Sym/Arity.

which will force all uses of the indicated structure symbol to be associated with the
current module.

An XSB programmer can also export a structure symbol (that is not used as a
predicate), and others can import and use it as a structure symbol.

Standard predicates (those defined in the XSB environment) are actually defined
in system modules and the compiler implicitly provides the necessary imports to allow
the programmer to use them. Standard predicates are described in Section 3.5.

For clarity, we state a few consequences of these rules.

• The module for a particular symbol appearing in a module must be uniquely
determined. As a consequence, a symbol of a specific functor/arity cannot
be declared as both exported and local, or both exported and imported from
another module, or declared to be imported from more than one module, etc.
These types of environment conflicts are detected at compile-time and abort
the compilation.

• In Version 3.8, a module cannot export a predicate symbol that is directly
imported from another module, since this would require that symbol to be in
two modules. But one can import symbol1 from a module as symbol2 and then
export symbol2. (And symbol1 and symbol2 are allowed to be the same symbol.)

• If a module m1 imports a predicate p/n from a module m2, but m2 does not
export p/n, nothing is detected at the time of compilation. If p/n is defined in
m2, a runtime warning about an environment conflict will be issued. However,
if p/n is not defined in m2, a runtime existence error will be thrown 6.

3.4.2 Atoms and 0-Ary Structure Symbols

XSB uses different internal representations for atoms and for 0-ary structure sym-
bols. Atoms cannot have definitions associated with them (i.e., cannot be predicates)

5The hiding is only partial, since other code can use functor/3 or univ/2 to look inside such
terms. Also the very low-level builtin term_new_mod/3 can be used to explicitly coerce a term into
an arbitrary module.

6This behavior can be altered through the Prolog flag unknown.
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and are not associated with modules. But 0-ary predicates can and are. The system
automatically coerces atoms to 0-ary structure symbols and vice versa as necessary.
But when coercing an atom to a 0-ary structure symbol, it always associates the
generated structure symbol with usermod. This can sometimes lead to unexpected
results. As long as the programmer explicitly exports and imports atoms (or 0-ary
predicate symbols), all works as expected. But passing an atom as an argument, and
then calling it will always call it in usermod.

3.4.3 Dynamic Loading and How XSB Finds Code Files

When export and import directives are used, XSB dynamically (compiles if necessary
and) loads the code on demand. When an imported predicate is called, if the code of
the module has not been loaded into memory, the system finds the code file, compiles
it if necessary, and loads the .xwam file into memory. Then it invokes the imported
predicate. See Section 3.6 for the details of how the system finds and processes the
appropriate XSB source files.

3.4.4 Consulting a Module

Normally all access to predicates defined in a module is by means of import dec-
larations. However, to debug a module it is often convenient just to consult it at
the top-level and then call the exported predicates with test parameters, which is
how non-modules are handled. However, note that the predicate to be called after a
module is loaded is in that loaded module, and not in usermod. To allow the pro-
grammer to call a predicate exported from the consulted module without having to
explicitly provide the module name, when a module is consulted, all exported predi-
cates are also defined in usermod with their same definitions. (In effect, for exported
p/2, XSB implements :- import p/2 from module as p/2. in usermod to provide
direct access to p/2’s code in module from the p/2 predicate in usermod.)

It is bad form to use this property and consult a module in an executing program
to get access to its exported predicates through usermod. One should always explicitly
import the predicates one wants to use and let the dynamic loader automatically load
the module code on demand.
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3.4.5 Usage Inference and the Module System

The import and export statements of a module M are used by the compiler for infer-
ring usage of predicates. At compilation time, if a predicate P/N occurs as callable
in the body of a clause defined in M , but P is neither defined in M nor imported into
M from some other module, a warning is issued that P/N is undefined. Here “occurs
as callable” means that P/N is found as a literal in the body of a clause, or within
a system meta-predicate, such as assert/1, findall/3, etc. Currently, occurrences
of a term inside user-defined meta-predicates are not considered as callable by XSB’s
usage inference algorithm. Alternatively, if P/N is defined in M , it is used if P/N is
exported by M , or if P/N occurs as callable in a clause for a predicate that is used
in M . The compiler issues warnings about all unused predicates in a module. On the
other hand, since all modules are compiled separately, the usage inference algorithm
has no way of checking whether a predicate imported from a given module is actually
exported by that module.

Usage inference can be highly useful during code development for ensuring that all
predicates are defined within a set of files, for eliminating dead code, etc. In addition,
import and export declarations are used by the xsbdoc documentation system to
generate manuals for code.7 For these reasons, it is sometimes the case that usage
inference is desired even in situations where a given file is not ready to be made into a
module, or it is not appropriate for the file to be a module for some other reason. In
such a case the directives document_export/1 and document_import/1 can be used,
and have the same syntax as export/1 and import/1, respectively. These directives
affect only usage inference and xsbdoc. A file is treated as a module if and only
if it includes an export/1 statement, and only import/1 statements affect dynamic
loading and name resolution for predicates.

3.4.6 Using Import to Load Usermod Source Files

When the module system is used to import predicates, code files for modules are
automatically found and dynamically (compiled and) loaded on first access. But
normally non-module source files must be explicitly consulted or ensure_load-ed by
some executing program. To provide the convenience (and declarativity) of dynamic
loading to usermod source files, XSB supports a directive of the form:

:- import Pred/Arity from usermod(File).

Here File must be the name of a file that contains XSB source code and is not

7Further information on xsbdoc can be found in $XSB_DIR/packages/xsbdoc.



CHAPTER 3. SYSTEM DESCRIPTION 32

a module, i.e., it defines its predicates in usermod. It must define the predicate
Pred/Arity. In this case, when a goal to Pred/Arity is called and does not yet have
a definition, the file File is (compiled and) loaded, and the goal is called. If File is
a base filename (without a slash), then the library_directory/1 paths are used to
find the correct file (as for normal modules.) If the predicate already has a definition,
that one is used.8

So this facility allows code in non-module files to be treated somewhat like module
files. But, as usual, it is the user’s responsibility to ensure that different imported
non-module files do not define the same predicate. This facility, when carefully used,
can eliminate the need for runtime consult/1 and ensure_loaded/1 commands. The
form usermod(File) is called a pseudo-module reference, and can be used in place of
module references in import statements.

Note that:

:- document_import Pred/Arity from File.

can be replaced with

:- import Pred/Arity from usermod(File).

XSB does not automatically treat the former as the latter, for backwards compat-
ibility. They can have differing effects if the given file does not define the given
predicate.

XSB also supports a similar import directive form, exemplified by the following:

:- import Pred/Arity from usermod(load_dyn(File)).

This will cause the file File to be loaded dynamically on first use. It must, of course,
define Pred/Arity. The load_dyn in this example may be replaced by any file-loading
predicate whose first argument is the name of the file to load. For example, one might
also use:

:- import Pred/Arity from usermod(consult:load_dync(File,0)).

to dynamically load a file whose contents are canonical terms to be asserted in reverse
order. In fact, one may use:

:- import Pred/Arity from usermod(proc_files:load_dsv(File,Pred/Arity,[])).

to load a comma-separated file with each line containing two fields to define the
predicate Pred/Arity. (See 15.12 for details.)

8If the existing definition can be determined to have come from a different file, a warning is
generated.
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3.4.7 Parameterized Modules in XSB

The XSB module system now supports parameterized modules: A module can be
parameterized by other modules. A parameterized module is declared by including a
directive of the form:

:- module_parameters(atom1, ..., atomn).

in the module code file. The atoms, atom1, . . . , atomn, are formal module parameters;
when the module is loaded, those module names will be replaced by actual module
names passed to the load operation. Therefore, module names are now specified by
ground terms: the main structure symbol specifies the base name of the file containing
the module code (as before); the (optional) arguments of the module term indicate the
names of (the other modules that are) the actual parameters to the (parameterized)
module defined in this file. Note that the parameters to modules must be other
modules, and cannot be constants or any XSB term. Parameterized modules are a
conservative extension of the former unparameterized module system.

Parameterized modules support a form of higher-order programming which makes
it possible to program some tasks more declaratively. As a simple example, consider
a module that takes a graph, an initial node in the graph, and a set of final nodes
in the graph, and returns all final nodes reachable through the graph from the initial
node. A parameterized module for this task, named search, is:

%% file: search.P

:- module_parameters(example_mod).

:- export reachable_final/1.

:- import initial/1, move/2, final/1 from example_mod.

reachable_final(F) :- reachable(F), final(F).

:- table reachable/1.

reachable(N) :- initial(N).

reachable(N) :- reachable(P), move(P,N).

This module, search, is parameterized by another module that defines and exports
(at least) 3 predicates: initial/1, move/2, and final/1. When this module is
loaded, a particular such module, exporting those predicates, must be provided to
the loader, and the formal parameter example_mod will be replaced by that module
and the predicates imported from that module will be used here in the definitions of
reachable_final/1 and reachable/1. So assuming a (non-parameterized) module
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named simple_ex exports those 3 predicates, both:

| ?- import reachable_final/1 from search(simple_ex).

| ?- reachable_final(ReachableFinalState).

and:

| ?- search(simple_ex):reachable_final(ReachableFinalState).

will return the reachable final states for the problem defined by simple_ex.

This is second-order in the sense that a module parameter represents a set of
predicates. Note that this example is (in some sense) fully declarative, in that there
is no explicit procedural code necessary to load the code for a particular example. All
loading is handled by XSB’s existing dynamic loader. And this same search module
can be run with many different examples.

Parameterized modules are implemented in XSB as follows. When a parameterized
module is to be loaded into memory, the formal parameters are replaced by the actual
parameters and that code is loaded. (This is actually done by renaming symbols as
they are loaded, so there is minimal effect on loading time.) This implementation has
two consequences: 1) the performance of code in parameterized modules is exactly
the same as if the user had explicitly written the module with the actual parameter
modules, and 2) every instance of a parameterized module has its own version of the
module code. So loading a thousand different instances of a parameterized module
will take a thousand times the space of a single instance. In most uses this is not a
significant problem, but it should be kept in mind.

One could load another instance of the above module to test the search algorithm
with a different example by:

| ?- search(hard_ex):reachable_final(ReachableFinalState).

This would load another, different, instance of the search module, named search(hard_ex).
Both would be in memory and usable by the user and by other programs and modules.

So modules in XSB’s runtime system can now identified by module names that
are terms, not simply constants. Accordingly, anywhere a module name is required,
a parameterized module name, i.e., a module term, can be used. The module name
must be ground at the time it is required for use in order to load specific code; and all
structure symbols and atoms in the structured module identifier must identify actual
files that contain the appropriate module’s code; and finally those files must be able
to be found by the XSB loader.
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To write well-structured and maintainable code, it is strongly recommended that
all uses of parameterized modules be done through use_module/2 or import directives
explicitly appearing in XSB code. The explicit form of using the ’:’ operator to
give a module name at runtime should be avoided. (The sole exception is when
the user types in such a goal on the top-level command line.) Using only explicit
import directives allows compile-time analysis of module dependencies which can be
critical in maintaining large XSB code bases. This also requires that the extension
of the library_directory/1 predicate can be known at compile time, which implies
programmer discipline in changing that predicate as well.9.

While parameterized modules can be used in many ways, one of the most impor-
tant is in the construction of so-called “view systems.” A view (in the traditional
relational database sense) is a relational operator that takes a set of input relations
and views, and produces an output relation. By composing views one can build large
and complex systems of data transformations in a completely declarative way. With
such systems, one often receives base (i.e., input) data from a source, and then wants
to apply a view system to that data, generating the derived views for use in other
applications. One can do this declaratively by using parameterized modules. Each
module is a view definition, exporting the view it defines, and importing the base
and view relations it depends on. These input relations can be defined in base mod-
ules, and a view module is parameterized by the base modules it depends on. Then
the same view module can be applied to the particular input tables obtained from a
particular source.

3.5 Standard Predicates in XSB

Whenever XSB is invoked, a large set of standard predicates are defined and can be
called from the interpreter or other interface 10. These predicates include the various
ISO predicates [37], along with predicates for tabling, I/O, for interaction with the
operating system, for HiLog, and for much other functionality. Standard predicates
are listed in this manual under the index heading Standard predicates and at an
implementation level are declared in the file $XSB_DIR/syslib/std_xsb.P. If a user
wishes to redefine a standard predicate, she has several choices. First, the appropriate
fact in $XSB_DIR/syslib/std_xsb.P should be commented out. Once this is done, a
user may define the predicate as any other user predicate. Alternately, the compiler
option allow_redefinition can be used to allow the compiler to redefine a standard
predicate (Section 3.10.2). If a user wants to make a new definition or new predicate

9As may be obvious, this has been learned through much painful experience. -dsw
10Such predicates are sometimes called “built-ins” in other Prologs.
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standard, the safest course is to put the predicate into a module in the lib directory,
and add or modify an associated fact in $XSB_DIR/syslib/std_xsb.P.

3.6 The Dynamic Loader and its Search Path

XSB differs from some other Prolog systems in its ability to dynamically load modules.
In XSB, the loading of user modules and Prolog libraries (such as the XSB compiler)
is delayed until predicates in them are actually needed, saving program space for large
Prolog applications. Dynamic loading is done by default, unlike other systems where
it is not the default for non-system libraries.

When a predicate imported from another module (see Section 3.4.7) is called
during execution, the dynamic loader is invoked automatically if the module is not
yet loaded into the system, The default action of the dynamic loader is to search for
the byte code file of the module first in the system library directories (in the order
lib, syslib, and then cmplib), and finally in the current working directory. If the
module is found in one of these directories, then it will be loaded (on a first-found
basis). Otherwise, an error message will be displayed on the current error stream
reporting that the module was not found. Because system modules are dynamically
loaded, the time it takes to compile a file is slightly longer the first time the compiler
is invoked in a session than for subsequent compilations.

3.6.1 Changing the Default Search Path and the Packaging
System

The default search path of the dynamic loader is based on the dynamic predicate
library_directory/1 so it can easily be changed. For instance, to make sure a
user’s home directory is loaded, the goal add_lib_dir((’~/’)) needs to be executed
from the command line or from within a program (assuming this is not the current
working directory). If you always want XSB to search particular directories, the
easiest way is to have a file named .xsb/xsbrc.P in your home directory. User-
supplied library directories are searched by the dynamic loader before searching the
default library directories. The .xsb/xsbrc.P file, which is automatically consulted
by the XSB interpreter, might look like the following:

:- add_lib_dir((’~/’)).

:- add_lib_dir((’/usr/lib/xsbprolog’)).

add_lib_dir(+Directories)
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add_lib_dir(+Root,+Directories)

The standard predicate add_lib_dir(Directories) adds the directories of
Directories to the system predicate library_directory/1. Directories

is either a single directory name or a comma-list of directory names. A direc-
tory name may be an atom or a simple structure of the form a(DirName) which
indicates that the directory DirName should be added as the first directory in
the library_directory/1 facts; otherwise it will be added as the last directory.

In the example above add_lib_dir((’~/’)), note that the “extra parentheses”
are needed since add_lib_dir/1 takes a single argument, here a comma-pair.
Also the trailing slash in a directory name is optional.

The standard predicate add_lib_dir(+Root,+RelativeDirectories) concate-
nates the directory indicated by Root to each of the relative directory names in
(the comma-list) RelativeDirectories and adds them all to library_directory/1.

For example, to add two XSB library directories from a set of libraries stored
under a particular directory containing all XSB libraries, one might do:

:- add_lib_dir(’/usr/lib/xsb_libs’, (string_lib,table_lib)).

(Note that the necessary slash-separators are automatically added if necessary.)

If Root is a term of the form ancestordir(DirFileName) where DirFileName

is an atom, the system will search up from the current directory to find a con-
taining directory named DirFileName, and the full pathname of that directory
will be considered as the Root directory. This can be used to help in making
XSB code less dependent at compile-time on the exact full filename of XSB
code files, and allowing directories of libraries to be moved.

A user’s configuration file: xsbrc.P

Returning to the previous example, executing the two directives causes the user’s
home directory to be searched first, then "/usr/lib/xsbprolog/", and finally XSB’s
system library directories (lib, syslib, cmplib), and finally the current working
directory. The directives themselves can be executed by expicitly loading an XSB file,
by executing the directives at the command line, or automatically using an xsbrc.P

file.

This file works as follows. Before the user’s .xsb/xsbrc.P is consulted, XSB
puts both the packages directory and the directory .xsb/config/$CONFIGURATION

on the library search path. The directory .xsb/config/$CONFIGURATION is used
to store user libraries that are machine or OS dependent. ($CONFIGURATION for a
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machine is something that looks like sparc-sun-solaris2.6 or pc-linux-gnu, and
is selected by XSB automatically at run time). If a user wished, say, to search the
current working directory before her home directory, she could simply add

:- asserta(library_directory(’./’)).

or better

:- add_lib_dir(a(’./’)).

to her .xsb/xsbrc.P file (or anywhere else). The file .xsb/xsbrc.P is not limited to
setting the library search path. In fact, arbitrary Prolog code can go there so that
XSB can be initialized in any manner desired.

We emphasize that in the presence of a .xsb/xsbrc.P file it is the user’s responsi-
bility to avoid module name clashes with modules in XSB’s system library directories.
Such name clashes can cause unexpected behavior as system code may try to load a
user’s predicates. The list of module names in XSB’s system library directories can
be found by looking through the directories $XSB_DIR/{syslib,cmplib,lib}.

Packages Apart from the user libraries, XSB now has a simple packaging system.
A package is an application consisting of one or more files that are organized in
a subdirectory of one of the XSB system or user libraries. The system directory
$XSB_DIR/packages has a number examples of such packages, many of which are
documented in Volume 2 of this manual, or contain their own manuals. Packages are
convenient as a means of organizing large XSB applications, and for simplifying user
interaction with such applications. User-level packaging is implemented through the
predicate

bootstrap_userpackage(+LibraryDir, +PackageDir, +PackageName).

which must be imported from the packaging module.

To illustrate, suppose you wanted to create a package, foobar, inside your own
library, my_lib. Here is a sequence of steps you can follow:

1. Make sure that my_lib is on the library search path by putting an appropriate
assert statement in your xsbrc.P.

2. Make a subdirectory ~/my_lib/foobar and organize all the package files there.
Designate one file, say, foo.P, as the entry point, i.e., the application file that
must be loaded first.
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3. Create the interface program ~/my_lib/foobar.P with the following content:

:- bootstrap_userpackage(’~/my_lib’, ’foobar’, foobar), [foo].

The interface program and the package directory do not need to have the same
name, but it is convenient to follow the above naming schema.

4. Now, if you need to invoke the foobar application, you can simply type [foobar].

at the XSB prompt. This is because both and ~/my_lib/foobar have already
been automatically added to the library search path.

5. If your application files export many predicates, you can simplify the use of your
package by having ~/my_lib/foobar.P import all these predicates, renaming
them, and then exporting them. This provides a uniform interface to the foobar

module, since all the package predicates are can now be imported from just one
module, foobar.

In addition to adding the appropriate directory to the library search path, the predi-
cate bootstrap_userpackage/3 also adds information to the predicate package_configuration/3,
so that other applications could query the information about loaded packages.

Packages can also be unloaded using the predicate unload_package/1. For in-
stance,

:- unload_package(foobar).

removes the directory ~/my_lib/foobar from the library search path and deletes the
associated information from package_configuration/3.

Finally, if you have developed and tested a package that you think is generally use-
ful and you would like to distribute it with XSB, please contact xsb-development@sourceforge.net.

3.6.2 Dynamically loading predicates in the interpreter

Modules are usually loaded into an environment when they are consulted (see Sec-
tion 3.9). Specific predicates from a module can also be imported into the run-time
environment through the standard predicate import PredList from Module. Here,
PredList can either be a Prolog list or a comma list. (The import/1 can also be
used as a directive in a source module (see Section 3.4.7).
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We provide a sample session for compiling, dynamically loading, and query-
ing a user-defined module named quick_sort. For this example we assume that
quick_sort.P is a file in the current working directory, and contains the definitions
of the predicates concat/3 and qsort/2, both of which are exported.

| ?- compile(quick_sort).

[Compiling ./quick_sort]

[quick_sort compiled, cpu time used: 1.439 seconds]

yes

| ?- import concat/3, qsort/2 from quick_sort.

yes

| ?- concat([1,3], [2], L), qsort(L, S).

L = [1,3,2]

S = [1,2,3]

yes.

The standard predicate import/1 does not load the module containing the im-
ported predicates, but simply informs the system where it can find the definition of
the predicate when (and if) the predicate is called.

3.7 Command Line Arguments

There are several command line options for the emulator. The general synopsis ob-
tained by the command $XSB_DIR/bin/xsb –help is:

xsb [flags] [-l]

xsb [flags] module

xsb [flags] -B boot_module [-D cmd_loop_driver] [-t]

xsb [flags] -B module.suffix -d

xsb [-h | -v | --help | --version]

module:

Module to execute after XSB starts up.

Module should have no suffixes, and either be an absolute pathname

the file module.xwam must be on the library search path.

boot_module:

This is a developer’s option.
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The -B flags tells XSB which bootstrapping module to use instead

of the standard loader. The loader must be specified using its

full pathname, and boot_module.xwam must exist.

module_to_disassemble:

This is a developer’s option.

The -d flag tells XSB to act as a disassembler.

The -B flag specifies the module to disassemble.

cmd_loop_driver:

The top-level command loop driver to be used instead of the

standard one. Usually needed when XSB is run as a server.

-B : specify the boot module to use in lieu of the standard loader

-D : Sets top-level command loop driver to replace the default

-t : trace execution at the SLG-WAM instruction level

(for this to work, build XSB with the --debug option)

-d : disassemble the loader and exit

-v, --version : print the version and configuration information about XSB

-h, --help : print this help message

Flags:

-e goal : evaluate goal when XSB starts up

-p : enable Prolog profiling through use of profile_call/1

-l : the interpreter prints unbound variables using letters

--nobanner : don’t show the XSB banner on startup

--quietload : don’t show the ‘module loaded’ messages

--noprompt : don’t show prompt (for non-interactive use)

-S : set default tabling method to call-subsumption

--max_subgoal_size N : set maximum tabled subgoal size to N (default is maximum integer)

--max_subgoal_action A : set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)

--max_tries N : allow up to N tries for interning terms

--max_threads N : maintain information for up to N threads (MT engine only)

--max_mqueues N : allow up to N message queues (MT engine only)

--shared_predicates : make predicates thread-shared by default

-g gc_type : choose heap garbage collection ("indirection","none" or "copying")

-c N [unit] : initially allocate N units (default KB) for the trail/choice-point stack

-m N [unit] : initially allocate N units (default KB) for the local/global stack

-o N [unit] : initially allocate N units (default KB) for the SLG completion stack

-r : turn off automatic stack expansion

-T : print a trace of each called predicate

unit: k/K memory in kilobytes; m/M in megabytes; g/G in gigabytes
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3.7.1 Command-line Options

These options tend to be most useful for developers.

-t Traces through code at SLG-WAM instruction level. This option is intended for
developers and is not fully supported. It is also not available when the system
is being used at the non-debug mode (see Section 10).

-D Tells XSB to use a top-level command loop driver specified here instead of the
standard XSB interpreter. This is most useful when XSB is used as a server.

-d Produces a disassembled dump of byte_code_file to stdout and exits.

3.7.2 General Flags

The order in which flags appear makes no difference.

-e goal Pass goal to XSB at startup. This goal is evaluated right before the first
prompt is issued. For instance, xsb -e "write(Hello!’), nl."’ will print a heart-
warming message when XSB starts up.

-p Enables the engine to collect information that can be used for profiling. See
Volume 2 of this manual for details.

-l Forces the interpreter to print unbound variables as letters, as opposed to the
default setting which prints variables as memory locations prefixed with an
underscore. For example, starting XSB’s interpreter with this option will print
the following:

| ?- Y = X, Z = 3, W = foo(X,Z).

Y = A

X = A

Z = 3

W = foo(A,3)

as opposed to something like the following:

| ?- Y = X, Z = 3, W = foo(X,Z).
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Y = _h118

X = _h118

Z = 3

W = foo(_h118,3);

–nobanner Start XSB without showing the startup banner. Useful in batch scripts
and for interprocess communication (when XSB is launched as a subprocess).
For instance,

xsb -e "writeln(’hello world’),halt."

[xsb_configuration loaded]

[sysinitrc loaded]

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word size:

Evaluating command line goal:

| ?- writeln(’hello world’),halt.

| ?- hello world

End XSB (cputime 0.02 secs, elapsetime 0.02 secs)

Prints out quite a bit of verbiage. Using the –nobanner option reduces this
verbiage somewhat.

xsb --nobanner -e "writeln(’hello world’),halt."

[xsb_configuration loaded]

[sysinitrc loaded]

Evaluating command line goal:

| ?- writeln(’hello world’),halt.

| ?- hello world

–quietload Do not tell when a new module gets loaded. Again, is quseful in non-
interactive activities and for interprocess communication. Continuing our ex-
ample:
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xsb --quietload --nobanner -e "writeln(’hello world’),halt."

| ?-

| ?- hello world

–noprompt Do not show the XSB prompt.

–nofeedback Do not print the feedback messages such as “yes” and “no” after queries.
This and the –noprompt options are useful only in batch mode and in interpro-
cess communication when you do not want the prompt to clutter the picture.
Putting all this together, we finally get:

xsb --noprompt --quietload --nobanner --nofeedback -e "writeln(hello),halt."

hello world

So that XSB can be used to write reasonable scripts.

–max_threads N Allows XSB to maintain information for up to N threads. This
means that XSB can currently run N threads that are active, or that are inactive,
non-detached, and not yet joined. Has no effect if the engine has been configured
without multi-threading.

-S Indicates that tabled predicates are to be evaluated using subsumption-based
tabling as a default for tabled predicates whose tabling method is not specified
by using table Predspec as subsumptive or table Predspec as variant(see
Section 6.15.1). If this option is not specified, variant-based tabling will be used
as the default tabling method by XSB.

–shared_predicates In the multi-threaded engine, makes all predicates thread-
shared by default; has no effect in the single-threaded engine.

-T Generates a trace at entry to each called predicate (both system and user-defined).
This option is available mainly for people who want to modify and/or extend
XSB, and it is not the normal way to trace XSB programs. For the latter, the
standard predicates trace/0 or debug/0 should be used (see Chapter 10). Note:
This option is not available when the system is being used at the non-tracing
mode (see Section 10).

–max_subgoal_size N : set maximum tabled subgoal size to N (default is maximum
integer). This flag sets the size of a tabled subgoal upon which an action may
be taken (such as throwing an error, abstracting, or issuing a warning.

–max_subgoal_action A : set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)
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3.7.3 Memory Management Flags

-g gc_type Chooses the heap garbage collection strategy that is employed; choice
of the strategy is between the default indirection or none. See [11] for a
description of the indirection garbage collector.

-c size [units] Allocates initial size units of space to the trail/choice-point stack
area. The trail stack grows upward from the bottom of the region, and the
choice point stack grows downward from the top of the region. If units is not
provided or is k or K, the size is allocated in kilobytes; if m or M in megabytes;
and if g or G in gigabytes. Because this region is expanded automatically, this
option is rarely needed. If this option is not specified a default initial size is
used; this size may differ for the single-threaded and multi-threaded engine.

-m size [units] Allocates initial size units of space to the local/global stack area.
The global stack grows upward from the bottom of the region, and the local
stack grows downward from the top of the region. If units is not provided or is
k or K, the size is allocated in kilobytes; if m or M in megabytes; and if g or G in
gigabytes. Because this region is expanded automatically, this option is rarely
needed. If this option is not specified a default initial size is used; this size may
differ for the single-threaded and multi-threaded engine.

-o size [units] Allocates initial size units of space to the completion stack area.
If units is not provided or is k or K, the size is allocated in kilobytes; if m or
M in megabytes; and if g or G in gigabytes. Because this region is expanded
automatically, this option is rarely needed. If this option is not specified a
default initial size is used; this size may differ for the single-threaded and multi-
threaded engine.

-r Turns off automatic stack expansion. This can occasionally be useful for isolating
memory management problems. (Usually when working with XSB developers.)

3.8 Memory Management

All execution stacks are automatically expanded in Version 3.8, including the local
stack/heap region, the trail/choice point region, and the completion stack region.
Execution stacks increase their size (usually by doubling) until it is not possible to
do so with available system memory. At that point XSB tries to find the maximal
amount of space that will still fit in system memory. For the main thread, each of
these regions begin with an initial value set by the user at the command-line or with
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a default value (see Section 3.7). When a thread is created within an XSB process,
the size of the thread’s execution stacks may be set by thread_create/3, otherwise
the default values indicated in Section 3.7 are used. Once XSB is running, these
default values may be modified using the appropriate Prolog flags (see Section 6.12).
In addition, whenever a thread exits, memory specific to that thread is reclaimed.

Heap garbage collection is automatically included in XSB [11, 25]. (To change the
algorithm used for heap garbage collection or to turn it off altogether, see the predicate
garbage_collection/1 or Section 3.7 for command-line options). In Version 3.8
the default behavior is indirect garbage collection. Starting with Version 3.0, heap
garbage collection may automatically invokes garbage collection of XSB’s “string”
table, which stores Prolog’s atomic constants. Expansion and garbage collection of
execution stacks can occur when multiple threads are active; however atom garbage
collection will not be invoked if there is more than one active XSB thread.

The program area (the area into which XSB byte-code is loaded) is also dynam-
ically expanded as needed. For dynamic code (created using assert/1, or standard
predicates such as load_dyn/1 and load_dync/1) index size is also automatically
reconfigured. Space reclaimed for dynamic code depends on several factors. If there
is only one active thread, space is reclaimed for retracted clauses and abolished pred-
icates as long as (1) there are no choice points that may backtrack into the retracted
or abolished code, and (2) if the dynamic predicate is tabled, all of its tables are
completed. Otherwise, the code is marked for later garbage collection. If more than
one thread is active, private predicates behave as just described, however space recla-
mation for shared predicates will be delayed until there is a single active thread. See
Section 6.14 for details.

Space for tables is dynamically allocated as needed and reclaimed through use of
abolish_all_tables/0, abolish_table_pred/1, abolish_table_call/1 and other
predicates. As with dynamic code, space for tables may be reclaimed immediately or
marked for later garbage collection depending on whether choice points may back-
track into the abolished tables, on the number of active threads, etc. Tabling also
includes various stacks used to copy information into or out of tables, most of which
are dynamically allocated and expanded. These stacks may be thread-private or
shared among threads: space for thread-private stacks is reclaimed when a thread
exits. See Section 6.15.4 for details.

Perhaps more than a standard Prolog system, XSB is used to evaluate queries
in knowledge representation languages that have a higher level of declarativity than
Prolog and as a result may consume a great deal of space. If XSB needs memory
that is unobtainable from the operating sytsem, it will usually abort with a resource
error, and become ready for a new query from its command line or API. In such
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a case, a user or program can use statistics/[0,1,2] to investigate whether and
how XSB is consuming memory. Other options to bounding memory include the
use of bounded_call/4 or the use of the max_memory flag. Use of the max_memory

flag is recommended in cases where XSB is embedded in a C program through the
C/XSB interface, or is embedded in or communicating with a java program through
InterProlog. In such a case, XSB will abort with a resource error whenever a memory
allocation would exceed the user-defined threshold 11.

3.9 Compiling, Consulting, and Loading

Like other Prologs, XSB provides for both statically compiled code and dynamically
asserted code. Static compiled code may be more optimized than asserted code, par-
ticularly for clauses that have large bodies, but certain types of indexing, such as trie
and star indexing are (currently) available only for dynamically asserted predicates
(see index/2).

3.9.1 Static Code

In XSB, there is no difference between compiled and consulted static code: “compil-
ing” in XSB means creation of a file containing SLG-WAM byte-code; “consulting”
means loading such a byte-code file, after compiling it (if the source file was altered
later than the object file).

consult(+Files,+OptionList)

consult(+Files)

[+Files]

The standard predicate consult/[1,2] is the most convenient method for en-
tering static source code rules into XSB’s database 12. Files is either s source file
designator (see Section 3.3) or a list of source file designators, and Options is
a list of options to be passed to XSB’s compiler if the file needs to be compiled
(see Section 3.10). consult(Files) is defined as consult(Files,[]), as is
[Files].

Consulting a file File (module) conceptually consists of the following five steps
which are described in detail in the following paragraphs.

11In rare cases, XSB will exit if the inability to allocate more memory will leave it in an inconsistent
state (e.g. if XSB cannot allocate needed memory during heap garbage collection).

12In XSB, reconsult/[1,2] is defined to have the same actions as consult/[1,2].
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Name Resolution: determine the file that File designates, including direc-
tory and drive location and extension, as discussed in Section 3.3.

Compilation: if the source file or header has changed later than the object file
(or if there is no byte-code file) compile the file using compile/2 with the
options specified, creating a byte-code file. This strategy is used whether
the source file is Prolog, C, or C++.

Loading: load the byte-code file into memory.

Importing: if the file is a module, import any exported predicates of that
module to usermod.

Query Execution: execute any queries that the file may contain, i.e. any
terms with principal functor ’?-’/1, or with the principal functor ’:-’/1

and that are not directives like the ones described in Section 3.10. The
queries are executed in the order in which they appear in the source file.

Error conditions for consult(+File,+Options) are as follows:

• File is not instantiated

– instantiation_error

• File is not an atom

– type_error(atom,File)

• File does not exist in the current set of library directories

– existence_error(file,File)

• File has an object code extension (e.g. .xwam)

– permission_error(compile,file,File)

• File has been loaded previously in the session and there is more than one
active thread.

– misc_error

Error conditions of compiler options are determined by compile/2 which consult/[1,2]

calls.

In addition, ensure_loaded/[1,2] acts much like consult/[1,2]

ensure_loaded(+FileName) ISO
This predicate checks to see whether the object file for FileName is newer than
the source code and header files for FileName, and compiles FileName if not. If
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FileName is loaded into memory, ensure_loaded/1 does not reload it, unlike
consult/1 which will always reload. In addition, ensure_loaded/2 can be
used to load a file with dynamic code. It is fully documented in Section 6.14.1.

3.9.2 Dynamic Code

In XSB, most source code file can also be “consulted” dynamically via the predicates
load_dyn/[1,2], load_dync/[1,2] and ensure_loaded/2. These predicates act
as consult/2 in that if a given file File has already been dynamically loaded, old
versions of predicates defined in File will be retracted and their new definitions
made to correspond to those in File (except for predicates in which a multifile/1

declaration is present in File). Dynamic loading can be performed using XSB’s
reader of canonical terms (which does not include operators, but does allow list and
comma-list notation) via load_dync/2; dynamic loading using XSB’s general reader
for Hilog terms is performed via load_dyn/2.

The predicates mentioned above are described more fully in Chapter 6. Here, we
simply compare the tradeoffs of static and dynamic loading.

• Advantages for Dynamic Loading

– For large files, containing 104 −107 clauses, dynamic loading is much faster
than XSB’s compiler, especially when the canonical reader is used.

– Dynamically loaded files have advantages of dynamic code including star-
, trie, compound, and alternate indexes, as well as being modifiable via
assert and retract.

• Advantages for Static Compilation

– Although dynamically loaded predicates are compiled into SLG-WAM code,
compiled static clauses are more optimized than dynamically predicates,
particularly when the clauses have large bodies or when arithmetic is used.
For facts and pure binary predicates (those containing a single literal in
their body) however, static and dynamic byte code is essentially the same.

– Dynamic loading does not allow module/export declarations, mode decla-
rations, or unification factoring. It does however, allow files to import pred-
icates, allows tabling and dynamic declarations (except for auto_table

and suppl_table, and operator declarations (when a canonical read is
not used).
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3.9.3 The multifile directive

The default action upon loading a file or module is to delete all previous byte-code
for predicates defined in the file. If this is not the desired behavior, the user may add
to the file a declaration

:- multifile Predicate_List .

where Predicate_List is a list of predicates in functor/arity form. The effect of
this declaration is to delete only those clauses of predicate/arity that were de-
fined in the file itself. If a predicate P is to be treated as multifile, the multifile/1

directive for P must appear in all files that contain clause definitions for P . If P is dy-
namic, this means that the multifile declaration for P must appear in files defining P
whether they are compiled and consulted, or dynamically loaded via load_dyn/[1,2]

or load_dync/[1,2].

3.10 The Compiler

The XSB compiler translates XSB source files into byte-code object files. It is
written entirely in Prolog. Both the sources and the byte code for the compiler
can be found in the XSB system directory cmplib. Prior to compiling, XSB
filters the programs through GPP, a preprocessor written by Denis Auroux (au-
roux@math.polytechnique.fr). This preprocessor maintains high degree of compat-
ibility with the C preprocessor, but is more suitable for processing Prolog programs.
The preprocessor is invoked with the compiler option xpp_on as described below. The
various features of GPP are described in Appendix A.

XSB also allows the programmer to use preprocessors other than GPP. However,
the modules that come with XSB distribution require GPP. This is explained below
(see xpp_on/1 compiler option).

The following sections describe the various aspects of the compiler in more detail.

3.10.1 Invoking the Compiler

In addition to invoking the compiler through consult/[1,2], the compiler can be in-
voked directly at the interpreter level (or in a program) through the Prolog predicates
compile/[1,2].

compile(+Files,+OptionList)



CHAPTER 3. SYSTEM DESCRIPTION 51

compile(+Files)

compile/2 compiles all files specified, using the compiler options specified in
OptionList (see Section 3.10.2 below for the precise details.) Files is either an
absolute or relative filename, or a ground list of absolute or relative file names;
and OptionList is a ground list of compiler options. Since options can be set
globally via the predicate set_global_compiler_options/1, each option in
OptionsList can optionally be prefixed by + or -, indicating that the option is
to be turned on, or off, respectively. (No prefix turns the option on.)

| ?- compile(Files).

is just a notational shorthand for the query:

| ?- compile(Files, []).

For a given, File to be compiled, the source file name corresponding to File

is obtained by concatenating a directory prefix and the extension .P, .pl,
.prolog, or other filenames as discussed in Section 3.3. The directory pre-
fix must be in the dynamic loader path (see Section 3.6). Note that these
directories are searched in a predetermined order (see Section 3.6), so if a mod-
ule with the same name appears in more than one of the directories searched,
the compiler will compile the first one it encounters. In such a case, the user
can override the search order by providing an absolute path name. If File

contains no extension, an attempt is made to compile the file File.P, File.pl,
File.prolog, or other extensions before trying compiling the file with name
File.

We recommend use of the extension .P for Prolog source file to avoid ambiguity.
Optionally, users can also provide a header file for a module (denoted by the
module name suffixed by .H). In such a case, the XSB compiler will first read the
header file (if it exists), and then the source file. Currently the compiler makes
no special treatment of header files. They are simply included in the beginning
of the corresponding source files, and code can, in principle, be placed in either.

The result of the compilation (an SLG-WAM object code file) is stored in
(〈filename〉.xwam), but compile/[1,2] does not load the object file it cre-
ates. (The standard predicate consult/[1,2] loads the object file into the
system, after recompiling the source file if needed.) The object file created is
always written into the directory where the source file resides: the user must
therefore have write permission in that directory to avoid an error.

If desired, when compiling a module (file), clauses and directives can be trans-
formed as they are read. This is indeed the case for definite clause grammar
rules (see Chapter 11), but it can also be done for clauses of any form by pro-
viding a definition for predicate term_expansion/2 (see Section 11.3).
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Predicates compile/[1,2] can also be used to compile foreign language mod-
ules. In this case, the names of the source files should have the extension .c

and a .P file must not exist. A header file (with extension .H) must be present
for a foreign language module (see the chapter Foreign Language Interface in
Volume 2).

Error Cases In the cases below, File refers to an element of Files if Files

is a list and otherwise refers to Files itself.

• Files is a variable, or a list containing a variable element.

– instantiation_error.

• File is a neither an atom nor a list of atoms.

– type_error(atom_or_list_of_atoms,File)

• File does not exist in the current set of library directories

– existence_error(file,File)

• File has an object code extension (e.g. .xwam)

– permission_error(compile,file,File)

• File has been loaded previously in the session and there is more than one
active thread.

– misc_error

• OptionList is a partial list or contains an option that is a variable

– instantiation_error

• OptionList is neither a list nor a partial list

– type_error(list,OptionsList)

• OptionList contains an option, Option not described in Section 3.10.2

– domain_error(xsb_compiler_option,Option)

3.10.2 Compiler Options

Compiler options can be set in three ways: from a global list of options (set_global_compiler_options/1),
from the compilation command (compile/2 and consult/2), and from a directive in
the file to be compiled (see compiler directive compiler_options/1).

set_global_compiler_options(+OptionsList)

OptionsList is a list of compiler options (described below). Each can optionally
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be prefixed by + or -, indicating that the option is to be turned on, or off,
respectively. (No prefix turns the option on.) This evaluable predicate sets the
global compiler options in the way indicated. These options will be used in any
subsequent compilation, unless they are reset by another call to this predicate,
overridden by options provided in the compile invocation, or overridden by
options in the file to be compiled.

The following options are currently recognized by the compiler:

singleton_warnings_off Does not print out any warnings for singleton variables
during compilation. This option can be useful for compiling XSB programs
that have been generated by some other program.

optimize When specified, the compiler tries to optimize the object code. In Version
3.8, this option optimizes predicate calls, among other features, so execution
may be considerably faster for recursive loops. However, due to the nature of
the optimizations, the user may not be able to trace all calls to predicates in
the program. As expected, the compilation phase will also be slightly longer.
For these reasons, the use of the optimize option may not be suitable for the
development phase, but is recommended once the code has been debugged.

allow_redefinition By default the compiler refuses to compile a file that contains
clauses that would redefine a standard predicate (unless the sysmod option is
in effect.) By specifying this option, the user can direct the compiler to quietly
allow redefinition of standard predicates.

xpp_on Filter the program through a preprocessor before sending it to the XSB com-
piler. By default (and for the XSB code itself), XSB uses GPP, a preprocessor
developed by Denis Auroux (auroux@math.polytechnique.fr) that has high de-
gree of compatibility with the C preprocessor, but is more suitable for Prolog
syntax. In this case, the source code can include the usual C preprocessor di-
rectives, such as #define, #ifdef, and #include. This option can be specified
both as a parameter to compile/2 and as part of the compiler_options/1

directive inside the source file. See Appendix A for more details on GPP.

When an #include "file" statement is encountered, XSB directs GPP to
search for the files to include in the directories $XSB_DIR/emu and $XSB_DIR/prolog_includes.
However, additional directories can be added to this search path by assert-
ing into the predicate gpp_include_dir/1, which must be imported from
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module parse 13. For example if you want additional directories to be searched,
then the following statements must be executed:

:- import gpp_include_dir/1 from parse.

:- assert(gpp_include_dir(’some-other-dir’)).

Note that when compiling XSB programs, GPP searches the current directory
and the directory of the parent file that contains the include-directive last. If
you want Gpp to search directories in a different order, gpp_options/1 can be
used (see below).

Note: if you assert something into gpp_include_dir/1 then you must also
execute retractall(gpp_include_dir(_)) later on or else subsequent Prolog
compilations might not work correctly.

XSB predefines the constant XSB_PROLOG, which can be used for conditional
compilation. For instance, you can write portable program to run under XSB
and and other prologs that support C-style preprocessing and use conditional
compilation to account for the differences:

#ifdef XSB_PROLOG

XSB-specific stuff

#else

other Prolog’s stuff

#endif

common stuff

gpp_options This dynamic predicate must be imported from module parse. If some
atom is asserted into gpp_options then this atom is assumed to be the list of
command line options to be used by the preprocessor (only the first asserted
atom is ever considered). If this predicate is empty, then the default list of
options is used (which is ’-P -m -nostdinc -nocurinc’, meaning: use Prolog
mode and do not search the standard C directories and the directory of the
parent file that contains the include-instruction).

As mentioned earlier, when XSB invokes Gpp, it uses the option -nocurinc

so that Gpp will not search the directory of the parent file. If a particular
application requires that the parent file directory must be searched, then this can
be accomplished by executing assert(gpp_options(’-P -m -nostdinc’)).

13For compatibility, XSB also supports the ISO predicate include/1 which also allows extra files
to be included during compilation.
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Note: if you assert options into gpp_options/1 then do not forget to also exe-
cute retractall(gpp_options(_)) after that or else subsequent Prolog com-
pilations might not work correctly.

xpp_dump This causes XSB to dump the output from the GPP preprocessor into a
file. If the file being compiled is named file.P then the dump file is named
file.P_gpp. This option can be included in the list of options in the compiler_options/1

directive, but usually it is used for debugging, as part of the compile/2 pred-
icate. If xpp_dump is specified directly in the file using compiler_options/1

directive, then it should not follow the gpp_on option in the list (or else it will
be ignored).

Note: multiple occurrences of xpp_on and xpp_dump options are allowed, but
only the first one takes effect—all the rest are ignored!

xpp_on/N and xpp_dump/N

XSB also allows one to filter program files through a pipeline of external prepro-
cessors in addition to or instead of GPP. This can be specified with the N-ary
versions of xpp_on and xpp_dump:

xpp_on(spec1,...,specN)

xpp_dump(spec1,...,specN)

Each spec1, ..., specN is a preprocessor specification of the form preprocessor_name

or preprocessor_name(options). Each preprocessor is applied in a pipeline
passing its output to the next preprocessor. The first preprocessor is applied
to the file being compiled. The preprocessor name is an atom or a function
symbol and options must be an atom. If preprocessor_name is gpp, then the
GPP preprocessor will be invoked. Note that gpp can appear anywhere in the
aforesaid sequence of specs (or not appear at all), so it is possible to preprocess
XSB files before and/or after (or instead of) GPP. Note that xpp_on(gpp) and
xpp_dump(gpp) are equivalent to the earlier 0-ary compiler options xpp_on and
xpp_dump, respectively.

To use a preprocessor other than GPP two things must be done:

• A 4-ary Prolog predicate must be provided, which takes three input argu-
ments and produces in its 4th argument a syntactically correct shell (Unix
or Windows) command for invoking the preprocessor. The first preproces-
sor in the pipeline must be taking its input from a file, but the subsequent
preprocessors must expect their input from the standard input. All pre-
processors must send their results to the standard output. The arguments
to the 4-ary predicate in question are:
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– File: this is the XSB input file to be processed. Usually this argument
is left unused (unbound), but might be useful for producing error mes-
sages or debugging.

– Preprocessor name: this is the name under which the preprocessor is
registered (see below). It is the same as processor_name referred to
above. This name is up to the programmer; it is to be used to refer
to the preprocessor (it does not need to be related in any way to the
shell-command-producing predicate or to the OS’s pathname for the
preprocessor).

– Options: these are the command-line options that the preprocessor
might need. If the preprocessor spec mentioned above is foo(bar)

then the preprocessor name (argument 2) would be bound to foo and
options (argument 3) to bar.

– Shell command: this is the only output argument. It is supposed to
be the shell command to be used to invoke the preprocessor. The shell
command must not include the file name to be processed—that name
is added automatically as the last option to the shell command.

Special considerations for using XSB as a preprocessor. XSB can be
used as a preprocessor for XSB programs by constructing a shell com-
mand that invokes XSB. However, several conventions need to be ob-
served. First, the file to be preprocessed is automatically attached as
the last argument of the aforesaid shell command, but XSB does not
accept file names in that place as a command-line option (except with
special flags used by XSB developers only and for other purposes).
Therefore, the file name to be read and preprocessed by XSB must be
passed to XSB by some other means (e.g., using the -e "command "

option). In addition, the last command line option for that XSB-
based command must be –ignore, which will cause XSB to ignore the
remaining options, including the aforesaid file name.
Also, if a preprocessor appears in the pipeline as the second prepro-
cessor or later (i.e., after the first argument in xpp_dump), that pre-
processor’s shell command line must expect to receive the output of
the preceding preprocessor on the standard input. Therefore, in order
to serve as the second or later preprocessor in the pipeline, XSB must
be invoked with the -e "see(userin)." option followed by a call to
the predicate that would actually do the preprocessing.
Here are a few examples. To invoke XSB as the first preprocessor in
the pipeline, one could construct the following shell command (shown
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below as an atom of the kind that one needs to construct in the “Shell
command” argument being discussed):

’.../xsb options -e "preprocessPred(’’MyFile’’),halt." --ignore’

Note that here the file to be preprocessed, MyFile, needs to be passed
to the preprocessing predicate as an argument. To use XSB as the sec-
ond and later preprocessor in the pipeline, the appropriate command
could be

’.../xsb options -e "see(userin),preprocessPred,halt."’

Here the file to be preprocessed will come on the standard input of
XSB. No need for the –ignore option here because no file names would
be attached at the end of this command (since the file is piped through
the standard input).
In both cases, the file passed to preprocessPred/1 or preprocessPred/0

could be processed using read/1 and write_canonical/1. The typ-
ical options that one would want to pass in both cases (to replace
options) are

--noprompt --quietload --nobanner --nofeedback

Note that other commands might need to be executed under the -e

option in order to bootstrap the preprocessor (e.g., additional XSB
files might need to be loaded).

• The preprocessor must be registered using the following query:

:- import register_xsb_preprocessor/2 from parse.

?- register_xsb_preprocessor(preproc_name,preproc_predicate(_,_,_,_)).

Here the argument preproc_name is the user-given name for the prepro-
cessor, while preproc_predicate is the 4-ary shell-command-producing
predicate described earlier.

The registration query must be executed before the start of the preprocess-
ing of the input XSB file. Clearly, this implies that the shell-command-
producing predicate must be in a different file than the one being prepro-
cessed.

Note: one cannot register the same preprocessor twice. The second time
the same name is used, it is ignored. However, it is possible to register
the same shell-command-producing predicate twice, if the user registers
the these shell-command-producing predicates under different preprocessor
names.

The difference between xpp_on/N and xpp_dump/N is that the latter also saves
the output of each preprocessing stage in a separate file. For instance, if
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the XSB file to be preprocessed is abc.P and the xpp_dump/N option has the
form xpp_dump(foo,gpp,bar) then three files will be produced: abc.P_foo,
abc.P_gpp, abc.P_bar, each containing the result of the respective stage in
preprocessing.

Here is an example. Suppose that foobar.P includes the definition of the fol-
lowing predicate

make_append_cmd(_File,_Name,Options,ResultingCmd) :-

fmt_write_string(ResultingCmd, ’"/bin/cat" "%s"’, arg(Options)).

and also has the following registration query:

?- parse:register_xsb_preprocessor(appendfile,make_append_cmd(_,_,_,_)).

Suppose that the file abc.P includes the following compiler directive:

:- compiler_options([xpp_on(appendfile(’data.P’),gpp)]).

If the file foobar.P is loaded before compiling abc.P then the file data.P will
be first appended to abc.P and then the result will be processed by GPP. The
final result will be parsed and compiled by XSB.

Note that although the parameters _File and _Name are not used by make_append_cmd/4

in our example, when this predicate is called they will be bound to foobar.P and
appendfile, respectively, and could be used by the shell-command-producing
predicates for various purposes.

quit_on_error This causes XSB to exit if compilation of a program end with an
error. This option is useful when running XSB from a makefile, when it is nec-
essary to stop the build process after an error has been detected. For instance,
XSB uses this option during its own build process.

auto_table When specified as a compiler option, the effect is as described in Sec-
tion 3.10.5. Briefly, a static analysis is made to determine which predicates may
loop under Prolog’s SLD evaluation. These predicates are compiled as tabled
predicates, and SLG evaluation is used instead.

suppl_table The intention of this option is to direct the system to table for efficiency
rather than termination. When specified, the compiler uses tabling to ensure
that no predicate will depend on more than three tables or EDB facts (as
specified by the declaration edb of Section 3.10.5). The action of suppl_table
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is independent of that of auto_table, in that a predicate tabled by one will not
necessarily be tabled by the other. During compilation, suppl_table occurs
after auto_table, and uses table declarations generated by it, if any.

spec_repr When specified, the compiler performs specialization of partially instan-
tiated calls by replacing their selected clauses with the representative of these
clauses, i.e. it performs folding whenever possible. In general specialization with
replacement is correct only under certain conditions. XSB’s compiler checks for
sufficient conditions that guarantee correctness, and if these conditions are not
met, specialization with replacement is not performed for the violating calls.

spec_off When specified, the compiler does not perform specialization of partially
instantiated calls.

unfold_off When specified, singleton sets optimizations are not performed during
specialization. This option is necessary in Version 3.8 for the specialization of
table declarations that select only a single chain rule of the predicate.

spec_dump Generates a module.spec file, containing the result of specializing par-
tially instantiated calls to predicates defined in the module under compilation.
The result is in Prolog source code form.

ti_dump Generates a module.ti file containing the result of applying unification
factoring to predicates defined in the module under compilation. The result is
in Prolog source code form. See page 69 for more information on unification
factoring.

ti_long_names Used in conjunction with ti_dump, generates names for predicates
created by unification factoring that reflect the clause head factoring done by
the transformation.

modeinfer This option is used to trigger mode analysis. For each module compiled,
the mode analyzer creates a module.D file that contains the mode information.

Warning: Occasionally, the analysis itself may take a long time. As far as
we have seen, the analysis times are longer than the rest of the compilation
time only when the module contains recursive predicates of arity ≥ 10. If the
analysis takes an unusually long time (say, more than 4 times as long as the
rest of the compilation) you may want to abort and restart compilation without
modeinfer.

mi_warn During mode analysis, the .D files corresponding to the imported modules
are read in. The option mi_warn is used to generate warning messages if these
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.D files are outdated — i.e., older than the last modification time of the source
files.

mi_foreign This option is used only when mode analysis is performed on XSB system
modules. This option is needed when analyzing standard and machine in
syslib.

sysmod Mainly used by developers when compiling system modules and used for boot-
strapping. If specified, standard predicates (see /$XSB_DIR/syslib/std_xsb.P)
are automatically available for use only if they are primitive predicates (see the
file $XSB_DIR/syslib/machine.P for a current listing of primitive predicates.)
When compiling in this mode, non-primitive standard predicates must be ex-
plicitly imported from the appropriate system module. Also standard predicates
are permitted to be defined.

verbo Compiles the files (modules) specified in “verbose” mode, printing out infor-
mation about the progress of the compilation of each predicate.

profile This option is usually used when modifying the XSB compiler. When speci-
fied, the compiler prints out information about the time spent in certain phases
of the compilation process.

asm_dump, compile_off Generates a textual representation of the SLG-WAM as-
sembly code and writes it into the file module.A where module is the name of
the module (file) being compiled.

Warning: This option was created for compiler debugging and is not intended
for general use. There might be cases where compiling a module with these
options may cause generation of an incorrect .A and .xwam file. In such cases,
the user can see the SLG-WAM instructions that are generated for a module by
compiling the module as usual and then using the -d module.xwam command-
line option of the XSB emulator (see Section 3.7).

index_off When specified, the compiler does not generate indices for the predicates
compiled.

3.10.3 Specialization

From Version 1.4.0 on, the XSB compiler automatically performs specialization of
partially instantiated calls. Specialization can be thought as a source-level program
transformation of a program to a residual program in which partially instantiated calls
to predicates in the original program are replaced with calls to specialized versions of
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these predicates. The expectation from this process is that the calls in the residual
program can be executed more efficiently that their non-specialized counterparts.
This expectation is justified mainly because of the following two basic properties of
the specialization algorithm:

Compile-time Clause Selection The specialized calls of the residual program di-
rectly select (at compile time) a subset containing only the clauses that the
corresponding calls of the original program would otherwise have to examine
during their execution (at run time). By doing so, laying down unnecessary
choice points is at least partly avoided, and so is the need to select clauses
through some sort of indexing.

Factoring of Common Subterms Non-variable subterms of partially instantiated
calls that are common with subterms in the heads of the selected clauses are fac-
tored out from these terms during the specialization process. As a result, some
head unification (get_* or unify_*) and some argument register (put_*) WAM
instructions of the original program become unnecessary. These instructions are
eliminated from both the specialized calls as well as from the specialized versions
of the predicates.

Though these properties are sufficient to get the idea behind specialization, the ac-
tual specialization performed by the XSB compiler can be better understood by the
following example. The example shows the specialization of a predicate that checks
if a list of HiLog terms is ordered:

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, ordered([Y|Z]).

−→

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, _$ordered(Y, Z).

:- index _$ordered/2-2.

_$ordered(X, []).

_$ordered(X, [Y|Z]) :-

X @=< Y, _$ordered(Y, Z).

The transformation (driven by the partially instantiated call ordered([Y|Z])) effec-
tively allows predicate ordered/2 to be completely deterministic (when used with a
proper list as its argument), and to not use any unnecessary heap-space for its execu-
tion. We note that appropriate :- index directives are automatically generated by
the XSB compiler for all specialized versions of predicates.
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The default specialization of partially instantiated calls is without any folding
of the clauses that the calls select. Using the spec_repr compiler option (see Sec-
tion 3.10.2) specialization with replacement of the selected clauses with the represen-
tative of these clauses is performed. Using this compiler option, predicate ordered/2

above would be specialized as follows:

ordered([]).

ordered([X|Y]) :- _$ordered(X, Y).

:- index _$ordered/2-2.

_$ordered(X, []).

_$ordered(X, [Y|Z]) :- X @=< Y, _$ordered(Y, Z).

We note that in the presence of cuts or side-effects, the code replacement operation
is not always sound, i.e. there are cases when the original and the residual program
are not computationally equivalent (with respect to the answer substitution seman-
tics). The compiler checks for sufficient (but not necessary) conditions that guarantee
computational equivalence, and if these conditions are not met, specialization is not
performed for the violating calls.

The XSB compiler prints out messages whenever it specialises calls to some pred-
icate. For example, while compiling a file containing predicate ordered/1 above, the
compiler would print out the following message:

% Specialising partially instantiated calls to ordered/1

The user may examine the result of the specialization transformation by using the
spec_dump compiler option (see Section 3.10.2).

Finally, we have to mention that for technical reasons beyond the scope of this
document, specialization cannot be transparent to the user; predicates created by the
transformation do appear during tracing.

3.10.4 Compiler Directives

Consider a directive

:- foo(a).

That occurs in a file that is to be compiled. There are two logical interpretations of
such a directive.
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1. foo(a) is to be executed upon loading the file; or

2. foo(a) provides information used by the compiler in compiling the file.

By default, the interpretation of a directive is as in case (1) except in the case of
the compiler directives listed in this section, which as their name implies, are taken
to provide information to the compiler. Some of the directives, such as the mode/1

directive, have no meaning as an executable directive, while others, such as import/2

do. In fact as an executable directive import/2 imports predicates into usermod. For
such a directive, a statement beginning with ?-, such as

?- import foo/1 from myfile.

indicates that the directive should be executed upon loading the file, and should have
no meaning to the compiler. On the other hand, the statement

:- import foo/1 from myfile.

Indicates that foo/1 terms in the file to be compiled are to be understood as myfile:foo/1.
In other words, the statement is used by the compiler and will not be executed upon
loading. For non-compiler directives the use of ?- and :- has no effect — in both
cases the directive is executed upon loading the file.

The following compiler directives are recognized in Version 3.8 of XSB

Including Files in a Compilation

include(+FileName) ISO

The ISO directive

:- include(FileName)

Causes the compiler to act as if the code from FileName were contained at the
position where the directive was encountered. XSB’s preprocessor can perform
the same function via the command #include FileName and can support more
sophisticated substitutions, but include/1 should be used if code portability
is desired.
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3.10.5 Conditional Compilation

Section 3.10.2 described a way of performing conditional compilation using XSB’s
interation with GPP. Conditional compilation can also be done through XSB’s com-
piler, using the directives :- if(+Condition), :- elseif(+Condition), :-

else, and :- endif. For instance the fragment

:- if(current_prolog_flag(dialect,xsb)).

:- include(’file2.P’).

:- elseif(current_prolog_flag(dialect,swi)).

:- include(’file3.P’).

:- endif.

allows different Prolog code to be included for XSB and for another Prolog. This
framework is very general: for instance, as long as if...elseif...endif blocks are
not nested, any Prolog code can be used in the consequents of the (else)if. The
condition of if/1 or elseif/1 can be any Prolog goal, although care should be used
in selecting Condition. For instance, the goal

:- if(file_exists(’file1.P’)).

might be true during compilation, but if the object file produced by the compila-
tion is moved, the condition might no longer be true.

if(?Condition)

elseif(?Condition)

else

endif

Directives to invoke conditional compilation as described above. If Condition

is a “changeable” goal such as file_exists/1, a warning will be issued but no
error will be raised.

Mode Declarations

The XSB compiler accepts mode declarations of the form:

:- mode ModeAnnot1, . . . , ModeAnnotn.
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where each ModeAnnot is a mode annotation (a term indicator whose arguments are
elements of the set {+,-,#,?}). From Version 1.4.1 on, mode directives are used by
the compiler for tabling directives, a use which differs from the standard use of modes
in Prolog systems14. See Section 3.10.5 for detailed examples.

Mode annotations have the following meaning:

+ This argument is an input to the predicate. In every invocation of the predicate,
the argument position must contain a non-variable term. This term may not
necessarily be ground, but the predicate is guaranteed not to alter this argu-
ment).

:- mode see(+), assert(+).

- This argument is an output of the predicate. In every invocation of the predicate
the argument position will always be a variable (as opposed to the # annotation
below). This variable is unified with the value returned by the predicate. We
note that Prolog does not enforce the requirement that output arguments should
be variables; however, output unification is not very common in practice.

:- mode cputime(-).

# This argument is either:

• An output argument of the predicate for which a non-variable value may be
supplied for this argument position. If such a value is supplied, the result
in this position is unified with the supplied supplied value. The predicate
fails if this unification fails. If a variable term is supplied, the predicate
succeeds, and the output variable is unified with the return value.

:- mode ’=’(#,#).

• An input/output argument position of a predicate that has only side-effects
(usually by further instantiating that argument). The # symbol is used to
denote the ± symbol that cannot be entered from the keyboard.

? This argument does not fall into any of the above categories. Typical cases would
be the following:

• An argument that can be used both as input and as output (but usually
not with both uses at the same time).

:- mode functor(?,?,?).

14The most common uses of mode declarations in Prolog systems are to reduce the size of compiled
code, or to speed up a predicate’s execution.
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• An input argument where the term supplied can be a variable (so that the
argument cannot be annotated as +), or is instantiated to a term which
itself contains uninstantiated variables, but the predicate is guaranteed not
to bind any of these variables.

:- mode var(?), write(?).

We try to follow these mode annotation conventions throughout this manual.

Finally, we warn the user that mode declarations can be error-prone, and since
errors in mode declarations do not show up while running the predicates interac-
tively, unexpected behavior may be witnessed in compiled code, optimized to take
modes into account (currently not performed by XSB). However, despite this dan-
ger, mode annotations can be a good source of documentation, since they express the
programmer’s intention of data flow in the program.

Tabling Directives

Memoization is often necessary to ensure that programs terminate, and can be useful
as an optimization strategy as well. The underlying engine of XSB is based on SLG,
a memoization strategy, which, in our version, maintains a table of calls and their
answers for each predicate declared as tabled. Predicates that are not declared as
tabled execute as in Prolog, eliminating the expense of tabling when it is unnecessary.

The simplest way to use tabling is to include the directive

:- auto_table.

anywhere in the source file. auto_table declares predicates tabled so that the pro-
gram will terminate.

To understand precisely how auto_table does this, it is necessary to mention
a few properties of SLG. For programs which have no function symbols, or where
function symbols always have a limited depth, SLG resolution ensures that any query
will terminate after it has found all correct answers. In the rest of this section, we
restrict consideration to such programs.

Obviously, not all predicates will need to be tabled for a program to terminate.
The auto_table compiler directive tables only those predicates of a module which
appear to static analysis to contain an infinite loop, or which are called directly
through tnot/1. It is perhaps more illuminating to demonstrate these conditions
through an example rather than explaining them. For instance, in the program.

:- auto_table.
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p(a) :- s(f(a)).

s(X) :- p(f(a)).

r(X) :- q(X,W),r(Y).

m(X) :- tnot(f(X)).

:- mode ap1(-,-,+).

ap1([H|T],L,[H|L1]) :- ap1(T,L,L1).

:- mode ap(+,+,-).

ap([],F,F).

ap([H|T],L,[H|L1]) :- ap(T,L,L1).

mem(H,[H|T]).

mem(H,[_|T]) :- mem(H,T).

The compiler prints out the messages

% Compiling predicate s/1 as a tabled predicate

% Compiling predicate r/1 as a tabled predicate

% Compiling predicate m/1 as a tabled predicate

% Compiling predicate mem/2 as a tabled predicate

Terminating conditions were detected for ap1/3 and ap/3, but not for any of the
other predicates.

auto_table gives an approximation of tabled programs which we hope will be
useful for most programs. The minimal set of tabled predicates needed to ensure
termination for a given program is undecidable. It should be noted that the presence
of meta-predicates such as call/1 makes any static analysis useless, so that the
auto_table directive should not be used in such cases.

Predicates can be explicitly declared as tabled as well, through the table/1.
When table/1 is used, the directive takes the form

:- table(F/A).

where F is the functor of the predicate to be tabled, and A its arity.

Another use of tabling is to filter out redundant solutions for efficiency rather than
termination. In this case, suppose that the directive edb/1 were used to indicate that
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certain predicates were likely to have a large number of clauses. Then the action of
the declaration :- suppl_table in the program:

:- edb(r1/2).

:- edb(r2/2).

:- edb(r3/2).

:- suppl_table.

join(X,Z):- r1(X,X1),r2(X1,X2),r3(X2,Z).

would be to table join/2. The suppl_table directive is the XSB analogue to the de-
ductive database optimization, supplementary magic templates [5]. suppl_table/0 is
shorthand for suppl_table(2) which tables all predicates containing clauses with two
or more edb facts or tabled predicates. By specifying suppl_table(3) for instance,
only predicates containing clauses with three or more edb facts or tabled predicates
would be tabled. This flexibility can prove useful for certain data-intensive applica-
tions.

Indexing Directives

The XSB compiler by default generates an index on the principal functor of the first
argument of a predicate. Indexing on the appropriate argument of a predicate may
significantly speed up its execution time. In many cases the first argument of a
predicate may not be the most appropriate argument for indexing and changing the
order of arguments may seem unnatural. In these cases, the user may generate an
index on any other argument by means of an indexing directive. This is a directive
of the form:

:- index Functor/Arity-IndexArg.

indicating that an index should be created for predicate Functor/Arity on its IndexArgth

argument. One may also use the form:

:- index(Functor/Arity, IndexArg, HashTableSize).

which allows further specification of the size of the hash table to use for indexing this
predicate if it is a dynamic (i.e., asserted) predicate. For predicates that are dynam-
ically loaded, this directive can be used to specify indexing on more than one argu-
ment, or indexing on a combination of arguments (see its description on page 286).
For a compiled predicate the size of the hash table is computed automatically, so
HashTableSize is ignored.
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All of the values Functor, Arity, IndexArg (and possibly HashTableSize) should
be ground in the directive. More specifically, Functor should be an atom, Arity

an integer in the range 0..255, and IndexArg an integer between 0 and Arity. If
IndexArg is equal to 0, then no index is created for that predicate. An index directive
may be placed anywhere in the file containing the predicate it refers to.

As an example, if we wished to create an index on the third argument of predicate
foo/5, the compiler directive would be:

:- index foo/5-3.

Unification Factoring

When the clause heads of a predicate have portions of arguments common to several
clauses, indexing on the principal functor of one argument may not be sufficient.
Indexing may be improved in such cases by the use of unification factoring. Unification
Factoring is a program transformation that “factors out” common parts of clause
heads, allowing differing parts to be used for indexing, as illustrated by the following
example:

p(f(a),X) :- q(X).

p(f(b),X) :- r(X).
−→

p(f(X),Y) :- _$p(X,Y).

_$p(a,X) :- q(X).

_$p(b,X) :- r(X).

The transformation thus effectively allows p/2 to be indexed on atoms a/0 and b/0.
Unification Factoring is transparent to the user; predicates created by the transfor-
mation are internal to the system and do not appear during tracing.

The following compiler directives control the use of unification factoring 15:

:- ti(F/A). Specifies that predicate F/A should be compiled with unification fac-
toring enabled.

:- ti_off(F/A). Specifies that predicate F/A should be compiled with unification
factoring disabled.

:- ti_all. Specifies that all predicates defined in the file should be compiled with
unification factoring enabled.

15Unification factoring was once called transformational indexing, hence the abbreviation ti in
the compiler directives
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:- ti_off_all. Specifies that all predicates defined in the file should be compiled
with unification factoring disabled.

By default, higher-order predicates (more precisely, predicates named apply with
arity greater than 1) are compiled with unification factoring enabled. It can be
disabled using the ti_off directive. For all other predicates, unification factoring
must be enabled explicitly via the ti or ti_all directive. If both :- ti(F/A). (:-

ti_all.) and :- ti_off(F/A). (:- ti_off_all.) are specified, :- ti_off(F/A).

(:- ti_off_all.) takes precedence. Note that unification factoring may have no ef-
fect when a predicate is well indexed to begin with. For example, unification factoring
has no effect on the following program:

p(a,c,X) :- q(X).

p(b,c,X) :- r(X).

even though the two clauses have c/0 in common. The user may examine the results
of the transformation by using the ti_dump compiler option (see Section 3.10.2).

Other Directives

XSB has other directives not found in other Prolog systems.

:- hilog atom1, . . . , atomn.

Declares symbols atom1 through atomn as HiLog symbols. The hilog declara-
tion should appear before any use of the symbols. See Chapter 4 for a purpose
of this declaration.

:- ldoption(Options).

This directive is only recognized in the header file (.H file) of a foreign module.
See the chapter Foreign Language Interface in Volume 2 for its explanation.

:- compiler_options(OptionsList).

Indicates that the compiler options in the list OptionsList should be used to
compile this file. This must appear at the beginning of the file. These options
will override any others, including those given in the compilation command.
The options may be optionally prefixed with + or - to indicate that they should
be set on or off. (No prefix indicates the option should be set on.)
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3.10.6 Inline Predicates

Inline predicates represent “primitive” operations in the (extended) WAM. Calls to
inline predicates are compiled into a sequence of WAM instructions in-line, i.e. with-
out actually making a call to the predicate. Thus, for example, relational predicates
(like >/2, >=/2, etc.) compile to, essentially, a subtraction followed by a conditional
branch. As a result, calls to inline predicates will not be trapped by the debugger,
and their evaluation will not be visible during a trace of program execution. Inline
predicates are expanded specially by the compiler and thus cannot be redefined by the
user without changing the compiler. The user does not need to import these predi-
cates from anywhere. There are available no matter what options are specified during
compiling.

Table 3.1 lists the inline predicates of XSB Version 3.8. Those predicates that start
with _$ are internal predicates that are also expanded in-line during compilation.

’=’/2 ’<’/2 ’=<’/2 ’>=’/2 ’>’/2

’=:=’/2 ’=\=’/2 is/2 ’@<’/2 ’@=<’/2

’@>’/2 ’@>=’/2 ’==’/2 ’\==’/2 fail/0

true/0 var/1 nonvar/1 halt/0 ’!’/0

min/2 max/2 ’><’/2 **/2 sign/1

’_$cutto’/1 ’_$savecp’/1 ’_$builtin’/1

Table 3.1: The Inline Predicates of XSB

We warn the user to be cautious when defining predicates whose functor starts with
_$ since the names of these predicates may interfere with some of XSB’s internal pred-
icates. The situation may be particularly severe for predicates like ’_$builtin’/1

that are treated specially by the XSB compiler.

3.11 A Note on ISO Compatibility

In Version 3.8, an effort has been made to ensure compatibility with the core Prolog
ISO standard [37]. In this section, we summarize the differences with the ISO stan-
dard. XSB implements almost all ISO built-ins and evaluable functions, although
there are semantic differences between XSB’s implementation and that of the ISO
standard in certain cases.

The main difference of XSB from the ISO semantics is that XSB does not support
the logical update semantics for assert and retract, but instead supports an immediate
semantics. XSB does, however support an ISO-like semantics for incremental tables.
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Version 3.8 of XSB mostly supports the full ISO syntax for Prolog, and its I/O sys-
tem is based on UTF-8 encoding, which includes ASCII as a subset of its characters.
Beyond XSB’s support for Hilog, most differences between ISO syntax and XSB syn-
tax are fairly minor. However, as XSB supports only UTF-8, ISO predicates relating
to different character sets, such as char_conversion/2, current_char_conversion/2

and others are not supported.

A somewhat more minor difference involves XSB’s implementation of ISO streams.
XSB can create streams from several First class objects, including pipes, atoms, and
consoles in addition to files. However by default, XSB opens streams in binary mode,
rather than text mode in opposition to the ISO standard, which opens streams in
text mode. This makes no difference in UNIX or LINUX, for which text and binary
streams are identical, but does make a difference in Windows, where text files are
processed more than binary files.

As a final point, XSB currently throws an error/3 term in its error ball, rather
than an error/2 term.

Most other differences with the core standard are mentioned under portability
notes for the various predicates.

XSB supports most new features mentioned in the revisions to the core stan-
dard [38], including call_cleanup/2 and various library predicates such as subsumes/2,
numbervars/3 and so on. XSB also has strong support for the working multi-
threading Prolog standard [39], and XSB has been one of the first Prologs to support
this standard. However, because XSB has an atom-based module system it does not
support the ISO standard for Prolog modules.
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Syntax

The syntax of XSB is based on ISO Prolog [37], although it lacks a few of the ISO
standard’s somewhat arcane features. Beginning with Version 3.8, XSB supports
Unicode through UTF-8 atoms as described in Section 4.1.3. XSB’s reader also
contains extensions to support HiLog [14], which adds certain features of second-
order syntax to Prolog.

4.1 Terms

The data objects of the HiLog language are called terms. A HiLog term can be
constructed from any logical symbol or a term followed by any finite number of
arguments. In any case, a term is either a constant, a variable, or a compound term.

A constant is either a number (integer or floating-point) or an atom 1 Constants
are definite elementary objects, and correspond to proper nouns in natural language.

4.1.1 Integers

ISO Integers

The printed form of an integer normally consists of a sequence of digits optionally
preceded by a minus sign (’-’), interpreted, of course, as base 10 integers. It is also
possible to enter integers in other bases:

1This Prolog usage contradicts the usage of the word “atom” in logic as short for “atomic formula”.

73
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• 0bnnn represents an integer in base 2, e.g.,

| ?- X = 0b110.

X = 6

• 0onnn represents an integer in base 8, e.g.,

| ?- X = 0o110.

X = 72

• 0xnnn represents an integer in base 16, e.g.,

| ?- X = 0x110.

X = 272

Character code constants are integers of the form 0’nnn, where nnn is the decimal
form of any UTF-8 codepoint. E.g.,

| ?- 0’A = X

X = 65

Escape characters (cf. Section 4.1.3) can be written similarly (if this is ever needed):

| ?- 0’\n = X

X = 10

Other Integer Representations

It is also possible to enter integers in bases 2 through 36; this can be done by preceding
the digit sequence by the base (in decimal) followed by an apostrophe (’). If a base
greater than 10 is used, the characters A-Z or a-z are used to stand for digits greater
than 9.

Using these rules, examples of valid integer representations in XSB are:
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1 -3456 95359 9’888 16’1FA4 -12’A0 20’

representing respectively the following integers in decimal base:

1 -3456 95359 728 8100 -120 0

Note that the following:

+525 12’2CF4 37’12 20’-23

are not valid integers of XSB.

Character code constants, mentioned above, can be seen as integers in “base zero”.

4.1.2 Floating-point Numbers

XSB supports ISO floating-point numbers, which consist of a sequence of digits with
an embedded decimal point, optionally preceded by a minus sign (’-’), and optionally
followed by an exponent consisting of uppercase or lowercase ’E’ and an optionally
signed base 10 integer.

Using these rules, examples of floating point numbers are:

1.0 -34.56 817.3E12 -0.0314e26 2.0E-1

Note that in any case there must be at least one digit before, and one digit after, the
decimal point.

4.1.3 Atoms

An atom consists of a sequence of characters that follow the following rules.

• Non-guoted Atoms begin with the ASCII character a-z and are followed by a
sequence of ISO alphanumeric characters: a-z, A-Z, 0-9, and underscore _.

• Quoted Atoms begin and end with the ASCII character ’ and may contain any
sequence of

– Printable UTF-8 characters
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– Meta-escaped quotes. E.g.,

| ?- X = ’a’’b’.

X = a’b

(Unfortunately, the current version of XSB does not support escaped quotes
(\’).)

– ISO escape characters and sequences

∗ \b the newline character (ASCII 7).

∗ \b the newline character (ASCII 8).

∗ \f the form feed character (ASCII 12).

∗ \n the newline character (ASCII 10).

∗ \r the carriage return character (ASCII 13).

∗ \t a tab character (ASCII 9).

∗ \v a vertical tab character (ASCII 11).

∗ Octal escapes of the form \nnn\, where nnn is the octal number cor-
responding to an ASCII code. E.g.,

| ?- write(’\60\’).

0

∗ Hexidecimal escapes of the form \xnn, where nn is the hexidecimal
number corresponding to an ASCII code 2. . E.g.,

| ?- write(’\30\’).

0

– UTF-8 escape sequences have the form \unnnn where nnnn is the hexidec-
imal number corresponding to a UTF-8 codepoint.

• Operator-based Atoms are defined as any sequence from the following set of
characters (except of the sequence ’/*’, which begins a comment):

+ - * / \ ^ < > = ‘ ~ : . ? @ # &

Examples of such atoms are:

^=.. ::= ===

2The current version of XSB differs from the ISO specification in that hexidecimal escapes do
not have a trailing slash.
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• Special Atoms are

! ; [] {}

Note that the bracket pairs are special. While ’[]’ and ’{}’ are atoms, ’[’,
’]’, ’{’, and ’}’ are not 3.

4.1.4 Variables

Variables may be written as any sequence of (ASCII) ISO alphanumeric characters
beginning with either a capital letter or ’_’. For example:

X HiLog Var1 _3 _List

If a variable is referred to only once in a clause, it does not need to be named
and may be written as an anonymous variable, represented by a single underscore
character ’_’. Any number of anonymous variables may appear in a clause; all of
these variables are read as distinct variables.

4.1.5 Compound Terms

Like in Prolog, the structured data objects of HiLog are compound terms (or struc-
tures). The external representation of a HiLog compound term comprises a functor
(called the principal functor or the name of the compound term) and a sequence of
one or more terms called arguments. Unlike Prolog where the functor of a term must
be an atom, in HiLog the functor of a compound term can be any valid HiLog term.
This includes numbers, atoms, variables or even compound terms. Thus, since in
HiLog a compound term is just a term followed by any finite number of arguments,
all the following are valid external representations of HiLog compound terms:

foo(bar) prolog(a, X) hilog(X)

123(john, 500) X(kostis, sofia) X(Y, Z, Y(W))

f(a, (b(c))(d)) map(double)([], []) h(map(P)(A, B))(C)

3The form [X] is a special notation for lists (see Section 4.1.6), while the form {X} is just
“syntactic sugar” for the term ’{}’(X).
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Like a functor in Prolog, a functor in HiLog can be characterized by its name and
its arity which is the number of arguments this functor is applied to. For example,
the compound term whose principal functor is ’map(P)’ of arity 2, and which has
arguments L1, and L2, is written as:

map(P)(L1, L2)

As in Prolog, when we need to refer explicitly to a functor we will normally denote
it by the form Name/Arity. Thus, in the previous example, the functor ’map(P)’ of
arity 2 is denoted by:

map(P)/2

Note that a functor of arity 0 is represented as an atom.

In Prolog, a compound term of the form p(t1, t2, . . . , tk) is usually pictured as a
tree in which every node contains the name p of the functor of the term and has
exactly k children each one of which is the root of the tree of terms t1, t2, . . . , tk.

For example, the compound term

s(np(kostis), vp(v(loves), np(sofia)))

would be pictured as the following tree:
s

/ \

np vp

| / \

| v np

| | |

kostis loves sofia

The principal functor of this term is s/2. Its two arguments are also compound terms.
In illustration, the principal functor of the second argument is vp/2.

Likewise, any external representation of a HiLog compound term t(t1, t2, . . . , tk)
can be pictured as a tree in which every node contains the tree representation of the
name t of the functor of the term and has exactly k children each one of which is the
root of the tree of terms t1, t2, . . . , tk.

Sometimes it is convenient to write certain functors as operators. Binary func-
tors (that is, functors that are applied to two arguments) may be declared as infix
operators, and unary functors (that is, functors that are applied to one argument)
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may be declared as either prefix or postfix operators. Thus, it is possible to write the
following:

X+Y (P;Q) X<Y +X P;

More about operators in HiLog can be found in section 4.3.

4.1.6 Lists

As in Prolog, lists form an important class of data structures in HiLog. They are
essentially the same as the lists of Lisp: a list is either the atom ’[]’, representing
the empty list, or else a compound term with functor ’.’ and two arguments which
are the head and tail of the list respectively, where the tail of a list is also a list. Thus
a list of the first three natural numbers is the structure:

.

/ \

1 .

/ \

2 .

/ \

3 []

which could be written using the standard syntax, as:

.(1,.(2,.(3,[])))

but which is normally written in a special list notation, as:

[1,2,3]

Two examples of this list notation, as used when the tail of a list is a variable, are:

[Head|Tail] [foo,bar|Tail]

which represent the structures:

. .

/ \ / \

Head Tail foo .

/ \

bar Tail
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respectively.

Note that the usual list notation [H|T] does not add any new power to the lan-
guage; it is simply a notational convenience and improves readability. The above
examples could have been written equally well as:

.(Head,Tail) .(foo,.(bar,Tail))

For convenience, a further notational variant is allowed for lists of integers that
correspond to UTF-8< character codes. Lists written in this notation are called
strings. For example,

"I am a HiLog string"

represents exactly the same list as:

[73,32,97,109,32,97,32,72,105,76,111,103,32,115,116,114,105,110,103]

4.2 From HiLog to Prolog

From the discussion about the syntax of HiLog terms, it is clear that the HiLog syntax
allows the incorporation of some higher-order constructs in a declarative way within
logic programs. As we will show in this section, HiLog does so while retaining a clean
first-order declarative semantics. The semantics of HiLog is first-order, because every
HiLog term (and formula) is automatically encoded (converted) in predicate calculus
in the way explained below.

Before we briefly explain the encoding of HiLog terms, let us note that the HiLog
syntax is a simple (but notationally very convenient) encoding for Prolog terms, of
some special form. In the same way that in Prolog:

1 + 2

is just an (external) shorthand for the term:

+(1, 2)

in the presence of an infix operator declaration for + (see section 4.3), so:

X(a, b)
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is just an (external) shorthand for the Prolog compound term:

apply(X, a, b)

Also, in the presence of a hilog declaration (see section 3.10.5) for h, the HiLog term
whose external representation is:

h(a, h, b)

is a notational shorthand for the term:

apply(h, a, h, b)

Notice that even though the two occurrences of h refer to the same symbol, only
the one where h appears in a functor position is encoded with the special functor
apply/n, n ≥ 1.

The encoding of HiLog terms is performed based upon the existing declarations
of hilog symbols. These declarations (see section 3.10.5), determine whether an atom
that appears in a functor position of an external representation of a HiLog term,
denotes a functor or the first argument of a set of special functors apply. The actual
encoding is as follows:

• The encoding of any variable or parameter symbol (atom or number) that does
not appear in a functor position is the variable or the symbol itself.

• The encoding of any compound term t where the functor f is an atom that is
not one of the hilog symbols (as a result of a previous hilog declaration), is
the compound term that has f as functor and has as arguments the encoding of
the arguments of term t. Note that the arity of the compound term that results
from the encoding of t is the same as that of t.

• The encoding of any compound term t where the functor f is either not an
atom, or is an atom that is a hilog symbol, is a compound term that has apply

as functor, has first argument the encoding of f and the rest of its arguments
are obtained by encoding of the arguments of termt. Note that in this case the
arity of the compound term that results from the encoding of t is one more than
the arity of t.

Note that the encoding of HiLog terms described above, implies that even though
the HiLog terms:
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p(a, b)

h(a, b)

externally appear to have the same form, in the presence of a hilog declaration
for h but not for p, they are completely different. This is because these terms are
shorthands for the terms whose internal representation is:

p(a, b)

apply(h, a, b)

respectively. Furthermore, only h(a,b) is unifiable with the HiLog term whose ex-
ternal representation is X(a, b).

We end this short discussion on the encoding of HiLog terms with a small example
that illustrates the way the encoding described above is being done. Assuming that
the following declarations of parameter symbols have taken place,

:- hilog h.

:- hilog (hilog).

before the compound terms of page 77 were read by XSB, the encoding of these terms
in predicate calculus using the described transformation is as follows:

foo(bar) prolog(a,X)

apply(hilog,X) apply(123,john,500)

apply(X,kostis,sofia) apply(X,Y,Z,apply(Y,W))

f(a,apply(b(c),d)) apply(map(double),[],[])

apply(apply(h,apply(map(P),A,B)),C)

4.3 Operators

From a theoretical point of view, operators in Prolog are simply a notational con-
venience and add absolutely nothing to the power of the language. For example, in
most Prologs ’+’ is an infix operator, so

2 + 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure:
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+

/ \

2 1

and not the number 3. (The addition would only be performed if the structure were
passed as an argument to an appropriate procedure, such as is/2).

However, from a practical or a programmer’s point of view, the existence of oper-
ators is highly desirable, and clearly handy.

Prolog syntax allows operators of three kinds: infix, prefix, and postfix. An infix
operator appears between its two arguments, while a prefix operator precedes its single
argument and a postfix operator follows its single argument.

Each operator has a precedence, which is an integer from 1 to 1200. The prece-
dence is used to disambiguate expressions in which the structure of the term denoted
is not made explicit through the use of parentheses. The general rule is that the op-
erator with the highest precedence is the principal functor. Thus if ’+’ has a higher
precedence than ’/’, then the following

a+b/c a+(b/c)

are equivalent, and both denote the same term +(a,/(b,c)). Note that in this
case, the infix form of the term /(+(a,b),c) must be written with explicit use of
parentheses, as in:

(a+b)/c

If there are two operators in the expression having the same highest precedence,
the ambiguity must be resolved from the types (and the implied associativity) of the
operators. The possible types for an infix operator are

yfx xfx xfy

Operators of type ’xfx’ are not associative. Thus, it is required that both of the
arguments of the operator must be subexpressions of lower precedence than the op-
erator itself; that is, the principal functor of each subexpression must be of lower
precedence, unless the subexpression is written in parentheses (which automatically
gives it zero precedence).

Operators of type ’xfy’ are right-associative: only the first (left-hand) subex-
pression must be of lower precedence; the right-hand subexpression can be of the
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same precedence as the main operator. Left-associative operators (type ’yfx’) are
the other way around.

An atom named Name can be declared as an operator of type Type and precedence
Precedence by the command;

op(+Precedence,+Type,+Name) ISO

The same command can be used to redefine one of the predefined XSB operators
(obtainable via current_op/3). However, it is not allowed to alter the definition of
the comma (’,’) operator. An operator declaration can be cancelled by redeclaring
the Name with the same Type, but Precedence 0.

As a notational convenience, the argument Name can also be a list of names of
operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are
of different kinds: infix, prefix, or postfix. An operator of any kind may be redefined
by a new declaration of the same kind. For example, the built-in operators ’+’ and
’-’ are as if they had been declared by the command:

:- op(500, yfx, [+,-]).

so that:

1-2+3

is valid syntax, and denotes the compound term:

(1-2)+3

or pictorially:

+

/ \

- 3

/ \

1 2

In XSB, the list functor ’.’/2 is one of the standard operators, that can be
thought as declared by the command:
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:- op(661, xfy, .).

So, in XSB,

1.2.[]

represents the structure

.

/ \

1 .

/ \

2 []

Contrasting this picture with the picture above for 1-2+3 shows the difference between
’yfx’ operators where the tree grows to the left, and ’xfy’ operators where it grows
to the right. The tree cannot grow at all for ’xfx’ type operators. It is simply illegal
to combine ’xfx’ operators having equal precedences in this way.

If these precedence and associativity rules seem rather complex, remember that
you can always use parentheses when in any doubt.

In Version 3.8 of XSB the possible types for prefix operators are:

fx fy hx hy

and the possible types for postfix operators are:

xf yf

We end our discussion about operators by mentioning that prefix operators of
type hx and hy are proper HiLog operators. The discussion of proper HiLog operators
and their properties is deferred for the manual of a future version. 4

4As a known bug, XSB’s reader cannot properly read an operator defined as both a prefix
and an infix operator. For instance the declaration of both :- op(1200,xf,’<=’). and :-

op(1200,xfx,’<=’). will lead to a syntax error.



Chapter 5

Using Tabling in XSB: A Tutorial
Introduction

XSB has two ways of evaluating predicates. The default is to use Prolog-style evalu-
ation, but by using various declarations a programmer can also use tabled resolution
which can provide a different, more declarative programming style than Prolog. In
this section we discuss various aspects of tabling and their implementation in XSB.
Our aim in this section is to provide a user with enough information to be able to
program productively with tables in XSB. It is best to read this tutorial with a copy
of XSB handy, since much of the information is presented through a series of exercises.

For the theoretically inclined, XSB uses SLG resolution which can compute queries
to non-floundering normal programs under the well-founded semantics [88], and is
guaranteed to terminate when these programs have the bounded term-depth property.
This tutorial covers only enough of the theory of tabling to explain how to program
in XSB. For those interested, the web site contains papers covering in detail various
aspects of tabling (often through the links for individuals involved in XSB). An
overview of SLG resolution, and practical evaluation strategies for it, are provided
in [16, 78, 71, 31]. The engine of XSB, the SLG-WAM, is an extension of the WAM
[92, 1], and is described in [68, 64, 30, 70, 15, 24, 40, 19, 20, 12, 56, 81, 57, 84] as it
is implemented in Version 3.8 and its performance analyzed. Examples of large-scale
applications that use tabling are overviewed in [45, 46, 17, 22, 63, 7, 18, 33, 85].

86
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5.1 Tabling in the Context of a Prolog System

Before describing how to program using tabling it is perhaps worthwhile to review
some of the goals of XSB’s implementation of tabling. Among them are:

1. To execute tabled predicates at the speed of compiled Prolog.

2. To ensure that the speed of compiled Prolog is not slowed significantly by adding
the option of tabling.

3. To ensure that the functionality of Prolog is not compromised by support for
tabling.

4. To provide Prolog functionality in tabled predicates and operators whenever it
is semantically sensible to do so.

5. To provide standard predicates to manipulate tables taken as data structures
in themselves.

Goals 1 and 2 are addressed by XSB’s engine, which in Version 3.8 is based on
a virtual machine called the SLG-WAM. The overhead for SLD resolution using
this machine is small, and usually less than 5%. Thus when XSB is used simply
as a Prolog system (i.e., no tabling is used), it is reasonably competitive with other
Prolog implementations based on a WAM emulator written in C or assembly. For
example, when compiled as a threaded interpreter (see Chapter 3) XSB Version 3.8
is about two times slower than Quintus 3.1.1 or emulated SICStus Prolog 3.1. Goals
3, 4 and 5 have been nearly met, but there are a few instances in which interaction of
tabling with a Prolog construct has not been accomplished, or is perhaps impossible.
Accordingly we discuss these instances throughout this chapter. XSB is still under
development however, so that future versions may support more transparent mixing
of Prolog and tabled code.

5.2 Definite Programs

Definite programs, also called Horn Clause Programs, are Prolog programs without
negation or aggregation. In XSB, this means without the \+/1, fail_if/1, not/1,
tnot/1, setof/3, bagof/3, tt findall/3 or other aggregation operators. Consider
the Prolog program

path(X,Y) :- path(X,Z), edge(Z,Y).

path(X,Y) :- edge(X,Y).
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together with the query ?- path(1,Y). This program has a simple, declarative mean-
ing: there is a path from X to Y if there is a path from X to some node Z and there is
an edge from Z to Y, or if there is an edge from X to Y. Prolog, however, enters into
an infinite loop when computing an answer to this query. The inability of Prolog to
answer such queries, which arise frequently, comprises one of its major limitations as
an implementation of logic.

A number of approaches have been developed to address this problem by reusing
partial answers to the query path(1,Y) [27, 86, 4, 89, 90]. The ideas behind these
algorithms can be described in the following manner. Calls to tabled predicates, such
as path(1,Y) in the above example, are stored in a searchable structure together with
their proven instances. This collection of tabled subgoals paired with their answers,
generally referred to as a table, is consulted whenever a new call, C, to a tabled
predicate is issued. If C is sufficiently similar to a tabled subgoal S, then the set
of answers, A, associated with S may be used to satisfy C. In such instances, C is
resolved against the answers in A, and hence we refer to the call C as a consumer
of A (or S). If there is no such S, then C is entered into the table and is resolved
against program clauses as in Prolog — i.e., using SLD resolution. As each answer
is derived during this process, it is inserted into the table entry associated with C
if it contains information not already in A. In this second case, we refer to C as a
generator, or producer , as resolution of C in this manner produces the answers stored
in its table entry. If the answer is in fact added to this set, then it is additionally
scheduled to be returned to all consumers of C. If instead it is rejected as redundant,
then the evaluation simply fails and backtracks to generate more answers.

Notice that since consuming subgoals resolve against unique answers rather than
repeatedly against program clauses, tabling will terminate whenever

1. a finite number of subgoals are encountered during query evaluation, and

2. each of these subgoals has a finite number of answers.

Indeed, it can be proven that for any program with the bounded term depth property —
roughly, where all terms generated in a program have a maximum depth — SLG
computation will terminate. These programs include the important class of Datalog
programs.

Predicates can be declared tabled in a variety of ways. A common form is the
compiler directive

:- table P1, . . . , Pn.

where each Pi is a predicate indicator or callable term. More generally

:- table P1, . . . , Pn as Options.
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allows a user to specify different types of tabling through Options along with other
properties of the designated predicates For static predicates, these directives must
be added to the file containing the clauses of the predicate(s) to be tabled, and the
directives cause the predicates to be compiled with tabling 1. For dynamic predicates,
the executable directives

?- table P1, . . . Pn.

and
?- table P1, . . . , Pn as Options.

cause a Pi to be tabled (with the appropriate options) if no clauses have been asserted
for Pi.

Exercises Unless otherwise noted, the file $XSB_DIR/examples/table_examples.P

contains all the code for the running examples in this section. Invoke XSB with its
default settings (i.e., don’t supply additional options) when working through the fol-
lowing exercises.

Exercise 5.2.1 Consult $XSB_DIR/examples/table_examples.P into XSB and and
try the goal

?- path(1,X).

and continue typing ;<RETURN> until you have exhausted all answers. Now, try rewrit-
ing the path/2 predicate as it would be written in Prolog — and without a tabling
declaration. Will it now terminate for the provided edge/2 relation? (Remember, in
XSB you can always hit <ctrl>-C if you go into an infinite loop). ✷

The return of answers in tabling aids in filtering out redundant computations –
indeed it is this property which makes tabling terminate for many classes of pro-
grams. The same generation program furnishes a case of the usefulness of tabling
for optimizing a Prolog program.

Exercise 5.2.2 If you are still curious, load in the file cyl.P in the $XSB_DIR/examples

directory using the command.

?- load_dync(cyl.P).

1In Version 3.8, tabling does not work together with multi-file predicates.
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and then type the query

?- same_generation(X,X),fail.

Now rewrite the same_generation/2 program so that it does not use tabling and retry
the same query. What happens? (Be patient — or use <ctrl>-C). ✷

Exercise 5.2.3 The file table_examples.P contains a set of facts

ordered_goal(one).

ordered_goal(two).

ordered_goal(three).

ordered_goal(four).

Clearly, the query ?- ordered_goal(X) will return the answers in the expected order.
table_examples.P also contains a predicate

:- table table_ordered_goal/1.

table_ordered_goal(X):- ordered_goal(X).

which simply calls ordered_goal/1 and tables its answers (tabling is unnecessary in
this case, and is only used for illustration). Call the query ?- table_ordered_goal(X)

and backtrack through the answers. In what order are the answers returned?

The examples stress two differences between tabling and SLD resolution beyond ter-
mination properties. First, that each solution to a tabled subgoal is returned only
once — a property that is helpful not only for path/2 but also for same_generation/2

which terminates in Prolog. Second, because answers are sometimes obtained using
program clauses and sometimes using the table, answers may be returned in an un-
accustomed order.

Tabling Dynamic Predicates Dynamic predicates may be tabled just as static
predicates, as the following exercise shows.

Exercise 5.2.4 For instance, restart XSB and at the prompt type the directive

?- table(dyn_path/2).

and
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?- load_dyn(dyn_examples).

Try the queries to path/2 of the previous examples. Note that it is important to
dynamically load dyn_examples.P — otherwise the code in the file will be compiled
without knowledge of the tabling declaration. ✷

In general, as long as the directive table/1 is executed before asserting (or dy-
namically loading) the predicates referred to in the directive, any dynamic predicate
can be tabled.

Letting XSB Decide What to Table Other tabling declarations are also pro-
vided. Often it is tedious to decide which predicates must be tabled. To address this,
XSB can automatically table predicates in files. The declaration auto_table chooses
predicates to table to assist in termination, while suppl_table chooses predicates to
table to optimize data-oriented queries. Both are explained in Section 3.10.2. 2.

5.2.1 Call Variance vs. Call Subsumption

The above description gives a general characterization of tabled evaluation for definite
programs but glosses over certain details. In particular, we have not specified the
criteria for

• Call Similarity – whereby a newly issued subgoal S is determined to be “suffi-
ciently similar” to a tabled subgoal Stab so that S can use the answers from the
table of Stab rather than re-deriving its own answers. In the first case where S
uses answers of a tabled subgoal it is termed a consumer; in the second case
when S produces its own answers it is called a generator or producer.

• Answer Similarity – whereby a derived answer to a tabled subgoal is determined
to contain information similar to that already in the set of answers for that
subgoal.

Different measures of similarity are possible. XSB’s engine supports two measures for
call similarity: variance and subsumption. XSB’s engine supports a variance-based
measure for answer similarity, but allows users to program other measures in certain
cases. We discuss call similarity here, but defer the discussion of answer similarity
until Section 5.4.

2The reader may have noted that table/1, is referred to as a directive, while auto_table/0 and
suppl_table/0 were referred to as declarations. The difference is that at the command line, user
can execute a directive but not a compiler declaration.
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Determining Call Similarity via Variance By default, XSB determines that a
subgoal S is similar to a tabled subgoal Stab if S is a variant of Stab, that is if S and
Stab are identical up to variable renaming 3. As an example p(X,Y,X) is a variant of
p(A,B,A), but not of p(X,Y,Y), or p(X,Y,Z). Under variance-based call similarity,
or call variance, when a tabled subgoal S is encountered, a search for a table entry
containing a variant subgoal Stab is performed. Notice that if Stab exists, then all
of its answers are also answers to S, and therefore will be resolved against it. Call
variance was used in the original formulation of SLG resolution [16] for the evaluation
of normal logic programs according to the well-founded semantics and interacts well
with many of Prolog’s extra-logical constructs.

Determining Call Similarity via Subsumption Call similarity can also be
based on call subsumption. A term T1 subsumes a term T2 if T2 is more specific
than T1

4. Furthermore, we say that T1 properly subsumes T2 if T2 subsumes T1, but
is not a variant of T1. Under call subsumption, when a tabled subgoal S is encoun-
tered, a search is performed for a table entry containing a subsuming subgoal Stab.
Notice that, if such an entry exists, then its answer set A logically contains all the
solutions to satisfy C. The subset of answers A′ ⊆ A which unify with C are said to
be relevant to C.

Notice that call subsumption permits greater reuse of computed results, thus
avoiding even more program resolution, and thereby can lead to time and space
performances superior to call variance. In addition, beginning with Version 3.2, call-
subsumption based tabling fully supports well-founded negation under the default
local scheduling strategy. However, there are downsides to this paradigm. First of all,
subsumptively tabled predicates do not interact well with certain Prolog constructs
with which variant-tabled predicates can (see Example 5.2.4 below). Second, call
subsumption does not yet support calls with tabled attributed variables or answer
subsumption 5.

Example 5.2.1 The terms T1: p(f(Y),X,1) and T2: p(f(Z),U,1) are variants as
one can be made to look like the other by a renaming of the variables. Therefore,
each subsumes the other.

3Formally, S and Stab are variants if they have an mgu θ such that the domain and range of θ1
consists only of variables.

4Formally, T1 subsumes T2 if there is a substitution θ whose domain consists only of variables
from T1 such that T1θ = T2.

5Beginning with Version 3.2, XSB supports attributed variables in answers under call subsump-
tion, although not in calls.
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The term t3: p(f(Y),X,1) subsumes the term t4: p(f(Z),Z,1). However, they are
not variants. Hence t3 properly subsumes t4. ✷

The above examples show how a variant-based tabled evaluation can reduce cer-
tain redundant subcomputations over SLD. However, even more redundancy can be
eliminated, as the following example shows.

Exercise 5.2.5 Begin by abolishing all tables in XSB, and then type the following
query

?- abolish_all_tables.

?- path(X,Y), fail.

Notice that only a single table entry is created during the evaluation of this query.
You can check that this is the case by invoking the following query

?- get_calls_for_table(path/2,Call).

Now evaluate the query

?- path(1,5), fail.

and again check the subgoals in the table. Notice that two more have been added.
Further notice that these new subgoals are subsumed by that of the original entry.
Correspondingly, the answers derived for these newer subgoals are already present in
the original entry. You can check the answers contained in a table entry by invoking
get_returns_for_call/2 on a tabled subgoal. For example:

?- get_returns_for_call(p(1,_),Answer).

Compare these answers to those of p(X,Y) and p(1,5). Notice that the same answer
can, and in this case does, appear in multiple table entries.

Now, let’s again abolish all the tables and change the evaluation strategy of path/2

to use subsumption.

?- abolish_all_tables.

?- table path/2 as subsumptive.

And re-perform the first few queries:
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?- path(X,Y),fail.

?- get_calls_for_table(path/2,Call).

?- path(1,5).

?- get_calls_for_table(path/2,Call).

Notice that this time the table has not changed! Only a single entry is present, that
for the original query p(X,Y).

When using call subsumption, XSB is able to recognize a greater range of “redundant”
queries and thereby make greater use of previously computed answers. The result
is that less program resolution is performed and less redundancy is present in the
table. However, subsumption is not a panacea. The elimination of redundant answers
depends upon the presence of a subsuming subgoal in the table when the call to
p(1,5) is made. If the order of these queries were reversed, one would find that the
same entries would be present in this table as the one constructed under variant-based
evaluation.

Declarations for Call Variance and Call Subsumption By default tabled
predicate use call variance. However, call subsumption can be made the default
by giving XSB the -S option at invocation (refer to Section 3.7). More versatile
constructs are provided by XSB so that the tabling method can be selected on a per
predicate basis. Use of the directive

table p/n as subsumptive

or

table p/n as variant

described in Section 6.15.1, ensures that a tabled predicate is evaluated using the
desired strategy regardless of the default tabling strategy.

5.2.2 Tabling with Interned Terms

XSB supports, on request, a special representation of ground terms, known as in-
terned terms (see intern_term/2.) This representation is also sometimes known as
a “hash-consing” representation. All interned terms are stored in a global area and
each such term is stored only once, with all instances of a given interned (sub-)term
pointing to that one stored representation. This can allow for a much more succinct
representation of sets of ground terms that share subterms. Importantly interned
ground terms, in principle, do not need to be copied into and out of tables.
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To take advantage of this possibility, a table must be declared as intern. As an
example of a possible use of this mechanism, consider a simple DCG that recognizes
all strings of a’s starting with a single b:

:- table bas/2 as intern.

bas --> [b].

bas --> bas, [a].

This predicate must be tabled in order to terminate, since the grammar is left-
recursive. If we use the usual list representation of an input string and use variant
tabling, every call to bas/2 and every return will copy the remaining list into the
table, and recognition will be quadratic. (For example on my laptop, recognizing a
list of one b followed by 10,000 a’s takes about 1.84 seconds, and 20,000 a’s about
7.285 seconds.) If we table bas/2 as intern, the initial ground input list will be
interned (copied to intern space) on the first call, and after that every subsequent
call of bas/2 will be given an interned term, which need not be copied into (or out
of) the table. In this case the complexity will be linear. (For example on my laptop,
recognizing a list of one b and 1,000,000 a’s takes less than a second.)

When a table is declared as intern, at the time of a call, all arguments are
automatically interned (with intern_term/2) before the call is looked up in the table,
and on return, every answer is interned before being added to the table. Copying an
interned subterm into or out of a table requires just a pointer copy, which takes, of
course, constant time.

Because an interned term is treated just like a atom (with no indexing done on its
structure), tabling as intern always uses variant tabling, and thus cannot be combined
with subsumptive tabling. Also it cannot be combined with answer subsumption
tabling.

For more information on tabling as intern, see [93].

5.2.3 Table Scheduling Strategies

Recall that SLD resolution works by selecting a goal from a list of goals to be proved,
and selecting a program clause C to resolve against that goal. During resolution of
a top level goal G, if the list of unresolved goals becomes empty, G succeeds, while if
there is no program clause to resolve against the selected goal from the list resolution
against G fails. In Prolog clauses are selected in the order they are asserted, while
literals are selected in a left-to-right selection strategy. Other strategies are possible
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for SLD, and in fact completeness of SLD for definite programs depends on a non-
fixed literal selection strategy. This is why Prolog, which has a fixed literal selection
strategy is not complete for definite programs, even when they have bounded term-
depth.

Because tabling uses program clause resolution, the two parameters of clause selec-
tion and literal selection also apply to tabling. Tabling makes use of a dynamic literal
selection strategy for certain non-stratified programs (via the delaying mechanism
described in Section 5.3.2), but uses the same left-to-right literal selection strategy
as Prolog for definite programs. However, in tabling there is also a choice of when
to return derived answers to subgoals that consume these answers. While full discus-
sion of scheduling strategies for tabling is not covered here (see [30]) we discuss two
scheduling strategies that have been implemented for XSB Version 3.8 6.

• Local Scheduling Local Scheduling depends on the notion of a subgoal dependency
graph. For the state of a tabled evaluation, a non-completed tabled subgoal S1

directly depends on a non-completed subgoal S2 when S2 is in the SLG tree for
S1 – that is when S2 is called by S1 without any intervening tabled predicate.
The edges of the subgoal dependency graph are then these direct dependency
relations, so that the subgoal dependency graph is directed. As mentioned, the
subgoal dependency graph reflects a given state of a tabled evaluation and so
may changed as the evaluation proceeds, as new tabled subgoals are encoun-
tered, or encountered in different contexts, as tables complete, and so on. As
with any directed graph, the subgoal dependency graph can be divided up into
strongly connected components, consisting of tabled subgoals that depend on
one another. Local scheduling then fully evaluates each maximal SCC (a SCC
that does not depend on another SCC) before returning answers to any subgoal
outside of the SCC 7.

• Batched Scheduling Unlike Local Scheduling, Batched Scheduling allows answers
to be returned outside of a maximal SCC as they are derived, and thus resembles
Prolog’s tuple at a time scheduling.

Both Local and Batched Scheduling have their advantages, and we list points of
comparison.

6Many other scheduling strategies are possible. For instance, [29] describes a tabling strategy im-
plemented for the SLG-WAM that emulates magic sets under semi-naive evaluation. This scheduling
strategy, however, is not available in Version 3.8 of XSB.

7XSB’s implementation maintains a slight over-approximation of SCCs – see [30].
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• Time for left recursion Batched Scheduling is somewhat faster than Local Schedul-
ing for left recursion as Local Scheduling imposes overhead to prevent answers
from being returned outside of a maximal SCC.

• Time to first answer Because Batched Scheduling returns answers out of an
SCC eagerly, it is faster to derive the first answer to a tabled predicate.

• Stack space Local evaluation generally requires less space than batched evalua-
tion as it fully explores a maximal SCC, completes the SCC’s subgoals, reclaims
space, and then moves on to a new SCC.

• Integration with cuts As discussed in Exercise 5.2.6 and throughout Section 5.2.4,
Local Scheduling integrates better with cuts, although this is partly because
tabled subgoals may be fully evaluated before the cut takes effect.

• Efficiency for call subsumption Because Local Evaluation completes tables ear-
lier than Batched Evaluation it may be faster for some uses of call subsumption,
as subsumed calls can make use of completed subsuming tables.

• Negation and tabled aggregation As will be shown below, Local Scheduling is
superior for tabled aggregation as only optimal answers are returned out of a
maximal SCC. Local Scheduling also can be more efficient for non-stratified
negation as it may allow delayed answers that are later simplified away to avoid
being propagated.

On the whole, advantages of Local Scheduling outweigh the advantages of Batched
Scheduling, and for this reason Local Scheduling is the default scheduling strategy
for Version 3.8 of XSB. XSB can be configured to use batched scheduling via the
configuration option –enable-batched-scheduling and remaking XSB. This will
not affect the default version of XSB, which will also remain available.

5.2.4 Interaction Between Prolog Constructs and Tabling

Tabling integrates well with most non-pure aspects of Prolog. Predicates with side-
effects like read/1 and write/1 can be used freely in tabled predicates as long as it
is remembered that only the first call to a goal will execute program clauses while the
rest will look up answers from a table. However, other extra-logical constructs like the
cut (!) pose greater difficulties. Tabling with call subsumption is also theoretically
precluded from correct interaction with certain meta-logical predicates.
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Cuts and Tabling The semantics for cuts in Prolog is largely operational, and
is usually defined based on an ordered traversal of an SLD search tree. Tabling, of
course, has a different operational semantics than Prolog – it uses SLG trees rather
than SLD trees, for instance – so it is not surprising that the interaction of tabling
with cuts is operational. In Prolog, the semantics for a cut can be expressed in the
following manner: a cut executed in the body of a predicate P frames from the top
(youngest end) of the choice point stack down to and including the call for P . In
XSB a cut is allowed to succeed as long as it does not cut over a choice point for a
non-completed tabled subgoal, otherwise, the computation aborts. This means, among
other matters, that the validity of a cut depends on the scheduling strategy used for
tabling, that is on the strategy used to determine when an answer is to be returned
to a consuming subgoal. Scheduling strategy was discussed Section 5.2.3: for now,
we assume that XSB’s default local scheduling is used in the examples for cuts.

Exercise 5.2.6 Consider the program

:- table cut_p/1, cut_q/1, cut_r/0, cut_s/0.

cut_p(X) :- cut_q(X), cut_r.

cut_r :- cut_s.

cut_s :- cut_q(_).

cut_q(1). cut_q(2).

What solutions are derived for the goal ?- cut_p(X)? Suppose that cut_p/1 were
rewritten as

cut_p(X) :- cut_q(X), once(cut_r).

How should this cut over a table affect the answers generated for cut_p/1? What
happens if you rewrite cut_p/1 in this way and compile it in XSB? ✷

In Exercise 5.2.6, cut_p(1) and cut_p(2) should both be true. Thus, the cut in
the literal once(cut_r) must not inadvertently cut away solutions that are demanded
by cut_p/1. In the default local scheduling of XSB Version 3.8 tabled subgoals are
fully evaluated whenever possible before returning any of their answers. Thus the
first call cut_q(X) in the body of the clause for cut_p/1 is fully evaluated before
proceeding to the goal once(cut_r). Because of this any choice points for cut_q(X)

are to a completed table. For other scheduling strategies, such as batched scheduling,
non-completed choice points for cut_p/1 may be present on the choice point stack so
that the cut would be disallowed. In addition, it is also possible to construct examples
where a cut is allowed if call variance is used, but not if call subsumption is used.
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Example 5.2.2 A further example of using cuts in a tabled predicate is a tabled
meta-interpreter.

:- table demo/1.

demo(true).

demo((A,B)) :- !, demo(A), demo(B).

demo(C) :- call(C).

More elaborate tabled meta-interpreters can be extremely useful, for instance to im-
plement various extensions of definite or normal programs. ✷

In XSB’s compilation, the cut above is compiled so that it is valid to use with
either local or batched (a non-default) evaluation. An example of a cut that is valid
neither in batched nor in local evaluation is as follows.

Example 5.2.3 Consider the program

:- table cut_a/1, cut_b/1.

cut_a(X):- cut_b(X).

cut_a(a1).

cut_b(X):- cut_a(X).

cut_b(b1).

For this program the goal ?- cut_a(X) produces two answers, as expected: a1 and
b1. However, replacing the first class of the above program with

cut_a(X):- once(cut_b(X)).

will abort both in batched or in local evaluation. ✷

To summarize, the behavior of cuts with tables depends on dynamic operational
properties, and we have seen examples of programs in which a cut is valid in both
local and batched scheduling, in local but not batched scheduling, and in neither
batched nor local scheduling. In general, any program and goal that allows cuts in
batched scheduling will allow them in local scheduling as well, and there are programs
for which cuts are allowed in local scheduling but not in batched.
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Finally, we note that in Version 3.8 of XSB a “cut” over tables implicitly occurs
when the user makes a call to a tabled predicate from the interpreter level, but does
not generate all solutions. This commonly occurs in batched scheduling, but can also
occur in local scheduling if an exception occurs. In such a case, the user will see the
warning "Removing incomplete tables..." appear. Any complete tables will not
be removed. They can be abolished by using one of XSB’s predicates for abolishing
tables.

Call Subumption and Meta-Logical Predicates Meta-logical predicates like
var/1 can be used to filter the choices made during an evaluation. However, this is
dangerous when used in conjunction with call subsumption, since call subsumption
assumes that if a specific relation holds — e.g., p(a) — then a more general query —
e.g., p(X) — will also hold.

Example 5.2.4 Consider the following simple program

p(X) :- var(X), X = a.

to which the queries

?- p(X).

?- p(a).

are posed. Let us compare the outcome of these queries when p/1 is (1) a Prolog
predicate, (2) a variant-tabled predicate, and (3) a subsumptive-tabled predicate.

Both Prolog and variant-based tabling yield the same solutions: X = a and no, re-
spectively. Under call subsumption, the query ?- p(X). likewise results in the solution
X = a. However, the query ?- p(a). is subsumed by the tabled subgoal p(X) — which
was entered into the table when that query was issued — resulting in the incorrect an-
swer yes. ✷

As this example shows, incorrect answers can result from using meta-logical with
subsumptive predicates in this way.

5.2.5 Potential Pitfalls in Tabling

Over-Tabling While the judicious use of tabling can make some programs faster,
its indiscriminate use can make other programs slower. Naively tabling append/3
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append([],L,L).

append([H|T],L,[H|T1]) :- append(T,L,T1).

is one such example. Doing so can, in the worst case, copy N sublists of the first and
third arguments into the table, transforming a linear algorithm into a quadratic one.

Exercise 5.2.7 If you need convincing that tabling can sometimes slow a query down,
type the query:

?- genlist(1000,L), prolog_append(L,[a],Out).

and then type the query

?- genlist(1000,L), table_append(L,[a],Out).

append/3 is a particularly bad predicate to table. Type the query

?- table_append(L,[a],Out).

leaving off the call to genlist/2, and backtrack through a few answers. Will table_append/3

ever succeed for this predicate? Why not?

Suppose DCG predicates (Section 11) are defined to be tabled. How is this similar
to tabling append? ✷

We note that XSB has special mechanisms for handling tabled DCGs. See Section 11
for details.

Tabled Predicates and Tracing Another issue to be aware of when using tabling
in XSB is tracing. XSB’s tracer is a standard 4-port tracer that interacts with the
engine at each call, exit, redo, and failure of a predicate (see Chapter 10). When
tabled predicates are traced, these events may occur in unexpected ways, as the
following example shows.

Exercise 5.2.8 Consider a tabled evaluation when the query ?- a(0,X) is given to
the following program

:- table mut_ret_a/2, mut_ret_b/2.

mut_ret_a(X,Y) :- mut_ret_d(X,Y).
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mut_ret_a(X,Y) :- mut_ret_b(X,Z),mut_ret_c(Z,Y).

mut_ret_b(X,Y) :- mut_ret_c(X,Y).

mut_ret_b(X,Y) :- mut_ret_a(X,Z),mut_ret_d(Z,Y).

mut_ret_c(2,2). mut_ret_c(3,3).

mut_ret_d(0,1). mut_ret_d(1,2). mut_ret_d(2,3).

mut_ret_a(0,1) can be derived immediately from the first clause of mut_ret_a/2.
All other answers to the query depend on answers to the subgoal mut_ret_b(0,X)

which arises in the evaluation of the second clause of mut_ret_a/2. Each answer
to mut_ret_b(0,X) in turn depends on an answer to mut_ret_a(0,X), so that the
evaluation switches back and forth between deriving answers for mut_ret_a(0,X) and
mut_ret_b(0,X).

Try tracing this evaluation, using creep and skip. Do you find the behavior intuitive
or not? ✷

5.3 Normal Programs

Normal programs extend definite programs to include default negation, which posits
a fact as false if all attempts to prove it fail. As shown in Example 1.0.1, which
presented one of Russell’s paradoxes as a logic program, the addition of default nega-
tion allows logic programs to express contradictions. As a result, some assertions,
such as shaves(barber,barber) may be undefined, although other facts, such as
shaves(barber,mayor) may be true. Formally, the meaning of normal programs
may be given using the well-founded semantics and it is this semantics that XSB
adopts for negation (we note that in Version 3.8 the well-founded semantics is imple-
mented only for variant-based tabling).

5.3.1 Stratified Normal Programs

Before considering the full well-founded semantics, we discuss how XSB can be used
to evaluate programs with stratified negation. Intuitively, a program uses stratified
negation whenever there is no recursion through negation. Indeed, most programmers,
most of the time, use stratified negation.

Exercise 5.3.1 The program
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win(X):- move(X,Y),tnot(win(Y)).

is stratified when the move/2 relation is a binary tree. To see this, load the files
tree1k.P and table_examples.P from the directory $XSB_DIR/examples and type
the query

?- win(1).

win(1) calls win(2) through negation, win(2) calls win(4) through negation, and so
on, but no subgoal ever calls itself recursively through negation.

The previous example of win/1 over a binary tree is a simple instance of a stratified
program, but it does not even require tabling. A more complex example is presented
below.

Exercise 5.3.2 Consider the query ?- lrd_s to the following program

lrd_p:- lrd_q,tnot(lrd_r),tnot(lrd_s).

lrd_q:- lrd_r,tnot(lrd_p).

lrd_r:- lrd_p,tnot(lrd_q).

lrd_s:- tnot(lrd_p),tnot(lrd_q),tnot(lrd_r).

Should lrd_s be true or false? Try it in XSB. Using the intuitive definition of
“stratified” as not using recursion through negation, is this program stratified? Would
the program still be stratified if the order of the literals in the body of clauses for
lrd_p, lrd_q, or lrd_r were changed?

The rules for p, q and r are involved in a positive loop, and no answers are ever
produced. Each of these atoms can be failed, thereby proving s. Exercise 5.3.2
thus illustrates an instance of how tabling differs from Prolog in executing stratified
programs since Prolog would not fail finitely for this program 8.

Completely Evaluated Subgoals Knowing when a subgoal is completely eval-
uated can be useful when programming with tabling. Simply put, a subgoal S is

8LRD-stratifiedstratification may be reminiscent of the Subgoal Dependency Graphs of Sec-
tion 5.2.3 but differ in several respects, most notably in that stratification considers only cycles
through negative dependencies.
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completely evaluated if an evaluation can produce no more answers for S. The com-
putational strategy of XSB makes great use of complete evaluation so that under-
standing this concept and its implications can be of great help to a programmer.

Consider a simple approach to incorporating negation into tabling. Each time a
negative goal is called, a separate table is opened for the negative call. This evaluation
of the call is carried on to termination. If the evaluation terminates, its answers if
any, are used to determine the success of failure of the calling goal. This general
mechanism underlies early formulations for tabling stratified programs [42, 75]. Of
course this method may not be efficient. Every time a new negative goal is called, a
new table must be started, and run to termination. We would like to use information
already derived from the computation to answer a new query, if at all possible — just
as with definite programs.

XSB addresses this problem by keeping track of the state of each subgoal in the
table. A call can have a state of complete, incomplete or not_yet_called. Calls that
do have table entries may be either complete or incomplete. A subgoal in a table is
marked complete only after it is determined to be completely evaluated; otherwise
the subgoal is incomplete. If a tabled subgoal is not present in the table, it is termed
not_yet_called. XSB contains predicates that allow a user to examine the state of a
given table (Section 6.15).

There are in fact two ways that a tabled subgoal S can be determined to be
completely evaluated. If S is part of an SCC S, (a mutually recorsive component),
then S can be completed once it is ensure that all resolution steps have been done to
all subgoals in S. Otherwise, if there is a derivation of an answer that is identical to
S, S can be completed before the rest of the subgoals in S since further evaluation
of S itself will not produce useful information. In this case, we sometimes say that S
is early completed.

Using these concepts, we can overview how tabled negation is evaluated for strati-
fied programs. If a literal tnot(S) is called, where S is a tabled subgoal, the evaluation
checks the state of S. If S is complete the engine simply determines whether the table
contains an answer for S. Otherwise the engine suspends the computation path lead-
ing to tnot(S) until S is completed (and calls S if necessary). Whenever a suspended
subgoal tnot(S) is completed with no answers, the engine resumes the evaluation
at the point where it had been suspended. We note that because of this behavior,
tracing programs that heavily use negation may produce behavior unexpected by the
user.
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tnot/1 vs. ′\ +′/1 Subject to some semantic restrictions, an XSB programmer
can intermix the use of tabled negation (tnot/1) with Prolog’s negation (′\ +′/1, or
equivalently fail_if/1 or not/1). These restrictions are discussed in detail below
— for now we focus on differences in behavior or these two predicates in stratified
programs. Recall that ′\ +′ (S) calls S and if S has a solution, Prolog executes a cut
over the subtree created by ′\ +′ (S), and fails. tnot/1 on the other hand, does not
execute a cut, so that all subgoals in the computation path begun by the negative
call will be completely evaluated. The major reason for not executing the cut is
to ensure that XSB evaluates ground queries to Datalog programs with negation
with polynomial data complexity. As seen [16], this property cannot be preserved if
negation “cuts” over tables.

There are other small differences between tnot/1 and ′\ +′/1 illustrated in the
following exercise.

Exercise 5.3.3 In general, making a call to non-ground negative subgoal in Prolog
may be unsound (cf. [53]), but the following program illustrates a case in which
non-ground negation is sound.

ngr_p:- \+ ngr_p(_).

ngr_p(a).

One tabled analog is

:- table ngr_tp/1.

ngr_tp(a).

ngr_tp:- tnot(ngr_tp(_)).

Version 3.8 of XSB will flounder on the call to ngr_tp, but not on the call to ngr_p/0.
On the other hand if not_exists/1 is used

ngr_skp:- not_exists(ngr_tp(_)).

the non-ground semantics is allowed.

not_exists/1 works by asserting a new tabled subgoal, abstractly

:- table ’_$ngr_tp’

’_$skolem_ngr_tp’ :- ngr_tp(_).
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to avoid the problem with variables. In addition, since not_exists/1 creates a new
tabled predicate, it can be used to call non-tabled predicates as well, ensuring tabling.

The description of tnot/1 in Section 6.5 describes other small differences between
′\ +′/1 and tnot/1 as implemented in XSB. Before leaving the subject of stratifi-
cation, we note that the concepts of stratification also underly XSB’s evaluation of
tabled findall: tfindall/3. Here, the idea is that a program is stratified if it con-
tains no loop through tabled findall (See the description of predicate tfindall/3 on
page 238).

5.3.2 Non-stratified Programs

As discussed above, in stratified programs, facts are either true or false, while in
non-stratified programs facts may also be undefined. XSB represents undefined facts
as conditional answers.

Conditional Answers

Exercise 5.3.4 Consider the behavior of the win/1 predicate from Exercise 5.3.1.

win(X):- move(X,Y),tnot(win(Y)).

when the when the move/2 relation is a cycle. Load the file $XSB_DIR/examplescycle1k.P

into XSB and again type the query ?- win(1). Does the query succeed? Try tnot(win(1)).

Now query the table with the standard XSB predicate get_residual/2, e.g. ?-

get_residual(win(1),X). Can you guess what is happening with this non-stratified
program?

The predicate get_residual/2 (Section 6.15) unifies its first argument with a
tabled subgoal and its second argument with the (possibly empty) delay list of that
subgoal. The truth of the subgoal is taken to be conditional on the truth of the
elements in the delay list. Thus win(1) is conditional on tnot(win(2)), win(2) in
tnot(win(3)) and so on until win(1023) which is conditional on win(1).

From the perspective of the well-founded semantics, win(1) is undefined. In-
formally, true answers in the well-founded semantics are those that have a (tabled)
derivation. False answers are those for which all possible derivations fail — either
finitely as in Prolog or by failing positive loops. win(1) fits in neither of these cases
– there is no proof of win(1), yet it does not fail in the sense given above and is thus
undefined.
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However this explanation does not account for why undefined answers should be
represented as conditional answers, or why a query with a conditional answer and its
negation should both succeed. These features arise from the proof strategy of XSB,
which we now examine in more detail.

Exercise 5.3.5 Consider the program

:- table simpl_p/1,simpl_r/0,simpl_s/0.

simpl_p(X):- tnot(simpl_s).

simpl_s:- tnot(simpl_r).

simpl_s:- simpl_p(X).

simpl_r:- tnot(simpl_s),simpl_r.

Try the query ?- simpl_p(X). If you have a copy of XSB defined using Batched
Scheduling load the examples program and query ?- simpl_p(X) – be sure to backtrack
through all possible answers. Now try the query again. What could possibly account
for the difference in behavior between Local and Batched Scheduling?

At this point, it is worthwhile to examine closely the evaluation of the program in
Exercise 5.3.5. The query simpl_p(X) calls simpl_s and simpl_r and executes the
portion of the program shown below in bold:

simpl_p(X):- tnot(simpl_s).

simpl_s:- tnot(simpl_r).
simpl_s:- simpl_p(X).

simpl_r:- tnot(simpl_s),simpl_r.

Based on evaluating only the bold literals, the three atoms are all undefined since
they are neither proved true, nor fail. However if the evaluation could only look at
the literal in italics, simpl_r, it would discover that simpl_r is involved in a positive
loop and, since there is only one clause for simpl_r, the evaluation could conclude
that the atom was false. This is exactly what XSB does, it delays the evaluation of
tnot(simpl_s) in the clause for simpl_r and looks ahead to the next literal in the
body of that clause. This action of looking ahead of a negative literal is called delay-
ing. A delayed literal is moved into the delay list of a current path of computation.
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Whenever an answer is derived, the delay list of the current path of computation is
copied into the table. If the delay list is empty, the answer is unconditional; otherwise
it is conditional. Of course, for definite programs any answers will be unconditional
— we therefore omitted delay lists when discussing such programs.

In the above program, delaying occurs for the negative literals in clauses for
simpl_p(X), simpl_s, and simpl_r. In the first two cases, conditional answers can
be derived, while in the third, simpl_r will fail as mentioned above. Delayed literals
eventually become evaluated through simplification. Consider an answer of the form

simpl_p(X):- tnot(simpl_s)|

where the | is used to represent the end of the delay list. If, after the answer is
copied into the table, simpl_s turns out to be false, (after being initially delayed),
the answer can become unconditional. If simpl_s turns out to be true, the answer
should be removed, it is false.

In fact, it is this last case that occurs in Exercise 5.3.5. The answer

simpl_p(X):- tnot(simpl_s)|

is derived, and returned to the user (XSB does not currently print out the delay
list). The answer is then removed through simplification so that when the query is
re-executed, the answer does not appear.

We will examine in detail how to alter the XSB interface so that evaluation of
the well-founded semantics need not be confusing. It is worthwhile to note that the
behavior just described is uncommon.

Version 3.8 of XSB handles dynamically stratified programs through delaying neg-
ative literals when it becomes necessary to look to their right in a clause, and then
simplifying away the delayed literals when and if their truth value becomes known.
However, to ensure efficiency, literals are never delayed unless the engine determines
them to not to be stratified under the LRD-stratified evaluation method.

When Conditional Answers are Needed A good Prolog programmer uses the
order of literals in the body of a clause to make her program more efficient. However,
as seen in the previous section, delaying can break the order that literals are evaluated
within the body of a clause. It then becomes natural to ask if any guarantees can be
made that XSB is not delaying literals unnecessarily.

Such a guarantee can in fact be made, using the concept of dynamic stratification
[62]. Without going into the formalism of dynamic stratification, we note that a
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program is dynamically stratified if and only if it has a two-valued model. It is also
known that computation of queries to dynamically stratified programs is not possible
under any fixed strategy for selecting literals within the body of a clause. In other
words, some mechanism for breaking the fixed-order literal selection strategy must
be used, such as delaying.

However, by redefining dynamic stratification to use an arbitrary fixed-order lit-
eral selection strategy (such as the left-to-right strategy of Prolog), a new kind of
stratification is characterized, called Left-to-Right Dynamic Stratification, or LRD-
stratification. LRD-stratified is not as powerful as dynamic stratification, but is more
powerful than other fixed-order stratification methods, and it can be shown that for
ground programs, XSB delays only when programs are not LRD-stratified. In the
language of [71] XSB is delay minimal.

Programming in the Well-founded Semantics XSB delays literals for non-
LRD-stratified programs and later simplifies them away. In Local Scheduling, all
simplification will be done before the first answer is returned to the user. In Batched
Scheduling it is usually better to make a top-level call for a predicate, p as follows:

?- p,fail ; p.

when the second p in this query is called, all simplification on p will have been
performed. However, this query will succeed if p is true or undefined.

Exercise 5.3.6 Write a predicate wfs_call(+Tpred,?Val) such that if Tpred is
a ground call to a tabled predicate, wfs_call(+Tpred,?Val) calls Tpred and uni-
fies Val with the truth value of Tpred under the well-founded semantics. Hint: use
get_residual/2.

How would you modify wfs_call(?Tpred,?Val) so that it properly handled cases
in which Tpred is non-ground.

Trouble in Paradise: Answer Completion The engine for XSB performs both
program clause and answer resolution, along with delay and simplification. What it
does not do is to perform an operation called answer completion which is needed in
certain (pathological?) programs.

Exercise 5.3.7 Consider the following program:
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:- table ac_p/1,ac_r/0,ac_s/0.

ac_p(X):- ac_p(X).

ac_p(X):- tnot(ac_s).

ac_s:- tnot(ac_r).

ac_s:- ac_p(X).

ac_r:- tnot(ac_s),ac_r.

Using either the predicate from Exercise 5.3.6 or some other method, determine
the truth value of ac_p(X). What should the value be? (hint: what is the value of
ac_s/1?).

For certain programs, XSB will delay a literal (such as ac_p(X) that it will not
be able to later simplify away. In such a case, an operation, called answer completion
is needed to remove the clause

ac_p(X):- ac_p(X)|

Without answer completion, XSB may consider some answers to be undefined rather
than false. It is thus is sound, but not complete for terminating programs to the well-
founded semantics. Answer completion is not available for Version 3.8 of XSB, as it
is expensive and the need for answer completion arises rarely in practice. However
answer completion will be included at some level in future versions of XSB.

5.3.3 On Beyond Zebra: Implementing Other Semantics for
Non-stratified Programs

The Well-founded semantics is not the only semantics for non-stratified programs.
XSB can be used to (help) implement other semantics that lie in one of two classes. 1)
Semantics that extend the well-founded semantics to include new program constructs;
or 2) semantics that contain the well-founded partial model as a submodel.

An example of a semantics of class 1) is (WFSX) [3], which adds explicit (or
provable) negation to the default negation used by the Well-founded semantics. The
addition of explicit negation in WFSX, can be useful for modeling problems in do-
mains such as diagnosis and hierarchical reasoning, or domains that require updates
[47], as logic programs. WFSX is embeddable into the well-founded semantics; and
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this embedding gives rise to an XSB meta-interpreter, or, more efficiently, to the pre-
processor described in Section Extended Logic Programs in Volume 2. See [79] for an
overview of the process of implementing extensions of the well-founded semantics.

An example of a semantics of class 2) is the stable model semantics. Every stable
model of a program contains the well-founded partial model as a submodel. As a
result, the XSB can be used to evaluate stable model semantics through the residual
program, to which we now turn.

The Residual Program Given a program P and query Q, the residual program
for Q and P consists of all (conditional and unconditional) answers created in the
complete evaluation of Q.

Exercise 5.3.8 Consider the following program.

:- table ppgte_p/0,ppgte_q/0,ppgte_r/0,ppgte_s/0,

ppgte_t/0,ppgte_u/0,ppgte_v/0.

ppgte_p:- ppgte_q. ppgte_p:- ppgte_r.

ppgte_q:- ppgte_s. ppgte_r:- ppgte_u.

ppgte_q:- ppgte_t. ppgte_r:- ppgte_v.

ppgte_s:- ppgte_w. ppgte_u:- undefined.

ppgte_t:- ppgte_x. ppgte_v:- undefined.

ppgte_w:- ppgte(1). ppgte_x:- ppgte(0).

ppgte_w:- undefined. ppgte_x:- undefined.

ppgte(0).

:- table undefined/0.

undefined:- tnot(undefined).

Write a routine that uses get_residual/2 to print out the residual program for the
query ?- ppgte_p,fail. Try altering the tabling declarations, in particular by mak-
ing ppgte_q/0, ppgte_r/0, ppgte_s/0 and ppgte_t/0 non-tabled. What effect does
altering the tabling declarations have on the residual program?

When XSB returns a conditional answer to a literal L, it does not propagate the
delay list of the conditional answer, but rather delays L itself, even if L does not
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occur in a negative loop. This has the advantage of ensuring that delayed literals are
not propagated exponentially through conditional answers.

Stable Models Stable models are one of the most popular semantics for non-
stratified programs. The intuition behind the stable model semantics for a ground
program P can be seen as follows. Each negative literal notL in P is treated as a
special kind of atom called an assumption. To compute the stable model, a guess is
made about whether each assumption is true or false, creating an assumption set, A.
Once an assumption set is given, negative literals do not need to be evaluated as in
the well-founded semantics; rather an evaluation treats a negative literal as an atom
that succeeds or fails depending on whether it is true or false in A.

Example 5.3.1 Consider the simple, non-stratified program

writes_manual(terry)-¬writes_manual(kostis),has_time(terry).

writes_manual(kostis)-¬writes_manual(terry),has_time(kostis).

has_time(terry).

has_time(kostis).

there are two stable models of this program: in one writes_manual(terry) is true,
and in another writes_manual(kostis) is true. In the Well-Founded model, neither
of these literals is true. The residual program for the above program is

writes_manual(terry)-¬writes_manual(kostis).

writes_manual(kostis)-¬writes_manual(terry).

has_time(terry).

has_time(kostis).

Computing stable models is an intractable problem, meaning that any algorithm
to evaluate stable models may have to fall back on generating possible assumption
sets, in pathological cases. For a ground program, if it is ensured that residual clauses
are produced for all atoms, using the residual program may bring a performance gain
since the search space of algorithms to compute stable models will be correspondingly
reduced. In fact, by using XSB in conjunction with a Stable Model generator, Smodels
[60], an efficient system has been devised for model checking of concurrent systems
that is 10-20 times faster than competing systems [52]. In addition, using the XASP
package (see the separate manual, [13] in XSB’s packages directory) a consistency
checker for description logics has also been created [80].
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5.4 Answer Subsumption

By default XSB adds an answer A to a table T only if A is not a variant of some other
answer already in T , a technique termed answer variance. While answer variance is
sufficient to allow tabling to compute the well-founded semantics and to terminate
for programs with bounded term-depth, other choices of when and how to add an
answer can be made. Using partial order answer subsumption, A would be added
to T only if A is maximal with respect to other answers in T according to a given
partial order >O. Furthermore if A is added, any answers in T that A subsumes
(i.e., is greater than in >O) are deleted. When using lattice answer subsumption, A
itself may not be added to T , rather the join is taken of A and another answer A′ in
T , with A′ being deleted. Despite its conceptual simplicity, answer subsumption can
be a powerful tool. Partial order answer subsumption allows a table to retain only
answers that are maximal according to a metric or to a preference relation; lattice
answer subsumption can form the basis of multi-valued logics, quantitative logics,
and of abstract interpretations for programs and process logics.

5.4.1 Types of Answer Subsumption

Partial Order Answer Subsumption.

We illustrate the use of partial order answer subsumption through a shortest-path
predicate (Figure 5.1) that counts the number of edges between two vertices.

sp(X,Y,1):- edge(X,Y).

sp(X,Z,N):- sp(X,Y,N1),edge(Y,Z),N is N1 + 1.

Figure 5.1: A Shortest Path Predicate

As mentioned above, partial-order answer subsumption retains in a table T only
those answers that are maximal according to a given partial order >O. In the case of
the shortest-path predicate of Figure 5.1, sp(A1, A2, A3) >O sp(B1, B2, B3) if, A1 =
B1, A2 = B2, and A3 < B3. Note that that minimal distances are maximal in <O,
and that <O is undefined if A3 or B3 is non-numeric. In XSB, partial order answer
subsumption is specified for sp/3 using the declaration

:- table sp(_,_,po((<)/2)).

In a given state of computation, only those answers that are maximal according to >O

are available for resolution. Thus, for a finite graph with cycles, sp/3 will terminate



CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 114

using answer subsumption, but not with answer variance. Other partial orders beyond
distance metrics may be useful. For instance, >O may specify a preference ordering
between derived atoms so that answer subsumption provides an alternative to default-
based methods for computing preferences.

The treatment of variables in calls to partial order answer subsumptive tabled
predicates deserves mention. Variables in arguments not in the subsumption position
are treated as “group-by” variables: i.e., for each value such a variable can take, a
different aggregate is computed. So for example a call to sp(a,X,SD) will succeed for
each node reachable from a, binding X to that node and SD to the shortest distance
from a to that node. One can place a ^ in a non-subsumption position of table
declaration, e.g.,

:- table sp(_,^,po((<)/2)).

to indicate that values of that position should be aggegated over. For example, with
this table declaration, the call sp(a,X,SD) will find the distance to the closest node
reachable from a, (which, if a has any successors, will be 1, since a successor to a will
be a nearest reachable successor at distance 1 from a.)

Non-variables in the subsumption position in a call will be treated as selecting
what answers are included in the aggregation.

Lattice Answer Subsumption.

An upper semi-lattice is a partial order for which any two elements have a unique
least upper bound. Because the ordering for the third argument of sp/3 is total,
it also forms an upper semi-lattice, and so can be computed using lattice answer
subsumption. 9. In XSB lattice answer subsumption for sp/3 is declared as

:- table sp(_,_,lattice(min/3)).

with min/3 defined as min(X,Y,Z):- Z is min(X,Y). Operationally, this means
that whenever an answer sp(A1, A2, A3) is derived, if there is another answer sp(B1, B2, B3)
where A1 = B1 and A2 = B2 the join J3 of A3 and B3 is taken, and only sp(A1, A2, J3)
is available for resolution. As with a partial order, the join operation ensures termi-
nation for shortest path over a finite graph with cycles.

As the following proposition shows, lattice answer subsumption can be modeled
either starting with a lattice, or starting with a function with appropriate properties.

9The terminology lattice answer subsumption is employed even though only the join of the lattice
is used.
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Proposition 5.4.1 Let op be an associative, commutative, and idempotent binary
function. Then there is a partial order P , such that P is an upper semi-lattice with
join op.

Conversely, if a function does not have the above properties, it is not suitable for
lattice answer subsumption. Accordingly the aggregate functions count and sum
cannot be computed using lattice answer subsumption 10. Lattice answer subsumption
has a variety of applications. [84] shows how it is used for social-network analysis and
Section 5.4.2 shows its use for an application of multi-valued logics, [79] describes how
a similar formalism can implement a quantitative logic, and [65, 66] describes how
XSB’s PITA package is based on answer subsumption (see Volume 2 of this manual).

Partial Order Answer Subsumption with Abstraction.

Computation over an abstract domain may require certain maximal answers to be
abstracted. In many cases, abstraction can be modeled by a join operation, but
in others the abstraction represents an implicit induction step in the following sense.
Given a set A of answers, it may be detected that the program computed does not have
a finite model. An abstraction operation then is applied so that A and its extensions
can be symbolically represented by a single answer A. Using answer subsumption,
this abstraction can be taken only if needed during program execution. Abstractly,
partial order answer subsumption with abstraction uses the declaration

:- table p(_,_,po(rel/2,abs/3)).

where rel/2 is a partial order, and abs/3 is the abstraction operation. Section 5.4.2
provides a detailed example of how such an approach is used to analyze a process
logic.

5.4.2 Examples of Answer Subsumption

Answer Subsumption and Abstract Interpretation

Net-style formalisms, such as Petri Nets, Workflow Nets, etc. have been used exten-
sively for process modeling. Reachability is a central problem in analyzing properties

10Since count and sum are not idempotent their semantics is based on multi-sets, rather than
sets. Incorporating these as tabling features requires modifying their semantics to be set-based, in
a manner similar to aggregation ASP systems.
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Figure 5.2: A PT-net and configuration with an infinite number of reachable config-
urations

of such nets, to which properties such as liveness, deadlock-freedom, and the ex-
istence of home states can be reduced. However, many interesting net formalisms
cannot guarantee a finite number of configurations in a given net, so abstraction
methods must be applied for their analysis.

For instance, the lack of finiteness is a problem in analyzing Place/Transition
(PT) Nets. PT nets have no guard conditions or after-effects, and do not distinguish
between token types. However, PT nets do allow a place to hold more than one token,
leading to a potentially infinite number of configurations. This can be seen in the
simple network of Figure 5.2 (from [26]) in which transitions are denoted by squares
and places by circles. Each transition removes one token from the places that are the
sources of its input edges and adds one token to each place at the target of each of its
output edges. Starting from the configuration in Figure 5.2, repeated application of
transition t1 leads to place s2 containing an unbounded number of tokens; repeated
application of the sequence t1,t2,t3,t4 leads to place s4 containing an unbounded
number of tokens.

Despite such examples, reachability in PT nets is decidable and can be determined
using an abstraction method called ω-sequences, (see e.g. [26]). The main idea in
determining ω sequences is to define a partial order ≥ω on configurations as follows.
If configurations C1 and C2 are both reachable, C1 and C2 have tokens in the same
set PL of places, C1 has at least as many tokens in each place as C2, and there exists
a non-empty PLsub ⊆ PL, such that for each pl ∈ Plsub C1 has strictly more tokens
than C2, then C1 >ω C2. When evaluating reachability, if C2 is reached first, and
then C1 was subsequently reached, C1 is abstracted by marking each place in PLsub

with the special token ω which is taken to be greater than any integer. If C1 was
reached first and then C2, C2 is treated as having already been seen.

Tabling combined with partial order answer subsumption requires slightly over
100 lines of code to model reachability in PT nets using ω-sequences. Due to space
restrictions, the program cannot be fully described here, but the top-level reachability
predicate is shown in Figure 5.3. Despite its succinctness, it can evaluate reachability
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:- table reachable(_,po(omega_gte/2,omega_abs/3)).

reachable(InConf,NewConf):-

reachable(InConf,NewConf),

hasTransition(Conf,NewConf).

reachable(InConf,NewConf):- hasTransition(InConf,NewConf).

Figure 5.3: Top-level predicate for PT net reachability

in networks with millions of states in a few minutes. This use of tabling to determine
reachability in PT nets can be seen as a special case of tabling for abstract interpre-
tation (cf. [41] and other works). However the framework for answer subsumption
described here allows tabling to be used to efficiently perform abstract interpretation
within a general Prolog system

Scalability for multi-valued and quantitative logics

The technique of program justification (cf. e.g. [61]) has been used for debugging
tabled programs that cannot be debugged by traditional means. Here, we consider
justification in the context of the Silk system, currently under development at Vulcan,
Inc. Silk is a commercial knowledge representation and rule system built on top of
Flora-2, which is implemented using XSB. One of the salient features of Silk is its
default reasoning, which is based on a parameterized argumentation theory evaluated
under the well-founded semantics [91]. One issue in using Silk is that knowledge
engineers must have a way of understanding the reasoning of the system, a task
complicated by the use of the well-founded semantics and the intricacies of the argu-
mentation theory. We describe an experimental approach to justification of Silk-style
argumentation theories using multi-valued logics.

As noted in [91], argumentation theories in Silk are usually extensions of the
default theories of Courteous Logic Programs (CLP) and are based on two user-
defined predicates: opposes/2 and overrides/2. Two atoms oppose each other if no
model of a program can contain both atoms: an atom and its explicit negation oppose
each other, but opposition can capture many other types of contradictions. Given
two opposing atoms, one atom may override the other, and so be given preference.
For atoms A1 and A2, if A1 and A2 are both derivable and oppose each other but
neither overrides the other, A1 and A2 mutually rebut each other. If in addition A1,
say, overrides A2, A1 refutes A2

11. Within Silk and Flora-2, the compilation of an
argumentation theory ensures that rebutted atoms have an undefined truth value, as

11In [91] argumentation theories are built on named rules, here we base them on derived atoms.
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Figure 5.4: A Truth Lattice for a Simplified Version of Courteous Argumentation
Theory

do atoms that refute themselves (i.e. if the overrides/2 predicate is cyclic). However,
for justification, it is meaningful to distinguish those facts that are undefined due to
a negative loop in the argumentation theory from those that are undefined due to
a negative loop in the program itself. In addition, it is meaningful to distinguish
an atom that is true because it overrides some other atom, from an atom whose
derivation does not depend on the argumentation theory. Similar distinctions can be
made for default false literals leading to the truth lattice shown in Figure 5.4.

5.4.3 Term-Sets

XSB provides support for a programming technique for representing sets of terms,
called term-sets. (While it is not closely related to answer subsumption, it is par-
tially implemented through tabling and a table declaration, and so this facility is
documented here.)

We begin in an example. We can represent a set of Prolog terms by using a
particular term of the form {Var:Goal} where Goal has (only) Var free in it. Then
we will use this set-term to represent the set of terms obtained by evaluating Goal

and taking the values of Var that are obtained. I.e., they would be the terms in the
list L returned by the Prolog call to setof(Var,Goal,L). For example, the set-term:

{X : member(X,[a,b,c])}

represents the set of terms {a,b,c}.

Now a term-set is a Prolog term that may contain set-terms as subterms. For
example,
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m({X:member(X,[a,b,c])},g(d,{Y:member(Y,[e,f,g])}),h)

is a term-set, and it represents the set of terms obtained from it by replacing (re-
cursively) any embedded set-term by a term in that set-term. So the above term-set
represents the 9 terms:

m(a,g(d,e),h) m(a,g(d,f),h) m(a,g(d,g),h)

m(b,g(d,e),h) m(b,g(d,f),h) m(b,g(d,g),h)

m(c,g(d,e),h) m(c,g(d,f),h) m(c,g(d,g),h)

This example shows an advantage of this representation. Say a term-set has k sub-
set-terms each of which is of the member form in this example where each member has
a list of atoms of length n. To represent this set of terms explicitly takes O(nk) space,
whereas to represent them with the term-set takes only O(n×k) space. So a term-set
representation can take exponentially less space than an explicit representation.

It is relatively easy to write a predicate, member_termset/2, which takes a variable
and a term-set and nondeterministically generates all concrete terms represented by
the term-set, called extensionalizing the term-set. Some care must be taken since a
call to goal to extensionalize a set-term may itself return a term-set. Also term-sets
can be self-recursive and thus represent infinitely many Prolog terms. For example,
consider the term-set:

{X : p(X)} where

p(a).

p(f({X:p(X)})).

This term-set represents the terms for which p/1 is true. Now p(a) is true, so a is
in the term-set. Since a is in {X:p(X)}, then p(f(a)) is true because of the second
fact for p/1, and so f(a) is in the term-set. And so on. So this term-set contains the
infinitely many terms:

a, f(a), f(f(a)), f(f(f(a))), ...

A particularly interesting use of term-sets is in conjunction with tabling. Consider
the term-set {X:p(1,2,X)} where p/3 is tabled. If p(1,2,_} has been called and so
its table is filled, then extensionalizing this term-set requires just a table lookup; in
some sense we can think of such a term-set as standing for a pointer into a table to a
set of terms. This can be elegantly used to solve an important problem in handling
parse trees in context-free parsing.

Consider the following DCG for the language a*:



CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 120

:- table a/3.

a(a(P1,P2)) --> a(P1),a(P2).

a(a) --> [a].

which recognizes a string of a’s and constructs its parse trees.

To generate all answers, this DCG will take time exponential in the length of the
input string; not surprising since there are exponentially many parses. But say we
give it an input string of n a’s followed by one b. In this case it will take exponential
time to fail, since it will construct all the exponentially many partial parse trees for
the initial k a’s. We would like the parser in this case to fail in polynomial time. We
can do this by representing the parse trees as a term-set during the recognition of
the string. Then after the string is recognized, we extensionalize the set-term that
represents the parse trees. In this way we can get the behavior we want. The set-term
that represents the parse trees for any grammar will be constructed in polynomial
time; the extensionalization of that term-set will take exponential time only if there
are exponentially many parses.

We can cause XSB to automatically use the term-set representation for the gram-
mar by adding to the above program the declaration:

:- table a(termset,_,_).

which tells XSB to use the term-set representation of the first argument of nonterminal
a/3.

With this declaration, the XSB compiler transforms the above program into the
following:

:- table a/3.

a(a(P1,P2),S0,S) :- ’_$a’(P1,S0,S1),’_$a’(P2,S1,S).

a(a,S0,S1) --> ’C’(S0,a,S1).

:- table ’_$a’/3 as subsumptive.

’_$a’({X:’_$a’(X,S0,S)},S0,S) :- a(_,S0,S).

A new predicate ’_$a’/3 has been introduced, and all calls to the original predicate
a/3 are replaced by calls to the new one. It is defined to call the original a/3 but to
return the term-set instead of the concrete parse tree in the argument declared to be
a term-set.
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We can see that a call to a/3 in this new program will have exactly as many
answers as the corresponding call to a/2 in the original recognizing DCG, since given
values for S0 and S, a call to ’_$a’/2 returns only one value in its first argument. So
a call to a/3 with have the polynomial complexity of the recognizer. So now when
this representation is used, one gets the concrete parse tree for a string by writing,
for example:

| ?- a(Pts,[a,a,a,a,a,a,a],[]), member_termset(Parse,Pts).

Here the term-set representing the parses for the sequence of a’s will be returned in the
variable Pts, and then member_termset is used to extensionalize it to the produce the
actual explicit parse tree. With this way of handling parse trees in arbitrary context-
free grammars, the complexity of parsing to create the term-set is always polynomial,
and then extensionalizing the term-set may be exponential if all parses are desired
and there are exponentially many of them. (In fact, if the grammar contains a rule
such as A --> A, there may be infinitely many parses.) Of course, if the parsing call
to a/3 fails, then there is no extensionalization to do, and the process is polynomial.

Note that the transformation uses subsumptive tabling for the newly introduced
auxiliary predicate. This is important for this example, since the parsing calls to
’_$a’/3 will normally have S0 bound and S free, yet when extensionalizing the con-
structed term-set to obtain the parse trees, the calls will have both S0 and S bound.
We do not want to recompute the parse during extensionalizion, which would happen
were we to use variant tabling, and so we use subsumptive tabling.

Problems in graph traversal provide another example of the effective use of term-
sets. For graph reachability, we have the very familiar:

:- table reach/2.

reach(X,Y) :- edge(X,Y).

reach(X,Y) :- reach(X,Z), edge(Z,Y).

which is linear in the number of edges in the graph. But say that we now want to
construct the path from X to Y when Y is reachable from X. One simple way to do
it (collecting the intermediate nodes in the path in reverse order) is:

:- table path/3.

path(X,Y,[]) :- edge(X,Y).

path(X,Y,[Z|Path]) :- path(X,Z,Path), edge(Z,Y).

For an acyclic edge graph, this works fine, but for a graph with cycles, this will go
into an infinite loop. Indeed, it must, since in a cyclic graph there are infinitely many
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different paths between some nodes. However, we can use term-set to handle this
situation more flexibly. We modify the above program by adding:

:- table path(_,_,termset).

With this declaration, every call to path/3 (for a finite edge graph) will terminate
in time linear in the number of edges. And all the paths will be presented in the
term-set returned in the third argument. Here we have an advantage similar to the
one we had in the grammar example above: if there is no path from our source to our
target node, we will find that out in linear time. Without the term-set declaration,
this might take exponential time, while the program builds all the paths to all the
nodes that are reachable from our source node. Also, if we want only one possible
path from our source to our target, we can easily retrieve only one member of the
term-set during extensionalization, and the whole process is still linear.

Now consider what happens with when the graph has cycles. In this case, the
term-set may be recursive and represent the infinitely many paths between nodes. For
example, the term-set representing all paths from a to a in the graph with a single edge
from a to a will have the same structure as the example of an infinite term-set given at
the beginning of this subsection. Once the path term-set is constructed (in time linear
in the number of edges for a single source), producing paths reduces to processing the
term-set structure. For example to generate all paths between nodes which do not
contain repeated intermediate nodes, one could write an extensionalization predicate
that passes a list of term-sets in the process of being expanded, and refuse to re-
expand one currently being expanded. This is the technique often used in Prolog
without tabling to compute reachability in cyclic graphs.

All of these examples can be seen as special cases of constructing proof trees or
justifications of goals. Indeed, term-sets could be effectively used in the construction
of a justification or explanation system.

5.5 Tabling for Termination

As noted throughout this manual, tabling adds important termination properties to
programs and queries. In this section we state more precisely what these termination
properties are, and how the properties can be strengthened through declarations and
settings for subgoal abstraction and for sound bounded rationality through a type of
answer abstraction called radial restraint as well as by limiting the number of answers
to a subgoal through answer count restraint.
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Before proceeding, it is important to set the context for where issues of termi-
nation may arise. Consider first a pure normal program in which every predicate is
tabled. This means a program where rules may only call other rules, possibly through
negation (tnot/1, not_exists/1 or u_not/1 in XSB); but where there are no calls to
built-in all-solutions predicates, or other built-ins. If such a fully-tabled pure normal
program does not have function symbols, XSB will always terminate for any query.
For instance, XSB will terminate for fully tabled pure datalog programs – even if the
head of a rule is “unsafe” in that it contains variables that do not occur in the body
of that rule 12. Such programs are sometimes called datalog programs.

While datalog programs are useful for certain kinds of knowledge representation,
they are not powerful enough for general programming as they do not allow recursive
structures such as lists. Thus, for the rest of this section we consider pure programs
that may contain function symbols. Consider a pure definite program in which every
predicate is tabled. Such a program would create a table for each tabled subgoal
(up to variance) exactly once if call variance were used, and at most once if call
subsumption were used. In addition, tabling guarantees that each answer will be
returned to each call to a tabled subgoal at most once. This means that there are
two sources of non-termination. Either there can be an infinite number of subgoals,
or there can be an infinite number of answers.13

An Infinite Number of Subgoals If a definite program produces an infinite
number of subgoals but has a finite number of answers, the program can be made to
terminate by abstracting the subgoal. For instance, consider the program fragment:

:- table p/1.

p(X) :- p(f(X)).

The goal ?- p(1) can create an infinite number of tabled subgoals: p(f(1)), p(f(f(1))),
p(f(f(f(1)))) and so on. Note that since all of the subgoals are ground, none
subsume one another, so that call subsumption will not help here. (Although call
subsumption is extremely useful in other circumstances, and would help if the goal
were ?- p(X)).

Infinite Answers Of course, subgoal abstraction can’t handle cases where there
are an infinite number of answers, as in the program fragment:

12Evaluations that call non-ground negative literals will terminate through floundering, although
this can be avoided in most cases by using not_exists/1.

13Here, forest of trees model of tabling (cf. Section 10.2) is being implicitly used.
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p(f(X)) :- p(X).

when given the query ?- p(X).

We consider each case in turn.

5.5.1 Term Size Abstraction in XSB

Both subgoal and answer abstraction in XSB are based on limiting the size of any
argument of a term T that forms a subgoal or answer. The specific definition of size
used is slightly complicated, but offeres advantages discussed below. Each argument
Ta of T is traversed as follows. The size of Ti is initialized to 0, then Ta is traversed
from left to right. Each time a non-constant functor or list symbol is encountered,
the size of Ti is incremented by 1 – regardless of the type of functor symbol that is
encountered. If the size of Ta exceeds the associates size limit for T (as declared in
the next section), all further non-constant functor symbols encountered in Ti will be
abstracted (rewritten as free variables). Once Ta has been fully traversed, further
arguments of T will be traversed in the exact same manner.

Example 5.5.1 Applying the above definition of size abstraction with limit 2 to the
term

p(d(e(1),a,f(c1)),b,g(c2),[c3,[c4,c5]))

produces the term

p(d(e(X1),a,X2),b,g(c2),[c4|X3]).

In the traversal, the size limit is reached once the e/1 functor is encountered. To the
right of e/1, all non-constant functor symbols are abstracted when they occur at depth
greater than 0. This causes f/1 to be abstracted, as it occurs at depth 1; however g/1

in the third occurs at depth 0, and so is retained. Similarly in the fourth argument,
the outer list symbol and head is preserved, while the tail of the list is abstracted.

Example 5.5.1 indicates that the size abstraction used in XSB excludes symbols
of depth 0, and so is something of a hybrid approach, although we continue to call it
size abstraction.

Other metrics could be used, such as term depth, which would offer conceptual
clarity. However size-based abstraction allows finer-grained optimization than depth-
based abstraction and offers the following general advantages.
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• From the point of view of implementation, the abstraction can be perfomed
with manner that has minimal if any impact on the speed of XSB’s tabling
engine.

• By not abstracting functor symbols at depth 0 and by abstracting each argument
individually, both multi-argument indexing and star indexing of subgoals will
be often be preserved.

5.5.2 Subgoal Abstraction

In a nutshell, subgoal abstraction allows a goal like p(f(f(f(1)))) to be rewritten
as

p(f(f(X))),X = f(1).

If all subgoals that have a term size – or term depth – over a given finite threshold
are abstracted, any query can produce only a finite number of subgoals (since there
are a finite number of predicate, function and constant symbols in any program).
If a program has a finite well-founded model, it can be shown that any query to a
program will terminate if that program uses subgoal abstraction [67]. For normal
programs, the situation is not much different at a conceptual level. A goal such as
tnot(p(f(f(f(1))))) would execute as p(f(f(X))) and then ensure that none of
the answers to this goal have a binding for X that allows it to unify with f(1). Using
this intuition, it can be shown that if a program has a well-founded model with a
finite number of true or undefined answers it will terminate using tabling with subgoal
abstraction [66, 67].

Despite its theoretical power, subgoal abstraction can also cause problems if used
indiscriminately. For instance, if the second argument of the subgoal

?- member(e,[a,b,c,d,e])

is abstracted forming the goal

?- member(e,[a,b,c|X])

leading to an infinite number of answers. a goal that terminates without abstraction
will not terminate after abstraction. Note that any program containing member/2

and at least one constant does not have a finite model (although any given ground
query will have a finite number of answers). While an experienced programmer would
not usually table member/2, he well may want to table a grammar or other program
that performs recursion through a finite structure.
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Declaring Subgoal Abstraction

XSB can perform subgoal abstraction based on the size limit described above. It
will do so for goals called positively, but not for goals called negatively as this would
give rise to unsound negation. Thus a goal G inside a construct such as tnot/1 or
not_exists/1 will throw an exception (or suspend into break mode) if it surpasses
the specified term size. In addition, subgoal abstraction is only implemented for
call variance, and applies equally to all functors, whether they are lists or non-lists.
Despite these restrictions, a tabled evaluation can be still guaranteed to terminate
for queries to safe programs (cf. [66]).

Subgoal abstraction can be declared by setting a value for the maximum size of a
subgoal and for the action to take when a subgoal is encountered that reaches that
size.

• size The maximum size can be set to n for a set of predicates 〈PredSpec〉 by
including the specifier subgoal_abstract(n) as part of the tabling declaration

:- table 〈PredSpec〉 as ...,subgoal_abstract(n),...

Specifying subgoal_abstract(0) turns abstraction off for predicates in 〈PredSpec〉.
The size can also be set globally by seting the flag max_table_subgoal_size

to the desired maximal size. If the subgoal size has been set of a given predicate
via a tabling declaration the declared size will override the global size.

• action When a subgoal is encountered of maximum size, abstraction is enabled
if the Prolog flag max_table_subgoal_action to abstract. Other possible
values for the action are error and suspend (cf. pg. 253 ff.).

Unless otherwise specified, XSB starts up with max_table_subgoal_action set to
error and max_table_subgoal_size set to 0, indicating it is turned off. Under
this default behavior, XSB will throw an error if a subgoal has size greater than
max_table_subgoal_size. As an alternative to setting flags, subgoal abstraction
can be set by calling XSB with the command-line arguments –max_subgoal_action

a and –max_subgoal_size n with a the desired action and n the desired size limit.

5.5.3 XSB’s Approach to Bounded Rationality

Bounded rationality is a subfield of Artificial Intelligence that studies how the rea-
soning performed by a computation can be automatically bounded so that an agent
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or other program can be guaranteed to arrive at a decision “quickly”. By bound-
ing reasoning, an agent may be used in a setting that requires reactivity or where a
simulation of human reasoning is needed.

Thus, the approximation that XSB computes is informationally sound in the sense
that no incorrect answer will be derived, although the truth value of some atoms won’t
be known that might have been if the size bound had been set higher.

XSB’s approach to bounded rationality computes a finite approximation to the
well-founded model that is informationally sound in the sense that no incorrect answer
will be derived, although the truth value of some atoms won’t be known. In other
words, if bounded rationality is employed, it can be guaranteed that only a finite
number of answers will be derived [34]. Furthermore, any true atom that XSB derives
is true in the well founded model of a program; and any goal that fails is false in the
well-founded model. However, by bounding rationality XSB’s search is restrained so
that it will not fully explore certain subderivations and so may consider as undefined
some atoms that are true or false in the well-founded model. We sometimes call
this approach to bounded rationality restraint. Currently XSB supports both radial
restraint and answer count restraint

Radial Restraint Through Answer Abstraction

Radial restraint resembles subgoal abstraction (Section 5.5.2) in certain ways, as can
be seen in the following example. If the query p(X) to the program

p(f(X)) :- p(X).

p(0).

were evaluated using radial restraint with a size limit of 3, the answers, p(0), p(f(0)),
p(f(f(0))) and p(f(f(f(X)))) would be generated; however, p(f(f(f(X))))

would have the truth value of undefined. Note that by abstracting in this way, both
of the goals p(f(f(f(0)))), and p(f(f(f(1)))) will unify with p(f(f(f(X)))) and
so will succeed with a truth value of undefined. Similarly tnot(p(f(f(f(0))))), and
tnot(p(f(f(f(1))))) will both succeed with a value of undefined (perhaps better
called unknown in this context). It can be seen that since all predicates and function
symbols have a maximum arity (256 in XSB) bounding the size of an answer ensures
that only a finite number of answers are returned 14.

14If a program has a infinite number of true answers and a finite number of false answers, one
possible approach might be to “dualize” the program so that only false answers are computed. Note
that since most programs with function symbols have an infinite number of both true and false
answers, this approach won’t work in general.
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Semantically when radial restraint is used, XSB computes an approximation to
the three-valued well-founded model of a program, called a restrained model. To
see this, suppose the proof of a query Q does not depend on negation. If Q has a
derivation that does not require any answers whose size is greater than n, it is proven
as usual. Similarly, if Q is false in the well-founded model of a program, and none of
the subgoals explored in the derivation of Q derive answers whose size is greater than
n, XSB will derive that Q is false. The higher the size bound that is set, the better
the approximation. Due to undecidability, there is no way to know in general what
size to set for answer abstraction, or whether any bound needs to be set at all.

If a restrained model is derived, answers that are directly undefined through radial
restraint can be desinguished from answers that are undefined in the well-founded
model of a program, or for other reasons such as unsafe negation. If an answer A
was abstracted due to a size check, the query get_residual(A,Delay) would bind
Delay to a list containing the atom radial_restraint, where radial_restraint/0

is simply a predicate defined as

radial_restraint:- tnot(radial_restraint)

Using Radial Restraint Radial restraint is currently implemented only for tabling
with call variance. However it works with most other tabling features, such as call
abstraction, and incremental tabling. Similarly to the use of subgal abstraction,
answer abstraction is the implementational basis of radial restraint. It is important
to note that the size limit applies to the answer substitution, not to the of the answer
itself.

Example 5.5.2 Suppose an answer size limit is set to 1, and consider the goal p(X).
The answer p(s(s(0))) has size 2 and so would be abstracted to p(s(X1)) as ex-
pected, as the corresponding abswer substitution is X = s(s(0)). However for the
goal p(s(X)) the answer substitution for the answer p(s(s(0))) is X = s(0) which
has a size of only 1 and so this answer would not be abstracted in the context of this
subgoal. Despite this difference in how the size metric is computed, the termination
and approximation properties of radial restraint still hold.

Radial restraint can be declared by setting a value for the maximum size of an
answer and for the action to take when an answer is encountered that reaches that
size.

• size The maximum size can be set to n for a set of predicates via including the
specifier answer_abstract(n) as part of their tabling declaration
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:- table < PredSpec > as ...,answer_abstract(n),...

Specifying answer_abstract(0) turns answer abstraction off for predicates in
〈PredSpec〉. The size can also be set globally by seting the flag max_table_answer_size

to the desired maximal size. If the answer size of a given predicate has been set
via a tabling declaration, the predicate-specific declared size will override the
global size.

• action When an answer is encountered of maximum size, abstraction is enabled
if the Prolog flag max_table_answer_action to bounded_rationality. Other
possible values for the action are error, suspend and fail (cf. Section 10.3.4
for further information).

Unless otherwise specified, XSB starts up with max_table_answer_size_action

set to error and max_table_answer_size set to 0.

Answer CountRestraint

As discussed above, finite termination can always be ensured through a mixture of
subgoal abstraction and radial restraint. Alternately, it can also be ensured through
subgoal abstraction and answer count() restraint.

Example 5.5.3 Consider the program

:- table p/4.

p(M,N,X,Y):- between(1,M,X),between(1,N,Y).

and query p(3,3,Y,Z): it is easy to see that 9 answers will be produced. However,
if answer count restraint is used to restrict the maximal number of answers to each
subgoal to 5, the first 5 answers computed above will be returned, along with a new
answer:

p(3,3,Y,Z)

whose truth value is undefined, with the atom answer_count_restraint in its delay
list.

Using the arguments from the previous section, it is easy to see that answer
count restraint ensures sound finite termination when used with subgoal abstraction.
However Example 5.5.3 also illustrates on a small scale how answer count restraint
can be used to soundly complete a subgoal S once a minimal number of answers have
been derived, even if S has a large, but finite number of answers.
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Using Answer Count Restraint Answer count restraint is currently implemented
only for tabling with call variance. However it works with most other tabling features,
such as call abstraction, and incremental tabling.

Currently, answer count restraint can only be set by global flags as follows.

• size The size can be set globally via the flag max_table_answer_size to the
desired maximal size. Setting the flag to 0 turns off answer count restraint.

• action When an answer is encountered of maximum size, abstraction is enabled
if the Prolog flag max_table_answer_action to bounded_rationality. Other
possible values for the action are error and suspend (cf. Section 10.3.4 for
further information).

Justifying or Explaining Restraint

An atom affected directly by radial or answer count restraint has in its delay list ei-
ther the atom radial_restraint or answer_count_restraint. The indirect depen-
dency of an atom on a form of restraint can be obtained either thorugh the predicate
explain_u_val/3, or get_residual_sccs/[3,5]. Both of these predicates traverse
the residual dependency graph to provide information about why a literal is undefined.

5.6 Incremental Table Maintenance

XSB allows the user to declare that the system should maintain the correctness of
a given table with respect to dynamically changing facts and rules through so-called
incremental tables [74, 73, 82]. After a database update or series of updates ∆, an
incremental table T that depends on ∆ is by default updated transparently: that is T
and all tables upon which T depends are automatically updated (if needed) whenever
a future subgoal calls T . In either case, incremental tabling brings XSB closer to the
functionality of deductive databases. If tables are thought of as materialized database
views (or snapshots), then the incremental table maintenance subsystem enables in-
cremental view maintenance; also as discussed below, if choice points are thought of
as database cursors then incremental tabling also provides view consistency 15.

15In the current version of XSB, there are certain restrictions on how incremental tabling can be
used: cf. Section 5.7.
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5.6.1 Transparent Incremental Tabling

To demonstrate incremental table maintenance (informally called incremental tabling),
consider first the following simple program that does not use incremental tabling:

:- table p/2.

p(X,Y) :- q(X,Y),Y =< 5.

:- dynamic q/2.

q(a,1). q(b,3). q(c,5). q(d,7).

and the following queries and results:

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

| ?- assert(q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

In this program, the table for p/2 depends on the contents of the dynamic predicate
q/2. We first evaluate a query, p(X,Y), which creates a table. Then we use assert/1

to add a fact to the q/2 predicate and re-evaluate the query. We see that the an-
swers haven’t changed, because the table is already created and the second query just
retrieves answers directly from that existing table. However the answers are incon-
sistent with the model of p/2 after the assert. I.e., if the table didn’t exist (e.g. if
p/2 weren’t tabled), the answer [d,4] would also be derived. Without incremental
table maintenance, the only solution to this problem is for the XSB programmer to
explicitly abolish a table whenever changing (with assert or retract) a predicate on
which the table depends. By declaring that the tables for p/2 should be incrementally
maintained, XSB automatically keeps the tables for p/2 correct.
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Consider a slight rewrite of the above program:

:- table p/2 as incremental.

p(X,Y) :- q(X,Y),Y =< 5.

:- dynamic q/2 as incremental.

q(a,1). q(b,3). q(c,5). q(d,7).

in which p/2 is declared to be incrementally tabled and q/2 is declared to be both
dynamic and incremental, meaning that an incremental table depends on it. Consider
the following goals and execution:

| ?- import incr_assert/1 from increval.

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

| ?- incr_assert(q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[d,4]

[c,5]

[b,3]

[a,1]

no

The transparent approach to incremental updating works as follows. When incr_assert/1

is called, it sparks an invalidation phase in which tables that depend on q(d,4) are
marked as invalid (i.e., possibly inconsistent with respect to underlying dynamic
code). An Incremental Dependency Graph (IDG) is used to obtain the right tables to
invalidate. However, if the invalidation phase finds an affected table that is incom-
plete, a permission error is thrown, since it is unclear whether sensible semantics can
be given to updating a subgoal that is incomplete. After the invalidation phase is
completed, when/if a subgoal calls an invalid table T the engine interrupts itself to
recompute T and any tables upon which T depends. On the other hand, if no calls
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are ever made to an invalid incremental table T ′, T ′ will never incur the cost of an
update.

View Consistency

As described above, transparent incremental tablings’s use of lazy updating ensures
that a new query Q will always be consistent with the state of the dynamic code at
the time Q is called. However, transparent incremental tabling enforces a stronger
property of view consistency similar to those of database systems: that answers to a
query Q should be those derivable at the time Q was called, and should not be affected
by any updates. Because XSB’s incremental tabling does not allow updates that affect
tables that are still being computed, supporting view consistency effectively means
ensuring consistency for choice points into completed incremental tables. As such
choice points correspond to database cursors, we term them Open Cursor Choice
Points, (OCCPs).

XSB’s support for view consistency is designed so that no perceptable overhead in
incurred if there are no OCCPs whose view needs to be maintained. Not surprisingly,
numerous long-lived OCCPs whose views need to be maintained across updates causes
an overhead for the engine, a situation that is in some sense similar to the cost of
maintaining views for cursors in database system.

5.6.2 Updating in a Three-Valued Logic

As discussed earlier in this chapter, answers that are undefined in the well-founded
semantics are represented as conditional answers. Beginning with version 3.3.7, in-
cremental updates work correctly with conditional answers 16. Nno special care needs
to be taken for updating in the well-founded semantics as the following example
illustrates.

:- dynamic data/1 as incremental.

:- table opaque_undef/0 as opaque.

opaque_undef:- tnot(opaque_undef).

:- table p/1 as incremental.

p(_X):- opaque_undef.

16Before Version 3.3.7, incremental updates only worked correctly on stratified tables: those with
only unconditional answers.
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p(X):- data(X).

Note that opaque_undef/1 upon which p/1 depends is explicitly declared as opaque 17.
When the above program is loaded, XSB will behave as follows.

| ?- p1(1).

undefined

| ?- incr_assert(data(1)).

yes

| ?- p1(1).

yes

| ?- incr_retract(data(1)).

yes

| ?- p1(1).

undefined

| ?- get_residual(p1(1),C).

C = [opaque_undef]

Declaring Predicates to be Incremental

In XSB, tables can have numerous properties: such as subsumptive, variant, in-
cremental, opaque, dynamic, private, and shared, and can use answer subsumption,
answer abstraction or call abstraction. XSB also has variations in forms of dynamic
predicates: tabled, incremental, private, and shared. XSB extends the table and
dynamic compiler and executable directives with modifiers that allow users to indi-
cate the kind of tabled or dynamic predicate they want. For example,

:- table p/3,s/1 as subsumptive,private.

:- table q/3 as incremental,variant.

17An opaque predicate P is tabled and is used in the definition of some incrementally tabled
predicate but should not be maintained incrementally. In this case the system assumes that the
programmer will abolish tables for P in such a way so that re-calling it will always give semantically
correct answers.
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:- dynamic r/2,t/1 as incremental.

In the current version of XSB, incremental tabling works with subgoal abstrac-
tion, answer abstraction, and well-founded negation. However several combinations
involving incremental tabling are not supported and will throw an error (cf. page
300 and page 289, respectively). Incremental tabling has not yet been ported to the
multi-threaded engine and it currently does not works for predicates that use call
subsumption or answer subsumption.

5.6.3 Incremental Tabling using Interned Tries

Sometimes it is more convenient or efficient to maintain facts in interned tries rather
than as dynamically asserted facts (cf. Chapter 8). Tables based on interned tries
can be automatically updated when terms are interned or uninterned just as they can
be automatically updated when a fact is asserted or retracted. Consider the example
from Section 5.6.1 rewritten to use interned tries. As usual, an incrementally updated
table is declared as such:

:- table p/2 as incremental.

However, the declaration for dynamic data changes: rather than using the declaration

:- dynamic q/2 as incremental

a trie is specified as incremental in its creation.

trie_create(Trie_handle,[incremental,alias(inctrie)])

As described in Chapter 8, the trie handle returned is an integer, but can be aliased
just as with any other trie. The trie may then be initially loaded:

trie_intern(q(a,1),inctrie),trie_intern(q(b,3),inctrie),

trie_intern(q(c,5),inctrie),trie_intern(q(d,7),inctrie).

At this stage a query to p/2 acts as before:

p(X,Y) :- trie_interned(q(X,Y),inctrie),Y =< 5.
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| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

The following sequence ensures that p/2 is incrementally updated as inctrie changes:

| ?- import incr_trie_intern/2.

yes

| ?- incr_trie_intern(inctrie,q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[d,4]

[c,5]

[b,3]

[a,1]

no

Given the proper directives to make a trie incremental, transparent incremental
tabling works for changes made to interned tries just as it does for regular dynamic
code and for trie-indexed dynamic code.

5.6.4 Abstracting the IDG for Better Performance

As mentioned above, incremental table mantenance makes use of an IDG. Specifically,
the nodes of the IDG are the incrementally tabled subgoals; and each such table
contains information about its incident edges: those subgoals upon which a node
directly depends or directly affects. While the IDG is a critical data structure to
efficiently update incremental tables, in certain situations constructing the IDG can
cause non-trivial overheads in query time and table space. These overheads can be
addressed in many cases by abstracting the IDG. When a tabled subgoal S is called,
rather than creating an edge between S and its nearest tabled ancestor S ′ (if any),
one could abstract S, S ′ or both, potentially collapsing a large number of nodes and
edges of the IDG. If S is an incremental table, then performing subgoal abstraction
on S as introduced in Section 5.5, will abstract the IDG – rather than having n nodes
S1, . . . , Sn and their associated links, the IDG will contain a single node abstract(S).
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However, subgoal abstraction will not work to abstract the leaf nodes of the IDG,
which are subgoals to non-tabled dynamic incremental predicates.

In Version 3.8 of XSB, IDG nodes for dynamic incremental predicates may undergo
depth abstraction: given a subgoal S and integer k, subterms of S with depth k + 1
are replaced by unique new variables. For instance, abstracting q(f(1)) at level 1 gives
q(f(X1)); abstracting at level 0 gives q(X1). Figure 5.5 illustrates an important case
where abstracting dynamic incremental predicates can be critical to good performance
for incremental tabling. In the case of left-linear recursion, if no abstraction is used
a new node will be created for each call to edge/2 as shown on the left side of this
figure. If a large number of data elements are in fact reachable, the size of the IDG can
be very large. If calls to the edge/2 predicate make use of depth-0 abstraction, the
graph may be much smaller as seen on the right side of Fig. 5.5. Whether abstracting
a IDG in this manner is useful or not is application dependent; however, performance
results indicate that for left-linear recursion, abstraction greatly reduces both query
time and space.

:- table reach/2 as incremental.

:- dynamic edge/2 as incremental.

reach(X,Y):- edge(X,Y).

reach(X,Y):- reach(X,Z),edge(Z,Y).

reach(1,Y)

...edge(4,Y).edge(3,Y)edge(2,Y)

edge(X_1,Y)

reach(1,Y)

Figure 5.5: A left-linear program and schematic IDGs: Left without IDG abstraction;
Right: with IDG abstraction

Abstracting the edge/2 predicate has subtle differences from abstracting tabled
subgoals. As mentioned, the edge/2 predicate of Fig. 5.5 is not tabled. Furthermore,
the actual edge/2 subgoal itself should not be abstracted to depth 0 since losing
the first argument instantiation would prevent the use of indexing. Rather, only the
IDG’s representation of the subgoal should be abstracted. Abstraction of dynamic
code for the IDG can be specified via the declaration:

:-dynamic edge/2 as incremental, abstract(0).

In Version 3.8 dynamic incremental code can be abstracted, but incremental in-
terned tries (Section 5.6.3) cannot be. Also, currently only depth 0 abstraction is
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supported.

5.6.5 Summary and Implementation Status

The main design choices of incremental tabling are as usual what to table, and
also what dynamic predicates or tries should be made incremental. In addition,
performance optimizations may be made through a mixture of subgoal abstraction
and dynamic predicate abstraction. This optimization can be informed by use of
statistics/0 which includes summary information about the IDG, or using the
IDG inspection predicates of Section 5.6.6 if more details are needed.

In the current version of XSB, incremental tabling has not yet been ported to
the multi-threaded engine. In addition, incremental tabling only works for predicates
that use both call and answer variance. However, incremental tabling does work
with for the full well-founded semantics, for trie indexed dynamic code (in addition
to regular dynamic code) and with interned tries as described in Section 5.6.3. The
space reclamation predicates abolish_all_tables/0, abolish_table_call/[1,2]

and abolish_table_pred/[1,2] can be safely used with incremental tables.

5.6.6 Predicates for Incremental Table Maintenance

A Note on Terminology Suppose p/1 and q/1 are incrementally tabled, and that
there is a clause

p(X):- q(X).

In this case we say that p(X) depends_on q(X) and that q(X) affects p(X). A recursive
predicate both depends on and affects itself.

Declarations The following directives support incremental tabling based on changes
in dynamic code:

table +PredSpecs as incremental Tabling
is a executable predicate that indicates that each tabled predicate specified in
PredSpec is to have its tables maintained incrementally. PredSpec is a list of
skeletons, i.e. open terms, or Pred/Arity specifications 18. The tables must
use call variance and answer variance and must be compiled and loaded into

18No explicit module references are allowed.
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the single-threaded engine. If a predicate is declared with tabling attributes
that are not supported with incremental tabling a permission error is thrown.
This predicate implies that its arguments are tabled predicates. See page 300
for further discussion of tabling options.

We also note that any tabled predicate that is called by a predicate tabled as
incremental must also be tabled as incremental or as opaque. On the other hand,
a dynamic predicate d/n that is called by a predicate tabled as incremental
may or may not need to be declared as incremental. However if d/n is not
declared incremental, then changes to it will not be propagated to incrementally
maintained tables.

dynamic +PredSpecs as incremental Tabling
is an executable predicate that indicates that each predicate in PredSpecs is
dynamic and used to define an incrementally tabled predicate and will be up-
dated using incr_assert/1 and/or incr_retractall/1 (or relatives.) Note
that dynamic incremental predicates cannot themselves be tabled. This predi-
cate implies that its arguments are dynamic predicates. See page 289 for further
discussion of dynamic options.

table +PredSpecs as opaque Tabling
is an executable predicate that indicates that each predicate P in PredSpecs

is tabled and is used in the definition of some incrementally tabled predicate
but should not be maintained incrementally. In this case the system assumes
that the programmer will abolish tables for P in such a way so that re-calling
it will always give semantically correct answers. In other words, instead of
maintaining information to support incremental table maintenance, the system
re-calls the opaque predicate whenever its results are required to recompute an
answer. One example of an appropriate use of opaque is for tabled predicates
in a DCG used to parse some string. Rather than incrementally maintain all
dependencies on all input strings, the user can declare these intermediate tables
as opaque and abolish them before any call to the DCG. This predicate implies
that its arguments are tabled predicates.

Basic Incremental Maintenance Predicates The following predicates are used
to manipulate incrementally maintained tables:

incr_assert(+Clause) module: increval
incr_assertz(+Clause) module: increval
incr_asserta(+Clause) module: increval
incr_retract(+Clause) module: increval
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incr_retractall(+Term) module: increval

are versions of assert/1 and other standard Prolog predicates. They modify
dymamic code just as their Prolog counterparts, but they first invalidate all
incrementally maintained tables that depend on Clause.

Error Cases are the same as assert<a/z>/1, retract/1 and retractall/1

with the additional error conditions that relate to the semantics of incremental
tabling. Note that if these error conditions arise, the update will not occur.

• The head of the clause Clause or the Term refers to a predicate that is not
incremental and dynamic.

– type error(dynamic_incremental, Term)

• Clause affects an incremental table that is incomplete (and so is in the
course of being computed).

– permission_error

incr_invalidate_calls(+Goal) module: increval

Let T be the least set of all incrementally maintained tables whose goals that
unify with Goal, or whose tables are (transitively) affected by a goal in T .
This predicate invalidats all tables in T . Any subsequent call to a goal G
associated with T will be automatically be incrementally updated if necessary.
(As will any goals that G depends on that are in need of updating.) In a similar
manner, an invocation of incr_table_update/[0,1,2] will cause tables in T
to be updated.

Note that this predicate is needed for exceptional cases only. Calls to incr_assert/1

and similar predicates mentioned above perform invalidation automatically, as
does abolish_table_call/[1,2]. However, incr_invaldate_calls/1 is use-
ful if a tabled predicate depends on some external data and not (only) on dy-
namic incremental predicates. For example, such a predicate might depend on a
relation stored in an external relational database (perhaps accessed through the
ODBC interface). Of course, in such a case, the application programmer must
know when the external relation changes and invoke incr_invaludate_calls/1

as necessary.

Error Cases

• Goal is tabled, but not incrementally tabled

– permission_error(invalidate,non-incremental predicate,Goal)
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Incremental Maintenance using Interned Tries The following predicates are
used to modify incremental tries, and can be freely intermixed with predicates for
modifying incremental dynamic code, as well as with predicates for invalidating or
updating tables (Section 5.6.6).

incr_trie_intern(+TrieIdOrAlias,+Term) module: intern

is a version of trie_intern/2 for tries declared as incremental. A call to this
predicate interns Term in TrieIdOrAlias and then invalidates all incrementally
maintained tables that depend on this trie.

incr_trie_uninternall(+TrieIdOrAlias,+Term) module: intern

is a version of trie_unintern/2 for tries declared as incremental. A call to this
predicate removes all terms unifying with Term in TrieIdOrAlias and then
invalidates all incrementally maintained tables that depend on this trie.

Inspecting the State of the Incremental Dependency Graph The predi-
cates in this section allow a user to inspect properties of IDG that can be useful in
debugging, profiling or optimizing a computation 19. In addition they provide infor-
mation about which subgoals in the IDG are invalid – i.e., which subgoals depend on
a dynamic code that has changed, but have not been updated.

As explained below, IDG nodes can be accessed via the predicate is_incremental_subgoal/1,
while IDG edges can be accessed via incr_directly_depends/2. The predicates
get_incr_scc/[1,2] and get_incr_scc_with_deps/[3,4] can be used to efficiently
materialize the dependency graph in Prolog, including SCC information. Similarly,
the predicates incr_invalid_subgoals/1 and incr_is_invalid/1 can be used to
determine which subgoals are invalid.

is_incremental_subgoal(?Subgoal) module: increval

This predicate non-deterministically unifies Subgoal with incrementally tabled
subgoals that are currently table entries.

incr_directly_depends(?Goal1,?Goal2) module: increval

accesses the edges of the IDG: the incremental goals (Tables) that directly
depend on or directly affect one another. At least one of Goal1 or Goal2 must
be bound.

19The predicates for traversing the incremental dependency graph are somewhat analogous to
those for traversing the residual dependency graph (Section 6.15.2).
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• If Goal1 is bound, then this predicate will return in Goal2 through back-
tracking the goals for all incrementally maintained tables on which Goal1

directly depends.

• If Goal2 is bound, then it returns in Goal1 through backtracking the goals
for all incrementally maintained tables that Goal2 directly affects – in other
words all goals that directly depend on Goal2.

Error Cases

• Neither Goal1 nor Goal2 is bound

– instatiation_error

• Goal1 and/or Goal2 is bound, but is not incrementally tabled

– table_error

incr_trans_depends(?Goal1,?Goal2) module: increval

is similar to incr_directly_depends/2 except that it returns goals according
to the transitive closure of the “directly depends” relation. Error conditions are
the same as incr_directly_depends/2.

get_incr_sccs(?SCCList) module: increval
get_incr_sccs_with_deps(?SCCList,?DepList) module: increval
get_incr_sccs(+SubgoalList,?SCCList) module: increval
get_incr_sccs_with_deps(+SubgoalList,?SCCList,?DepList) module:

increval

Warning: these predicates may be obsolescent, cf. Section 10.3.2
for newer predicates that are more powerful.

Most linear algorithms for SCC detection over a graph use destructive assign-
ment on a stack to maintain information about the connecteness of a component;
as a result such algorithms are difficult to write efficiently in Prolog.

get_incr_sccs/1 unifies SCCList with SCC information for the incremental
dependency graph that is represented as a list whose elements are of the form

ret(Subgoal,SCC).

SCC is a numerical index for the SCCs of Subgoal. Two subgoals are in the same
SCC iff they have the same index, however no other dependency information
can be otherwise directly inferred from the index 20.

20The actual number for each SCC index depends on how the incremental dependency graph
happens to be traversed; as a result it is best to rely on the index only as a “generated” name for
each SCC.
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If dependency information is also desired, get_incr_scc_with_dependencies/2

should be called. In addition to the SCC information as above, DepList is uni-
fied with a list of dependency terms of the form

depends(SCC1,SCC2)

for each pair SCC1 and SCC1 such that some subgoal with index SCC1 directly
depends on some subgoal with index SCC1. If it is necessary to know which sub-
goal(s) in SCC1 directly depends on which subgoal(s) in SCC2, the information
can be easily reconstructed using incr_directly_depends/2 above. Similarly,
incr_directly_depends/2 can be used to determine the actual edges within
a given SCC.

Ordinarily a user will want to see the entire dependency graph and in such
a case the predicates described above should be used. However, note that if
the dependency graph is the result of several indepdendent queries it may not
be connected. get_incr_scc/2 takes as input a list of incremental subgoals,
SubgoalList. For each Subgoal in SubgoalList, this predicate finds the set of
subgoals connected to Subgoal by any mixture of depends and affects relations,
unions these sets together, and finds the SCCs of all subgoals in the unioned
set.

SCC detection is implemented using Tarjan’s algorithm [87] in C working di-
rectly on XSB’s data structures. The algorithm is O(|V |+ |E|) where |V | is the
number of vertices and |E| the number of edges in the dependency graph. As
a result, get_incr_sccs/[1,2] provides an efficient means to materialize the
high-level topography of the dependency graph 21.

Error Cases

• SubgoalList is a variable

– instantiation_error

• SubgoalList is not a list

– type_error

• SubgoalList contains a predicate that is not tabled

– permission_error

incr_invalid_subgoals(-List) module: increval

This predicate unifies List with a sorted list of the incremental subgoals that
are currently invalid.

21Currently, the materialization of dependency information between SCCs is implemented in a
naive manner, so that get_incr_sccs_with_deps/[2,3] is O(|V |2).
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incr_is_invalid(+Subgoal) module: increval

Succeeds if Subgoal is an incrementally tabled subgoal that is invalid, and fails
otherwise.

5.7 Compatibility of Tabling Modes and Predicate

Attributes

As discussed in this chapter, there are several choices for how to table a predicate.
Either call subsumption or call variance may be used, incremental tabling might
or might not be used, and answer subsumption might or might not be used. Fur-
thermore, a tabled predicate, like any other predicate, may be static or dynamic and
thread shared or thread private. Together, there are 48 different combinations, not all
of which are supported in Version 3.8 of XSB. To analyze further, all combinations are
supported for call-variance and for thread private predicates. However, call subsump-
tion has not been fully integrated with dynamic code or thread shared predicates, and
cannot currently be combined with incremental tabling or with answer subumption.
Similarly incremental tabling is not yet supported in the multi-threaded engine (it
is supported for “thread private” computations only in the sequential engine). The
compatibilities are listed in Table 5.1. Further combinations will be supported in
future versions of XSB as resources allow.

The combinations in Table 5.1 allow full well-founded computation, constrained
variables in calls and answers (including the residual program), and safe space recla-
mation, with the following exceptions. Answer subsumption does support non lrd-
stratified programs; and call subsumption does not yet support attributed variables
in calls.

5.8 A Weaker Semantics for Tabling

Recall that the well-founded semantics (WFS) is weaker than, say, stable model
semantics. For instance a program like

p:- not q. q:- not p.

has two stable models: {p} and {q}. On the other hand, WFS has a single model,
where both p and q are undefined. This, of course, is characteristic of the way WFS
treats atoms whose only non-failed derivations are based on a “negative loop”.
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variant static private nonincremental no answer subsumption yes
variant static private nonincremental answer subsumption yes
variant static private opaque no answer subsumption yes
variant static private opaque answer subsumption no
variant static private incremental no answer subsumption yes
variant static private incremental answer subsumption no
variant static shared nonincremental no answer subsumption yes
variant static shared nonincremental answer subsumption yes
variant static shared opaque no answer subsumption no
variant static shared opaque answer subsumption no
variant static shared incremental no answer subsumption no
variant static shared incremental answer subsumption no
variant dynamic private nonincremental no answer subsumption yes
variant dynamic private nonincremental answer subsumption yes
variant dynamic private opaque no answer subsumption no
variant dynamic private opaque answer subsumption no
variant dynamic private incremental no answer subsumption no
variant dynamic private incremental answer subsumption no
variant dynamic shared nonincremental no answer subsumption yes
variant dynamic shared nonincremental answer subsumption yes
variant dynamic shared opaque no answer subsumption no
variant dynamic shared opaque answer subsumption no
variant dynamic shared incremental no answer subsumption no
variant dynamic shared incremental answer subsumption no
subsumptive static private nonincremental no answer subsumption yes
subsumptive static private nonincremental answer subsumption yes
subsumptive static private opaque no answer subsumption no
subsumptive static private opaque answer subsumption no
subsumptive static private incremental no answer subsumption no
subsumptive static private incremental answer subsumption no
subsumptive static shared nonincremental no answer subsumption no
subsumptive static shared nonincremental answer subsumption no
subsumptive static shared opaque no answer subsumption no
subsumptive static shared opaque answer subsumption no
subsumptive static shared incremental no answer subsumption no
subsumptive static shared incremental answer subsumption no
subsumptive dynamic private nonincremental no answer subsumption yes
subsumptive dynamic private nonincremental answer subsumption yes
subsumptive dynamic private opaque no answer subsumption no
subsumptive dynamic private opaque answer subsumption no
subsumptive dynamic private incremental no answer subsumption no
subsumptive dynamic private incremental answer subsumption no
subsumptive dynamic shared nonincremental no answer subsumption no
subsumptive dynamic shared nonincremental answer subsumption no
subsumptive dynamic shared opaque no answer subsumption no
subsumptive dynamic shared opaque answer subsumption no
subsumptive dynamic shared incremental no answer subsumption no
subsumptive dynamic shared incremental answer subsumption no

Table 5.1: Support for different tabling modes in XSB Version 3.8
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However, an even weaker logic is possible where derivations based on positive
loops are also considered undefined. In other words the program

r:- r. r:- false.

would assign the truth value undefined to r, although both WFS and stable models
would assign r as false. But why use such a weak logic?

Consider a woman who asks her husband when he’ll clean the garage, and the
husband says:

I’ll get around to it when I get around to it.

The wife would probably consider it ambiguous not only when her husband might
clean the garage, but whether he would do so at all. The wife’s reasoning (slightly
simplified) could be rendered in logic as:

clean_the_garage:- clean the garage.

and we’d like to assign undefined or unknown to clean_the_garage.22

Although this example is somewhat fanciful, it turns out that this interpretation
accords with the results of cognitive science experiments about human reasoning [76],
and is known in the logic programming community as the “completion semantics”
(CS). CS differs from WFS only in assigning the truth value undefined to derivations
that depend on a positive loop, and that are otherwise not satisfiable (cf. [53]).

So as useful as WFS and stable models are for programming, they don’t reflect
how human beings have been shown to reason in daily life. However, there is an-
other difference between WFS and the sort of common-sense reasoning that humans
perform. WFS has a strong closed-world assumption. Suppose a query ?- s were
made to a program where s were not defined. WFS would assign the value false to
s, but this is not always what humans do: rather humans would treat the unknown
predicate s as in fact unknown or undefined. More generally, if (sub-)goal G refers to
an undefined predcate,the weak completion semantics (WCS) also assigns undefined
to G, rather than false as WFS does, or throwing an error (as XSB also does by
default)z.

These features can be set globally either separately or together:

22Actually, many wives would go ahead and assign false to this statement, but we are modeling
an optimistic wife.
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• Setting the ISO Prolog flag unknown to undefined makes calls to unknown
predicates return the truth value undefined. This flag can also be set to the
standard ISO values, fail. warning or error (the last of which is the default).

• Setting the Prolog flag alt_semantics to cs causes XSB to globally evaluate
the completion semantics.

• Setting the Prolog flag alt_semantics to wcs causes XSB to globally evaluate
the weak completion semantics, and is equivalent to setting the alt_semantics

flag to cs and the ISO flag unknown to undefined.

• Setting the Prolog flag alt_semantics to wfs turns causes XSB to behave in
its default mode. I.e., to globally evaluate queries according to the well-founded
semantics, and to throw an error when encountering an unknown predicate.

Examples As a simple example, consider the program:

simple_loop(X):- simple_loop(X). simple_loop(X):- p(X).

p(a).

The query ?- simple_loop(X) returns two answers: X = a as true, and X unbound
as undefined.

For a more complex example, consider the program:

:- table m_1_1/1,m_1_2/1,m_1_3/1,m_1_4/1.

m_1_1(X):- m_1_2(X). m_1_1(a):- m_1_2(a).

m_1_2(X):- m_1_3(X). m_1_2(a):- m_1_3(a).

m_1_3(X):- m_1_4(X),fail. m_1_3(a):- m_1_4(a).

m_1_4(X):- m_1_1(X). m_1_4(a):- m_1_1(a).

The derivation of the query ?- m_1_1(X) creates a positive SCC with with numerous
interrelated positive cycles, but these cycles can be broken down into two groups. The
first group includes a dependency edge from m_1_3(X) to m_1_4(X), while the other
set does not include this edge. Due to the first clause of m_1_3(X), all derivations
in the first group fails, although derivations that do not include this edge succeed.
Thus the only answer to m_1_1(X) has X = a with truth value undefined (and a single
delay list of [m_1_2(a)].



Chapter 6

Standard Predicates and
Predicates of General Use

This chapter mainly describes standard predicates, which are always available to the
Prolog interpreter, and do not need to be imported or loaded explicitly as do other
Prolog predicates. By default, it is a compiler error to redefine standard predicates.

In the description below, certain standard predicates depend on HiLog semantics;
the description of such predicates have the token HiLog at the right of the page. Simi-
larly predicates that depend on SLG evaluation are marked as Tabling, and predicates
whose semantics is defined by the ISO standard (or whose implementation is reason-
ably close to that definition) are marked as ISO. Occasionally, however, we include in
this section predicates that are not standard. In such cases we denote their module
in text font towards the middle of the page.

6.1 Input and Output

6.1.1 I/O Streams in XSB

XSB’s I/O is based on ISO-style streams, although it also supports older DEC-10
style file handling. The use of streams provides a unified interface to a number of
different classes of sources and sinks. Currently these classes include textual and
binary files, console input and output, pipes, and atoms; in the future sockets and
urls may be handled under the stream interface. When streams are opened, certain
actions may occur depending on the class of the source or sink and on the wishes
of the user. For instance when a file F is opened for output mode, an existing file

148
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F may be truncated (in write mode) or not (in append mode). In addition, various
operations may or may not be valid depending on the class of stream. For instance,
repositioning is valid for an atom or file but not a pipe or console.

XSB provides several default I/O streams, which make it easier for a user to
embed XSB in other applications. These streams include the default input and output
streams. They also include the standard error stream, to which XSB writes all error
messages. By default the standard error stream is the same as the standard output
stream, but it can be redirected either by UNIX shell-style I/O redirection or by
the predicates file_reopen/4 and file_clone/3. Similarly there is the standard
warning stream (to which all system warnings are written), the standard message
stream, the standard debugging stream (to which debugging information is written),
and the standard feedback stream (for interpreter prompts, yes/no answers, etc). All
of these streams are aliased by default to standard output, and can be redirected by
the predicates file_reopen/4 and file_clone/3. Such redirection can be useful for
logging, or other purposes.

Streams may also be aliased: the default input and output streams are denoted
by user_input and user_output and they refer to the standard input and standard
output streams of the process 1. Similarly, XSB’s error, warning and message streams
uses the aliases user_error, user_warning and user_message respectively.

Streams are distinguished by their class – whether they are file or atom, etc.; as
well as by various properties. These properties include whether a stream is position-
able or not and whether a (file) stream is textual or binary.

• Console: The default streams mentioned above are console streams, which are
textual and not repositionable.

• File: A file stream corresponds to an operating system file and is repositionable.
On Windows, binary files and textual files differ, while on UNIX they are the
same.

• Atom: XSB can read from an atom, just as it can from a file. Atoms are
considered to be textual and repositionable. Writing to atoms via streams is
not currently available in XSB, although the predicate term_to_atom/[2,3]

contains much of the functionality that such streams would provide.

• Pipe: XSB can also open pipes either directly, or as part of its ability to spawn
processes. When made into streams, pipes are textual and not repositionable.

1For backwards compatibility, the default input stream can also be aliased by user or userin,
and the default output stream by user or userout.
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I/O Stream Implementation

A user may notice that XSB’s I/O streams are small integers, but they should not be
confused with the file descriptors used by the OS. The OS file descriptors are objects
returned by the C open function; XSB I/O streams indices into the internal XSB
table of open files and associated information. The OS does not know about XSB
I/O streams, while XSB (obviously) does know about the OS file descriptors. An
OS file descriptor may be returned by certain predicates (e.g. pipe_open/2 or user-
defined I/O). In the former case, a file descriptor can be promoted to XSB stream by
open/{3,4} and in the latter by using the predicate fd2iostream/2.

When it starts, XSB opens a number of standard I/O streams that it uses to
print results, errors, debugging info, etc. The descriptors are described in the file
prolog_includes/standard.h. This file provides the following symbolic definitions:

#define STDIN 0

#define STDOUT 1

#define STDERR 2

#define STDWARN 3 /* output stream for xsb warnings */

#define STDMSG 4 /* output for regular xsb messages */

#define STDDBG 5 /* output for debugging info */

#define STDFDBK 6 /* output for XSB feedback

(prompt/yes/no/Aborting/answers) */

#define AF_INET 0 /* XSB-side socket request for Internet domain */

#define AF_UNIX 1 /* XSB-side socket request for UNIX domain */

These definitions can be used in user programs, if the following is provided at the top
of the source file:

compiler_options([xpp_on]).

#include "standard.h"

If this header is used, the various streams can be used as any other output stream – e.g.
?- write(STDWARN,’watch it!’). (Note: the XSB preprocessor is not invoked on
clauses typed into an interactive XSB session, so the above applies only to programs
loaded from a file using consult and such.)
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6.1.2 Character Sets in XSB

Beginning in Version 3.5 of XSB, alternate character sets are supported.

• UTF-8 which on input atomatically interprets the sequence of bytes as UTF-8
byte sequences and decodes them to obtain the unicode code points; and on
output converts from the unicode code points to UTF-8 byte sequences.

• LATIN-1 which performs no transformation on byte sequences (i.e. treats each
byte directly as a unicode code point.)

• CP1252 which implements Windows code page 1252 encoding, the default for
most Windows systems.

Other character sets, in particular, UTF-16, may be supported in the future.

In the current version of XSB, UTF-8 is the default character set when XSB is
configured on UNIX-style systems such as Linux and Mac OSX. CP1252 is the the
default character set on Windows-style systems. The character set may be changed
at any time via the Prolog flag character_set, whose value must be one of utf_8,
cp1252, or latin_1. The character set in effect at the time of opening a stream is
the character set that will be used to read (or write) the stream.

6.1.3 Predicates for ISO Streams

open(+SourceSink,+Mode,-Stream) ISO
open/1 creates a stream for the source or sink designated in SourceSink, and
binds Stream to a structure representing that stream.

• If SourceSink is an atom, or the term file(File) where File is an atom,
the stream is a file stream. In this case Mode can be

– read to create an input stream. In Windows, whether the file is textual
or binary is determined by the file’s properties.

– write to create an output stream. Any previous file with a similar
path is removed and a (textual) file is created which becomes a record
of the output stream.

– write_binary to create an output stream. Any previous file with a
similar path is removed and a file is created which becomes a record
of the output stream. The file created is binary in Windows, while in
UNIX write_binary has the same effect as write.
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– append to create an output stream. In this case the output stream is
appended to the contents of the file, if it exists, and otherwise a new
file is created for (textual) output

– append_binary to create an output stream. In this case the output
stream is appended to the contents of the file, if it exists, and otherwise
a new file is created for (binary) output

• If SourceSink is the term atom(Atom) where Atom is an atom, the stream is
an atom stream. In this case Mode currently can only be read. This stream
class, which reads from interned atoms, is analogous to C’s sscanf() func-
tion.

• If SourceSink is the term pipe(FIleDescriptor) where FileDescriptor

is an integer, then a pipe stream is opened in the mode for FileDescriptor.

ISO Compatibility Note: This predicate extends the ISO definition of open/3

to include strings and pipes as well as the file modes write_binary and append_binary.

Error Cases

• SourceSink or Mode is not instantiated

– instantiation_error

• Mode is not a valid I/O mode

– domain_error(io_mode,Mode)

• SourceSink is a file and cannot be opened, or opened in the desired mode

– permission_error(open,file,SourceSink)

open(+File,+Mode,-Stream,+Options) ISO
open/4 behaves as does open/3, but allows a list of options to be given. The
current options are a subset of ISO options and are:

• alias(A) allows the stream to be aliased to an atom A.

• type(T) has no effect on file streams in UNIX, which are always textual,
but in Windows if T is binary a binary file is opened.

Error Cases Error cases are the same as open/3 but with the addition:

• Option_list contains an option O that is not a (currently implemented)
stream option.

– domain_error(stream_option,O)
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• An element of OptionsList is alias(A) and A is already associated with
an existing thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of OptionsList is alias(A) and A is not an atom

– type_error(atom,A)

ISO Compatibility Note: The ISO option reposition(Boolean) currently
has no effect on streams, because whether or not the stream is repositionable
or not depends on the stream class. The ISO option eof_action(Action)

currently has no effect on file streams. If these options are encountered in
Options, a warning is issued to STDWARN.

close(+Stream_or_alias,+OptionsList) ISO
close/2 closes the stream or alias Stream_or_alias. OptionsList allows the
user to declare whether a permission error will be raised in XSB upon a re-
source or system error from the closing function (e.g. fclose() or other system
function). If OptionsList is non-empty and contains only terms unifying with
force(true) then such an error will be ignored (possibly leading to unac-
knowledged loss of data). Otherwise, a permission error is thrown if fclose()

or other system function returns an error condition. If the stream class of
Stream_or_alias is an atom, then the only action taken is to close the stream
itself – the interned atom itself is not affected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

• OptionList contains an option O that is not a closing option.

– domain_error(close_option,O)

• OptionList contains conflicting options

– domain_error(close_option,OptionList)

• Closing the stream produces an error (and OptionsList is a non-empty
list containing terms of the form force(true)).
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– permission_error(close,file,Stream_or_alias)

close(+Stream_or_alias) ISO
close/1 closes the stream or alias Stream_or_alias.
Behaves as close(Stream_or_alias,[force(false)]).

set_input(+Stream_or_alias) ISO
Makes file Stream_or_alias the current input stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not an open input stream

– existence_error(stream,Stream_or_alias)

set_output(+Stream_or_alias) ISO
Makes file Stream_or_alias the current output stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

stream_property(?Stream,?Property) ISO
This predicate backtracks through the various stream properties that unify with
Property for the stream Stream. Currently, the following properties are defined.

• stream_class(C) gives the stream class for a file: i.e. file, atom, console

or pipe.

• file_name(F) is a property of Stream, if Stream is a file stream and F

is the file name associate with Stream. The full operating system path is
used.
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• type(T) is a property of Stream, if Stream is a file stream and T is the file
type of Stream: text or binary.

• mode(M) is a property of Stream, if M represents the I/O mode with which
Stream was opened: i.e. read, write, append, write_binary, etc., as
appropriate for the class of Stream.

• alias(A) is a property of Stream, if Stream was opened with alias A.

• input is a property of Stream, if Stream was opened in the I/O mode:
read.

• output is a property of Stream, if Stream was opened in the I/O mode:
write, append, write_binary, or append_binary.

• reposition(Bool) is true, if Stream is repositionable, and false otherwise.

• end_of_stream(E) returns at if the end of stream condition for Stream is
true, and not otherwise.

• position(Pos) returns the current position of the stream as determined
by fseek or the byte-offset of the current stream within an atom. In
either case, if an end-of-stream condition occurs, the token end_of_file

is returned.

• eof_action(Action) is reposition if the stream class is console, eof_code

if the stream class is file, and error is the stream class is pipe or atom.

flush_output(+Stream_or_alias) ISO
Any buffered data in Stream_or_alias gets flushed. If Stream is not buffered
(i.e. if it is of class atom), no action is taken.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(Stream_or_alias,Stream)

• Stream is not associated with an open output stream

– existence_error(Stream_or_alias,Stream)

• Flushing (i.e. fflush()) returns an error.

– permission_error(flush,stream,Stream)

flush_output ISO
Any buffered data in the current output stream gets flushed.
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set_stream_position(+Stream_or_alias,+Position) ISO
If the stream associated with Stream_or_alias is repositionable (i.e. is a file or
atom), sets the stream position indicator for the next input or output operation.
Position is a positive integer, taken to be the number of bytes the stream is to
be placed from the origin.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Position is not instantiated to a positive integer.

– domain_error(stream_position,Position)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

• Stream_or_alias is not repositionable, or repositioning returns an error.

– permission_error(resposition,stream,Stream_or_alias)

at_end_of_stream(+Stream_or_alias) ISO
Succeeds if Stream_or_alias has position at or past the end of stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream,Stream_or_alias)

• Stream_or_alias is not an open stream

– existence_error(stream,Stream_or_alias)

at_end_of_stream ISO
Acts as at_end_of_stream/1 but using the current input stream.
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Other Predicates using ISO Streams

file_reopen(+FileName,+Mode,+Stream,-RetCode)

Takes an existing I/O stream, closes it, then opens it and attaches it to a file.
This can be used to redirect I/O from any of the standard streams to a file. For
instance,

| ?- file_reopen(’/dev/null’, w, 3, Error).

redirects all warnings to the Unix black hole.

On success, RetCode is 0; on error, the return code is negative.

file_clone(+SrcStream,?DestStream,-RetCode)

This is yet another way to redirect I/O. It is a Prolog interface to the C dup

and dup2 system calls. If DestStream is a variable, then this call creates a new
XSB I/O stream that is a clone of SrcStream. This means that I/O sent to
either stream goes to the same place. If DestStream is not a variable, then it
must be a number corresponding to a valid I/O stream. In this case, XSB closes
DestStream and makes it into a clone of SrcStream.

For instance, suppose that 10 is a I/O Stream that is currently open for writing
to file foo.bar. Then

| ?- file_clone(10,3,_).

causes all messages sent to XSB standard warnings stream to go to file foo.bar.
While this could be also done with file_reopen, there are things that only
file_clone can do:

| ?- file_clone(1,10,_).

This means that I/O stream 10 now becomes clone of standard output. So, all
subsequent I/O will now go to standard output instead of foo.bar.

On success, RetCode is 0; on error, the return code is negative.

file_truncate(+Stream, +Length, -Return) module: file_io

The regular file referenced by the StreamStream is chopped to have the size of
Length bytes. Upon successful completion Return is set to zero.

Portability Note: Under Windows (including Cygwin) file_truncate/2 is
implemented using _chsize(), while on Unix ftruncate() is used. There are
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minor semantic differences between these two system calls, which are reflected
by the behavior of file_truncate/2 on different platforms.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

• Length is a variable

– instantiation_error

• Length is neither a variable nor an integer

– type_error(integer,Length)

tmpfile_open(-Stream)

Opens a temporary file with a unique filename. The file is deleted when it is
closed or when the program terminates.

flush_all_output_streams module: error_handler

Flushes output streams, both user and system STDOUT, STDERR, etc. This
convenience predicate is written as

flush_all_open_streams:-

stream_property(S,mode(X)),(X = append ; X = write),flush_output(S),fail.

flush_all_open_streams.

6.1.4 DEC-IO Style File Handling

see(+File_or_stream)

Makes File_or_stream the current input stream.

• If there is an open input stream associated with the file that has File_or_stream

as its file name, and that stream was opened previously, then it is made
the current input stream.

• Otherwise, the specified file is opened for input and made the current input
stream. If the file does not exist, see/1 throws a permission error.
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Note that see/1 is incompatible with ISO aliases – calling see(Alias) with
an ISO alias will try to open a file named Alias rather than using the alias.
Also note that different file names (that is, names which do not unify) represent
different input streams (even if these different file names correspond to the same
file).

Error Cases

• File_or_stream is a variable

– instantiation_error

• File_or_stream is neither a variable nor an atomic file identifier nor a
stream identifier.

– domain_error(stream_or_path,F)

• File File_or_stream is directory or file is not readable.

– permission_error(open,file,F)

• File File_or_stream does not exist.

– existence_error(stream_or_path,F)

seeing(?F)

F is unified with the name of the current input stream. This is exactly the
same with predicate current_input/1 described in Section 6.12, and it is only
provided for upwards compatibility reasons.

seen

Closes the current input stream. Current input reverts to “userin” (the stan-
dard input stream).

tell(+F)

Makes file F the current output stream.

• If there is an open output stream associated with F and that was opened
previously by tell/1, then that stream is made the current output stream.

• Otherwise, the specified file is opened for output and made the current
output stream. If the file does not exist, it is created.

Also note that different file names (that is, names which do not unify) represent
different output streams (even if these different file names correspond to the
same file).

The implementation of the ISO predicate set_output/1, is essentially that of
tell/1.
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Error Cases

• File_or_stream is a variable

– instantiation_error

• File_or_stream is neither a variable nor an atomic file identifier nor a
stream identifier.

– domain_error(stream_or_path,F)

• File File_or_stream is directory or file is not readable.

– permission_error(open,file,F)

• File File_or_stream does not exist.

– existence_error(stream_or_path,F)

telling(?F)

F is unified with the name of the current output stream. This predicate is
exactly the same with predicate current_output/1 described in Section 6.12,
and it is only provided for upwards compatibility reasons.

told

Closes the current output stream. Current output stream reverts to “userout”
(the standard output stream).

file_exists(+F)

Succeeds if file F exists. F must be instantiated to an atom at the time of the
call, or an error message is displayed on the standard error stream and the
predicate aborts.

Error Cases

instantiation_error F is uninstantiated.

url_encode(+Filename,-EncodedFilename)

This predicate is useful when one needs to create a file whose name contains
forbidden characters, such as >, <, and the like. It takes a string and encodes
any forbidden character using an appropriate %-sequence of characters that is
acceptable as a file name in any OS: Unix, Windows, or Mac. For instance,

| ?- url_encode(’http://foo’’>$’,X).

X = http%3a%2f%2ffoo%27%3e%24
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url_decode(+Filename,-EncodedFilename)

This predicate performs the inverse operation with respect to url_encode/2.
For instance,

| ?- url_decode(’http%3a%2f%2ffoo%27%3e%24’,X).

X = http://foo’>$

6.1.5 Character I/O

Beginning with Version 3.8, XSB supports Unicode in the form of UTF-8 characters.
Due to this change, we recommend using ISO-compliant character I/O predicates,
rather than older predicates such as get/1, get0/1, put/1 and so on. As the use of
these older predicates may sometines give unexpected answers when used with non-
ASCII characters, they are deprecated, athough they are still available for backward
compatibility.

get_char(+Stream_or_alias,?Char) ISO
Unifies Char with the next UTF-8 character from Stream_or_alias, advancing
the position of the stream. Char is unified with the atom end_of_file if an
end of file condition is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

get_char(?Char) ISO
Behaves as get_char/2, but reads from the current input stream.

Error Cases



CHAPTER 6. STANDARD AND GENERAL PREDICATES 162

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

get_code(+Stream_or_alias,?Code) ISO
Code unifies with the UTF-8 code of the next character from Stream_or_alias.
The position of the stream is advanced. Char is unified with -1 if an end of file
condition is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Code is not a variable or character code

– domain_error(character_code_or_variable,Code)

get_code(?Code) ISO
Behaves as get_code/2, but reads from the current input stream 2.

Error Cases

• Code is not a variable or character code

– domain_error(character_code_or_variable,Code)

get_byte(+Stream_or_alias,?Byte) ISO
Byte unifies with the value of the the next byte from Stream_or_alias. The
position of the stream is advanced. Char is unified with -1 if an end of file
condition is detected. If reading from ASCII text, get_byte/2 will have the
same behavior as get_code/2, but in general get_code/2 may return multi-
byte characters

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

2The obsolescent predicate get0/1 is defined as get_code/1.
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– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Code is not a variable or character code

– domain_error(character_code_or_variable,Code)

get_byte/1 ISO
Behaves as get_byte/2, but reads from the current input stream 3.v

Error Cases

• Code is not a variable or Code is not a proper value for a byte

– domain_error(byte_code_or_variable,Code)

peek_char(+Stream_or_alias,?Char) ISO
Unifies Char with the next UTF-8 character from Stream_or_alias. The
position in Stream_or_alias is unchanged. Char is unified with the atom
end_of_file if an end of file condition is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

peek_char(?Char) ISO
Behaves as peek_char/2, but the current input stream is used.

Error Cases

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

3The obsolescent predicate get0/1 is defined using get_byte/1, but returns the next byte that
does not match an ASCII whitespace character.
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peek_code(+Stream_or_alias,?Code) ISO
Unifies Code with the next UTF-8 code from Stream_or_alias. The position
in Stream_or_alias is unchanged. Code is unified with -1 if an end of file
condition is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Code is not a variable or character.

– domain_error(character_code_or_variable,Code)

peek_code(?Code) ISO
Behaves as peek_code/2, but the current input stream is used.

Error Cases

• Char is not a variable or character.

– domain_error(character_code_or_variable,Code)

peek_byte(?Byte) ISO
Unifies Byte with the next byte from Stream_or_alias. The position in
Stream_or_alias is unchanged. Code is unified with -1 if an end of file condi-
tion is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Code is not a variable or character.

– domain_error(byte_code_or_variable,Code)
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peek_byte(?Byte) ISO
Behaves as peek_byte/2, but the current input stream is used.

Error Cases

• Char is not a variable or character.

– domain_error(byte_code_or_variable,Code)

put_char(+Stream_or_alias,+Char) ISO
Writes a UTF-8 character Char to Stream_or_alias.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Char is a not a character

– type_error(character,Char)

put_char(+Char) ISO
Puts a UTF-8 character Char to the current output stream.

Error Cases

• Code is a not a character.

– type_error(character,Char)

put_code(+Stream,+Code) ISO
Puts the character for the UTF-8 code Code to Stream_or_alias.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream
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– existence_error(stream,Stream_or_alias)

• Code is a not a character code

– type_error(character_code,Code)

put_code(+Code) ISO
Puts the character for the UTF-8 code Code to the current output stream 4.

Error Cases

• Code is a not a character code.

– type_error(character_code,Code)

nl ISO
A new line character is sent to the current output stream.

nl(+Stream_or_alias) ISO
A new line character is sent to the designated output stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

tab(+N)

Puts N spaces to the current output stream.

Error Cases

• Code is a not a positiveInteger

– domain_error(positiveInteger,Code)

4The obsolescent predicate put/1 is defined as put_code/1.
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6.1.6 Term I/O

Beginning with Version 3.8, XSB automatically supports Unicode in the form of
UTF-8 characters for reading and writing.

read(?Term) ISO
HiLog term is read from the current or designated input stream, and unified
with Term according to the operator declarations in force. (See Section 4.1 for
the definition and syntax of HiLog terms). The term must be delimited by a full
stop (i.e. a “.” followed by a carriage-return, space or tab). Predicate read/1

does not return until a valid HiLog term is successfully read; that is, in the
presence of syntax errors read/1 does not fail but continues reading terms until
a term with no syntax errors is encountered. If a call to read(Term) causes
the end of the current input stream to be reached, variable Term is unified with
the term end_of_file. In that case, further calls to read/1 for the same input
stream will cause an error failure.

In Version 3.8, read/[1,2] are non ISO-compliant in how they handle syntax
errors or their behavior when encountering an end of file indicator.

read(+Stream_or_alias, ?Term) ISO
read/2 has the same behavior as read/1 but the input stream is explicitly
designated by Stream_or_alias.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

read_canonical(-Term)

Reads a term that is in canonical format from the current input stream and
returns it in Term. On end-of-file, it returns the atom end_of_file. If it
encounters an error, it prints an error message on STDERR and returns the
atom read_canonical_error. This is significantly faster than read/1, but
requires the input to be in canonical form.
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read_canonical(+Stream_or_alias),-Term)

Behaves as read_canonical/1, but reads from Stream_or_alias.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

read_term(?Term,?OptionsList) ISO
A term is read from the current input stream as in read/1; but OptionsList is
a (possibly empty) list of read options that specifies additional behavior. The
read options include

• variables(Vars): once a term has been read, Vars is a list of the variables
in the term, in left-to-right order.

• variable_names(VN_List): once a term has been read VN_List is a list
of non-anonymous variables in the term. The elements of the list have the
form A = V where V is a non-anonymous variable of the term, and A is the
string used to denote the variable in the input stream.

• singletons(VS_List): once a term has been read VN_List is a list of the
non-anonymous singleton variables in the term. The elements of the list
have the form A = V where V is a non-anonymous variable of the term, and
A is the string used to denote the variable in the input stream.

Error Cases

• OptionsList is a variable, or is a list containing a variable element.

– instantiation_error

• OptionsList contains a non-variable element O that is not a read option.

– domain_error(read_option,O)

read_term(+Stream_or_alias, ?Term,?OptionsList) ISO
read_term/3 has the same behavior as read_term/2 but the input stream is
explicitly designated using the first argument.

Error Cases are the same as read_term/2, but with the additional errors that
may arise in stream checking.
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• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

write_term(?Term,+Options) ISO
Outputs +Term to the current output stream. Stream (write_term/3) accord-
ing to the list of write options, Options. The current set of write options which
form a superset of the ISO-standard write options, are as follows:

• quoted(+Bool). If Bool = true, then atoms and functors that can’t be
read back by read/1 are quoted, if Bool = false, each atom and functor
is written as its unquoted name. Default value is false.

• ignore_ops(+Bool). If Bool = true each compound term is output in
functional notation; curly brackets and list braces are ignored, as are all
explicitly defined operators. If Bool = false, curly bracketed notation
and list notation is enabled when outputting compound terms, and all
other operator notation is enabled. Default value is false.

• numbervars(+Bool). If Bool = true, a term of the form ’$VAR’(N)

where N is an integer, is output as a variable name consisting of a capital
letter possibly followed by an integer. A term of the form ’$VAR’(Atom)

where Atom is an atom, is output as itself (without quotes). Finally, a term
of the form ’$VAR’(String) where String is a character string, is output
as the atom corresponding to this character string. If bool is false this
cases are not treated in any special way. Default value is false.

• max_depth(+Depth). Depth is a positive integer or zero. If positive, it
denotes the depth limit on printing compound terms. If Depth is zero,
there is no limit. Default value is 0 (no limit).

• priority(+Prio) Prio is an integer between 1 and 1200. If the term to
be printed has higher priority than Prio, it will be printed parenthesized.
Default value is 1200 (no term parenthesized).

From the following examples it can be seen that write_term/[2,3] can dupli-
cate the behavior of a number of other I/O predicates such as write/[1,2],
writeq/[1,2], write_canonical/[1,2], etc.
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| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),[]).

f(1 + 2,A,"string",$VAR(3),$VAR(Temp),(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true)]).

f(1 + 2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true),ignore_ops(true),numbervars(true)]).

f(+(1,2),’A’,’.’(115,’.’(116,’.’(114,’.’(105,’.’(110,’.’(103,[])))))),D,Temp,(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true),ignore_ops(true),numbervars(true),priority(1000)]).

f(+(1,2),’A’,’.’(115,’.’(116,’.’(114,’.’(105,’.’(110,’.’(103,[])))))),D,Temp,multifile(foo)

yes

Error Cases

• Options is a variable

– instantiation_error

• Options neither a variable nor a list

– type_error(list,Options)

• Options contains a variable element, O

– instantiation_error

• Options contains an element O that is neither a variable nor a write option.

– domain_error(write_option,O)

ISO Compatibility Note: In Version 3.8, write_term/[2,3] do not properly
handle operators.

write_term(+Stream_or_alias,?Term,+Options) ISO
Behaves as write_term/2, but writes to Stream_or_alias.

Error Cases are the same as write_term/2 but with these additions.

• Stream_or_alias is a variable
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– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

write(?Term) ISO
Semantically, write/1 behaves as if write_term/1 were invoked using quoted(false),
ignore_ops(false), and numbervars(false). Attributed variables are writ-
ten according to the value of the Prolog flag write_attributes (cf. current_prolog_flag/2).

The HiLog term Term is written to the current output stream, according to
the operator declarations in force. Any uninstantiated subterm of term Term is
written as an anonymous variable (an underscore followed by a token).

All proper HiLog terms (HiLog terms which are not also Prolog terms) are
not written in their internal Prolog representation. write/1 always succeeds
without producing an error.

HiLog (or Prolog) terms that are output by write/1 cannot in general be read
back using read/1. This happens for two reasons:

• The atoms appearing in term Term are not quoted. In that case the user
must use writeq/1 or write_canonical/1 described below, which quote
around atoms whenever necessary.

• The output of write/1 is not terminated by a full-stop; therefore, if the
user wants the term to be accepted as input to read/1, the terminating
full-stop must be explicitly sent to the current output stream.

write/1 treats terms of the form ’$VAR’(N), which may be generated by
numbervars/[1,3] specially: it writes ’A’ if N=0, ’B’ if N=1, . . ., ’Z’ if N=25,
’A1’ if N=26, etc. ’$VAR’(-1) is written as the anonymous variable ’_’.

write(+Stream_or_alias, ?Term) ISO
write/2 has the same behavior as write/1 but the output stream is explicitly
designated using the first argument.

Error Cases are the same as read_term/2, but with the additional errors that
may arise in stream checking.

• Stream_or_alias is a variable

– instantiation_error
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• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

writeq(?Term) ISO
Acts as write_term/1 when defined with the options quoted(true), numbervars(true),
and ignore_ops(false). In other words, atoms and functors are quoted when-
ever necessary to make the result acceptable as input to read/1 writeq/1 also
treats terms of the form ’\VAR’(N) specially, writing A if N= 0, etc., and output
is in accordance with current operator definitions. writeq/1 always succeeds
without producing an error.

writeq(+Stream_or_alias, ?Term) ISO
writeq/2 has the same behavior as writeq/1 but the output stream is explicitly
designated using the first argument.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

write_canonical(?Term) ISO
This predicate is provided so that the HiLog term Term, if written to a file,
can be read back using read_canonical/[1,2] or read/[1,2] regardless of
special characters appearing in Term or prevailing operator declarations. Like
write_prolog/1, write_canonical/1 writes all proper HiLog terms to the
current output stream using the standard Prolog syntax (see Section 4.1 on the
standard syntax of HiLog terms). write_canonical/1 also quotes atoms and
functors as writeq/1 does, to make them acceptable as input of read/1. Except
for list-notation ([]) and infix comma-list notation, operator declarations are
not taken into consideration, so that apart from these exceptions compound
terms are written in the form:

〈predicate name〉(〈arg1〉, . . . , 〈argn〉)
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Unlike writeq/1, write_canonical/1 does not treat terms of the form ’$VAR’(N)

specially. It writes square bracket lists using ’.’/2 and [] (that is, [foo, bar]

is written as ’.’(foo,’.’(bar,[]))).

Finally, write canonical/2 writes attributed variables as simple variables.

ISO Compatibility Note: In XSB, list notation and infix comma-list nota-
tion are considered canonical both for reading and writing. We find that this
improves readability, and that these operators are so standard that there is little
likelihood that they will not be in effect by any Prolog reader. We therefore
deviate from the ISO standard definition of canonical in these cases.

write_canonical(+Stream_or_alias, ?Term) ISO
write_canonical/2 has the same behavior as write_canonical/1 but the
output stream is explicitly designated using the first argument.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

writeln(?Term)

writeln(Term) can be defined as write(Term), nl.

writeln(+Stream,?Term)

writeln(Term) can be defined as write(Stream,Term), nl(Stream).

write_prolog(?Term) HiLog

write_prolog(+Stream_or_alias,?Term) HiLog
write_prolog/1 acts as write/1 except that any proper HiLog term Term is
written using Prolog syntax – i.e. as a term whose outer functor is apply.
write_prolog/1 outputs Term according to the operator declarations in force.
Because of this, it differs from write_canonical/1 described above, despite
the fact that both predicates write HiLog terms as Prolog terms.

write_prolog/2 has the same behavior as write_prolog/1 but the output
stream is explicitly designated using the first argument. Error Cases for write_prolog/2

are the same as for write/2.

Examples:
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| ?- write_prolog(X(a,1+2)).

apply(_h120,a,1 + 2)

yes

| ?- write(X(a,1+2)).

_h120(a,1 + 2)

yes

| ?- write_canonical(X(a,1+2)).

apply(_h120,a,+(1,2))

yes

numbervars(+Term, +FirstN,?LastN,+Options) module: num_vars

This predicate provides a mechanism for grounding a (HiLog) term so that it
may be analyzed. Each variable in the (HiLog) term Term is instantiated to
a term of the form ’$VAR’(N), where N is an integer starting from FirstN.
FirstN is used as the value of N for the first variable in Term (starting from the
left). The second distinct variable in Term is given a value of N satisfying "N is

FirstN + 1" and so on. The last variable in Term has the value LastN-1.

In numbervars/4, Options can be used to indicate the action to take upon
encountering an attributed variable. Currently, Options must be either be the
empty list, or the list [attvar(Action)] or the term attvar(Action), where
Action is

• error Throw a type error if an attributed variable is encountered.

• bind Bind attributed variables by unifying them with terms of the form
’$VAR’(N).

• skip Skip over attributed variables, performing no action on these vari-
ables.

Error Cases

• Options is a variable

– instantiation_error

• Options is not an empty list, the list [attvar(Action)] or the term
attvar(Action) where Action is one of bind, error or skip:

– domain_error

numbervars(+Term, +FirstN, ?LastN) module: num_vars

Acts as numbervars(+Term, +FirstN, ?LastN,attvar(error)).
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numbervars(+Term) module: num_vars

This predicate is defined as: numbervars(Term, 0, _). It is included solely
for convenience.

unnumbervars(+Term, +FirstN, ?Copy) module: num_vars

This predicate is a partial inverse of predicate numbervars/3. It creates a
copy of Term in which all subterms of the form ’$VAR’(<int>) where <int>

is not less than FirstN are uniformly replaced by variables. ’$VAR’’ sub-
terms with the same integer are replaced by the same variable. Also a version
unnumbervars/2 is provided which calls unnumbervars/3 with the second pa-
rameter set to 0.

Term Writing to Designated I/O Streams

While XSB has standard I/O streams for errors, warnings, messages, and feedback (cf.
Section 6.1.1), the predicates above write to STDOUT which is the standard output for
the process. Most of the time there is no issue with this as these streams are aliased
to STDOUT. However in a number of circumstances, STDOUT may be redirected: a user
may have invoked tell/1, XSB may be invoked through C or interprolog, etc. In such
cases, it may be useful to ensure that output goes to one of the other I/O streams.

error_write(?Message) module: standard
error_writeln(?Message) module: standard

These predicates output Message to XSB’s STDERR stream, rather than to XSB’s
STDOUT stream, as does write/1 and writeln/1. In addition, if Message is a
list or comma list, the elements in the comma list are output as if they were
concatenated together. Each of these predicates must be imported from the
module standard.

console_write(?Message) module: standard
console_writeln(?Message) module: standard

As above, but writes to STDFDBK, the console feedback stream.

warning(?Message) module: standard

By default, this predicate outputs Message to XSB’s STDWARN stream, rather
than to XSB’s STDOUT stream, as does write/1 and writeln/1. In addition, if
Message is a list or comma list, the elements in the comma list are output as
if they were concatenated together. Each of these predicates must be imported
from the module standard.
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The default behavior for warnings can be altered by setting the value of the
Prolog flag warning_action to either silent_warning which performs no ac-
tion when warning/1 is called. or error_warning which throws a miscellaneous
exception when warning/1 is called (WARNING: this includes compiler warn-
ings). The default behavior can be restored by setting warning_action to
print_warning.

message(?Message) module: standard
messageln(?Message) module: standard

As above, but writes to STDMSG the standard stream for messages.

6.1.7 Special I/O

fmt_read(+Fmt,-Term,-Ret)

fmt_read(+Stream,+Fmt,-Term,-Ret)

These predicates provides a routine for reading data from the current input
file (which must have been already opened by using see/1) according to a C
format, as used in the C function scanf. Fmt must be a string of characters
(enclosed in ") representing the format that will be passed to the C call to
scanf. See the C documentation for scanf for the meaning of this string. The
usual alphabetical C escape characters (e.g., \n) are recognized, but not the
octal or the hexadecimal ones. Another difference with C is that, unlike most
C compilers, XSB insists that a single % in the format string signifies format
conversion specification. (Some C compilers might output % if it is not followed
by a valid type conversion spec.) So, to output % you must type %%. Format
can also be an atom enclosed in single quotes. However, in that case, escape
sequences are not recognized and are printed as is.

Term is a term (e.g., args(X,Y,Z)) whose arguments will be unified with the
field values read in. (The functor symbol of Term is ignored.) Special syntactic
sugar is provided for the case when the format string contains only one format
specifier: If Term is a variable, X, then the predicate behaves as if Term were
arg(X).

If the number of arguments exceeds the number of format specifiers, a warning
is produced and the extra arguments remain uninstantiated. If the number of
format specifiers exceeds the number of arguments, then the remainder of the
format string (after the last matching specifier) is ignored.

Note that floats do not unify with anything. Ret must be a variable and it will
be assigned a return value by the predicate: a negative integer if end-of-file is
encountered; otherwise the number of fields read (as returned by scanf.)
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fmt_read cannot read strings (that correspond to the %s format specifier) that
are longer than 16K. Attempting to read longer strings will cause buffer overflow.
It is therefore recommended that one should use size modifiers in format strings
(e.g., %2000s), if such long strings might occur in the input.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

If the number of arguments in Term is greater than the number of conversion
specifiers in Fmt no error is thrown, but a warning is issued.

fmt_write(+Fmt,+Term)

fmt_write(+Stream_or_alias,+Fmt,+Term)

These predicates provide routines for writing formatted data to a given output
stream (fmt_write/3) or the current output stream (fmt_write/2).

Fmt should be a Prolog character list (string) or atom. A Prolog character
list is preferred, as space can be more easily reclaimed for character lists than
for atoms. Term is a Prolog term (e.g., args(X,Y,Z)) whose arguments will
be output. The number of arguments in Term should equal the number of
conversion specifiers in Fmt. The functor symbol of Term is ignored 5.

Allowable syntaxes for Fmt reflect the syntax of the C function printf() on a
given platform, with the following exceptions

• The usual alphabetical C escape characters (e.g., \n) are recognized, but
not the octal or the hexadecimal ones.

• %S is supported, in addition to the usual C conversion specifiers. The
corresponding argument can be any Prolog term. This provides an easy
way to print the values of Prolog variables, etc.

• %! is supported and indicates that the corresponding argument is to be
ignored and will generate nothing in the output.

5In the case where Fmt contains only a single conversion specifier, Term may be a string, integer
or a float, and is considered to be equivalent to specifying arg(Term).
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• A single % in the format string must be followed by a conversion operator
(e.g. d, s, etc.). (Some C compilers output % if the percentage character
is not followed by a valid type conversion spec.) However, to output %,
fmt_write must contain %%.

Example

| ?- fmt_write("%d %f %s %S \n",args(1,3.14159,ready,hello(world))).

1 3.141590 ready hello(world)

yes

XSB also offers an alternate version of formatted output in the format library
described in volume 2. While not as efficient as fmt_write/[2,3], the format

library is more compatible with the formatted output found in other Prologs.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

• Fmt is uninstantiated or not a character string or atom

– type_error(’character string or atom’,Fmt)

• A format specifier in Fmt and its corresponding argument in Term are of
incompatible types.

– misc_error

• Term contains fewer arguments than Fmt has format specifiers or Term is
uninstantiated

– misc_error

If the number of arguments in Term is greater than the number of conversion
specifiers in Fmt no error is thrown, but a warning is issued.

Caution for 64-bit Platforms As discussed, fmt_write/[2,3] calls printf()

and inherits the flexibility of that function, but also its “features”. One of
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these features is that in most 64-bit platforms, large integers that behave per-
fectly well otherwise are not printed out properly by printf() with the %d

format – rather another format string needs to be used (such as %ld on Linux).
fmt_write/[1,2] recognizes the %ld option and passes it onto fprintf(), but
the proper format string for 64-bit integers may be different on other platforms.

fmt_write_string(-String,+Fmt,+Term)

This predicate works like the C function sprintf. It takes the format string
and substitutes the values from the arguments of Term (e.g., args(X,Y,Z))
for the formatting instructions %s, %d, etc. Additional syntactic sugar, as in
fmt_write, is recognized. The result is available in String. Fmt is a string or
an atom that represents the format, as in fmt_write.

If the number of format specifiers is greater than the number of arguments to
be printed, an error is issued. If the number of arguments is greater, then a
warning is issued.

fmt_write_string requires that the printed size of each argument (e.g., X,Y,and
Z above) must be less than 16K. Longer arguments are cut to that size, so some
loss of information is possible. However, there is no limit on the total size of
the output (apart from the maximum atom size imposed by XSB).

file_read_line_list(-String)

A line read from the current input stream is converted into a list of character
codes. This predicate avoids interning an atom as does file_read_line_atom/3,
and so is recommended when speed is important. This predicate fails on reach-
ing the end of file.

file_read_line_list(Stream_or_alias,-CharList)

Acts as does file_read_line_list, but uses Stream_or_atom.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

file_read_line_atom(-Atom)

Reads a line from the current (textual) input stream, returning it as Atom. This
predicate fails on reaching the end of file.
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file_read_line_atom(+Stream_or_alias,-Atom)

Like file_read_line_atom/1 but reads from Stream_or_alias. Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

file_write_line(+String, +Offset) module: file_io
file_write_line(+Stream_or_alias, +String, +Offset) module: file_io

These predicates write String beginning with character Offset to the current
output stream. String can be an atom or a list of UTF-8 character codes.
This does not put the newline character at the end of the string (unless String

already had this character). Note that escape sequences, like \n, are recognized
if String is a character list, but are output as is if String is an atom.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• String is neither a Prolog character list not an atom

– misc_error

file_getbuf_list(+Stream_or_alias, +BytesRequested, -CharList, -BytesRead)

module: file_io

Read BytesRequested bytes from file represented by Stream_or_alias (which
must already be open for reading) into variable String as a list of character
codes. This is analogous to fread in C. This predicate always succeeds. It does
not distinguish between a file error and end of file. You can determine if either of
these conditions has happened by verifying that BytesRead < BytesRequested.
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file_getbuf_list(+BytesRequested, -String, -BytesRead) module: file_io

Like file_getbuf_list/3, but reads from the currently open input stream
(i.e., with see/1).

file_getbuf_atom(+Stream_or_alias, +BytesRequested, -String, -BytesRead)

module: file_io

Read BytesRequested bytes from file represented by Stream_or_alias (which
must already be open for reading) into variable String. This is analogous to
fread in C. This predicate always succeeds. It does not distinguish between a
file error and end of file. You can determine if either of these conditions has
happened by verifying that BytesRead < BytesRequested.

Note: although XSB has an atom table garbage collector, this predicate is
inefficent to read large files. It is usually best to use read_getbuf_list or
another predicate in such a case.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

file_getbuf_atom(+BytesRequested, -String, -BytesRead) module: file_io

Like file_getbuf_atom/4, but reads from the currently open input stream.

file_putbuf(+Stream_or_alias, +BytesRequested, +String, +Offset, -BytesWritten)

module: file_io

Write BytesRequested bytes into file represented by I/O port Stream_or_alias

(which must already be open for writing) from variable String at position
Offset. This is analogous to C fwrite. The value of String can be an atom
or a list of UTF-8 characters.

Error Cases

• Stream_or_alias is a variable

– instantiation_error
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• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

file_putbuf(+BytesRequested, +String, +Offset, -BytesWritten) module:
file_io

Like file_putbuf/3, but output goes to the currently open output stream.

6.2 Interactions with the Operating System

XSB provides a number of facilities for interacting with the UNIX and Windows
operating systems. This section describes basic facilities for invoking shell commands
and file manipulation. Chapter 1 of Volume 2 discusses more advanced commands
for process spawning and control, along with interprocess communication.

shell(+SystemCall)

Calls the operating system with the atom SystemCall as argument, using the
libc function system(). The predicate succeeds if SystemCall is executed
successfully; otherwise it fails. As a convenience, the user can also supply
SystemCall either as an atom or as a list of atoms. If a list of atoms is used,
elements of the list will be concatenated together to form the system call.

For example, the call:

| ?- shell(’echo $HOME’).

will output in the current output stream of XSB the name of the user’s home
directory; while the call:

| ?- File = ’test.c’, shell([’cc -c ’, File]).

will call the C compiler to compile the file test.c.

Note that in UNIX systems, since system() (and shell/1) executes by forking
off a shell process. Thus it cannot be used, for example, to change the working
directory of the program. For that reason the standard predicate cd/1 described
below should be used.

Error Cases

• SystemCall is a variable
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– instantiation_error

• SystemCall is neither an atom nor a list

– type_error(atom_or_list,SystemCall)

• SystemCall is longer than the maximum command length allowed by
shell/1

– resource_error(memory)

shell(+SystemCall, -Result)

As with shell/1, this predicate calls the operating system with the atom
SystemCall as argument, using the libc function system() using the same
forms of input. shell/2 always succeeds instantiating Result to the exit code
of system(). Thus Result will be 0 if ⁀SystemCall executed properly, and non-0
otherwise: the specific return values of system() may be platform-dependent.

Error Cases

• SystemCall is a variable

– instantiation_error

• SystemCall is neither an atom nor a list

– type_error(atom_or_list,SystemCall)

• Result is not a variable

– type_error(variable,Result)

• SystemCall is longer than the maximum command length allowed by
shell/2

– resource_error(memory)

shell_to_list(+SystemCall,-StdOut,-ErrOut,-Result)

shell_to_list(+SystemCall,-StdOut,-Result)

Behaves as shell/2 in its 1st and 4th arguments, and like shell/2 always
succeeds. Both StdOut and ErrOut are lists of lists: each element of the outer
list corresponds to a line of output from SystemCall, while each element of an
inner list corresponds to a token in that line. shell_to_list/3 is thus a sort
of Prolog analog of the shell command designated by SystemCall.

Examples (from OSx):

?- shell_to_list(sw_vers,Stdout,Ret).
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Stdout = [[ProductName:,Mac,OS,X],[ProductVersion:,10.4.9],[BuildVersion:,8P2137]]

Ret = 0

?- shell_to_lists(’gcc -c nofile.c’,StdOut,StdErr,Ret).

Stdout = []

StdErr = [[i686-apple-darwin8-gcc-4.0.1:,nofile.c:,No,such,file,or,directory]]

Ret = 256

Error cases are as with shell/2

datime(?Date) module: standard

Unifies Date to the current UTC date, returned as a Prolog term, suitable for
term comparison. Note that datime/1 must be explicitly imported from the
module standard.

Example:

> date

Mon Aug 9 16:19:44 EDT 2004

> xsb

XSB Version 2.6 (Duff) of June 24, 2003

[i686-pc-cygwin; mode: optimal; engine: slg-wam; gc: indirection; scheduling: local]

| ?- import datime/1 from standard

yes

| ?- datime(F).

F = datime(2004,8,9,20,20,23)

yes

local_datime(?Date) module: standard

Acts as datime/1, but returns the local, rather than the UTC date.

epoch_seconds(-Seconds) module: machine
epoch_milliseconds(-Seconds,-Milliseconds) module: machine

Returns the number of seconds since the beginning of the POSIX/UNIX epoch
(January 1, 1970) 6. May cause overflow on 32-bit platforms. epoch_milliseconds/2

returns both the number of seconds and the number of additional milliseconds
since the last whole second.

6Uses the Posix call time(0), so the number of seconds will be returned on non-Unix platforms,
such as Microsoft.
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sleep(+Seconds) module: shell

Put XSB to sleep for a given number of seconds.

Error Cases

• Seconds is a variable

– instantiation_error.

• Seconds is not an integer

– type_error(integer, Seconds).

cd(+Dir)

Under UNIX and Windows, this predicate changes the interpreter’s working
directory to Dir. If the directory specified does not exist or is not a directory,
or the user does not have execute permission for that directory, predicate cd/1

simply fails raising a permission error.

Error Cases

instantiation_error Dir is not instantiated at the time of call.

type_error Dir is not an atom.

getenv(+VarName,-VarVal) module: machine

Unifies VarVal with the value of VarName in the current shell. If VarName is not
an environment varible, the predicate fails.

Example:

:- import getenv/2 from machine.

yes

| ?- getenv(’HOSTTYPE’,F).

F = intel-pc

putenv(+String) module: machine

If String is of the form VarName=Value, inserts or resets the environment vari-
able VarName. If VarName does not exist, it is inserted with VarVal. If the
VarName does exist, it is reset to VarVal. putenv/2 always succeeds.

Exceptions:

instantiation_error String is not instantiated at the time of call.

type_error VarName or VarVal is not an atom or a list of atoms.
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6.2.1 The path_sysop/2 interface

In addition, XSB provides the following unified interface to the operations on files.
All these calls succeed iff the corresponding system call succeeds. These calls work
on both Windows and Unixes unless otherwise noted.

path_sysop(isplain, +Path)

Succeeds, if Path is a plain file.

path_sysop(isdir, +Path)

Succeeds, if Path is a directory.

path_sysop(rename, +OldPath, +NewPath)

Renames OldPath into NewPath.

path_sysop(copy, +FromPath, +ToPath)

Copies FromPath into ToPath.

path_sysop(rm, +Path)

Removes the plain file Path.

path_sysop(rmdir, +Path)

Deletes the directory Path, succeeding only if the directory is empty.

path_sysop(rmdir_rec, +Path)

Deletes the directory Path along with any of its contents.

path_sysop(link, +SrsPath, +DestPath)

Creates a hard link from SrsPath to DestPath. UNIX only.

path_sysop(cwd, -Path)

Binds Path to the current working directory.

path_sysop(chdir, +Path)

Changes the current working directory to Path.

path_sysop(mkdir, +Path)

Creates a new directory, Path.

path_sysop(exists, +Path)

Succeeds if the file Path exists.

path_sysop(readable, +Path)

Succeeds if Path is a readable file.
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path_sysop(writable, +Path)

Succeeds if Path is a writable file.

path_sysop(executable, +Path)

Succeeds if Path is an executable file.

path_sysop(modtime, +Path, -Time)

Returns a list that represents the last modification time of the file. Succeeds if
file exists. In this case, Time is bound to a list [high,low] where low is the
least significant 24 bits of the modification time and high is the most significant
bits (25th) and up. Time represents the last modification time of the file. The
actual value is thus high ∗ 224 + low, which represents the number of seconds
elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC).

path_sysop(newerthan, +Path1, +Path2)

Succeeds is the last modification time of Path1 is higher than that of Path2.
Also succeeds if Path1 exists but Path2 does not.

path_sysop(size, +Path, -Size)

Returns a list that represents the byte size of Path. Succeeds if the file exists.
In this case Size is bound to the list of the form [high,low] where low is the
least significant 24 bits of the byte-size and high is the most significant bits
(25th) and up. The actual value is thus high ∗ 224 + low.

path_sysop(tmpfilename, -Name)

Returns the name of a new temporary file. This is useful when the application
needs to open a completely new temporary file.

path_sysop(extension, +Name, -Ext)

Returns file name extension.

path_sysop(basename, +Name, -Base)

Returns the base name of the file name (i.e., the name sans the directory and
the extension).

path_sysop(dirname, +Name, -Dir)

Returns the directory portion of the filename. The directory is slash or backslash
terminated.

path_sysop(isabsolute, +Name)

Succeeds if Name is an absolute path name. File does not need to exist.
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path_sysop(expand, +Name, -ExpandedName)

Binds ExpandedName to the expanded absolute path name of Name. The file
does not need to exist. Duplicate slashes, references to the current and parent
directories are factored out.

6.3 Evaluating Arithmetic Expressions through is/2

Before describing is/2 and the expressions that it can evaluate, we note that in
Version 3.8 of XSB, integers in XSB are represented using a single word of 32 or 64
bits, depending on the machine architecture. Floating point values are, by default,
stored as word-sized references to double precision values, regardless of the target
machine. Direct (non-referenced, tagged) single precision floats can be activated for
speed purposes by passing the option –enable-fast-floats to the configure script at
configuration time. This option is not recommended when any sort of precision is
desired, as there may be as little as 28 bits available to represent a given number
value under a tagged architecture.

All of the evaluable functors described below throw an instantiation error if one
of their evaluated inputs is a variable, and an evaluation(undefined) error if one
of their evaluated inputs is instantiated but non-numeric. With this in mind, we
describe below only their behavior on correctly typed input.

ISO Compatibility Note: In addition, evaluation of arithmetic expressions
through is/2 does not check for overflow or underflow. As a result, XSB’s float-
ing point operations do not conform to IEEE floating point standards, and deviates
in this regard from the ISO Prolog standard (see [37] Section 9) We hope to fix these
problems in a future release 7.

is(?Result,+Expression) ISO
is(Result,Expression) is true iff the result of evaluating Expression as a
sequence of evaluable functors unifies with Result. As mentioned in Sec-
tion 3.10.6, is/2 is an inline predicate, so calls to is/2 within compiled code
will not be visible during a trace of program execution.

Error Cases

instantiation_error Expression contains an uninstantiated value

7We also note that the ISO Prolog evaluable functorsfloat_integer_part/1 (which can be ob-
tained via truncate/1), float_fractional_part/1 (which can be obtained via X - truncate(X)),
and bitwise complement (which is implementation dependent in the ISO standard) are not imple-
mented in Version 3.8.
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domain_error(< function >, < value > Expression contains a function ap-
plied to value, but value is not part of the domain of function.

For is/2 the action for the above error cases can be altered so that the is/2

literal is treated as having a truth value of undefined in the well-founded se-
mantics. This is done via the Prolog flag exception_action.

6.3.1 Evaluable Functors for Arithmetic Expressions

+(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1

+ Number2, performing any necessary type conversions.

-(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1

- Number2, performing any necessary type conversions.

*(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1

* Number2 (i.e. multiplies them), performing any necessary type conversions.

/(+Expr1,Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1

/ Number2 (i.e. divides them), performing any necessary type conversions.

div(+Expr1,Expr2) ISO

//(+Expr1,Expr2) Evaluable Functor
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1

// Number2 (i.e. integer division), performing any necessary type conversions,
and rounding to 0 if necessary.

Example:

| ?- X is 3/2.

X = 1.5000

yes

| ?- X is 3 // 2.

X = 1

yes
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| ?- X is -3 // 2.

X = -1

yes

-(+Expr1) Evaluable Functor (ISO)
If +Expr evaluates to Number, returns -Number1, performing any necessary type
conversions.

’∧’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the
bitwise conjunction of Number1 and Number2.

’∨’(+Expr1,+Expr2) Evaluable Functor (ISO)

If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the
bitwise disjunction Number1 and Number2.

’»’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the
logical shift right of Number1, Number2 places.

’«’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the
logical shift left of Number1, Number2 places.

xor(+Expr1,+Expr2) ISO

’><’(+Expr1,+Expr2) Evaluable Functor
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the
bitwise exclusive or of Number1 and Number2.

min(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the
minimum of the two.

max(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the
maximum of the two.
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ceiling(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, ceiling(Number) returns the integer ceiling of
Number if Number is a float, and Number itself if Number is an integer.

float(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, float(Number) converts Number to a float if
Number is an integer, and returns Number itself if Number is a float.

floor(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, floor(Number) returns the integer floor of Number

if Number is a float, and Number itself if Number is an integer.

mod(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1 and Expr2 evaluates to Number2 where Number2

is not 0, mod(Number1,Number2) returns

Number1 − (⌊(Number1/Number2)⌋) × Number2)

rem(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1 and Expr2 evaluates to Number2 where Number2

is not 0, rem(Number1,Number2) returns

Number1 − (Number1//Number2) × Number2)

Example:

| ?- X is 5 mod 2.

X = 1

yes

| ?- X is 5 rem 2.

X = 1

yes

| ?- X is 5 mod -2.

X = -1

yes

| ?- X is 5 rem -2.

X = 1

yes
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round(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, round(Number) returns the nearest integer to
Number if Number is a float, and Number itself if Number is an integer.

^/2 Evaluable Functor (ISO)
If Expr1 and Expr2 both evaluate to numbers, the infix function ^/2 raises
Expr1 to the Expr2 power. If Expr1 and Expr2 both evaluate to integers, an
integer is returned; otherwise a float is returned.

’**’(+Expr1,+Expr2) Evaluable Functor (ISO)
If Expr1 and Expr2 both evaluate to numbers, the infix function **/2 raises
Expr1 to the Expr2 power. A floating-point number is always returned.

sqrt(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sqrt(Number) returns the square root of Number.

truncate(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, truncate(Number) truncates Number if Number

is a float, and returns Number itself if Number is an integer.

sign(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sign(Number) returns 1 if Number is greater than
0, 0 if Number is equal to 0, and -1 if Number is less than 0.

pi Evaluable Functor (ISO)
Evaluates to π within an arithmetic expression.

e Evaluable Functor
Evaluates to e, the base of the natural logarithm, within an arithmetic expres-
sion. (Use exp(1) for ISO compatibility.)

epsilon Evaluable Functor
Evaluates to epsilon, the difference between the float 1.0 and the first larger
floating point number.

Mathematical Functions from math.h

XSB also allows as evaluable functors, many of the functions from the C library
math.h. Functions included in XSB Version 3.8 are cos/1 (ISO), sin/1 (ISO), tan/1

(ISO), acos/1 (ISO), asin/1 (ISO), atan/1 (ISO), log/1 (natural logarithm) (ISO),
log10/1, and atan/2 (ISO) (also available as atan2/2). For their semantics, see
documentation to math.h.
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6.4 Convenience

These predicates are standard and often self-explanatory, so they are described only
briefly.

true ISO
Always succeeds.

otherwise

Same as true/0.

fail ISO
Always fails.

false ISO
Same as fail/0.

6.5 Negation and Control

’!’/0 ISO
Cut (discard) all choice points made since the parent goal started execution.

Cuts across tabled predicates are not valid. The compiler checks for such cuts,
although whether the scope of a cut includes a tabled predicate is undecidable
in the presence of meta-predicates like call/1. Further discussion of conditions
allowing cuts and of their actions can be found in Section 5.1.

\+ +P ISO
If the goal P has a solution, fails, otherwise it succeeds. Equivalently, it is true

iff call(P) (see Section 6.11) is false. Argument P must be ground for sound
negation as failure, although no runtime checks are made.

Error Cases

instantiation_error P is not instantiated.

type_error(callable,P) P is not callable.

fail_if(+P)

not +P

Like \+/1 and provided for compatibility with legacy code. Compilation of
\+/1 and fail_if/1 is optimized by XSB’s compiler, while that of not/1 is not
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– therefore the first two syntactical forms are preferred in terms of efficiency,
while \+/1 is preferred in terms of portability.

All error cases are the same as call/1 (see Section 6.11).

tnot(+P) Tabling
The semantics of tnot/1 allows for correct execution of programs with accord-

ing to the well-founded semantics. P must be a tabled predicate, For a detailed
description of the actions of tabled negation for in XSB Version 3.8 see [68, 70].
Chapter 5 contains further discussion of the functionality of tnot/1.

Error Cases

• P is not ground (floundering occurs)

– instantiation_error

• P is not callable

– type_error(callable,P)

• P is not a call to a tabled predicate

– table_error

not_exists(+P) Tabling
If +P is a tabled predicate, not_exists/1 acts as tnot/1 but permits variables
in its subgoal argument The semantics in the case of unbound variables is as
follows:

... :- ..., not_exists(p(X)), ...

is equivalent to

... :- ..., tnot(pp), ...

pp :- p(X).

where pp is a new proposition. Thus, the unbound variable X is treated as
tnot(∃X(p(X))).

If +P is a non-tabled predicate not_exists/1 ensures that +P is ground and
called via a tabled predicate so that not_exists/1 can be used with non-tabled
predicates as well, regardless of whether +P is ground or not 8.

not_exists/1 uses an auxiliary tabled predicate, tunnumcall/1 in its exe-
cution. Therefore to reclaim space at the predicate or call level (e.g. using

8In previous versions of XSB, not_exists/1 was called sk_not/1.
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abolish_table_pred/1 or similar predicates), tunnumcall/1 must be explic-
itly abolished.

Error Cases

• P is not instantiated

– instantiation_error

• P is not callable

– type_error(callable,P)

u_not(+P) module: tables

If P is ground (or cyclic), u_not(P) is equivalent to tnot(P); but u_not/1 pro-
vides a different semantics than tnot/1 or not_exists/1 if P is non-ground. In
this latter case, u_not(P) applies SLG delay to the goal P, explicitly indicating
that the default negation of P is floundered. This action is safe because any an-
swer that relies on not P will be undefined, rather than true or false. A current
limitation of u_not/1 is that while floundering correctly causes a literal to be
delayed, no simplification is ever performed if the delayed literal ever becomes
ground (see the example below). u_not/1 thus provides an informationally
sound but incomplete semantics for floundering.

Thus, the use of tnot/1, not_exists/1, or u_not/1 depends on two conditions.
not_exists/1 is the only one of these predicates that allows P to be a non-
tabled predicate. However as mentioned, their main difference is in handling
non-ground negative subgoals. If an error should be thrown for a non-ground
negative subgoal, tnot/1 should be used; if it is semantically correct to skolem-
ize if P is not ground, not_exists/1 should be used; if it is semantically correct
to treat the truth value of the negative subgoal as undefined, u_not/1 should
be used. From the perspective of performance, tnot/1 is fastest followed by
u_not/1 and then not_exists/1.

The following examples should clarify the behavior of u_not/1. For the program
fragment:

:- table p/1,q/1.

p(1):- u_not(q(X)).

q(1).

the goal p(V) returns

V = 1 undefined
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Examining this answer shows the following:

| ?- get_residual(p(1),Res).

Res = [floundered(q(_h258))].

The program fragment

:- table r/1,q/1.

r(1):- u_not(q(X)),s(X).

q(1).

s(1).

shows a limitation in the current implementation of u_not/1. The goal r(V)

returns

V = 1 undefined

as before. However, examining the answer shows

| ?- get_residual(r(1),Res

Res = [floundered(q(1))]

Note that the binding X=1 is propagated to the delayed literal after the resu-
lution of s(X). However, the call tnot(q(1)) is not made once X is bound, so
that the delayed literal does not fail.

Error Cases are the same as for tnot/1.

P -> Q ; R ISO
Analogous to if P then Q else R, i.e. defined as if by

(P -> Q ; R) :- P, !, Q.

(P -> Q ; R) :- R.

P -> Q ISO
When occurring other than as one of the alternatives of a disjunction, is equiv-

alent to:

P -> Q ; fail.
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repeat

Generates an infinite sequence of choice points (in other words it provides a
very convenient way of executing a loop). It is defined by the clauses:

repeat.

repeat :- repeat.

between(+L,+U,B) module: basics

For L and U integers, with L less than or equal to U, successive calls to between/3

unify B with all integers between L and U inclusively. If L is less than U the
predicate fails.

Error Cases:

• L (or U) is a not an integer

– type_error(integer,L)

(do_all +Goal)

Defines a failure driven loop, as if defined by:

(do_all Goal) :- (Goal, fail ; true).

The control operator, do_all/1 is defined as a prefix operator with precedence
1150.

(+CGoal do_all +Goal)

Defines a failure driven loop, as if defined by:

(CGoal do_all Goal) :-

common_vars(CGoal,Goal,CommonVars),

findall(CommonVars,CGoal,Vals),

sort(Vals,UniqueVals),

(basics:member(CommonVars,UniqueVals),

call(Goal),

fail

;

true

).

where common_vars/3 collects the variables that occur both in P and Q. The
control operator, do_all/2 is defined as an infix operator with precedence 1150.
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6.6 Unification and Comparison of Terms

The predicates described in this section allow unification and comparison of terms 9.

Like most Prologs, default unification in XSB does not perform a so-called occurs
check — it does not handle situations where a variable X may be bound to a structure
containing X as a proper subterm. For instance, in the goal

X = f(X) % incorrect!

X is bound to f(X) creating a term that is either cyclic or infinite, depending on
one’s point of view. Prologs in general perform unification without occurs check since
without occurs check unification is linear in the size of the largest term to be unified,
while unification with occurs check may be exponential in the size of the largest
term to be unified. Most Prolog programmers will rarely, need to concern themselves
with cyclic terms or unification with occurs check. However, unification with occurs
check can be important for certain applications, in particular when Prolog is used
to implement theorem provers or sophisticated constraint handlers. As a result XSB
provides an ISO-style implementation of the predicate unify_with_occurs_check/2

described below, as well as a Prolog flag unify_with_occurs_check that changes the
behavior of unification in XSB’s engine.

As opposed to unification predicates, term comparison predicates described below
take into account a standard total ordering of terms, which has as follows:

variables @ < floating point numbers @ < integers @ < atoms @ < compound terms

Within each one of the categories, the ordering is as follows:

• ordering of variables is based on their address within the SLG-WAM — the
order is not related to the names of variables. Thus note that two variables are
identical only if they share the same address – only if they have been unified or
are the same variable to begin with. As a corollary, note that two anonymous
variables will not have the same address and so will not be considered identical
terms. As with most WAM-based Prologs, the order of variables may change as
variables become bound to one another. If the order is expected to be invariant
across variable bindings, other mechanisms, such as attributed variables, should
be used.

• floating point numbers and integers are put in numeric order, from −∞ to +∞.
Note that a floating point number is always less than an integer, regardless

9Arithmetic comparison predicates that may evaluate terms before comparing them are described
in Section 6.3.1.
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of their numerical values. If comparison is needed, a conversion should be
performed (e.g. through float/1).

• atoms are put in alphabetical (i.e. UTF-8) order;

• compound terms are ordered first by arity, then by the name of their principal
functor and then by their arguments (in a left-to-right order).

• lists are compared as ordinary compound terms having arity 2 and functor ’.’.

For example, here is a list of terms sorted in increasing standard order:

[ X, 3.14, -9, fie, foe, fum(X), [X], X = Y, fie(0,2), fie(1,1) ]

The basic predicates for unification and comparison of arbitrary terms are:

X = Y ISO
Unifies X and Y without occur check.

unify_with_occurs_check(One,Two)

Unifies One and Two using an occur check, and failing if One is a proper subterm
of Two or if Two is a proper subterm of One.

Example:

| ?- unify_with_occurs_check(f(1,X),f(1,a(X))).

no

| ?- unify_with_occurs_check(f(1,X),f(1,a(Y))).

X = a(_h165)

Y = _h165

yes

| ?- unify_with_occurs_check(f(1,a(X)),f(1,a(X))).

X = _h165

yes

T1 == T2 ISO
Tests if the terms currently instantiating T1 and T2 are literally identical (in
particular, variables in equivalent positions in the two terms must be identical).
For example, the goal:
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| ?- X == Y.

fails (answers no) because X and Y are distinct variables. However, the question

| ?- X = Y, X == Y.

succeeds because the first goal unifies the two variables.

X \ = Y ISO
Succeeds if X and Y are not unifiable, fails if X and Y are unifiable. It is thus

equivalent to \+(X = Y).

T1 \== T2 ISO
Succeeds if the terms currently instantiating T1 and T2 are not literally iden-

tical.

Term1 ?= Term2

Succeeds if the equality of Term1 and Term2 can be compared safely, i.e. whether
the result of Term1 = Term2 can change due to further instantiation of either
term. It is specified as by ?=(A,B) :- (A==B ; A B̄).

unifiable(X, Y, -Unifier) module: constraintLib

If X and Y can unify, succeeds unifying Unifier with a list of terms of the
form Var = Value representing a most general unifier of X and Y. unifiable/3

can handle cyclic terms. Attributed variables are handles as normal variables.
Associated hooks are not executed 10.

T1 @< T2 ISO
Succeeds if term T1 is before term T2 in the standard order.

T1 @> T2 ISO
Succeeds if term T1 is after term T2 in the standard order.

T1 @=< T2 ISO
Succeeds if term T1 is not after term T2 in the standard order.

T1 @>= T2 ISO
Succeeds if term T1 is not before term T2 in the standard order.

T1 @= T2

Succeeds if T1 and T2 are identical variables, or if the main structure symbols
of T1 and T2 are identical.

10In Version 3.8, unifiable/3 is written as a Prolog predicate and so is slower than many of the
predicates in this section.
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compare(?Op, +T1, +T2) ISO
Succeeds if the result of comparing terms T1 and T2 is Op, where the possible
values for Op are:

‘=’ if T1 is identical to T2,

‘<’ if T1 is before T2 in the standard order,

‘>’ if T1 is after T2 in the standard order.

Thus compare(=, T1, T2) is equivalent to T1==T2. Predicate compare/3 has
no associated error conditions.

ground(+X) ISO
Succeeds if X is currently instantiated to a term that is completely bound (has
no uninstantiated variables in it); otherwise it fails. While ground/1 has no
associated error conditions, it is not safe for cyclic terms: if cyclic terms may
be an issue use ground_or_cyclic/1.

ground_and_acyclic(+X)

ground_or_cyclic(+X)

ground_or_cyclic/1 succeeds if X is currently instantiated to a term that is
completely bound (has no uninstantiated variables in it) or is a cyclic term;
otherwise it fails. Alternately, ground_and_acyclic/1 succeeds if X is currently
instantiated to an acyclic term that is completely bound (has no uninstantiated
variables in it). Neither predicate has no associated error conditions.

Both predicates are written to be as efficient as possible, and each requres a
single traversal of a term, regardless of whether the term is ground, nonground
or cyclic. However, due to the nature of checking for cyclicity, these predicates
are somewhat slower than the unsafe ground/1.

subsumes(?Term1, +Term2) module: subsumes

Term subsumption is a sort of one-way unification. Term Term1 and Term2

unify if they have a common instance, and unification in Prolog instantiates
both terms to that (most general) common instance. Term1 subsumes Term2 if
Term2 is already an instance of Term1. For our purposes, Term2 is an instance of
Term1 if there is a substitution that leaves Term2 unchanged and makes Term1

identical to Term2. Predicate subsumes/2 does not work as described if Term1

and Term2 share common variables.

subsumes_chk(+Term1, +Term2) module: subsumes
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subsumes_term(+Term1, +Term2) ISO
The subsumes_chk/2 predicate is true when Term1 subsumes Term2; that is,
when Term2 is already an instance of Term1. This predicate simply checks for
subsumption and does not bind any variables either in Term1 or in Term2. Term1

and Term2 should not share any variables.

Examples:

| ?- subsumes_chk(a(X,f,Y,X),a(U,V,b,S)).

no

| ?- subsumes_chk(a(X,Y,X),a(b,b,b)).

X = _595884

Y = _595624

variant(?Term1, ?Term2) module: subsumes

This predicate is true when Term1 and Term2 are alphabetic variants. That is,
you could imagine that variant/2 as being defined like:

variant(Term1, Term2) :-

subsumes_chk(Term1, Term2),

subsumes_chk(Term2, Term1).

but the actual implementation of variant/2 is considerably more efficient.
However, in general, it does not work for terms that share variables; an as-
sumption that holds for most (reasonable) uses of variant/2.

check_variant(?Term1) module: tables
check_variant(+Term1,+DontCares) module: tables

check_variant/[1,2] provide efficient means of checking whether the variant
of a term has been asserted to a trie indexed predicate. A call ?- check_variant(Term)

thus succeeds if a variant of Term has been trie indexed and asseerted, and fails
otherwise; the check performs no unification, and no backtracking is possible.

check_variant/2 allows the user to specify that the last n arguments of Term

are not to be checked for variance. This check_variant(Term,N) succeeds of
there is a trie indexed term whose first arity−n arguments are variants of those
in term.

These predicates exploit the trie data structure to obtain their efficiency; as a
result our implementation does not allow don’t care arguments apart from the
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final n arguments. More importantly, for efficiency, no check is made
to determine whether a predicate has been trie-indexed. If unsure, the
user should call current_index/2.

Example 6.6.1 ?- import check_variant/1 from tables.

yes

?- index(cmp/3, trie).

yes

| ?- assert(cmp(a,b,c)),assertcmp(d,e,f)).

yes

| ?- check_variant(cmp(a,b,c)).

yes

| ?- check_variant(cmp(a,b,1)).

no

| ?- check_variant(cmp(a,b,X)).

no

| ?- check_variant(cmp(a,b,X),1).

X = _h183

Error Cases

type_error Argument 1 of check_variant/[1,2] is not a callable structure.

type_error Argument 2 of check_variant/[2] is not an integer

6.6.1 Sorting of Terms

Sorting routines compare and order terms without instantiating them. Users should
be careful when comparing the value of uninstantiated variables. The actual order
of uninstantiated variables may change in the course of program evaluation due to
variable aliasing, garbage collection, or other reasons.

sort(+L1, ?L2) ISO
The elements of the list L1 are sorted into the standard order, and any identical
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(i.e. ‘==’) elements are merged, yielding the list L2. The time to perform the
sorting is O(nlogn) where n is the length of list L1.

Examples:

| ?- sort([3.14,X,a(X),a,2,a,X,a], L).

L = [X,3.14,2,a,a(X)];

no

Exceptions:

instantiation_error Argument 1 of sort/2 is a variable or is not a proper
list.

type_error Argument 1 of sort/2 is a non-variable, non-list term.

keysort(+L1, ?L2) ISO
The list L1 must consist of elements of the form Key-Value. These elements
are sorted into order according to the value of Key, yielding the list L2. The
elements of list L1 are scanned from left to right. Unlike sort/2, in keysort/2

no merging of multiple occurring elements takes place. The time to perform the
sorting is O(n log n) where n is the length of list L1. Note that the elements
of L1 are sorted only according to the value of Key, not according to the value
of Value. The sorting of elements in L1 is not guaranteed to be stable in the
presence of uninstantiated variables..

Example:

| ?- keysort([3-a,1-b,2-c,1-a,3-a], L).

L = [1-b,1-a,2-c,3-a,3-a]

yes

Error Cases:

instantiation_error L1 is a variable or is not a proper list.

type_error L1 is a non-variable, non-list term.

domain_error(key_value_pair,Element) L1 contains an element Element that
is not of the form Key-Value.
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parsort(+L1, +SortSpec, +ElimDupl, ?L2) module: machine

parsort/4 is a very general sorting routine. The list L1 may consist of elements
of any form. SortSpec is the atom asc, the atom desc, or a list of terms of
the form asc(I) or desc(I) where I is an integer indicating a sort argument
position. The elements of list L1 are sorted into order according to the sort
specification. asc indicates ascending order based on the entire term; desc

indicates descending order. For a sort specification that is a list, the individual
elements indicate subfields of the source terms on which to sort. For example, a
specification of [asc(1)] sorts the list in ascending order on the first subfields
of the terms in the list. [desc(1),asc(2)] sorts into descending order on
the first subfield and within equal first subfields into ascending order on the
second subfield. The order is determined by the standard predicate compare. If
ElimDupl is nonzero, merging of multiple occurring elements takes place (i.e.,
duplicate (whole) terms are eliminated in the output). If ElimDupl is zero, then
no merging takes place. A SortSpec of [] is equivalent to “asc”. The time to
perform the sorting is O(nlogn) where n is the length of list L1. The sorting
of elements in L1 is not guaranteed to be stable. parsort/4 must be imported
from module machine.

Example:

| ?- parsort([f(3,1),f(3,2),f(2,1),f(2,2),f(1,3),f(1,4),f(3,1)],

[asc(1),desc(2)],1,L).

L = [f(1,4),f(1,3),f(2,2),f(2,1),f(3,2),f(3,1)];

no

Error Cases:

instantiation_error L1 is a variable or not a proper list.

6.7 Meta-Logical

To facilitate manipulation of terms as objects in themselves, XSB provides a number
meta-logical predicates. These predicates include the standard meta-logical predicates
of Prolog, along with their usual semantics. In addition are provided predicates which
provide special operations on HiLog terms. For a full discussion of Prolog and HiLog
terms see Section 4.1.
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var(?X) ISO
Succeeds if X is currently uninstantiated (i.e. is still a variable); otherwise it
fails.

Term X is uninstantiated if it has not been bound to anything, except possibly
another uninstantiated variable. Note in particular, that the HiLog term X(Y,Z)
is considered to be instantiated. There is no distinction between a Prolog and
a HiLog variable.

Examples:

| ?- var(X).

yes

| ?- var([X]).

no

| ?- var(X(Y,Z)).

no

| ?- var((X)).

yes

| ?- var((X)(Y)).

no

nonvar(?X) ISO
Succeeds if X is currently instantiated to a non-variable term; otherwise it fails.
This has exactly the opposite behaviour of var/1.

atom(?X) ISO
Succeeds only if the X is currently instantiated to an atom, that is to a Prolog
or HiLog non-numeric constant.

Examples:

| ?- atom(HiLog).

no

| ?- atom(10).

no

| ?- atom(’HiLog’).

yes

| ?- atom(X(a,b)).

no

| ?- atom(h).

yes

| ?- atom(+).

yes

| ?- atom([]).

yes
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integer(?X) ISO
Succeeds if X is currently instantiated to an integer; otherwise it fails.

float(?X) ISO
float/1 Same as real/1. Succeeds if X is currently instantiated to a floating
point number; otherwise it fails.

real(?X)

Succeeds if X is currently instantiated to a floating point number; otherwise it
fails. This predicate is included for compatibility with earlier versions of XSB.

number(?X) ISO
Succeeds if X is currently instantiated to either an integer or a floating point
number (real); otherwise it fails.

atomic(?X) ISO
Succeeds if X is currently instantiated to an atom or a number; otherwise it
fails.

Examples:

| ?- atomic(10).

yes

| ?- atomic(p).

yes

| ?- atomic(h).

yes

| ?- atomic(h(X)).

no

| ?- atomic("foo").

no

| ?- atomic(’foo’).

yes

| ?- atomic(X).

no

| ?- atomic(X((Y))).

no

compound(?X) ISO
Succeeds if X is currently instantiated to a compound term (with arity greater
that zero), i.e. to a non-variable term that is not atomic; otherwise it fails.

Examples:
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| ?- compound(1).

no

| ?- compound(foo(1,2,3)).

yes

| ?- compound([foo, bar]).

yes

| ?- compound("foo").

yes

| ?- compound(’foo’).

no

| ?- compound(X(a,b)).

yes

| ?- compound((a,b)).

yes

structure(?X)

Same as compound/1. Its existence is only for compatibility with previous ver-
sions.

is_list(?X)

Succeeds if X is a proper list. In other words if it is either the atom [] or [H|T]

where H is any Prolog or HiLog term and T is a proper list; otherwise it fails.

Examples:

| ?- is_list([p(a,b,c), h(a,b)]).

yes

| ?- is_list([_,_]).

yes

| ?- is_list([a,b|X]).

no

| ?- is_list([a|b]).

no

is_charlist(+X)
Succeeds if X is a Prolog string, i.e., a list of characters. Examples:

| ?- is_charlist("abc").

yes

| ?- is_charlist(abc).

no

is_charlist(+X,-Size)

Works as above, but also returns the length of that string in the second argu-
ment, which must be a variable.
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is_attv(+Term)

Succeeds is Term is an attributed variable, and fails otherwise.

is_most_general_term(?X)
Succeeds if X is compound term with all distinct variables as arguments, or if X
is an atom. (It fails if X is a cons node.)

| ?- is_most_general_term(f(_,_,_,_)).

yes

| ?- is_most_general_term(abc).

yes

| ?- is_most_general_term(f(X,Y,Z,X)).

no

| ?- is_most_general_term(f(X,Y,Z,a)).

no

| ?- is_most_general_term([_|_]).

no

is_number_atom(?X)

Succeeds if X is an atom (e.g. ’123’) (as opposed to a number 123) which
can be converted to a numeric atom (integer or float) and fails otherwise. In
particular, if is_number_atom(X) succeeds, then

| ?- atom_codes(X,Codes),number_codes(N,Codes).

will succeed.

callable(?X) ISO
Succeeds if X is currently instantiated to a term that standard predicate call/1

could take as an argument and not give an instantiation or type error. Note
that it only checks for errors of predicate call/1. In other words it succeeds if
X is an atom or a compound term; otherwise it fails. Predicate callable/1 has
no associated error conditions.

Examples:

| ?- callable(p).

yes

| ?- callable(p(1,2,3)).

yes

| ?- callable([_,_]).

yes
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| ?- callable(_(a)).

yes

| ?- callable(3.14).

no

proper_hilog(?X) HiLog
Succeeds if X is a proper HiLog term – i.e. a HiLog term that is not a Prolog
term; otherwise the predicate fails.

Examples: (In this example and the rest of the examples of this section we
assume that h is the only parameter symbol that has been declared a HiLog
symbol).

| ?- proper_hilog(X).

no

| ?- proper_hilog(foo(a,f(b),[A])).

no

| ?- proper_hilog(X(a,b,c)).

yes

| ?- proper_hilog(3.6(2,4)).

yes

| ?- proper_hilog(h).

no

| ?- proper_hilog([a, [d, e, X(a)], c]).

yes

| ?- proper_hilog(a(a(X(a)))).

yes

functor(?Term, ?Functor, ?Arity) ISO
Succeeds if the functor of the Prolog term Term is Functor and the arity (number
of arguments) of Term is Arity. Functor can be used in either the following
two ways:

1. If Term is initially instantiated, then

• If Term is a compound term, Functor and Arity are unified with the
name and arity of its principal functor, respectively.

• If Term is an atom or a number, Functor is unified with Term, and
Arity is unified with 0.

2. If Term is initially uninstantiated, then either both Functor and Arity

must be instantiated, or Functor is instantiated to a number, and
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• If Arity is an integer in the range 1..255, then Term becomes instan-
tiated to the most general Prolog term having the specified Functor

and Arity as principal functor and number of arguments, respectively.
The variables appearing as arguments of Term are all distinct.

• If Arity is 0, then Functor must be either an atom or a number and
it is unified with Term.

• If Arity is anything else, then functor/3 aborts.

Error Cases

atom_or_variable Functor is not an atom or variable.

instantiation_error Both Term, and either Functor, or Arity are uninstan-
tiated.

Examples:

| ?- functor(p(f(a),b,t), F, A).

F = p

A = 3

| ?- functor(T, foo, 3).

T = foo(_595708,_595712,_595716)

| ?- functor(T, 1.3, A).

T = 1.3

A = 0

| ?- functor(foo, F, 0).

F = foo

| ?- functor("foo", F, A).

F = .

A = 2

| ?- functor([], [], A).

A = 0

| ?- functor([2,3,4], F, A).

F = .

A = 2

| ?- functor(a+b, F, A).

F = +

A = 2
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| ?- functor(f(a,b,c), F, A).

F = f

A = 3

| ?- functor(X(a,b,c), F, A).

F = apply

A = 4

| ?- functor(map(P)(a,b), F, A).

F = apply

A = 3

| ?- functor(T, foo(a), 1).

++Error: Wrong type in argument 2 of functor/3

Aborting...

| ?- functor(T, F, 3).

++Error: Uninstantiated argument 2 of functor/3

Aborting...

| ?- functor(T, foo, A).

++Error: Uninstantiated argument 3 of functor/3

Aborting...

hilog_functor(?Term, ?F, ?Arity) HiLog
The XSB standard predicate hilog_functor/3 succeeds

• when Term is a Prolog term and the principal function symbol (functor) of
Term is F and the arity (number of arguments) of Term is Arity, or

• when Term is a HiLog term, having name F and the number of arguments
F is applied to, in the HiLog term, is Arity.

The first of these cases corresponds to the “usual” behaviour of Prolog’s functor/3,
while the second is the extension of functor/3 to handle HiLog terms. Like
the Prolog’s functor/3 predicate, hilog_functor/3 can be used in either of
the following two ways:

1. If Term is initially instantiated, then

• If Term is a Prolog compound term, F and Arity are unified with the
name and arity of its principal functor, respectively.

• If Term is an atom or a number, F is unified with Term, and Arity is
unified with 0.
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• If Term is any other HiLog term, F and Arity are unified with the
name and the number of arguments that F is applied to. Note that in
this case F may still be uninstantiated.

2. If Term is initially uninstantiated, then at least Arity must be instantiated,
and

• If Arity is an integer in the range 1..255, then Term becomes instanti-
ated to the most general Prolog or HiLog term having the specified F

and Arity as name and number of arguments F is applied to, respec-
tively. The variables appearing as arguments are all unique.

• If Arity is 0, then F must be a Prolog or HiLog constant, and it is
unified with Term. Note that in this case F cannot be a compound
term.

• If Arity is anything else, then hilog_functor/3 aborts.

In other words, the standard predicate hilog_functor/3 either decomposes a
given HiLog term into its name and arity, or given an arity —and possibly a
name— constructs the corresponding HiLog term creating new uninstantiated
variables for its arguments. As happens with functor/3 all constants can be
their own principal function symbols.

Examples:

| ?- hilog_functor(f(a,b,c), F, A).

F = f

A = 3

| ?- hilog_functor(X(a,b,c), F, A).

X = _595836

F = _595836

A = 3

| ?- hilog_functor(map(P)(a,b), F, A).

P = _595828

F = map(_595828)

A = 2

| ?- hilog_functor(T, p, 2).

T = p(_595708,_595712)

| ?- hilog_functor(T, h, 2).

T = apply(h,_595712,_595716)

| ?- hilog_functor(T, X, 3).

T = apply(_595592,_595736,_595740,_595744)
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X = _595592

| ?- hilog_functor(T, p(f(a)), 2).

T = apply(p(f(a)),_595792,_595796)

| ?- hilog_functor(T, h(p(a))(L1,L2), 1).

T = apply(apply(apply(h,p(a)),_595984,_595776),_596128)

L1 = _595984

L2 = _595776

| ?- hilog_functor(T, a+b, 3).

T = apply(a+b,_595820,_595824,_595828)

arg(+Index, +Term, ?Argument) ISO
Unifies Argument with the Indexth argument of Term, where the index is taken
to start at 1. In accordance with ISO semantics, Index must be instantiated
to a non-negative integer, and Term to a compound term, otherwise an error is
thrown as described below. If Index is 0 or a number greater than the arity of
Term, the predicate quietly fails.

Examples:

| ?- arg(2, p(a,b), A).

A = b

| ?- arg(2, h(a,b), A).

A = a

| ?- arg(0, foo, A).

no

| ?- arg(2, [a,b,c], A).

A = [b,c]

| ?- arg(2, "HiLog", A).

A = [105,108,111,103]

| ?- arg(2, a+b+c, A).

A = c

| ?- arg(3, X(a,b,c), A).

X = _595820

A = b

| ?- arg(2, map(f)(a,b), A).

A = a
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| ?- arg(1, map(f)(a,b), A).

A = map(f)

| ?- arg(1, (a+b)(foo,bar), A).

A = a+b

Error Cases

• Index is a variable

– instantiation_error

• Index neither a variable nor an integer

– type_error(integer,Index)

• Index is less than 0

– domain_error(not_less_than_zero,Index)

• Term is a variable

– instantiation_error

• Term neither a variable nor a compound term

– type_error(integer,Index)

arg0(+Index, +Term, ?Argument)

Unifies Argument with the Indexth argument of Term if Index > 0, or with the
functor of Term if Index = 0.

hilog_arg(+Index, +Term, ?Argument) HiLog
If Term is a Prolog term, it has the same behaviour as arg/3, but if Term is
a proper HiLog term, hilog_arg/3 unifies Argument with the (Index + 1)th

argument of the Prolog representation of Term. Semantically, Argument is the
Indexth argument to which the HiLog functor of Term is applied. The arguments
of the Term are numbered from 1 upwards. An atomic term is taken to have 0
arguments.

Initially, Index must be instantiated to a positive integer and Term to any non-
variable Prolog or HiLog term. If the initial conditions are not satisfied or I is
out of range, the call quietly fails. Note that like arg/3 this predicate does not
succeed for Index=0.

Examples:
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| ?- hilog_arg(2, p(a,b), A).

A = b

| ?- hilog_arg(2, h(a,b), A).

A = b

| ?- hilog_arg(3, X(a,b,c), A).

X = _595820

A = c

| ?- hilog_arg(1, map(f)(a,b), A).

A = a

| ?- hilog_arg(2, map(f)(a,b), A).

A = b

| ?- hilog_arg(1, (a+b)(foo,bar), A).

A = foo

| ?- hilog_arg(1, apply(foo), A).

A = foo

| ?- hilog_arg(1, apply(foo,bar), A).

A = bar

Note the difference between the last two examples. The difference is due to the
fact that apply/1 is a Prolog term, while apply/2 is a proper HiLog term.

?Term =.. ?List ISO
Given proper instantiation of the arguments, =../2 (pronounced univ) succeeds
when (1) Term unifies with a compound Prolog or HiLog term and List unifies
with a list whose head is the functor of Term and whose tail is a list of the
arguments of Term; or (2) when Term unifies with an atomic term and List

unifies with a list whose only element is Term. More precisely,

• If initially Term is uninstantiated, then List must be instantiated either
to a proper list (list of determinate length) whose head is an atom, or to a
list of length 1 whose head is a number.

• If the arguments of =../2 are both uninstantiated, or if either of them is
not what is expected, =../2 throws the appropriate error message.

Examples:

| ?- X - 1 =.. L.
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X = _h112

L = [-,_h112,1]

| ?- p(a,b,c) =.. L.

L = [p,a,b,c]

| ?- h(a,b,c) =.. L.

L = [apply,h,a,b,c]

| ?- map(p)(a,b) =.. L.

L = [apply,map(p),a,b]

| ?- T =.. [foo].

T = foo

| ?- T =.. [apply,X,a,b].

T = apply(X,a,b)

| ?- T =.. [1,2].

++Error[XSB/Runtime/P]: [Type (1 in place of atomic)] in arg 2 of predicate =../2

| ?- T =.. [a+b,2].

++Error[XSB/Runtime/P]: [Type (a + b in place of atomic)] in arg 2 of predicate =../2

| ?- X =.. [foo|Y].

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate =../2

Error Cases

• Term is a variable and List is a variable, a partial list, a or a list whose
head is a variable

– instantiation_error

• List is neither a variable nor a non-empty list

– type_error(list, H)

• List is a list whose head H is neither an atom nor a variable, and whose
tail is not the empty list

– type_error(atomic, H)

• Term is a variable and the tail of List has a length greater than XSB’s
maximum arity for terms (65535)

– representation_error(max_arity)
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?Term ˆ=.. [?F |?ArgList] HiLog
When Term is a Prolog term, this predicate behaves exactly like the Prolog
=../2. However when Term is a proper HiLog term, ^=../2 succeeds unifying F

to its HiLog functor and ArgList to the list of the arguments to which this HiLog
functor is applied. Like =../2, the use of ^=../2 can nearly always be avoided
by using the more efficient predicates hilog_functor/3 and hilog_arg/3. The
behaviour of ^=../2, on HiLog terms is as follows:

• If initially Term is uninstantiated, then the list in the second argument of
^=../2 must be instantiated to a proper list (list of determinate length)
whose head can be any Prolog or HiLog term.

• If the arguments of ^=../2 are both uninstantiated, or if the second of
them is not what is expected, ^=../2 aborts, producing an appropriate
error message.

Examples:

| ?- p(a,b,c) ^=.. L.

L = [p,a,b,c]

| ?- h(a,b,c) ^=.. L.

L = [h,a,b,c]

| ?- map(p)(a,b) ^=.. L.

L = [map(p),a,b]

| ?- T ^=.. [X,a,b].

T = apply(X,a,b)

| ?- T ^=.. [2,2].

T = apply(2,2)

| ?- T ^=.. [a+b,2].

T = apply(a+b,2)

| ?- T ^=.. [3|X].

++Error: Argument 2 of ^=../2 is not a proper list

Aborting...

Error Cases

instantiation_error Argument 2 of ^=../2 is not a proper list.
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copy_term(+Term, -Copy) ISO
Makes a Copy of Term in which all variables have been replaced by brand new
variables which occur nowhere else. Variable attributes are also copied. It
can be very handy when writing (meta-)interpreters for logic-based languages.
The version of copy_term/2 provided is space efficient in the sense that it
never copies ground terms. Predicate copy_term/2 has no associated errors or
exceptions.

Examples:

| ?- copy_term(X, Y).

X = _598948

Y = _598904

| ?- copy_term(f(a,X), Y).

X = _598892

Y = f(a,_599112)

copy_term_nat(+Term, -Copy) module: basics

Behaves as copy_term/2, however it replaces attributed variables with non-
attributed variables in the copy.11

term_variables(+Term,-Variableust) ISO
Collects the variables in Term into the list VariableList. The variables are in
the order of their first occurrences in a depth-first traversal of Term.

term_depth(+Term, -Depth)

term_depth/2 provides an efficient way to find the maximal depth of a term.
Term depth is defined recursively as follows:

• The depth of a structure is defined as 1 + the maximal depth of any
argument of that structure.

• The depth of an attributed variable is the depth of the attribute structure
associated with that variable.

• The depth of a list [H|T] is defined as 1 + the maximal depth of H and T.

• The depth of any other element is 1.

11The name of this predicate was chosen for consistency with SWI Prolog, and stands for
copy_term no attributes.
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Note that according to this definition, the depth of the list [a,b] is 3, since the
list is equivalent to the structure .(a,.(b,[])) whose depth is 3.

term_depth/2 does not check for cyclic structures, so it must be ensured that
Term is acyclic.

term_size(+Term, -Size)

term_size/2 provides an efficient way to find the total number of constituents
of a term. Term size is defined recursively as follows:

• The size of an attributed variable is 1 (the variable size) + the size of the
attribute structure.

• The size of a non-compound term is 1.

• The size of a compound term is defined as 1 + the sum of the sizes of all
arguments of that term.

• The size of a list [H|T] is defined as the size of the term ’.’(H,T).

term_size/2 does not check for cyclic structures, so it must be ensured that
Term is acyclic.

intern_term(+Term,-InternedTerm) module: machine

intern_term makes an “interned” version of its first argument and returns
that term in its second argument. The terms are equal terms (i.e., Term ==

InternedTerm would succeed.) The interned term has all its ground subterms
represented (uniquely) in a global space. Subterms that contain variables are not
copied but remain on the heap. The interned representation of ground terms
can save space and/or time in some situations. Note that already interned
subterms or Term do not need to be traversed in this operation.

6.8 Cyclic Terms

6.8.1 Unification with and without Occurs Check

Cyclic terms are created when Prolog unifies two terms whose variables have not been
standardized apart: for instance

X = f(X)

will produce the cyclic term f(f(f(f(f(f(...)))))) – in other words, a term with an
“infinite” depth. Note that according to the mathematical definition of unification,
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X should not unify with a term containing itself. There are two reasons why XSB
(along with virtually all other Prologs) has this default behavior.

• The default unification algorithm, when it unifies a variable V with a term T,
does not check for the occurrence of V in T, in other words it does not perform
an occurs check. Unification without an occurs check is linear in the size of the
smaller of the terms to be unified. Unification with occurs check is (essentially)
linear in the size of the larger term. Since unification is often used to assign a
value to a variable, it is important in a programming language that assignment
be constant time, and not linear in the size of the term being assigned.

• Some programs purposefully construct cyclic terms: this occurs with various
constraint libraries such as CHR. These libraries do not perform as expected
when a mathematically correct unification algorithm is used.

XSB provides two mechanisms for overriding this default behavior for unification.

• First, there is a Prolog flag unify_with_occurs_check which when set to on

ensures that all unification is mathematically correct. Care should be taken
when using this flag, for the above two reasons.

• For more detailed usages, the ISO predicate unify_with_occurs_check/2 can
be used syntactically rather than Prolog’s default unification operator =/2.

6.8.2 Cyclic Terms

Fortunately, the creation of cyclic terms is uncommon for most types of program-
ming; even when cyclic terms arise they can often be avoided by the proper use of
copy_term/2 or other predicates. Nevertheless cyclic terms do arise when XSB is
used for meta-programming or if XSB is used as the basis of a high-level knowledge
representation language such as Flora-2 or Silk. It is important that XSB’s behav-
ior be cycle-safe in the sense that the creation of cyclic terms per se will not create
infinite loops in XSB’s tabling or XSB’s built-ins. Like some other Prologs, XSB
supports unification of cyclic terms. In addition, most predicates like functor/3, or
=../2 that either take non-compound terms or that do not require term traversal
are cycle-safe. A few built-ins that require term-traversal are “safe” for cyclic terms.
For instance writing in XSB is subject to a depth check, which terminates for cyclic
terms. Most importantly, the XSB heap garbage collector is guarenteed to be safe for
cyclic terms.
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Variant tabling can also handle cyclic terms if the proper flags are set. These flags
are max_table_subgoal_depth which determines the maximal “reasonable” depth
of a subgoal; and max_table_answer_depth, max_table_answer_list_depth which
determine the maximal “reasonable” depth for non-list terms or lists (respectively)
in answers. These last two flags also determine a “reasonable” depth for interned tries.
Each of these depth flags have an associated answer flag: max_table_subgoal_action,
max_table_answer_action and max_table_answer_list_action respectively. The
actions can be of three types: error which throws an error if a term with a certain
depth is encountered as a tabled subgoal or answer (regardless of whether that term
is tabled); failure which causes failure for these cases; and fail_on_cycles which
fails on cyclic terms, and otherwise throws an error for a term of a certain depth 12.

While the above operations cycle-safe, cyclic terms can cause problems in XSB for
built-ins or predicates that require term traversal. For instance the library predicates
length/2 and append/2 currently go into infinite loops with cyclic terms; unless
otherwise specified it is the user’s responsibility to check library predicates (as opposed
to standard built-ins) for acyclicity using is_acyclic/1 or is_cyclic/1. In addition
the following XSB built-ins are not cycle-safe:

• bagof/3, copy_term/2, ground/1 numbervars/[1,3,4], setof/3, subsumes/2,
subsumes_chk/2, term_depth/2, term_size/2, term_to_atom/[2,3], term_to_codes/[2,3],
term_variables/2, unifiable/2 and variant/2 13.

• Various table inspection built-ins based on get_call/2 or similar routines (in-
cluding get_residual/2).

Arguably, programs should not intentionally create cyclic terms, and the above
flags, as well as the following predicates, can help debug when cyclic terms are created.

is_cyclic(?X)

Succeeds if X is a cyclic term.

is_acyclic(?X)

acyclic_term(?X) ISO
Succeeds if X is not a cyclic term.

12We hope to efficiently integrate cycle checking into XSB’s subsumptive tabling in the reasonably
near future.

13The predicate ground_or_cyclic/1 is safe for cyclic terms.
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6.9 Manipulation of Atomic Terms

This section lists some of XSB’s standard predicates for manipulating atomic terms.
See also in Volume 2, Section 1.5 for other library predicates. Section 7 for wildcard
matching, and Section 8 for an interfae to the PCRE library.

atom_codes(?Atom, ?CharCodeList) ISO
The standard predicate atom_codes/2 performs the conversion between an
atom and its character list representation. If Atom is supplied (and is an atom),
CharList is unified with a list of UTF-8 codes representing the “name” of that
atom. In that case, CharList is exactly the list of UTF-8 character codes that
appear in the printed representation of Atom. If on the other hand Atom is a
variable, then CharList must be a proper list of UTF-8 character codes. In
that case, Atom is instantiated to an atom containing exactly those characters,
even if the characters look like the printed representation of a number.

Examples:

| ?- atom_codes(’Foo’, L).

L = [70,111,111]

| ?- atom_codes([], L).

L = [91,93]

| ?- atom_codes(X, [102,111,111]).

X = foo

| ?- atom_codes(X, []).

X = ’’

| ?- atom_codes(X, "Foo").

X = ’Foo’

| ?- atom_codes(X, [52,51,49]).

X = ’431’

| ?- atom_codes(X, [52,51,49]), integer(X).

no

| ?- atom_codes(X, [52,Y,49]).

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate atom_codes/2

Forward Continuation...

| ?- atom_codes(431, L).

++Error[XSB/Runtime/P]: [Type (431 in place of atom)] in arg 1 of predicate
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atom_codes/2

Forward Continuation...

| ?- atom_codes(X, [52,300,49]).

[Representation (300 is not character code)] in arg 2 of predicate

atom_codes/2

Forward Continuation...

Error Cases

• Atom is a variable and CharCodeList is a partial list or a list with an
element which is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom, Atom)

• Atom is a variable and CharCodeList is neither a list nor a partial list

– type_error(list, CharCodeList)

• Atom is a variable and an element E of CharCodeList is neither a variable
nor a character code

– representation_error(character_code, E)

number_codes(?Number, ?CharCodeList) ISO
The standard predicate number_codes/2 performs the conversion between a
number and its character list representation. If Number is supplied (and is a
number), CharList is unified with a list of UTF-8 ( = ASCII) codes comprising
the printed representation of that Number. If on the other hand Number is
a variable, then CharList must be a proper list of UTF-8 (ASCII) character
codes that corresponds to the correct syntax of a number (either integer or float)
In that case, Number is instantiated to that number, otherwise number_codes/2

will simply fail.

Examples:

| ?- number_codes(123, L).

L = [49,50,51];

| ?- number_codes(N, [49,50,51]), integer(N).

N = 123

| ?- number_codes(31.4e+10, L).
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L = [51,46,49,51,57,57,57,55,69,43,49,48]

| ?- number_codes(N, "314e+8").

N = 3.14e+10

| ?- number_codes(foo, L).

++Error[XSB/Runtime/P]: [Type (foo in place of

number)] in arg 1 of predicate

number_codes

Forward Continuation...

Error Cases

• Number is a variable and CharCodeList is a partial list or a list with an
element which is a variable

– instantiation_error

• Number is neither a variable nor a number

– type_error(number, Number)

• Number is a variable and CharCodeList is neither a list nor a partial list

– type_error(list, CharCodeList)

• Number is a variable and an element E of CharCodeList is neither a variable
nor a character code

– representation_error(character_code, E)

name(?Constant, ?CharList)

The standard predicate name/2 performs the conversion between a constant
and its character list representation. If Constant is supplied (and is any atom
or number), CharList is unified with a list of UTF-8 codes representing the
“name” of the constant. In that case, CharList is exactly the list of UTF-8
character codes that appear in the printed representation of Constant. If on
the other hand Constant is a variable, then CharList must be a proper list
of UTF-8 character codes. In that case, name/2 will convert a list of UTF-8
characters that can represent a number to a number rather than to a character
string. As a consequence of this, there are some atoms (for example ’18’) which
cannot be constructed by using name/2. If conversion to an atom is preferred in
these cases, the standard predicate atom_codes/2 should be used instead. The
syntax for numbers that is accepted by name/2 is exactly the one which read/1

accepts.

Examples:



CHAPTER 6. STANDARD AND GENERAL PREDICATES 226

| ?- name(’Foo’, L).

L = [70,111,111]

| ?- name([], L).

L = [91,93]

| ?- name(431, L).

L = [52,51,49]

| ?- name(X, [102,111,111]).

X = foo

| ?- name(X, []).

X = ’’

| ?- name(X, "Foo").

X = ’Foo’

| ?- name(X, [52,51,49]).

X = 431

| ?- name(X, [45,48,50,49,51]), integer(X).

X = -213

| ?- name(3.14, L).

++Error[XSB/Runtime/P]: [Miscellaneous] Predicate name/2 for reals is not implemented

Aborting...

• Constant is a variable and CharCodeList is a partial list or a list with an
element which is a variable

– instantiation_error

• Constant is neither a variable nor atomic

– type_error(atomic, Constant)

• Constant is a variable and CharCodeList is neither a list nor a partial list

– type_error(list, CharCodeList)

• Constant is a variable and an element E of CharCodeList is neither a
variable nor a character code

– representation_error(character_code, E)

atom_chars(?Number, ?CharList) ISO
Like atom_codes/2, but the list returned (or input) is a list of characters as
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atoms rather than UTF-8 codes. For instance, atom_chars(abc,X) binds X to
the list [a,b,c] Instead of [97,98,99].

Error Cases

• Atom is a variable and CharList is a partial list or a list with an element
which is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom, Atom)

• Atom is a variable and CharList is neither a list nor a partial list

– type_error(list, CharList)

• An element E of CharList is not a single-character atom

– type_error(character, E)

• Atom is a variable and an element E of CharCodeList is not a single-
character atom

– representation_error(character, E)

number_chars(?Number, ?CharList) ISO
Like number_codes/2, but the list returned (or input) is a list of characters as
atoms rather than codes. For instance, number_chars(123,X) binds X to the
list [’1’,’2’,’3’] instead of [49,50,51].

Error Cases

• Number is a variable and CharList is a partial list or a list with an element
which is a variable

– instantiation_error

• Number is neither a variable nor a number

– type_error(number, Number)

• Number is a variable and CharList is neither a list nor a partial list

– type_error(list, CharList)

• An element E of CharList is not a single-character atom

– type_error(character, E)

• CharList is a list of single-character atoms but is not parsable as a number
(by XSB)
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– syntax_error(CharList)

number_digits(?Number, ?DigitList)

Like number_codes/2, but the list returned (or input) is a list of digits as
numbers rather than UTF-8 codes (for floats, the atom ’.’, ’+’ or ’-’, and ’e’ will
also be present in the list). For instance, number_digits(123,X) binds X to the
list [1,2,3] instead of [’1’,’2’,’3’], and number_digits(123.45,X) binds
X to [1,.,2,3,4,5,0,0,e,+,0,2].

Error cases are the same as number_chars/2.

char_code(?Character, ?Code) ISO
The standard predicate char_code/2 is true if Code is the current code for
Character. In XSB it is defined as atom_codes(Character,[Code]).

atom_length(+Atom1,?Length) ISO
This standard predicate succeeds if Length unifies with the length of (the name
of) Atom.

Example

|?- atom_length(trilobyte,L).

L = 9

Error Cases

• Atom is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom,Atom)

• Length is neither a variable nor an integer

– type_error(integer,Length)

concat_atom(+AtomList,?Atom) module: string

If Atom is a variable, then AtomList must be a list structure containing atoms,
integers and/or floats. This predicate flattens AtomList and concatenates the
atoms and integers into a single atom, returned in Atom. Integers and floats are
converted to character strings using number_codes/2.

If Atom is an atom, then AtomList must be a list containing atoms, and/or
variables. In this case atom_codes binds the variables in the list to atoms in
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such a way that the atoms of AtomList concatenate to the atom Atom. For
example, concat_atom([X,abb,Y,cc],aabbabbdefcc) will succeed twice, first
binding X to a and Y to abbdef, and then binding X to aabb and Y to def.

This is a somewhat more general predicate than the ISO atom_concat/2 de-
scribed below, and can be more efficient if numerous atoms are to be concate-
nated together.

concat_atom(+AtomList,+Sep,?Atom) module: string

AtomList must be a list containing atoms, integers and/or floats, and Sep must
be an atom. This predicate concatenates the atoms and integers into a single
atom, separating each by Sep, return the resulting atom in Atom. Integers and
floats are converted to character strings using number_codes/2.

This is a somewhat more general predicate than the ISO atom_concat/2 de-
scribed below, and can be more efficient if numerous atoms are to be concate-
nated together.

atom_concat(Atom1,Atom2,Atom3) ISO

• Usage: atom_concat(?Atom,?Atom,+Atom)

• Usage: atom_concat(+Atom,+Atom,-Atom)

Succeeds if Atom12 is the concatenation of Atom1 and Atom2.

Examples

| ?- atom_concat(hello,world,F).

F = hello world

| ?- atom_concat(X,Y,’hello world’).

X =

Y = hello world;

X = h

Y = ello world

The last query will re-succeed for all combinations of atoms that produce hello

world.

Error Cases
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• Atom1 and Atom3 are both variables

– instantiation_error

• Atom2 and Atom3 are both variables

– instantiation_error

• Atom1 is neither a variable nor an atom

– type_error(atom,Atom1)

• Atom2 is neither a variable nor an atom

– type_error(atom,Atom2)

• Atom3 is neither a variable nor an atom

– type_error(atom,Atom3)

sub_atom(+Atom,?LeftLength,?CenterLength,?RightLength,?CenterAtom ISO
Succeeds if Atom can be broken into three pieces: A left atom of length LeftLength,
a center atom CenterAtom of length CenterLength and a right atom of length
RightLength. If sufficient arguments are uninstantiated to produce CenterAtom

in non-deterministic starting positions, the predicate will backtrack through all
center atoms for which the left atom length is the smallest , up to those whose
left atom length is greatest (see examples below).

Examples

| ?- sub_atom(trilobyte,5,4,RL,CA).

RL = 0

CA = byte

| ?- sub_atom(trilobyte,1,CL,2,CA).

CL = 6

CA = riloby

| ?- sub_atom(trilobyte,LL,6,RL,riloby).

LL = 1

RL = 2

| ?- sub_atom(trilobyte,RL,4,LL,CA).

RL = 0

LL = 5

CA = tril;
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RL = 1

LL = 4

CA = rilo;

RL = 2

CL = 3

CA = ilob

| ?- sub_atom(trilobyte,LL,CL,RL,CA).

LL = 0

CL = 0

RL = 9

CA = ;

LL = 0

CL = 1

RL = 8

CA = t;

LL = 0

CL = 2

RL = 7

CA = tr;

: /* after more backtracking */

LL = 0

CL = 9

RL = 0

CA = trilobyte;

LL = 1

CL = 0

RL = 8

CA = ;

Ll = 1

CL = 1

RL = 7

CA = r;

Error Cases
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• Atom is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom, Atom)

• CenterAtom is neither a variable nor an atom

– type_error(atom, CenterAtom)

• LeftLength is neither a variable nor an integer

– type_error(integer, LeftLength)

• CenterLength is neither a variable nor an integer

– type_error(integer, CenterLength)

• RightLength is neither a variable nor an integer

– type_error(integer, RightLength)

• LeftLength is an integer that is less than zero

– domain_error(not_less_than_zero, LeftLength)

• CenterLength is an integer that is less than zero

– domain_error(not_less_than_zero, CenterLength)

• RightLength is an integer that is less than zero

– domain_error(not_less_than_zero, RightLength)

string_substitute(+InpStr, +SubstrList, +SubstitutionList, -OutStr) module:
string

InputStr can an atom or a list of characters. SubstrList must be a list of
terms of the form s(BegOffset, EndOffset), where the name of the functor
is immaterial. The meaning of the offsets is the same as for substring/4. (In
particular, negative offsets represent offsets from the first character past the
end of String.) Each such term specifies a substring (between BegOffset and
EndOffset; negative EndOffset stands for the end of string) to be replaced.
SubstitutionList must be a list of atoms or character lists.

Offsets start from 0, as in C/Java.

This predicate replaces the substrings specified in SubstrList with the corre-
sponding strings from SubstitutionList. The result is returned in OutStr.
OutStr is a list of characters, if so is InputStr; otherwise, it is an atom.
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If SubstitutionList is shorter than SubstrList then the last string in SubstitutionList

is used for substituting the extra substrings specified in SubstitutionList. As
a special case, this makes it possible to replace all specified substrings with a
single string.

As in the case of re_substring/4, if OutStr is an atom, it is not interned.
The user should either intern this string or convert it into a list, as explained
previously.

The string_substitute/4 predicate always succeeds.

Here are some examples:

| ?- string_substitute(’qaddf’, [s(2,4)], [’123’] ,L).

L = qa123f

| ?- string_substitute(’qaddf’, [s(2,-1)], [’123’] ,L).

L = qa123

| ?- string_substitute("abcdefg", [s(4,-1)], ["123"],L).

L = [97,98,99,100,49,50,51]

| ?- string_substitute(’1234567890123’, [f(1,5),f(5,7),f(9,-2)], ["pppp", lll],X).

X = 1pppplll89lll

| ?- string_substitute(’1234567890123’, [f(1,5),f(6,7),f(9,-2)], [’---’],X).

X = 1---6---89---

term_to_atom(+Term,-Atom,+Options) module: string

Converts +Term to an atomic form according to a list of write options, Options,
that are similar to those used by write_term/[2,3]. The various options of
term_to_atom/[2,3] are especially useful for the interface from C to XSB (see
Calling XSB from C in Volume 2 of this manual).

• quoted(+Bool). If Bool = true, then atoms and functors that can’t be
read back by read/1 are quoted, if Bool = false, each atom and functor
is written as its unquoted name. Default value is false.



CHAPTER 6. STANDARD AND GENERAL PREDICATES 234

• ignore_ops(+Bool). If Bool = true each compound term is output in
functional notation; list braces are ignored, as are all explicitly defined
operators. If Bool = canonical, bracketed list notation is used. Default
value is canonical. The corresponding value of false, that would enable
operator precedence, is not yet implemented.

• numbervars(+Bool). If Bool = true, a term of the form ’$VAR’(N)

where N is an integer, is output as a variable name consisting of a capital
letter possibly followed by an integer. A term of the form ’$VAR’(Atom)

where Atom is an atom, is output as itself (without quotes). Finally, a term
of the form ’$VAR’(String) where String is a character string, is output
as the atom corresponding to this character string. If bool is false this
cases are not treated in any special way. Default value is false.

Error Cases

• Options is a variable

– instantiation_error

• Options neither a variable nor a list

– type_error(list,Options)

• Options contains a variable element, O

– instantiation_error

• Options contains an element O that is neither a variable nor a write option.

– domain_error(write_option,O)

Examples:

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[]).

X = _h131

F = f(a,1,_h0,[3cpio,d(3),$VAR([70,111,111])])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true)]).

X = _h131

F = f(a,1,_h0,[3cpio,d(3),Foo])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true),quoted(true)]).

X = _h131
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F = f(a,1,_h0,[’3cpio’,d(3),Foo])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true),quoted(true),ignore_ops(true)]).

X = _h131

F = f(a,1,_h0,’.’(’3cpio’,’.’(d(3),’.’(Foo,[]))))

yes

term_to_atom(+Term,-Atom) module: string

This predicate converts an arbitrary Prolog term Term into an atom, putting
the result in Atom. It is defined using the default options for term_to_atom/3,
e.g. ignore_ops(canonical), quoted(false), and numbervars(false).

term_to_codes(+Term,-CodeList,+OptionList) module: string

This predicate is used in the definition of term_to_atom/3 but only converts a
term into a list of UTF-8 codes, and does not intern the list as an atom. Allowed
values for OptionList and error cases are the same as in term_to_atm/3.

term_to_codes(+Term,-CodeList) module: string

This predicate converts a term to a list of UTF-8 codes. It is defined us-
ing the default options for term_to_atom/3, e.g. ignore_ops(canonical),
quoted(false), and numbervars(false).

gc_atoms

Explicitly invokes the garbage collector for atoms that are created, but no longer
needed. By default, gc_atoms/1 is called automatically, unless the Prolog_flag
atom_garbage_collection is set to false, or if more than one thread is active.
However there are reasons why a user may need to invoke atom table garbage
collection. First, in Version 3.8, if atom table garbage collection is invoked
automatically, it occurs periodically on heap garbage collection, or if numerous
asserts and retracts have taken place. These heuristics overlook certain cases
where numerous atoms may be created without invoking the garbage collector
– e.g. through repeated uses of format_write_string/3. In addition if user-
defined C code contains pointers to XSB’s atom table, atom table garbage
collection will be unsafe, as Version 3.8 of XSB does not detect such pointers in
external code. In such cases, atom table garbage collection should be turned off
via the Prolog flag atom_garbage_collection, and reinvoked at a point where
the external pointers are no longer used.
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6.10 All Solutions and Aggregate Predicates

Often there are many solutions to a problem and it is necessary somehow to compare
these solutions with one another. The most general way of doing this is to collect
all the solutions into a list, which may then be processed in any way desired. So
XSB provides ISO-standard predicates such as setof/3, bagof/3, and findall/3 to
collect solutions into lists. Sometimes however, one wants simply to perform some
aggregate operation over the set of solutions, for example to find the maximum or
minimum of the set of solutions. XSB uses answer subsumption to produce a powerful
aggregation facility as discussed in Section 5.4

setof(?Template, +Goal, ?Set) ISO
This predicate may be read as “Set is the set of all instances of Template such
that Goal is provable”. If Goal is not provable, setof/3 fails. The term Goal

specifies a goal or goals as in call(Goal). Set is a set of terms represented
as a list of those terms, without duplicates, in the standard order for terms
(see Section 6.6). If there are uninstantiated variables in Goal which do not
also appear in Template, then a call to this evaluable predicate may backtrack,
generating alternative values for Set corresponding to different instantiations
of the free variables of Goal. Variables occurring in Goal will not be treated as
free if they are explicitly bound within Goal by an existential quantifier. An
existential quantification can be specified as:

Y ˆ G

meaning there exists a Y such that G is true, where Y is some Prolog term
(usually, a variable).

Error cases are the same as predicate call/1 (see Section 6.11).

Example: Consider the following predicate:

p(red,high,1).

p(green,low,2).

p(blue,high,3).

p(black,low,4).

p(black,high,5).

The goal ?- setof(Color,Height^Val^p(Color,Height,Val),List) returns
a single solution:
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Color = _h73

Height = _h87

Val = _h101

L = [black,blue,green,red]

If Height is removed from the sequence of existential variables, so that the goal
becomes:

?- setof(Color,Val^p(Color,Height,Val),List)

the first solution is:

Color = _h73

Val = _h87

Height = high

L = [black,blue,red];

upon backtracking, a second solution is produced:

Color = _h73

Val = _h87

Height = low

L = [black,green]

bagof(?Template, +Goal, ?Bag) ISO
This predicate has the same semantics as setof/3 except that the third argu-
ment returns an unsorted list that may contain duplicates.

Error Cases are the same as predicate call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
?- bagof(Color,Height^Val^p(Color,Height,Val),L) returns the single so-
lution:

Color = _h73

Height = _h87

Val = _h101

L = [red,green,blue,black,black];

If Height is removed from the sequence of existential variables, so that the
goal becomes: ?- bagof(Color,Val^p(Color,Height,Val),List), the first
solution is:
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Color = _h73

Val = _h87

Height = high

L = [red,blue,black];

upon backtracking, a second solution is produced:

Color = _h73

Val = _h87

Height = low

L = [green,black];

findall(?Template, +Goal, ?List) ISO
Similar to predicate bagof/3, except that variables in Goal that do not oc-
cur in Template are treated as existential, and alternative lists are not re-
turned for different bindings of such variables. Note that this means that Goal

should not contain existential variables. This makes findall/3 determinis-
tic (non-backtrackable). Unlike setof/3 and bagof/3, if Goal is unsatisfiable,
findall/3 succeeds binding List to the empty list.

Error cases are the same as call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
findall(Color,p(Color,Height,Val),L) returns a single solution:

Color = _h73

Height = _h107

Val = _h121

F = [red,green,blue,black,black]

findall(?Template, +Goal, ?List,?Tail)

Acts as findall/3, but returns the result as the difference-list Bag-Tail. In
fact, the 3-argument version is defined in terms of the 4-argument version:

findall(Templ, Goal, Bag) :- findall(Templ, Goal, Bag, [])

Error cases are the same as findall/3 (or call/1).

tfindall(?Template, +Goal, ?List) Tabling
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Like findall/3, tfindall/3 treats all variables in Goal that do not occur in
Template as existential. However, in tfindall/3, the Goal must be a call to a
single tabled predicate.

tfindall/3 allows findall functionality to be used safely with tabling by
throwing an error if it is called recursively. Its use can be seen by considering
the following series of programs.

p1(X):- findall(Y,p1(Y),X).

When executing the goal p(X), XSB will throw an error when it reaches the
maximum number of recursive invocations of findall.

Next, consider the program

:- table t/1.

t(X):- findall(Y,t(Y),X).

t(a).

The query t(X) will terminate without error, but will return two answers: X =
[] and X = a. These answers are hard to defend semantically, since there is an
implicit domain closure axiom in findall-like predicates. On the other hand, for
the program

:- table t2/1.

t2(X):- tfindall(Y,t2(Y),X).

t2(a).

the query t2(X) will throw a table error, indicating that a call to tfindall/3

is apparently non-stratified footnoteDetection of non-stratification is based on
the approximate detection of dependencies among subgoals maintained by XSB.
This approximation is quite close for local evaluation, but is less close for
batched evaluation.. Other behavior for tabled aggregation is provided by an-
swer subsumption as discussed in Section 5.4

Other differences between predicates findall/3 and tfindall/3 can be seen
from the following example:

| ?- [user].

[Compiling user]

:- table p/1.

p(a).
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p(b).

[user compiled, cpu time used: 0.639 seconds]

[user loaded]

yes

| ?- p(X), findall(Y, p(Y), L).

X = a

Y = _922928

L = [a];

X = b

Y = _922820

L = [a,b];

no

| ?- abolish_all_tables.

yes

| ?- p(X), tfindall(Y, p(Y), L).

X = b

Y = _922820

L = [b,a];

X = a

Y = _922820

L = [b,a];

no

Error cases include those of findall/3 (see above), along with

table_error Upon execution Goal is not a subgoal of a tabled predicate.

table_error A call to tfindall/3 is apparently non-stratified

X ˆ Goal ISO
Within setof/3, bagof/3 and the like, the ˆ /2 operator means there exists
an X such that Goal is true.

excess_vars(+Term, +ExistVarTerm, +AddVarList, -VarList) module: setof

Returns in VarList the list of (free) variables found in Term concatenated to the
end of AddVarList. (In normal usage AddVarList is passed in as an empty list.)
ExistVarTerm is a term containing variables assumed to be quantified in Term
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so none of these variables are returned in the resulting list (unless they are in
AddVarList.) Subterms of Term of the form (VarTerm ˆ SubTerm) are treated
specially: all variables in VarTerm are assumed to be quantified in SubTerm, and
so no occurrence of these variables in SubTerm is collected into the resulting list.

Error Cases

type_error AddVarList is not a list of variables

memory Not enough memory to collect the variables.

find_n(+N,?Template, +Goal, ?List) module: setof

Acts as findall/3 but returns only the first N bindings of Template to List.

6.11 Meta-Predicates

call(#X) ISO
If X is a non-variable term in the program text, then it is executed exactly as if
X appeared in the program text instead of call(X), e.g.

. . ., p(a), call( (q(X), r(Y)) ), s(X), . . .

is equivalent to

. . ., p(a), q(X), r(Y), s(X), . . .

However, if X is a variable in the program text, then if at runtime X is instan-
tiated to a term which would be acceptable as the body of a clause, the goal
call(X) is executed as if that term appeared textually in place of the call(X),
except that any cut (‘!’) occurring in X will remove only those choice points
in X. If X is not instantiated as described above, an error message is printed and
call/1 fails.

Error Cases

instantiation_error X is a variable

type_error(callable,X) X is not callable.

#X

(where X is a variable) executes exactly the same as call(X). However, the
explicit use of call/1 is considered better programming practice. The use of a
top level variable subgoal elicits a warning from the compiler.
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call(Goal,Arg,...) ISO
call(Goal,Arg) where Goal is an N-ary callable term first constructs a new
N+1-ary term NewGoal with the same functor and first N arguments as Goal

and with Arg as its N+1th argument, and then calls NewGoal. As an example,

call(member(X),[a,b,c])

is equivalent to call(member(X,[a,b,c]). Goal must be a callable term, but
can be prepended by a module name using the :/2 symbol. call(Goal,Arg1,Arg2,...)

will act similarly. Note that Goal should usually be atomic – if the outer functor
of Goal is, say, ,/2, call/[2-10] will try to add the extra argument(s) to the
comma functor, which is generally not the intended behavior.

While meta calls are generally fast in XSB, the extra term manipulation of
call/[2-10] makes it somewhat slower than call/1.

call_tv(#Goal,-TV)

Calls Goal just as with call/1, and if Goal does not fail, instantiates TV with
either true or undefined, depending on the truth value of Goal at the current
stage of the evaluation. Goal need not be tabled itself. Note that Goal

might succeed with truth value undefined before succeeding with truth value
true.

Since call_tv/2 is a meta-preducate that actually calls Goal, call_tv/2 will
have the same truth value as Goal. In other words, if Goal fails, call_tv/2 will
fail; if Goal succeeds unconditionally (is true in the well-founded semantics),
call_tv/2 will succeed unconditionally; and if Goal succeeds conditionally (is
neither true nor false in the well-founded semantics) call_tv/2 will itself suc-
ceed conditionally. An alternative approach is provided by truth_value/2.

Examples

The following example shows that call_tv/2 propagates the truth value of
Goal:

| ?- call_tv(undefined,_TV),writeln(has_value(_TV)).

has_value(undefined)

undefined

The second example shows that call_tv/2 shows the truth value of Goal alone,
regardless of where in larger derivation Goal is called.

call_tv(undefined,_TV1),writeln(call1(_TV1)),call_tv(true,_TV2),writeln(call2(_TV2)).

call1(undefined)
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call2(true)

undefined << top-level conjunctive query is undefined.

Error cases are the same as call/1.

truth_value(#Goal,?TruthValue) module: tables

truth_value(Goal,TruthValue) succeeds only if TruthValue is the truth value
of Goal in the well-founded model of the program. The predicate acts as follows.

1. Goal is executed;

(a) If Goal is incomplete a permission error is thrown.

(b) Otherwise if Goal is complete

i. If Goal has no answers, TruthValue is unified with false.

ii. Otherwise, truth_value/2 backtracks through all answers for Goal,
setting TruthValue to true or undefined as appropriate.

Examples Consider the program

:- table p/2. :- table p/1.

p(a,b). p(F):- truth_value(p(_),F).

p(a,c):- undefined.

The goal ?- truth_value(p(X,Y),TV) will succeed twice, setting TV once to
true and once to undefined. On the other hand, the goal ?- truth_value(p(c,Y),TV)

will set TV to false since the goal p(c,Y) has no answers of any kind. The
goal ?- truth_value(p(Y),TV) will throw a permission error, since proving
the goal relies on a call to truth_value(p(Y),_).

Error Cases Error cases are the same as those for call/1 with the addition

• Goal is incomplete after being called.

– permission_error(obtain_models_truth_value,incomplete_subgoal,Goal)

once(#X) ISO
once/1 is defined as once(X):- call(X),!. once/1 should be used with care
in tabled programs. The compiler can not determine whether a tabled predicate
is called in the scope of once/1, and such a call may lead to runtime errors. If a
tabled predicate may occur in the scope of once/1, use table_once/1 instead.

Error cases are the same as call/1.
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forall(Generate,Test)

forall(Generate, Test) is true iff for all possible bindings of Generate, the
goal Test is true. Procedurally, abstracting error checking, the predicate shall
behave as being defined by \+ (call(Generator), \+ call(Test)).

Error cases are the same as call/1.

table_once(#X) Tabling
table_once/1 is a weaker form of once/1, suitable for situations in which a sin-
gle solution is desired for a subcomputation that may involve a call to a tabled
predicate. table_once(?Pred) succeeds only once even if there are many solu-
tions to the subgoal Pred. However, it does not “cut over” the subcomputation
started by the subgoal Pred, thereby ensuring the correct evaluation of tabled
subgoals.

call_cleanup(#Goal,#Handler)

call_cleanup(Goal, Cleanup) calls Goal just as if it were called via call/1,
but it is ensures that Handler will be called after Goal finishes execution.
call_cleanup/2 is thus useful when Goal uses a resource, (such as a stream,
mutex, database cursor, etc.) that should be released when Goal finishes exe-
cution.

More precisely, Goal finishes execution either 1) by failure, 2) by determining
that the success of Goal is deterministic, 3) when an error is thrown and not
handled by Goal or one of its subgoals; or 4) when Goal is cut over. In all of
these cases, Handler will be called and will succeed non-deterministically. We
illustrate these cases through examples.

• Failure of Goal:

?- call_cleanup(fail,writeln(failed(Goal))).

In this case, Goal has no solutions, and the handler is invoked when the
engine backtracks out of Goal.

• Deterministic success of Goal. Assume that p(1) and p(2) have been
asserted. Then

?- call_cleanup((p(X),writeln(got(p(X)))),writeln(handled(p(X)))).

got(p(1))

X = 1;

got(p(2))

handled(p(2))
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X = 2;

no

Note that Handler is called only after the last solution of the goal p(X)

has been obtained. XSB decides to call Handler only when it can be
determined that the success of Goal has left no choice points. In such a
case, the final solution has been obtained for Goal. Of course, it may be
that a solution S to Goal leaves a choice point but the choice point will
produce no further solutions for Goal. XSB will not call Handler in this
case, rather it will wait until there are no choice points left for Goal.

• An uncaught error E is thrown out of Goal. In this case, Handler will
be called, and then, if E is uncaught, E will be rethrown. This is il-
lustrated in the following example (Error handling is discussed further in
Section 12.3.2):

?- catch(call_cleanup(throw(my_error),writeln(invoking_handler)),

Ball,

write(Ball)).

invoking_handler

my_error

yes

Of course, Handler itself can be wrapped in a catch/3 so that any errors
will be caught by call_cleanup/2.

• Choice points for Goal are removed via a cut. Consider an example in
which p/1 has the same extension as above (p(1),p(2):

call_cleanup(p(X),writeln(handled_1)),!.

handled_1

X = 1

yes

The handler is invoked immediately when the choice point laid down by
p(X) is cut over – before returning to the command line. If a cut cuts over
more than goal to be cleaned, more than one handler will be executed:

?-call_cleanup(p(X),writeln(handled_4_1)),

call_cleanup(p(Y),writeln(handled_4_2)),
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call_cleanup(p(Z),writeln(handled_4_3)),

!.

handled_4_3

handled_4_2

handled_4_1

X = 1

Y = 1

Z = 1

call_cleanup/2 is thus an extremely powerful and flexible mechanism when
used in a simple manner. While Handler is “guaranteed” to be invoked when-
ever Goal finishes execution 14, it may be difficult to predict when Handler will
be invoked, as Handler may be invoked because of deeply non-local cuts over
Goal, and even when such cuts are not present, the invocation depends on XSB
determining when the last solution for Goal has been obtained. Baroque usages,
such as invoking call_cleanup/2 and cuts in the handler are supported, but
may lead to code that is difficult to debug, since handlers may be invoked based
on the state of XSB’s choice point stack.

Error Cases

Goal is a variable

• instantiation error

Goal is neither a variable nor a callable term

• type error(callable, Goal)

Handler is a variable

• instantiation error

Handler is neither a variable nor a callable term

• type error(callable, Handler)

6.11.1 Timed Calls and Co-routining

When XSB is used in multi-threaded mode, one XSB thread t1 may send a signal
goal G to another thread t2, which causes t2 to interrupt its computation, execute
G, and then resume its computation. (Section 7). timed_call/2 and related predi-
cates provide similar functionality within the single-threaded engine, a useful addition

14In fact we don’t guarantee anything, see XSB’s license.
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since not all of tabling features are currently available in the multi-threaded engine.
timed_call/2 invokes a base goal which is interrupted either once or repeatedly at
specified time intervals; when interrupted the engine invokes a handler that can im-
plement a fairly general co-routine. In this way, monitors, logs, specialized debuggers
– even adaptive behavior – can be implemented for large and complex tabled evalu-
ations.

Within the timed call paradigm, it is important that the execution of the handler
be independent of the base goal. For instance, any tables called by the handler
should not depend on incomplete tables called by the base goal. On the other hand,
the handler may inspect and analyze the evaluation state of the base goal through
XSB’s growing set of inspection routines (Section 10.3).

Interpreter Indicess

One use of timed calls is to have the handler suspend the base computation, and then
start an interpreter that can be used to execute queries about the base computation.
In the classic command-line interpreter of XSB, this is done by break/0. However,
XSB can be called in a variety of ways other than the command-line-interpreter. It
can be invoked as an executable via its -e option, called from a socket, called directly
from C, or called from Java via Interprolog or some other bridge. To represent
the generality of the interpreters that may be used, we make use of the notion of
interpreter indices in this section and in Section 10.3, which discusses inspection
predicates. Conceptually, a computation starts at index 0 – even if XSB was not
invoked with a command-line interpreter. The handler executes at index 1, which
might or might not be associated with a new command-line interpreter. In principle,
an index N interpreter is invoked through the handler of a suspended goal that was
executed at level N − 1.

Timed Call and related predicates

timed_call(#Goal,#Options)

This predicate calls Goal and may interrupt Goal to call handlers as specified
in Options. In the case where a handler succeeds, the execution of Goal will be
continued; if the handler fails, Goal will fail; and if a handler throws an uncaught
exception the execution of Goal may be aborted. In these ways timed_call/2

can be used to allow co-routining of Goal with a repetition handler and/or
timing Goal out with a (separate) handler.

Options is a list that may contain the following terms
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• The term max(+MaxInterval,#MaxHandler) specifies that MaxHandler

will be called when it is determined that the total elapsed time to execute
Goal exceeds MaxInterval milliseconds. As a use case, if MaxHandler

throws an exception, Goal can be aborted; and if MaxHandler fails, Goal

will fail.

• The term repeating(+RepInterval,#RepHandler) specifies that RepHandler

will be repeatedly called whenever Goal has executed an additional RepInterval

milliseconds of elapsed time. The time taken to execute RepHandler is not
counted as part of RepInterval milliseconds (or that of MaxInterval, if
a maximum handler is also specified).

• The term nesting indicates that nested timed calls should be allowed
within the same interpreter index. In this case, the nested timed call is
simply treated as a call to Goal: in other words the interval(s) and handlers
for the nested call are ignored. Otherwise, if Options does not contain the
term nesting an attempt to nest calls will raise a permission exception.

Executing a timed call for Goal is more expensive than simply calling Goal, so
it should not be used for frequent calls to goals that whose derivation is simple.

timed_call/2 is based on XSB’s internal interrupt mechanism, used for at-
tributed variable handlers and thread signalling. As such, the ability to execute
complex actions upon interrupt and then to resume Goal is very robust. How-
ever, checks for interrupts are only made whenever XSB’s SLG-WAM engine
is executing. Because of this, if XSB is suspended on I/O, calling a C or java
function, in a C-implemented built-in, or otherwise outside of its virtual ma-
chine, the interrupt will not be executed until computation returns to XSB’s
virtual machine.

timed_call/2 is integrated with XSB’s break levels with a different timed call
possible at each break level. In this way, a handler can call a break statement,
and the base computation inspected using one of XSB’s built-ins. As mentioned,
the time that is spent in a break level is not counted as part of the repetition
or maximum intervals associated with the base goal.

timed_call/3 is not implemented for the multi-threaded engine but its func-
tionality is easily duplicated using thread signalling (Section‘7.5).

Examples Consider the simple (and non-tabled) program fragment

loop :- loop.

which goes into an infinite loop on the query ?- loop. However, the query
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timed_call(loop,[max(5000,abort)]).

will interrupt loop and abort its computation after 5000 milliseconds. Alter-
nately, the query

timed_call(loop,[max(5000,fail)]).

will fail the query. Finally, the query

timed_call(loop,[repeating(500,statistics)]).

will interrupt the computation every 500 milliseconds, print out statistics, and
resume the computation where it left off.

These approaches can be combined:

timed_call(loop,[repeating(500,statistics),max(5000,break)]).

will interrupt the computation every 500 milliconds to print statistics, and then
will enter a break after 5000 milliseconds, so that the state of computation can
be explored after 5000 milliseconds. Handlers can be quite complex, and can
support UI-based monitors, and even analysis routines that may modify the
parameters of the computation when possible (e.g., by changing one form of
tabling to another, when permitted).

Error Cases Error cases are the same as call/1 for the first argument of
timed_call/3 and for handlers. In addition timed_call/1 also throws these
other errors.

Options is non-ground

• instantiation_error

Options is not a list

• type_error

Interval as contained in the first argument of max/2 or repeating/2 is not
a positive integer

• type_error

Options contains neither a term of the form max/2 nor of the form repeating/2

• misc_error
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A call C to timed_call/3 is made within the scope of some other call to
timed_call/3

• permission_error(nested_call,predicate,C)

timed_call/3 is called from the multi-threaded engine

• misc_error

current_timed_call(?Index,?DisplayOptions)

If there is an active timed call, invoked by timed_call(Goal,Options), at in-
terpreter index Index, this predicate returns information representing Options.
DisplayOptions differs from Options only in the following case. If Options

contains a term max(Interval,Handler), DisplayOptions will contain a cor-
responding term max(Used/Interval,Handler), indicating both the original
interval (in milliseconds) and the number of milliseconds used so far.

Example

As above, assume that the following goal is called from the command-line in-
terpreter:

?- timed_call(loop,[max(5000,abort)]).

After a few seconds, the user interrupts the goal with a Ctrl-C, sending XSB
into a break level. At that point the goal

1: ?- current_timed_call(Index,Options).

succeeds with Index = 0 and Options = [max(3539 / 5000,abort)].

timed_call_modify(#NewOptions)

When called from interpreter index N > 1, this predicate modifies the behavior
of the suspended derivation.

• If current state is in the scope of the suspended goal timed_call(Goal,OldOptions)

at interpreter index N − 1, Goal is made to behave as if it had been
called with timed_call(Goal,NewOptions). I.e., NewOptions rather than
OldOptions takes effect as soon as the suspended goal is resumed. If
NewOptions is the empty list, this has the effect of removing any inter-
rupts that would be due to the timed call.

• If the current suspended state is not in the scope of a timed call as described
above, the top-level goal GT of interpreter level N − 1 is made to behave
as if it had been called as timed_call(GT ,NewOptions).

Example This rather fanciful example shows the essential points about how
timed_call_modify/1 can be used in practice. Suppose a user sets up a mon-
itor for the infinite loop program (introduced above) using the goal:
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timed_call(loop,[repeating(500,writeln(interruption_interval(500)))]).

which produces the output

interruption_interval(500)

interruption_interval(500)

interruption_interval(500)

:

At this point, the user realizes that too much information is being printed out,
and decides to back off somewhat. The user obtains a break level by executing
Ctrl-C as before, and calls the goal:

1: ?- timed_call_modify([repeating(1000,writeln(new_interruption_interval(1000)))]).

When the break is exited, information is presented in an undoubtedly more
useful manner:

1: ?- [ End break (level 1) ]

new_interruption_interval(1000)

new_interruption_interval(1000)

new_interruption_interval(1000)

Additions and deletions of timed call parameters is done in a similar manner.

Error Cases Error cases are the same those for the options list of timed_call/2

and for handlers. In addition timed_call/1 also throws the following error.

• timed_call_modify/1 is called in the top-level interpreter.

– permissions_error

timed_call_cancel

When called at interpreter index N removes any handlers for a timed call in-
voked at level N − 1. That is, if Goal was called at interpreter level N via
timed_call/2, cancelling will remove any repeating or maximum interrupts.
When interpreter level N − 1 is later resumed, Goal will continue execution as
if it were called via the normall calling mechanism. If there is no timed call
active at level N − 1, the predicate succeeds with no effects.

bounded_call(#Goal,+MaxMemory,+MaxCPU,#Handler) module: standard
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bounded_call(#Goal,+MaxMemory,+MaxCPU) module: standard

These predicates call Goal and check once per second whether the total CPU
time to execute Goal is greater than MaxCPU seconds, and whether the total
memory taken by XSB is greater than MaxMemory bytes. Under bounded_call/4

if either of these conditions arise, Handler is called; under bounded_call/3 a
resource exception is thrown for memory or CPU time.

These predicates are implemented directly using timed_call/3 and inherit the
advantages and limitations of that predicate. As an advantage, the ability to
execute complex actions upon interrupt and to resume is very robust. How-
ever, checks for interrupts are only made whenever XSB’s SLG-WAM engine
is executing. Because of this, if XSB is suspended on I/O, calling a C or java
function, in a C-implemented built-in, or otherwise outside of its virtual ma-
chine, the interrupt will not be executed until computation is back within XSB’s
virtual machine.

Handler cannot cause timed_call/3 to be executed as a subgoal; but otherwise
Handler has no restrictions.

bounded_call/[3,4] is not yet implemented for the multi-threaded engine but
its functionality is easily duplicated using thread signalling (Section‘7.5).

Error Cases Error cases are the same as in call/1 for the first argument of
bounded_call/3, and are the same as that of timed_call for Handler.

MaxCPU or MaxMemory is not an integer

• type_error(integer)

MaxCPU or MaxMemory is not a positive integer

• domain_error(positive_integer)

6.12 Information about the System State

Various aspects of the state of an instance of XSB — information about what pred-
icates, modules, or dynamic clauses have been loaded, their object files, along with
other information can be inspected in ways similar to many Prolog systems. However,
because the atom-based module system of XSB may associate structures with partic-
ular modules, predicates are provided to inspect these elements as well. The following
descriptions of state predicates use the terms predicate indicator, term indicator and
current module to mean the following:
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• By predicate indicator we mean a compound term of the form M:F/A or simply
F/A. When the predicate indicator is fully instantiated, M and F are atoms
representing the module name and the functor of the predicate respectively and
A is a non negative integer representing its arity.

Example: usermod:append/3

• By term indicator we mean a predicate or function symbol of arity N followed
by a sequence of N variables (enclosed in parentheses if N is greater than zero).
A term indicator may optionally be prefixed by the module name, thus it can
be of the form M:Term.

Example: usermod:append(_,_,_)

• A module M becomes a current (i.e. “known”) module as soon as it is loaded in
the system or when another module that is loaded in the system imports some
predicates from module M.

Note that due to the dynamic loading of XSB, a module can be current even
if it has not been loaded, and that some predicates of that module may not
be defined. In fact, a module can be current even if it does not exist. This
situation occurs when a predicate is improperly imported from a non-existent
module. Despite this, a module can never lose the property of being current.

current_input(?Stream) ISO
Succeeds iff stream Stream is the current input stream, or procedurally unifies
Stream with the current input stream.

Error Cases

• Stream is neither a variable nor a stream identifier

– domain_error(stream_or_variable,Stream))

current_output(?Stream) ISO
current_output/1 Succeeds iff stream Stream is the current output stream, or
procedurally unifies Stream with the current output stream.

Error Cases

• Stream is neither a variable nor a stream identifier

– domain_error(stream_or_variable,Stream))

ISO Compatibility Note: In XSB current_input/1 does not throw an error
if Stream is not a current input stream, but quietly fails instead.
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current_prolog_flag(?Flag_Name, ?Value) ISO
current_prolog_flag/2 allows the user to examine both dynamic aspects of
XSB along with certain non-changeable ISO flags and non-changeable Prolog-
commons flags. Calls to current_prolog_flag/2 will unify against ISO, Prolog-
commons, and XSB-specific flags.

ISO and Prolog-commons flags are as follows:

• bounded Indicates whether integers in XSB are bounded. This flag always
has the value true

• min_integer, max_integer The minimum and maximum integers avail-
able in the current XSB configuration (differs between 32- and 64-bits).

• max_arity Indicates the maximum arity of terms in XSB. This flag always
has the value 65535 (216

• integer_rounding_function This flag always has the value toward_zero

• debug Indicates whether trace or debugging is turned on or off

• unknown Indicates the behavior to be taken when calling an unknown
predicate. The value can be set to error, fail, warning, unknown or
user_hook. The default setting is error.

The first three values respectively indicate that calls to unknown predicates
should throw an existence error, fail, or produce a warning message to the
user_warning stream and then throw an existence error.

The value is undefined then a call G to an unknown predicate succeeds
with value undefined, and the delay literal wcs_undefined(G) is added to
the delay list.15

The value is user_hook allows a hook to be user-specified. The hook must
be specified as follows. In usermod the fact

unknown_predicate_hook(Goal)

should be asserted, where Goal= Predicate(Arg). When handling a call
of the form G1, where G1 refers to an unknown predicate, Goal will be
unified with G1 and then GoalθG1

will be called.

Example

Suppose the following code has been compiled during an XSB session.

:- import misc_error/1 from error_handler.

my_unknown_predicate_hook(Goal):-

15This action is part of a semantics for Prolog sometimes called the Weak Completion Semantics.
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writeln(this_is_my_undefined_warning_about(Goal)),

misc_error(unknown_predicate).

and the following fact asserted into usermod.

unknown_predicate_hook(my_unknown_predicate_hook(_X)

Then XSB will have the following behavior when calling the following
unknown predicate:

| ?- foo(X).

this_is_my_undefined_warning_about(foo(A))

++Error[XSB/Runtime/P]: [Miscellaneous] unknown_predicate

Forward Continuation...

:

• double_quotes Indicates that double-quoted terms in XSB represent lists
of character codes. Value is codes

• dialect indicates the implementation of Prolog that is running. Using
this flag, applications intended to run on more than one Prolog can take
actions that conditional on the executing Prolog. The value is xsb.

• version_data indicates the version of XSB that is running. Using this flag,
applications intended to run on more than one Prolog can take actions that
conditional on the executing Prolog. The value is

xsb(〈Major_version#〉, 〈Minor_version#〉, 〈Patch_version#〉, _).

ISO Compatibility Note: The ISO flags char_conversion is not available
– XSB does not use character conversion. XSB reads double quoted strings as
lists of character codes, so that the value of the flag double_quotes is always
codes, and this flag is not settable.

Non-standard flag names may be specific to XSB or may be common to XSB
and certain other Prolog. These flag names are:

• backtrace_on_error The flag is on iff system-handled errors automati-
cally print out the trace of the execution stack where the error arose, off

otherwise. Default is on. In the multi-threaded engine, this flag is thread-
specific and controls whether the backtrace for a current execution will be
printed to STDERR.

• dcg_style the DCG style currently used; xsb or standard (standard is
used in Quintus, SICSTUS, etc.). See Section 11.4 for more details. Default
is xsb. This flag affects all threads in the process.



CHAPTER 6. STANDARD AND GENERAL PREDICATES 256

• heap_garbage_collection Values: indirection or none. Indicates the
heap garbage collection strategy that is currently being employed (see also
Section 3.7). Default is indirection. This flag is private to each thread.

• heap_margin Specifies the size in bytes of the margin used to determine
whether to perform heap garbage collection or reallocation of the envi-
ronment stack. The default is 8192 (8K) bytes for 32-bit platforms 16384
(16K) for 64-bit platforms. Setting this field to a large value (e.g. in the
megabyte range) can cause XSB to be more aggressive in terms of expand-
ing heap and local stack and to do fewer heap garbage collections than
with the default value. However heap_margin should never be set lower
than its default, as this may prevent XSB from properly creating large
terms on the heap.

• clause_garbage_collection Values: on if garbage collection for retracted
clauses is allowed, and off otherwise. Default is on. This flag is private to
each thread.

• atom_garbage_collection Values: on if garbage collection for atomic
constants is allowed, and off otherwise. Default is on. This flag is global
for all threads (currently, string garbage collection will only be invoked if
there is a single active thread.)

• table_gc_action The setting abolish_tables_transitively causes pred-
icates or subgoals that depend on a conditional answer of an abolished
table to be abolished automatically; the setting abolish_tables_singly

not does not cause this action. The distinction is important, since if table
T1 depends on table T2, and T2 is abolished but T1 is not, then predicates
that introspect the dependencies of T1 could cause memory violations (e.g.,
get_residual/2). Default is abolish_tables_transitively. This flag
affects all threads in the process.

• goal The goal passed to XSB on command line with the ‘-e’ switch; or
‘true.’ if nothing is passed. This flag may be examined, but not set.

• tracing Values: on iff trace mode is on; off otherwise. This flag affects
all threads in the process.

• write_depth The depth to which a term is written by write-like predi-
cates. Default is 64. This flag affects all threads in the process.

• warning_action The action to take on warnings: the default value print_warning

prints a warning message to the user_warning stream when warning/1 is
called; silent_warning silently succeeds when warning/1 is called; and
error_warning/1 throws a miscellaneous exception.
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• write_attributes Determines the action to take by write/1 when it
writes an attributed variable. By default write/1 portrays attributed vari-
ables using module-specific routines (cf. Volume 2 of this manual) as
V ariable{Module : PA_Output} where PA_Output is the output of the
portray_attrubutes/2 clause for Module. However the value ignore

causes an attributed variable to be written simply as a variable; and dots

causes V ariable{< module_name >: ...} to be written. Finally, the value
write causes a variables attribute to be written as a term 16. The default
behavior is set to the value portray.

• unify_with_occurs_check If set to on, perform all unification using an
occurs check, which makes unification mathematically correct, at the cost
of increasing its computational complexity. Without the occurs check, the
unification

X = f(X)

will produce a cyclic term X = f(f(f(f(...)))); with the occurs check
this unification will fail. Setting the flag to on may slow down pro-
grams, perhaps drastically, and may be incompatible with some constraint
libraries such as CHR. An alternate to this flag is the ISO predicate
unify_with_occurs_check/2: see Section 6.8 for further discussion. The
default for this flag is off.

• character_set If set to utf_8, interprets input/output byte sequences
as UTF-8 encodings of unicode code points; if set to cp1252 then inter-
prets bytes using the Windows Code Page 1252; if set to latin_1, then
input/output bytes are interpreted as directly representing unicode code
points. Default for UNIX-style systems is utf_8 and for Windows-style
systems is cp1252, but the flag (and character sets) may be changed at
any time. (See section “Character Sets in XSB” in XSB User Manual
Volume 2 for more details.)

• errors_with_position If set to on, then the Prolog read predicates, when
they encounter a syntax error in the term being read, will throw a syntax er-
ror which contains a pair ErrorMessage-ErrorPosition. ErrorPosition

is an integer indicating the position in the file at which the syntax error
was detected. If set to off, then the read predicates will simply throw the
syntax error message.

• exception_action If set to iso then ISO-style exceptions will be thrown
whenever an error condition arises. However, if exception_action is set

16When writing an attribute, any attributed variables in the attribute itself are written just as
variables with their attributes ignored.
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to undefined_truth_value then certain goals will succeed with an un-
defined truth value rather than throwing an error. When this occurs, a
literal is added to the delay list of the current evaluation. Later, it can
be determined whether an undefined answer depends on an exceptional
condition through explain_u_val/[3.6], get_residual_sccs/[3,5] or
via a justification system that depends on these predicates. The default
for this flag is iso

• exception_pre_action If set to print_incomplete_tables, then the in-
complete subgoals are printed before throwing an exception. The execution
of this action causes the stack of incomplete tables to be printed to a tem-
porary file in $XSBDIR/etc. The file can be obtained via the predicate
get_scc_dumpfile/1; later, information in the file can be used to help
understand the context in which the exception arose. The file will be cre-
ated only if an exception is thrown over at least one incomplete table. The
default for this flag is off.

Use of this flag may be seen as an aid to analyzing tabling behavior when
XSB is part of a running system; for interactive analysis inspection predi-
cates may be more useful (cf. Section 10.3).

• max_tab_usage If set to on, maintains the maximal table usage (in bytes)
for display in statistics/[0,1]. This information can be useful if a
program performs various types of table abolishes. Setting this flag to on

may slightly slow down computation. Defailt is off.

Tripwire Flags The following flags that pertain to tripwires (cf. Setion 10.3.4)
are not currently implemented in the multi-threaded engine. Each tripwire has
one flag that sets a limit on some aspect of derivation along with an action of
what to do in such a case.

• max_table_subgoal_size A limit set on the size of a subgoal argument
that can be added to a table: if the limit is reached, an action is taken as
indicated in the following flag. To understand the use of this flag, consider
that if a predicate such as

p(X):- p(f(X)).

is tabled, it can create subgoals of unbounded size. When the limit is set
to 0, this tripwire is disabled. The default value is 0.

• max_table_subgoal_size_action The action to take whenever a tabled
subgoal of limit size is encountered. When the maximum subgoal size is
reached, XSB can
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1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Apply subgoal abstraction, using the value abstract.

3. Suspend the computation and throw it into a break-level CLI, using
the value suspend

• max_incomplete_subgoals A limit set on the maximum number of tabled
subgoals that can be incomplete at one time. If the limit is reached, an
action is taken as indicated in the following flag. Note that subgoals are
usually completed during the course of a derivation, so a large number
of incomplete subgoals may indicate unfounded recursion or some other
mis-specification in a program. When the limit is set to 0, this tripwire is
disabled. The default value is 0.

• max_incomplete_subgoals_action The action to take whenever the limit
number of incomplete subgoals is encountered. XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Suspend the computation and throw it into a break-level CLI, using
the value suspend.

• max_sccs_subgoals A limit set on the maximum number of incomplete
tabled subgoals that are mutually recursive. If the limit is reached, an ac-
tion is taken as indicated in the following flag. Note that a large number of
mutually recursive subgoals may indicate a mis-specification in a program,
such as an unintended expansion of the search space via meta-predicates
or HiLog. When the limit is set to 0, this tripwire is disabled. The default
value is 0.

• max_sccs_subgoals_action The action to take whenever the limit num-
ber of incomplete subgoals within a single SCC is encountered. XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Suspend the computation and throw it into a break-level CLI, using
the value suspend.

• max_table_answer_size A limit set on the size of an answer argument
that can be added to a table: if the limit is reached, an action is taken as
indicated in the following flag. To understand the use of this flag, consider
the program fragment:

:- table p/1.

p(f(X)):- p(X). p(a).
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is tabled, the model for the goal ?- p(X) is infinite, so that this program
will not terminate. When the size is set to 0, this this tripwire is disabled.
The default value is 0.

• max_table_answer_size_action The action to take when a tabled an-
swer of maximum size is encountered. When the maximum answer size is
reached, XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Apply answer abstraction through radial restraint, using the value
abstract.

3. Suspend the computation and throw it into a break-level CLI, using
the value suspend

• max_answers_for_subgoal A limit set on the number of answers that
any single tabled subgoal should have: if the limit is reached, an action
is taken as indicated in the following flag. Note that in a program with
a large number of constant or functor symbols, it is possible to construct
many answers of a fixed size; and if too many such answers are added for
a given subgoal, it may indicate a program mis-specification. When the
size is set to 0, this tripwire is disabled. The default value is 0.

• max_answers_for_subgoal_action The action to take when a the number
of answers for a given subgoal exceeds the limit set in the previous flag.
XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Suspend the computation and throw it into a break-level CLI, using
the value suspend

• max_memory The maximum amount of memory that an XSB thread (in the
single-threaded engine) or all XSB threads (in the multi threaded engine)
can use for their combined execution stacks, program space, tables, or any
other purpose. If a query exceeds this amount, XSB will abort the query
with a resource exception and then try to reclaim space used by the query.
As with other flags, this flag can be set during an XSB session.

The maximum amount can be set in two ways. If given a floating point
number F, 0 ≤ F ≤ 1, the maximum will be set to F times the total
amount of RAM for the machine on which XSB is executing. If given
an integer I, the maximum will be set to I kilobytes. The value of 0
effectively disables the flag, allowing XSB to allocate as much memory as
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the underlying OS will grant. The default value is 0, so that the flag is
disabled by default.

Flags Pertaining to Multi-Threading The following flags affect only the
multi-threaded engine.

• thread_glsize In the multi-threaded engine, the initial size, in kbytes, of
the global and local stack area of a newly created thread if no such option is
explicitly passed. By default this is 768 (or 1536 for 64-bit configurations),
or whatever was passed in if the command-line option -m was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

• thread_tcpsize In the multi-threaded engine, the initial size, in kbytes, of
the trail and choice point area of a newly created thread if no such option is
explicitly passed. By default this is 768 (or 1536 for 64-bit configurations),
or whatever was passed in if the command-line option -c was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

• thread_complsize In the multi-threaded engine, the initial size, in kbytes,
of the completion stack area of a newly created thread if no such option is
explicitly passed. By default this is 64 (or 128 for 64-bit configurations),
or whatever was passed in if the command-line option -0 was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

• thread_pdlsize In the multi-threaded engine, the initial size, in kbytes,
of the unification stack area of a newly created thread if no such option is
explicitly passed. By default this is 64 (or 128 for 64-bit configurations),
or whatever was passed in if the command-line option -m was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

• thread_detached In the multi-threaded engine, this specifies whether
threads are to be created as detached or joinable if no explicit option
is passed. A value of true indicates that threads are to be created as
detached, and false as joinable. If this flag is not set, its default is false.

• max_threads In the multi-threaded engine, the maximum number of valid
threads. By default this is 1024 and this value may not be reset at runtime,
but it may be set by the command-line option –max_threads. This option
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is settable only by a command-line argument, and has no effect in the
single-threaded engine.

• max_queue_size In the multi-threaded engine, the default maximum num-
ber of terms a message queue contains before writes to the message queue
block. By default this is 1000. If set to 0, queues by default will be
unbounded. This option has no effect in the single-threaded engine.

• shared_predicates In the multi-threaded engine, indicates whether pred-
icates are considered thread-shared by default – that is, whether tables or
dynamic predicates are shared among threads. By default this is false, and
predicates are considered thread-private by default. This option is settable
only by a command-line argument, and has no effect in the single-threaded
engine.

. Note that the above non-ISO flags are used only for dynamic XSB settings,
i.e., settings that might change between sessions (via command line arguments)
or within the same session (via modifiable flags). For static configuration infor-
mation, the predicate xsb_configuration/2 should be used.

Error Cases

• Flag_Name is neither a variable nor an atom.

– domain_error(atom_or_variable,Flag_Name)

set_prolog_flag(?Flag_Name, ?Value) ISO
set_prolog_flag/2 allows the user to change settable prolog flags. Currently
the only settable ISO flag is the unknown flag. Setting the flag unknown to fail

results in calls to undefined predicates to quietly fail. Setting it to warning

causes calls to undefined predicates to generate a warning (to STDWARN) and
then fail. Setting it to error (the default) causes calls to undefined predicates
to throw an existence error.

Dynamic XSB settings can also be changed, as described in current_prolog_flag/2.

Error Cases

• Flag_Name or Value is a variable.

– instantiation_error

• Flag_Name is not the name of a recognized Prolog flag.

– domain_error(prolog_flag,Flag_Name)
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current_predicate(?Predicate_Indicator) ISO
current_predicate/1 can be used to backtrack through indicators for loaded
user or system predicates. If Predicate_Indicator unifies with Module:F/A all
loaded predicates unifying with this indicator is returned. If Predicate_indicator

is F/A, current_predicate/1 behaves as if it were called with the form usermod:F/A.
Unlike current_functor/1 current_predicate/1 does not return indicators
for predicates that have been imported but not actually loaded into code space.
For more detailed analysis of predicate properties, the predicate predicate_property/2

can be used.

As an example to backtrack through all of the predicates defined and loaded in
module blah, regardless of whether blah is a system or a user defined module,
use:

| ?- current_predicate(blah:Predicate).

In this case Predicate will have the form: Functor/Arity.

To backtrack through all predicates defined and loaded in any current module,
use:

| ?- current_predicate(Module:Functor/Arity).

This succeeds once for every predicate that is loaded in XSB’s database.

To find the predicates having arity 3 that are loaded in usermod, use:

| ?- current_predicate(usermod:Functor/3).

while to find all predicates loaded in the global modules of the system regardless
of their arity, use:

| ?- current_predicate(usermod:Predicate).

Error Cases

• Predicate_indicator is neither a variable nor a predicate indicator

– type_error(predicate_indicator,Predicate_indicator))

ISO Compatibility Note: In XSB, current_predicate will backtrack through
system predicates as well as user predicates.

current_module(?Module)

The standard predicate current_module/1 allows the user to check whether
a given module is current or to generate (through backtracking) all currently
known modules. Succeeds iff Module is one of the modules in the database. This
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includes both user modules and system modules. For more detailed analysis of
module properties, the predicate module_property/2 can be used.

Note that predicate current_module/1 succeeds for a given module even if
that module does not export any predicates. There are no error conditions
associated with this predicate; if its argument does not unify with one of the
current modules, current_module/1 simply fails.

current_module(?Module, ?ObjectFile)

Predicate current_module/2 gives the relationship between the modules and
their associated object file names. The file name ObjectFile must be absolute
and end with the object file extension for the system (by default, .xwam). It is
possible for a current module to have no associated file name (as is the case for
"usermod"), or for the system to be unable to determine the file name of a cur-
rent module. In both cases, predicate current_module/1 will succeed for this
module, while current_module/2 will fail. The system is unable to determine
the file name of a given module if that module is not in one of the directories
of the search path (see Section 3.6). Once again, there are no error conditions
associated with this predicate; if the arguments of current_module/2 are not
correct, or Module has no associated File, the predicate will simply fail.

current_functor(?Predicate_Indicator)

current_predicate/1 can be used to backtrack through indicators for all non-
atomic terms occurring in loaded modules. If Predicate_Indicator unifies
with Module:F/A all term indicators unifying with F/A in a module unifying with
Module are returned. If Predicate_indicator is F/A, current_predicate/1

behaves as if it were called with the form usermod:F/A. Unlike current_predicate/1

current_functor/1 returns not only structures occurring in predicates but
predicates that are imported into loaded modules but are not yet themselves
loaded.

As an example, to backtrack through all of the functors of positive arity (func-
tion and predicate symbols) that appear in the global modules of the system
regardless of whether they are system or a user defined, use:

| ?- current_functor(Functor/Arity), Arity > 0.

There are no error conditions associated with this predicate; if its argument is
not a predicate indicator the predicate simply fails.

current_index(Functor/Arity,IndexSpec)

XSB has a variety of ways to index dynamic predicate including alternate ar-
gument indexing, multiple argument indexing, star-indexing, and tries, as dis-
cussed in Section 6.14. In addition XSB allows a choice of which argument to



CHAPTER 6. STANDARD AND GENERAL PREDICATES 265

index for compiled predicates as well. current_index/2 returns the index spec-
ification for each functor/arity pair unifying with Functor/Arity and visible
from the calling context of current_index/2.

current_atom(?Atom_Indicator)

Generates (through backtracking) all currently known atoms, and unifies each
in turn with Atom_Indicator.

predicate_property(?Term_Indicator, ?Property)

The standard predicate predicate_property/2 can be used to find the prop-
erties of any predicate that is visible to a particular module. Succeeds iff
Term_Indicator is a term indicator for a current predicate whose principal
functor is a predicate having Property as one of its properties. Or procedu-
rally, Property is unified with the currently known properties of the predicate
having Term_Indicator as its skeletal specification.

A brief description of predicate_property/2 is as follows:

• If Term_Indicator is not a variable, and is a structure or atom, then
Property is successively unified with the various properties associated
with Term_Indicator. If Term_Indicator is not a known to the sys-
tem, the call succeeds with Property successively unified to exported and
unclassified. These properties can be considered as a default for any
structure or atom.

• If Property is bound to a valid predicate property, then predicate_property/2

successively unifies Term_Indicator with the skeletal specifications of all
predicates known to the system having the specified Property.

• If Term_Indicator is a variable, then it is unified (successively through
backtracking) with the most general term for a predicate whose known
properties are unified with Property.

• If Term_Indicator is not a term indicator, or if Property is not a valid
predicate property, the call fails.

For example, all the loaded predicate skeletal specifications in module "usermod"

may be enumerated using:

| ?- predicate_property(Pred, loaded).

Also the following query finds all predicate skeletal specifications that are ex-
ported by module blah:

| ?- predicate_property(blah:Pred, exported).
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Currently, the following properties are associated with predicates either implic-
itly or by declaration. Double lines show property categories, and a predicate
can have at most one property of each category.

• Execition Type which is one of

– unclassified The predicate symbol is not yet classified according to this
category. This property has various meanings. Usually for exported
predicate symbols in system or user defined modules it means that the
predicate is yet unloaded (because it has not been used). In usermod

it usually means that the predicate is either a function symbol, or an
unloaded predicate symbol (including constants).

– dynamic The predicate is dynamic.

– loaded The predicate (including internal predicates) is a Prolog pred-
icate loaded into the module in question; this is always the case for
predicates in usermod.

– unloaded The predicate is yet unloaded into the module in question.

– foreign The predicate is a foreign predicate. This implies that the
predicate is already loaded in the system, because currently there is
no way for XSB to know that a predicate is a foreign predicate until
it is loaded in the system.

• Visibility Type which can be one of

– exported The predicate symbol is exported by the module in question;
in other words the predicate symbol is visible to any other module in
the system.

– local The predicate symbol is local to the module in question.

– imported_from(Mod) The predicate symbol is imported into the mod-
ule in question from module Mod.

• Tabling Call Behavior which can be one of

– tabled(variant) The predicate has been declared tabled and to use
call variance.

– tabled(subsumptive) The predicate has been declared tabled and to
use call subsumption

– tabled(default) The predicate has been declared tabled and to use
the default tabling strategy of the session, which can be either call
variance or call subsumption.

• Incremental Tabling Behavior which can be one of
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– incremental The predicate was declared as either incremental dy-
namic or as incremental tabled; or

– opaque The predicate was declared as opaque to incremental updates.

• spied The predicate symbol has been declared spied (either conditionally
or unconditionally).

• shared The predicate has been declared shared in the multi-threaded en-
gine. This means that any dynamic code or tables for this predicate will
be shared among threads, but it does not affect static, non-tabled code.

• built_in The predicate symbol has the same Functor and Arity as one of
XSB’s standard predicates, and is available tothe user without needing to
load a file or import th epredicate from a module.

• meta_predicate(Template) The predicate is a meta-predicate. This prop-
erty provides compatibility with other Prolog compilers and with forthcom-
ing ISO Prolog standards.

Finally, since dynamic is usually declared as an operator with precedence greater
than 999, writing the following:

| ?- predicate_property(X, dynamic).

will cause a syntax error. The way to achieve the desired result is to parenthesize
the operator like in:

| ?- predicate_property(X, (dynamic)).

module_property(?Module, ?Property)

The standard predicate module_property/2 can be used to find the properties
of any current module. Succeeds iff Module is the name of a current module
having Property as one of its properties. Or procedurally, Property is unified
with the currently known properties of the module having Module as its name.

Currently, the following properties are associated with modules implicitly

Property Explanation

unloaded The module (including system modules) though it is
current, is yet unloaded in the system.

loaded The module (including system modules) is loaded in the
system; this is always the case for usermod.

listing

Lists in the current output stream the clauses for all dynamic predicates found
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in module usermod. Note that listing/0 does not list any compiled predicates
unless they have the dynamic property (see predicate_property/2). A pred-
icate gets the dynamic property when it is explicitly declared as dynamic, or
automatically acquires it when some clauses for that predicate are asserted in
the database. In cases where a predicate was compiled but converted to dynamic

by asserting additional clauses for that predicate, listing/0 will just display
an indication that there exist compiled clauses for that predicate and only the
dynamically created clauses of the predicate will be listed. For example:

| ?- [user].

[Compiling user]

a(X) :- b(X).

a(1).

[user compiled, cpu time used: 0.3 seconds]

[user loaded]

yes

| ?- assert(a(3)).

yes

| ?- listing.

a(A) :-

$compiled.

a(3).

yes

Predicate listing/0 always succeeds. The query:

| ?- listing.

is just a notational shorthand for the query:

| ?- listing(X).

listing(+Predicate_Indicator)

If Predicate_Indicator is a variable then listing/1 is equivalent to listing/0.
If Predicate_Indicator is an atom, then listing/1 lists the dynamic clauses
for all predicates of that name found in module usermod of the database. The
argument Predicate_Indicator can also be a predicate indicator of the form
Name/Arity in which case only the clauses for the specified predicate are listed.
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Finally, it is possible for Predicate_Indicator to be a list of predicate indica-
tors and/or atoms; e.g.

| ?- listing([foo/2, bar, blah/4]).

If Predicate_Indicator is not a variable, an atom or a predicate indicator (or
list of predicate indicators) of the form Name/Arity, predicate listing/1 will
simply fail.

In future releases of XSB, we intend to allow the user to specify a predicate
indicator of the form Module:Name/Arity as argument of listing/1.

xsb_configuration(Feature_Name, ?Value)

Succeeds iff the current value of the XSB feature Feature_Name is Value.

This predicate provides information on a wide variety of features related to
how XSB was built, including the compiler used, the compiler and loader flags,
the machine and OS on which XSB was built, the release number, the various
directories that XSB uses to find its libraries, etc.

To find all features and their values, ask the following query:

| ?- xsb_configuration(FeatureName, Value), fail.

Here is how xsb_configuration might look like:

xsb_configuration(architecture, ’i386-apple-darwin8.9.1’).

%% configuration is usualy the same as architecture, but it can also

%% contain special tags, {\it e.g.}, i386-apple-darwin8.9.1-dbg, for a verion

%% built with debugging enabled.

xsb_configuration(configuration, ’i386-apple-darwin8.9.1-dbg’).

xsb_configuration(host_os, ’darwin8.9.1’).

xsb_configuration(os_version, ’8.9.1’).

xsb_configuration(os_type, ’darwin’).

xsb_configuration(host_vendor, ’apple’).

xsb_configuration(host_cpu, ’i386’).

xsb_configuration(compiler, ’gcc’).

xsb_configuration(compiler_flags, ’-faltivec -fPOC -Wall -pipe -g’).

xsb_configuration(loader_flags, ’-g -lm ’).

xsb_configuration(compile_mode, ’debug’).

%% The type of XSB engine configured.

xsb_configuration(scheduling_strategy, ’(local)’).

xsb_configuration(engine_mode, ’slg-wam’).

xsb_configuration(word_size, ’32’).

%% The following is XSB release information

xsb_configuration(major_version, ’3’).
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xsb_configuration(minor_version, ’3’).

xsb_configuration(patch_version, ’1’).

xsb_configuration(beta_version, ’’).

xsb_configuration(version, ’3.3.1’).

xsb_configuration(codename, ’Pignoletto’).

xsb_configuration(release_date, date(2011, 04, 12)).

%% Support for other languages

xsb_configuration(perl_support, ’yes’).v

xsb_configuration(perl_archlib, ’/usr/lib/perl5/i386-linux/5.00404’).

xsb_configuration(perl_cc_compiler, ’cc’).

xsb_configuration(perl_ccflags, ’-Dbool=char -DHAS_BOOL -I/usr/local/include’).

xsb_configuration(perl_libs, ’-lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt’).

xsb_configuration(javac, ’/usr/bin/javac’).

/* Tells where XSB is currently residing; can be moved */

xsb_configuration(install_dir, InstallDir) :- ...

/* User home directory. Usually HOME. If that is null, then it would

be the directory where XSB is currently residing.

This is where we expect to find the .xsb directory */

xsb_configuration(user_home, Home) :- ...

/* Where XSB invocation script is residing */

xsb_configuration(scriptdir, ScriptDir) :- ...

/* where are cmplib, syslib, lib, packages, etc live */

xsb_configuration(cmplibdir, CmplibDir) :- ...

xsb_configuration(libdir, LibDir) :- ...

xsb_configuration(syslibdir, SyslibDir) :- ...

xsb_configuration(packagesdir, PackDir) :- ...

xsb_configuration(etcdir, EtcDir) :- ...

/* architecture and configuration specific directories */

xsb_configuration(config_dir, ConfigDir) :- ...

xsb_configuration(config_libdir, ConfigLibdir) :- ...

/* site-specific directories */

xsb_configuration(site_dir, ’/usr/local/XSB/site’).

xsb_configuration(site_libdir, SiteLibdir) :- ...

/* site and configuration-specific directories */

xsb_configuration(site_config_dir, SiteConfigDir) :- ...

xsb_configuration(site_config_libdir, SiteConfigLibdir) :- ...

/* Where user’s arch-specific libraries are found by default. */

xsb_configuration(user_config_libdir, UserConfigLibdir) :- ...

hilog_symbol(?Symbol)

Succeeds iff Symbol has been declared as a HiLog symbol, or procedurally uni-
fies Symbol with one of the currently known (because of a prior declaration)
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HiLog symbols. The HiLog symbols are always atoms, but if the argument of
hilog_symbol, though instantiated, is not an atom the predicate simply fails.
So, one can enumerate all the HiLog symbols by using the following query:

| ?- hilog_symbol(X).

current_op(?Precedence, ?Specifier, ?Name) ISO
This predicate is used to examine the set of operators currently in force. It
succeeds when the atom Name is currently an operator of type Specifier and
precedence Precedence. None of the arguments of current_op/3 need to be
instantiated at the time of the call, but if they are, they must be of the following
types:

Precedence must be an integer in the range from 1 to 1200.

Specifier must be one of the atoms:

xfx xfy yfx fx fy hx hy xf yf

Name it must be an atom.

Error Cases

• Precedence is neither a variable nor an integer in the range from 1 to
1200.

– domain_error(operator_priority,Precedence)

• Specifier is neither a variable nor an operator specifier of the types above.

– domain_error(operator_specifier,Specifier)

• Name is neither a variable nor an atom.

– domain_error(atom_or_variable,Name)

hilog_op(?Precedence, ?Type, ?Name)

This predicate has exactly the same behaviour as current_op/3 with the only
difference that Type can only have the values hx and hy.

6.13 Execution State

break

Causes the current execution to be suspended at the beginning of the next call.
The interpreter then suspends the current computation, enters break level 1 and
is ready to accept input as if it were at top level. If another call to break/0 is
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encountered, it moves down to break level 2, and so on. As long as the current
computation occurs at break level n > 0 the prompt changes to n: ?-.

To close a break level and resume the suspended execution, the user can type
the the atom end_of_file or the end-of-file character applicable on the system
(usually CTRL-d on UNIX systems). Predicate break/0 then succeeds (note
in the following example that the calls to break/0 do not succeed), and the
execution of the interrupted program is resumed. Alternatively, the suspended
execution can be abandoned by calling the standard predicate abort/0, which
causes a return to the top level 17.

An example of break/0 ’s use is the following:

| ?- break.

[ Break (level 1) ]

1: ?- break.

[ Break (level 2) ]

2: ?- end_of_file.

[ End break (level 2) ]

yes

1: ?-

It is important to note that when XSB is interrupted via a ctrl-C, the current
computation is suspended, and a new break level is entered. Any incomplete
tables in the suspended computation can be examined, making break levels
useful for for analyzing tabled computations under execution, as described in
Section 10.3. However, it is also important to note that executing a tabled
predicate during a break point throws an exception if there are incomplete
tables that are suspended.

halt ISO
halt/0 Exits the XSB session regardless of the break level. On exiting the system
cpu and elapsed time information is displayed.

halt(Code) ISO
halt/1 Exits the XSB session regardless of the break level, sending the integer
Code to the parent process. Normally 0 is considered to indicate normal termi-
nation, while other exit codes are used to report various degrees of abnormality.

Error Cases

17If only the break-level computation should be aborted, the predicate abort_level/[0,1] can
be called. This should rarely be needed, except if a specialized intepreter is written using XSB.



CHAPTER 6. STANDARD AND GENERAL PREDICATES 273

• Code is not an integer

– type_error(Integer,Code)

prompt(+NewPrompt, ?OldPrompt)

Sets the prompt of the top level interpreter to NewPrompt and returns the old
prompt in OldPrompt.

An example of prompt/2 ’s use is the following:

| ?- prompt(’Yes master > ’, P).

P = | ?- ;

no

Yes master > fail.

no

Yes master >

trimcore module: machine

A call to trimcore/0 reallocates an XSB thread’s execution stacks (and some
tabling stacks) to their initial allocation size, the action affecting only the mem-
ory areas for the calling thread. When XSB is called in standalone or server
mode, trimcore/0 is automatically called when the top interpreter level is
reached. When XSB is embedded in a process, trimcore/0 is called at the top
interpreter level for any thread created through xsb_ccall_thread_create()
(see Volume 2, Chapter 3 Embedding XSB in a Process).

gc_heap

Explicitly invokes the garbage collector for a thread’s heap. By default, heap
garbage collection is called automatically for each thread upon stack expansion,
unless the Prolog flag heap_garbage_collection is set to none. Automatic
heap garbage collection should rarely need to be turned off, and should rarely
need to be invoked manually.

statistics

Outputs time and memory usage information to the current output stream. This
information is fairly detailed so the best way to explain is through an example.
Figure 6.13 shows the output during a large and heavily tabled program written
by XSB users.

Statistics first displays information about memory, then information about
tabling operations as well as time.
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• The first subsection of memory statistics, permanent_space, summarizes
information about certain kinds of memory that is not generally under user
control and is generally process-level tather than thread-specific. Allocated
memory is broken into different classes including the following.

– atoms Space used to maintain information about all predicates and
structures.

– string Space used to maintain information about all atomic constants
in XSB.

– asserted Space allocated for dynamic code.

– static Space allocated for static code.

– foreign Space allocated for foreign predicates.

– findall Space allocated for buffers to support findall/3 and similar
predicates.

– profiling Space used to maintain profiling information, if XSB is
called with profiling on. (Not shown in Figure 6.13.)

– mt-private Private space used by threads. (Only for the MT engine
and not shown in Figure 6.13.)

– buffer Space used for buffers used by forest logging, message queues
and other libraries. (Not shown in Figure 6.13.)

– hash Space used for hash-tables not otherwise classified, such as the
storage library. (Not shown in Figure 6.13.)

– interprolog space allocated for the InterProlog XSB/Java interface.
(Not shown in Figure 6.13.)

– thread In the MT engine, space allocated for the thread table, mutex
array, and other global structures. (Not shown in Figure 6.13.)

– other Other unclassified memory (usually this is a small amount).

• The next section summarizes information about XSB’s main stacks. In the
MT-engine this information is specific to the calling thread.

– Global stack (heap) and local (environment) stack (see e.g. [1]) for the
calling thread. Memory for these two WAM stacks is allocated as a
single unit (per thread) so that each stack grows together; information
is provided on the current allocation for the stacks as well as on the
stack sizes themselves. (See Section 3.7.3 for initialization details.)

– Trail and choice point stack (see e.g. [1]) for the calling thread. Mem-
ory for these two WAM stacks is allocated as a single unit (per thread)
so that each stack grows together; information is provided on the cur-
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| ?- statistics.

Memory (total) 10674384280 bytes: 10543481920 in use, 130902360 free

permanent space 58486184 bytes: 58486184 in use, 0 free

atom 383976

string 1736104

asserted 53237408

compiled 1267816

findall 1060560

buffer 787008

other 13312

glob/loc space 268435456 bytes: 141921760 in use, 126513696 free

global 140607272

local 1314488

trail/cp space 8388608 bytes: 4631208 in use, 3757400 free

trail 303176

choice point 4328032

SLG unific. space 131072 bytes: 0 in use, 131072 free

SLG completion 262144 bytes: 0 in use, 262144 free

SLG table space 10338680816 bytes: 10338442512 in use, 238304 free

Incr table space 620778800 in use

Tabling Operations

0 subsumptive call check/insert ops: 0 producers, 0 variants,

0 properly subsumed (0 table entries), 0 used completed table.

0 relevant answer ident ops. 0 consumptions via answer list.

1251821353 variant call check/insert ops: 979496 producers, 1250841857 variants.

11570194 answer check/insert ops: 97921 unique inserts, 11472273 redundant.

4 DEs in the tables (space: 98312 bytes allocated, 200 in use)

4 DLs in the tables (space: 49160 bytes allocated, 104 in use)

Total number of incremental subgoals created: 1089296

Currently 799432 incremental subgoals, 11240813 dependency edges

6 heap (6 string) garbage collections by sliding: collected 1202735 cells in 0.539478 secs

Figure 6.1: Statistics output from a large and heavily tabled program
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rent allocation for the stacks as well as on the stack sizes themselves.
(See Section 3.7.3 for initialization details.)

– SLG unification stack for the calling thread. This stack is used as a
space to copy terms from the execution stacks into table space, or back
out. This stack is not be reallocated unless extremely large terms are
tabled.

– SLG completion stack for the calling thread. The completion stack is
used to perform incremental completion for sets of mutually dependent
tabled subgoals. One completion stack frame is allocated per tabled
subgoal [68] but the size of these frames is version-dependent.

– Overall space used for tabling, followed by the amout of that overall
space used for incremental tabling. (Generally speaking, this is the
space that is used to contruct the IDG.)

• Information about the number of tabling operations performed in the ses-
sion by any thread. Global counts (per-thread) are given first, followed by
a few breakdowns of these counts by different types of tables.

– The global information starts with the total number of calls to tabled
predicates. Next is the total number or answer check/insert opera-
tions, followed by a breakdown into the number of unique answers
generated, and the number of answers that were redundant when they
were generated. Finally comes information about conditional answers,
including the number of delay lists, and the total number delay ele-
ments: i.e., literals contained in delay lists. (See Section 5.3.2 for a
general discussion of delay representation.)

– Next comes a breakdown of the global numbers according to whether
call subsumption or call variance is used.

∗ Call Variance Subgoal Operations. For call variance the number
of subgoal check/insert operations is given along with the unique
number of subgoals encountered (producers) and the number of
redundant consumer encountered (variants).

∗ Call Subsumption Subgoal Operations. The total number calls to
predicates that use call subsumption is given first. It is followed by
the number of producers – that is, the number of distinct tables
that have been created for these predicates. Next is variants, the
number of repeated non-subsumed calls to these tables while the
tables are non-completed and completed.

∗ Call Subsumption Answer Consumption. In call subsumptive tabling,
answer lists are copied from producer subgoals to subsumed con-
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sumer subgoals (this operation is not required in variant tabling).
The number of answer ident operations represents the number
of times this copy is done. In addition, the number of consump-
tions performed by all consuming subsumptive table entries is also
given. Note that these counts indicate the number of times an
answer is consumed by a call subsumption table, while the overall
count of answers produced is provided above.

– Finally, if incremental tabling is used, the total number of producers
subgoals for incremental tables is given. This is followed by a measure
of the incremental dependency graph (IDG) in its current state. The
number of nodes in the IDG (incremental subgoals) is given, followed
by the number of dependency edges.

• Garbage Collection Information. Time spent garbage collecting by the
calling thread and number of heap cells collected.

• Information about process CPU and clock time, as well as the number of
active threads.

statistics(+Key)

statistics/1 allows the user to output detailed statistical information about
the atom and symbol tables, as well as about table space. The following calls
to statistics/1 are supported:

• statistics(reset) Resets the CPU time as well as counts for various
tabling operations.

• statistics(atom) Outputs statistics about both the atom and symbol
tables. An example is:

| ?- statistics(atom).

Symbol table statistics:

------------------------

Table Size: 8191

Total Symbols: 1188

used buckets: 1088 (range: [0, 8174])

unused buckets: 7103

maximum bucket size: 3 (#: 18)

String table statistics:

------------------------

Table Size: 16381

Total Strings: 1702

used buckets: 1598 (range: [0, 16373])

unused buckets: 14783
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maximum bucket size: 3 (#: 2318)

• statistics(summarize_idg) Outputs a simple but sometimes useful sum-
mary of the IDG. This summary consists of counts of IDG nodes grouped
at a predicate level. Counts are displayed for both tabled subgoals for
incremental predicates along with subgoals to dynamic incremental predi-
cates.

• statistics(table) Outputs very detailed statistics about table space,
including breakdowns into variant and subsumptive call- and answer- trie
nodes and hash tables; answer return list nodes, and structures for condi-
tional answers (cf. [68, 64, 40, 18]). In the multi-threaded engine, these
data structures are reported both for shared tables and for private tables
of the calling thread.

While this option is intended primarily for developers, it can also provide
valuable information for the serious user of tabling.

Error Cases

• Key not a valid atom for input to statistics/1

– domain_error(statisticsInputDomain,Key))

statistics(?Key,-Result)

statistics/2 allows a user to determine information about resources used by
XSB. Currently statistics/2 unifies Key with

• runtime, which instantiates Result to the structure [TotalCPU,IncrCPU]

where TotalCPU is the total (process-level) CPU time at the time of call,
and IncrCPU is the CPU time taken since the last call to statistics/2.
Times are measured in seconds. The process-level CPU time includes
time taken for system calls, as well as time taken for garbage collection
and stack-shifting. Note that in the multi-threaded engine, statistics/2

measures the time for all threads.

• walltime, which instantiates Result to the list [TotalTime,IncrTime]

where TotalTime is the total elapsed time at the time of call, and IncrTime

is the elapsed time taken since the last call to statistics/2. Times are
measured in seconds.

• total_memory which instantiates Result to the list [Alloc,Used]. In the
single-threaded engine, Alloc is the total table space allocated and Used

is the total table space used, both in bytes. In the multi-threaded engine,
both refer to table space private to the calling thread.
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• tablespace which instantiates Result to the list [Alloc,Used]. In the
single-threaded engine, Alloc is the total table space allocated and Used

is the total table space used, both in bytes. In the multi-threaded engine,
both refer to table space private to the calling thread.

• shared_tablespace which instantiates Result to the list [Alloc,Used].
In the multi-threaded engine, Alloc is the total space allocated for shared
tables and Used is the total table space used, both in bytes. An error is
thrown if this option is called by the single-threaded engine.

• trie_assert which instantiates Result to the list [Alloc,Used]. In the
single-threaded engine, Alloc is the total space allocated for trie-asserted
facts and interned tries; Used is the total space used for these purposes,
both in bytes.

• heap which instantiates Result to the total number of bytes used by XSB’s
heap. In the multi-threaded engine, the number refers only to the heap of
the calling thread.

• local which instantiates Result to the total number of bytes used by
XSB’s local (environment) stack. In the multi-threaded engine, the number
refers only to the local stack of the calling thread.

• trail which instantiates Result to the total number of bytes used by
XSB’s trail stack. In the multi-threaded engine, the number refers only to
the trail stack of the calling thread.

• choice_point which instantiates Result to the total number of bytes used
by XSB’s choice point stack. In the multi-threaded engine, the number
refers only to the choice point stack of the calling thread.

• incomplete_tables which instantiates Result to a list containing the
following elements (in order):-

– The number of incomplete tables in XSB’s completion stack, i.e., the
number of subgoals currently under evaluation.

– The number of SCCs currently under evaluation in XSB’s completion
stack.

In the multi-threaded engine, both of these numbers refer to the completion
stack of the calling thread, which may contain both thread-private and
thread-shared tables.

• atoms which instantiates Result to the number of bytes taken by atoms
in the atom table.
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• idg which instantiates Result to a a list containing (in order) the number
of nodes and the number of edges currently in the incremental dependency
graph (IDG).

• table_ops which instantiates Result to a list containing the following
elements (in order):

– The total number of calls to subgoals that are tabled using call sub-
sumption.

– The total number of distinct tables created using call subsumption
(i.e., the total number of distinct calls to subgoals that are tabled
using call subsumption).

– The total number of calls to subgoals that are tabled using call vari-
ance.

– The total number of distinct tables created using call variance (i.e.,
the total number of distinct calls to subgoals that are tabled using call
variance).

– The total number of check/insert operations for all answers (whether
they are in subsumptive or variant tables).

– The number of distinct answers added (whether they are in subsump-
tive or variant tables).

Example An example of using statistics/2 to check CPU time is as follows:

?- statistics(runtime,[BeforeCumu,BeforeIncr]),spin(100000000),

statistics(runtime,[AfterCumu,AfterIncr]).

BeforeCumu = 5.0167

BeforeIncr = 5.0167

AfterCumu = 9.6498

AfterIncr = 4.6331

Note that statistics/2 can provide either cumulative or incremental times;
here

AfterCumu − BeforeCumu = AfterIncr

Checking wall time is done similarly.

?- statistics(walltime,Before),sleep(1),statistics(walltime,After).

Before = [35.0651,35.0651]

After = [36.0652,1.0001]
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Error Cases

• Key not a valid atom for input to statistics/1

– domain_error(statisticsInputDomain,Key))

time(+Goal)

Prints both the CPU time and wall time taken by the execution of Goal. Any
choice-points of Goal are discarded. The definition of predicate is based on
the SWI-Prolog definition (minus reporting the number of inferences, which
XSB does not currently support). This predicate is also found on other Prolog
compilers such as YAP.

6.14 Asserting, Retracting, and Other Database

Modifications

XSB provides an array of features for modifying the dynamic database. As a default,
using assert/1, clauses can be asserted using first-argument indexing in a manner
that is now standard to Prolog implementations. However, a variety of other behaviors
can be specified using the (executable) directives index/3 and index/2. For instance,
dynamic clauses can be declared to have multiple or joint indexes, and this indexing
can be either hash-based as is typical in Prolog systems or based on tries. No matter
what kind of indexing is used, space is dynamically allocated when a new clause is
asserted and, unless specified otherwise, released after it is retracted. Furthermore,
the size of any index table expands dynamically as clauses are asserted.

All dynamic predicates are compiled into SLG-WAM code, however the manner of
their compilation may differ, and the differences in compilation affect the semantics
for the predicate. If a dynamic predicate P/n is given an indexing directive of trie,
clauses for P/n will be compiled using trie instructions; otherwise clauses for P/n
will be compiled into SLG-WAM instructions along the lines of static predicates.

Consider first dynamic predicates that use any indexing other than trie – in-
cluding multiple or joint indices and star indexing. XSB asserts WAM code for such
clauses so that that the execution time of dynamic code is similar to compiled code
for unit and binary clauses. Furthermore, tabling can be used by explicitly declaring
a predicate to be both dynamic and tabled. In Version 3.8, when the clause of a
dynamic predicate is asserted as WAM code, the “immediate semantics” rather than
the ISO Semantics of assert/retract [51]. The immediate semantics allows assert and
retract to be fast and spatially efficient, but requires that significant care must be
taken when modifying the definition of a predicate which is currently being executed.
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If a dynamic predicate is given an indexing directive of trie, clauses of the predi-
cate are compiled (upon a call assert/1) using trie instructions as described in [64].
Creation of trie-based dynamic code is significantly faster than creation of other dy-
namic code, and execution time may also be faster. However, trie-based predicates
can only be used for unit clauses where a relation is viewed as a set, and where the
order of the facts is not important.

XSB does not at this time fully support dynamic predicates defined within com-
piled code. The only way to generate dynamic code is by explicitly asserting it, or
by using the standard predicate load_dyn/1 to read clauses from a file and assert
them (see the section Asserting Dynamic Code in Volume 2). There is a dynamic/1

predicate (see page 289) that declares a predicate within the system so that if the
predicate is called when no clauses are presently defining it, the call will quietly fail
instead of issuing an “Undefined predicate” error message.

asserta(+Clause) ISO
If the index specification for the predicate is not trie, this predicate adds a
dynamic clause, Clause, to the database before any other clauses for the same
predicate currently in the database. If the index specification for the predicate
is trie, the clause is asserted arbitrarily within the trie, and a warning message
sent to stderr.

Note that because of the precedence of :-/2, asserting a clause containing this
operator requires an extra set of parentheses: assert((Head :- Body)).

Error Cases

• Clause is not instantiated

– instantiation_error

• Clause is not a callable clause.

– domain_error(callable,Clause)

• Clause has a head that is a static built-in

– permission_error(modify,builtin,Clause)

• Clause has a head that is a static user predicate

– permission_error(modify,static,Clause)

assertz(+Clause) ISO
If the index specification for the predicate is not trie, this predicate adds a
dynamic clause, Clause, to the database after any other clauses for the same
predicate currently in the database. If the index specification for the predicate



CHAPTER 6. STANDARD AND GENERAL PREDICATES 283

is trie, the clause is asserted arbitrarily within the trie, and a warning message
sent to stderr. Error cases are as with asserta/1.

Note that because of the precedence of :-/2, asserting a clause containing this
operator requires an extra set of parentheses: assert((Head :- Body)).

assert(+Clause)

If the index specification for the predicate is not trie, this predicate adds a
dynamic clause, Clause, to the database after any other clauses for the same
predicate currently in the database (acting as assertz/1). If the index spec-
ification for the predicate is trie, the clause is asserted arbitrarily within the
trie. Error cases are as with assertz/1.

Note that because of the precedence of :-/2, asserting a clause containing this
operator requires an extra set of parentheses: assert((Head :- Body)).

assert(+Clause,+AorZandVar,+Index)

This is a lower-level interface to (non-trie-indexed) assert. It is normally not
needed except in one particular situation, when assert aborts because it needs
too many registers. In this case, this lower-level assert may allow the offending
clause to be correctly asserted.

The default implementation of non-trie-indexed assert generates code with a
single pass through the asserted term. Because of this, it cannot know when it
has encountered the final occurrence of a variable, and thus it can never release
(and thus re-use) registers that are used to refer to variables. Since there is a
limit of 255 registers in the XSB virtual machine, asserting a clause with more
than this many distinct variables results in an error. There is an alternative
implementation of assert that initially traverses the clause to determine the
number of occurrences of each variable and thus allows better use of registers
during code generation.

Clause is the clause to assert. AorZandVar is an integer whose lower 2 bits are
used: The low-order bit is 0 if the clause is to be added as the first clause, and 1
if it is to be added as the last clause. If the second bit (2) is on, then the clause
is traversed to count variable occurrences and so improve register allocation
for variables; if it is 0, the default one-pass code-generation is done. So, for
example, if AorZandVar is 3, then the clause will be asserted as the last one in
the predicate and the better register allocation will be used. Index indicates
the argument(s) on which to index.

retract(+Clause) ISO
Removes through backtracking all clauses in the database that match with
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Clause. Clause must be of one of the forms: Head or Head :- Body. Note,
that because of the precedence of :-/2, using the second form requires an extra
set of parentheses: retract((Head :- Body)).

The technical details on space reclamation are as follows. When retract is called,
a check is made to determine whether it is safe to reclaim space for that clause.
Safety is ensured when:

• A check is made of the choice point stack indicating that no choice point
will backtrack into space that is being reclaimed; AND

– The predicate is thread-private; OR

– there is a single active thread

• AND if the predicate is tabled, there is no incomplete table for that pred-
icate.

If it is safe to reclaim space for the clause, space is reclaimed immediately.
Otherwise the clause is marked so that its space may later be reclaimed through
garbage collection. (See gc_dynamic/1).

Error Cases

• Clause is not instantiated

– instantiation_error

• Clause is not a callable clause.

– domain_error(callable,Clause)

• Clause has a head that is a static built-in

– permission_error(modify,builtin,Clause)

• Clause has a head that is a static user predicate

– permission_error(modify,static,Clause)

retractall(+Head) ISO
removes every clause in the database whose head matches with Head. The
predicate whose clauses have been retracted retains the dynamic property (con-
trast this behavior with that of predicates abolish/[1,2] below). Predicate
retractall/1 is determinate and always succeeds. The term Head is not fur-
ther instantiated by this call. Conditions for space reclamation and error cases
are as with retract/1.
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abolish(+PredSpec) ISO
Removes all information about the specified predicate. PredSpec is of the form
Pred/Arity. Everything about the abolished predicate is completely forgotten
by the system (including the dynamic or static property, whether the predi-
cate is tabled, and whether the predicate is thread-shared or thread-private) 18.
Any completed tables for the predicate are also removed.

It is an error to abolish a predicate when there is more than 1 active thread,
regardless of whether the predicate is thread-private or thread-shared. The
reason for this is that, even if PredInd denotes a thread-private predicate, one
thread may be making use of PredInd as another thread abolishes it. abolish/1

throws an error in such a case to prevent such a semantic inconsistency. Simi-
larly, if there is a non-completed table for PredInd, an error is thrown to prevent
incompleteness in the tabled computation.

ISO Compatibility Note: Version 3.8 of XSB allows static predicates to be
abolished and their space reclaimed. Such space is reclaimed immediately, and
unlike the case for abolished static code, no check is made to ensure that XSB’s
choice point stack is free of choice points for the abolished static predicate.
Abolishing static code is thus dangerous and should be avoided unless a user is
certain it is safe to use.

Error Cases

• PredInd, Pred or Arity is not instantiated

– instantiation_error

• Arity is not in the range 0..216 (max_arity)

– domain_error(arity_indicator,Arity)

• PredInd indicates a static built-in

– permission_error(modify,builtin,Predind)

• abolish/1 is called when there is more than 1 active thread.

– misc_error

• PredInd has a non-completed table in the current thread.

– table_error

• There are active backtrack points to a (dynamic) clause for PredInd 19.

18For compatibility with older Prologs, there is also an abolish/2 which takes Pred and Arity

as its two arguments.
19XSB throws an error in this case because garbage collection for abolished predicates has not

been implemented (unlike for retract(all) and various table abolishes). Besides, you shouldn’t be
abolishing a predicate that you could backtrack into. What were you thinking?
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– misc_error

clause(+Head,?Body) ISO
Returns through backtracking all dynamic clauses in the database whose head
matches Head and Body matches Body. For facts the Body is true. clause/2

works properly for all dynamically asserted clauses, even if they are trie-indexed;
however clause/2 does not access trie-inserted terms. In the multi-threaded
engine, when a thread T calls clause/2 it accesses both thread-shared dynamic
code and thread-private dynamic code for T .

Error Cases

• Head is not instantiated

– instantiation_error

• Head (or Body) is not a callable clause.

– domain_error(callable,Head)

• Head is a static built-in

– permission_error(access,builtin,Head)

• Head is a static user predicate

– permission_error(access,static,Clause)

gc_dynamic(-N)

Invokes the garbage collector for dynamic clauses that have been retracted,
or whose predicate has been abolished. When called with more than 1 active
thread, gc_dynamic/1 will always perform garbage collection for that thread’s
private retracted clauses; however in Version 3.8, it will only perform garbage
collection for retracted thread-shared clauses if there is a single active thread.
N is the number or shared and/or private frames left to be collected – if N is
unified to 0, then all possible garbage collecting has been performed. N is unified
to -1 garbage collection was not attempted (due to multiple active threads).

By default, gc_dynamic/1 is called automatically at the top level of the XSB
interpreter, when abolishing a predicate, and when calling retractall for an
“open” term containing no variable bindings.

index(+PredSpec, +IndexSpec)

In index(PredSpec, IndexSpec), PredSpec is a predicate indicator or term
indicator, and IndexSpec is a form of index specification as described below.

In general, XSB supports hash-based indexing on various arguments of clauses,
on combinations of arguments, as well as within the arguments of a clause. The
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availability of various kinds of indexing depends on whether code is static (e.g.
compiled) or dynamic (e.g. asserted, loaded with load_dyn/1 and so on). Index
directives can be given to the compiler as part of source code or executed dur-
ing program execution (analogously to op/3). When executed during program
execution, index/2 does not re-index an already existing predicate; however for
dynamic predicates index/2 does affect the index for clauses asserted after the
directive has been given.

• Hash-based Indexing

– Static Predicates In this case IndexSpec must be a non-negative in-
teger which indicates the argument on which an index is to be con-
structed. If IndexSpec is 0, then no index is kept (possibly an efficient
strategy for predicates with only one or two clauses.)

– Dynamic Predicates For a dynamic predicate, (to which no clauses
have yet been asserted), a wide variety of indexing techniques are
possible. We discuss their syntax first, and then their semantics. For
dynamic predicates then, IndexSpec can be either an indexing element
or a list of indexing elements. Each indexing element defines a separate
index and specifies an argument or group of arguments that make up
the search key of that index. Thus an indexing element consists of
one or more argument indicators joined together by +/2. An argument
indicator is may be an integer (ArgNo) indicating an argument number
(starting from 1) to use in the index, or it may have the form *(ArgNo).
If ArgNo is an integer, only the main functor symbol of argument ArgNo

will participate in the index. When annotated with the asterisk, the
first 5 fields of argument ArgNo (in a depth-first traversal of the term)
will be used in the index. If there are fewer than 5, they all will be
used. If any of the first 5 is a variable, then the index cannot be used.
An index is usually on a single argument, in which case the indexing
element consists of a single argument indicator. If an indexing ele-
ment contains more than one argument specifier, then a joint index is
specified i.e. an index will be constructed so that the values of each
argument indicator are to be concatenated to create the search key of
the index.
Examples help clarify this. index(p/3,[2,1]) indicates that clauses
asserted for the predicate p/3 should be indexed on both the second
and the first argument. A query Q to p/3 will first use the second
argument index to p/3 if the second argument of Q is non-variable,
and will use the main functor of the second argument. Otherwise, if
the second argument of Q is a variable, but not the first argument,
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the first argument index of p/3 will be used. If both arguments in Q
are variables, no index will be used and Q will backtrack through all
clauses for p/3.
index(p/3,[*(2),1]) would result in similar behavior as the previous
example, but the first index to be tried (on the second argument)
would be built using more of the term value in that second argument
position (not just the main functor symbol.)
As another example, one could specify: index(p/5,[1+2,1,4]). Af-
ter clauses are asserted to it, a call to p/5 would first check to see if
both the first and second arguments are non-variable and if so, use an
index based on both those values. Otherwise, it would see if the first
argument is non-variable and if so, use an index based on it. Oth-
erwise, it would see if the fourth argument is non-variable and if so
use an index based on it. As a last resort, it would use no index but
backtrack through all the clauses in the predicate. In each of these
cases, the indexes are built using only the main functor symbol in the
indicated argument position. (Notice that it may well make sense to
include an argument that appears in a joint specification later alone,
as 1 in this example, but it never makes sense forcing the single argu-
ment to appear earlier. In that case the joint index would never be
used.)
If we want to use similar indexing on p/5 of the previous exam-
ple, except say argument 1 takes on complex term values and we
want to index on more of those terms, we might specify the index
as index(p/5,[*(1)+2,*(1),4]).

• Trie-based Indexing If Predspec is dynamic, the executable directive index(Predspec,trie)

causes clauses for Predspec to be asserted using tries (see [64], which is
available through the XSB web page). The name trie indexing is something
of a misnomer since the trie itself both indexes the term and represents
it. In XSB, a trie index is formed using a left-to-right traversal of the unit
clauses. These indexes can be very effective if discriminating information
lies deep within a term, and if there is sharing of left-prefixes of a term, trie
indexing can reduce the space needed to represent terms. Furthermore, as-
serting a unit clause as a trie is much faster than asserting it using default
WAM code. Despite these advantages, representing terms as tries leads to
semantic differences from asserted code, of which the user should be aware.
First, the order of clauses within a trie is arbitrary: using asserta/1 or
assertz for a predicate currently using trie indexing will give the same
behavior as using assert. Also, the current version of XSB only allows
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trie indexing for unit clauses.

If in doubt what indexing is being used for a predicate, a call to current_index/2

can be made.

Error Cases

• PredSpec or IndexSpec is a variable

– instantiation_error

• PredSpec is neither a variable, a predicate indicator, nor a callable term.

– type_error(predicate_indicator_or_callable,PredSpec)

• IndexSpec is not ground

– instantiation_error

• IndexSpec is neither a properly formed indexing element nor a list of
indexing elements

– domain_error(indexing_element,IndexSpec)

• IndexSpec is a list containing an element IndexElt that not a properly
formed indexing element

– domain_error(indexing_element,IndexElt)

• PredSpec represents a predicate that has been previously defined to be
static

– permission_error(modify,static_predicate)

dynamic(+Operations) ISO
dynamic/1 can be used either as a compiler declaration or as an executable

directive. Used as a compiler declaration, it indicates that all clauses for each
predicate denoted by the command are dynamic – clauses for these predicates
can be asserted or retracted. Without this declaration compiled clauses will be
treated as static. Executed as a directive in a state of execution where no clauses
exist for each denoted predicate dynamic/1 ensures clauses for the affected
predicates are to be treated as dynamic. If PredSpec contains a predicate
that is defined as static or as foreign code, a permission error will be thrown.
Operations can take one of two forms:

1. Operations is a predicate indicator, a callable term, or a comma-list of
predicate indicators or callable terms.

2. Operations has the form Predspec as Options where
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• PredSpec is a predicate indicator, a callable term, or comma-list of
predicate indicators or callable terms.

• Options is either a dynamic_option or a list of dynamic_options.
These dynamic options control the attributes of a dyamic predicate.
In Version 3.8, the following dynamic options are supported

– intern which causes every clause for this predicate, before being
asserted, to force all its ground subterms to be interned into a
global table.

– tabled which causes the dynamic predicate to be tabled. The
declaration/directive dynamic p/n as tabled has the same effect
as table p/n as dynamic.

– variant which causes the table evaluation method of the predi-
cate(s) to use call variance.

– incremental which allows (incremental) tables that are based on
the dynamic predicate to be automatically updated when clauses
are asserted or retracted.

– opaque. This option is essencially the same as non-incremental dy-
namic code, except that opaque predicates can be made incremental

by a later dynamic/1 directive, and incremental predicates can
be made opaque by a dynamic/1 directuve.

– private which causes the predicate(s) to be treated as thread
private.

– shared which causes the predicate(s) to be treated as thread shared.

If the directive

dynamic p/n.

is executed, its behavior is as follows:

• If p/n is already dynamic, the directive has no effect, regardless of wither
p/n is tabled, incremental or opaque, private or shared.

• If p/n has not already been defined, the directive makes p/n non-tabled,
non-incremental, and to use the default thread sharing strategy (private

unless XSB is called with –shared_predicates).

If the directive

dynamic PredList as Options.

is executed, various checks are performed on Options. These checks are (mostly)
performed before any predicates are declared as dynamic or options changed,
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and reduce the possibility of leaving some p/n in PredList with inconsistent
attributes.

• If a dynamic predicate in Predlist is declared as incremental it may
be changed to opaque at any time; similarly, a dynamic predicate that is
opaque may be changed to incremental

• Otherwise, an attempt to change an attribute of p/n in PredList – i.e.
whether p/n is tabled or not, incremental/opaque or not, and thread-
private or thread-shared – will throw a permission error.

In addition, regardless of the state of predicates in PredList, if options contains
an inconstent set of declarations, a domain error will be thrown. Options is
inconsistent in the following cases:

• Options contains tabled or variant and opaque or incremental. Tabled
dynamic incremental code is not yet supported in XSB.

• Options contains both private and shared

• Options contains both incremental and opaque

• Options contains intern and (dynamic or subsumptive or incremental

or opaque)

Error Cases

Error cases are summarized as follows. Let Operations be of the form PredSpec

or PredSpec as Options. Then if

• PredSpec or is a variable or a comma list containing a variable

– instantiation_error

• An element of PredSpec is neither a variable nor a comma list

– type_error(callable,PredSpec)

• A predicate in PredSpec has been previously defined to be static or foreign

– permission_error(modify,static_predicate)

• Options is a variable or a list containing a variable

– instantiation_error

• Options contains an element Option that isn’t a dynamic option (as de-
scribed above)

– domain_error(dynamic_option,Option)
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• Options contains inconsistnet elements (as described above)

– table_error

• An option in Options would modify a predicate in predspec in a manner
that is not allowed (as described above)

– permission_error

In addition, if a predicate p/n was declared to be dynamic and a file containing
clauses for p/n is later consulted, a permission error will be thrown.

6.14.1 Reading Dynamic Code from Files

Several built-in predicates are available that can assert the contents of a file into
XSB’s database. These predicates are useful when code needs to be dynamic, or
when the they contain a large number of clauses or facts. Configured properly, files
containing millions of facts can be read and asserted into memory in under a minute,
making XSB suitable for certain kinds of in-memory database operations 20.

Each of the predicates in this section allow loading from files with proper prolog
extensions, and makes use of the XSB library paths. See Sections 3.6 and 3.3 for
details.

load_dyn(+FileName)

Asserts the contents of file FileName into the database. All existing clauses
of the predicates in the file that already appear in the database, are retracted,
unless there is a multifile/1 declaration for them. An indexing declaration of
a predicate p/n in FileName will be observed as long as the declarations occur
before the first clause of p/n. Clauses in FileName must be in a format that
read/1 will process. So, for example, operators are permitted. Modules (files
containing export statements) can be loaded and all terms are treated as they
are in the compiler.

Dynamically loaded files can be filtered through the XSB preprocessor. To do
this, put the following in the source file:

:- compiler_options([xpp_on]).

20In Version 3.8, loading code dynamically can also be useful when the clauses contain atoms
whose length is more than 255 that cannot be handled by the XSB compiler.
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Of course, the name compiler_options might seem like a misnomer here (since
the file is not being compiled), but it is convenient to use the same directive
both for compiling and loading, in case the same source file is used both ways.

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom.

– type_error(atom,Filename)

• FileName has been loaded previously in the session and there is more than
one active thread.

– misc_error

load_dyn(+FileName,+Dir)

Asserts the contents of file FileName into the database. Dir indicates whether
assertz or asserta is to be used. If Dir is z, then assertz is used and the
behavior of load_dyn(FileName) is obtained. If Dir is a, then asserta is used
to add the clauses to the database, and clauses will be in the reverse order of
their appearance in the input file. asserta is faster than assertz for predicates
such that their indexing and data result in many hash collisions. Dir is ignored
for facts in FileName that are trie-indexed.

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom:

– type_error(atom,FileName)

• Dir is not equal to a or z 21:

– domain_error(a_or_z,Dir)

• FileName has been loaded previously in the session and there is more than
one active thread.

– misc_error

21For backward compatibility, 0 and 1 are also allowed.
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load_dync(+FileName)

Acts as load_dyn/1, but assumes that facts are in “canonical” format and is
much faster as a result. In XSB, a term is in canonical format if it does not
use any operators other than list notation and comma-list notation. This is the
format produced by the predicate write_canonical/1. (See cvt_canonical/2

to convert a file from the usual read/1 format to read_canonical format.)
As usual, clauses of predicates are not retracted if they are compiled instead
of dynamically asserted. All predicates are loaded into usermod. :- export

declarations are ignored and a warning is issued.

Notice that this predicate can be used to load files of Datalog facts (since
they will be in canonical format). This predicate is significantly faster than
load_dyn/1 and should be used when speed is important. (See load_dync/2

below for further efficiency considerations.) A file that is to be dynamically
loaded often but not often modified by hand should be loaded with this predi-
cate.

As with load_dyn/1, the source file can be filtered through the C preproces-
sor. However, since all clauses in such a file must be in canonical form, the
compiler_options/1 directive should look as follows:

:-(compiler_options(’.’(xpp_on,[]))).

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom.

– type_error(atom,FileName)

• FileName has been loaded previously in the session and there is more than
one active thread.

– misc_error

load_dync(+FileName,+Dir)

Acts as load_dyn/2, but assumes that facts are in “canonical” format. Dir

is ignored for trie-asserted code, but otherwise indicates whether assertz or
asserta is to be used. If Dir is z, then assertz is used and the exact behavior
of load_dync(FileName) is obtained. If Dir is a, then asserta is used to add
the clauses to the database, and clauses will end up in the reverse order of their
appearance in the input file.
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Setting Dir to a for non trie-asserted code can sometimes be much faster than
the default of z. The reason has to do with how indexes on dynamic code
are represented. Indexes use hash tables with bucket chains. No pointers are
kept to the ends of bucket chains, so when adding a new clause to the end of a
bucket (as in assertz), the entire chain must be run. Notice that in the limiting
case of only one populated bucket (e.g., when all clauses have the same index
term), this makes assertz-ing a sequence of clauses quadratic. However, when
using asserta, the new clause is added to the beginning of its hash bucket, and
this can be done in constant time, resulting in linear behavior for asserta-ing a
sequence of clauses.

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom:

– type_error(atom,FileName)

• Dir is not instantiated to a or z 22:

– domain_error(a_or_z,Dir)

• FileName has been loaded previously in the session and there is more than
one active thread.

– misc_error

ensure_loaded(+FileName,+Action)

This predicate does nothing if FileName has been loaded or consulted into XSB,
and has not changed since it was loaded or consulted. Otherwise

• If Action is instantiated to dyn the behavior is as load_dyn/1 (or load_dyn(FileName,z)).

• If Action is instantiated to dyna the behavior is as load_dyn(FileName,a).

• If Action is instantiated to dync the behavior is as load_dync/1 (or
load_dync(FileName,z)).

• If Action is instantiated to dynca the behavior is as load_dync(FileName,a).

• If Action is instantiated to consult, FileName is consulted (action is the
same as ensure_loaded/1).

Error Cases

22For backward compatibility, 0 and 1 are also allowed.
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• FileName is not instantiated:

– instantiation_error

• FileName is not an atom:

– type_error(atom,FileName)

• Action is not a valid load action as described above

– domain_error(loadAction,Action)

cvt_canonical(+FileName1,+FileName2) module: consult

Converts a file from standard term format to “canonical” format. The input
file name is FileName1; the converted file is put in FileName2. This predicate
can be used to convert a file in standard Prolog format to one loadable by
load_dync/1.

6.14.2 The storage Module: Associative Arrays and Back-
trackable Updates

XSB provides a high-level interface that allows the creation of “objects” that efficiently
manage the storage of facts or of associations between keys and values. Of course,
facts and associative arrays can be easily managed in Prolog itself, but the storage

module is highly efficient and supports the semantics of backtrackable updates as
defined by Transaction logic [6] in addition to immediate updates. The semantics
of backtrackable updates means that an update made by the storage module may is
provisional until the update is committed. Otherwise, if a subgoal calling the update
fails, the change is undone. The commit itself may be made either by the predicate
storage_commit/1, or less cleanly by cutting over the update itself.

A storage object O is referred to by a name, which must be a Prolog atom. O
can be associated either with a set of facts or a set of key-value pairs. Within a given
storage object each key is associated with a unique value: however since keys and
values can be arbitrary Prolog terms, this constraint need not be a practical restric-
tion. A storage object O is created on demand, simply by calling (a backtrackable or
non-backtrackable) update predicate that refers to O. However to reclaim O’s space
within a running thread, the predicate storage_reclaim_space/1 must be called.
Both backtackable and non-backtrackable updates can be made to the same storage
object, although doing so may not always be a good programming practice.

If multiple threads are used, each storage object is private to a thread, and space
for a storage object is reclaimed upon a thread’s exit. Thread-shared storage objects
may be supported in future versions.
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All the predicates described in this section must be imported from module storage.

Non-backtrackable Storage

storage_insert_keypair(+StorageName,+Key, +Value, ?Inserted)

Insert the given Key-Value pair into StorageName. If the pair is new, then
Inserted unifies with 1. If the pair is already in StorageName, then Inserted

unifies with 0. If StorageName already contains a pair with the given key
that is associated with a different value, then Inserted unifies with -1. The
first argument, StorageName, must be an atom naming the storage to be used.
Different names denote different storages. In all cases the predicate succeeds.

storage_delete_keypair(+StorageName, +Key, ?Deleted)

Delete the key-value pair with the given key from StorageName. If the pair was
in StorageName then Deleted unifies with 1. If it was not in StorageNames
then Deleted unifies with 0. The first argument, StorageName, must be an
atom naming the storage object to be used. Different names denote different
storages. In both cases the predicate succeeds.

storage_find_keypair(+StorageName, +Key, ?Value)

If StorageName has a key pair with the given key, then Value unifies with the
value stored in StorageName. If no such pair exists in the database, then the
goal fails.

Note that this predicate works with non-backtrackable associative arrays de-
scribed above as well as with the backtrackable ones, described below.

storage_insert_fact(+StorageName, +Fact, ?Inserted)

Similar to keypair insertion, but this primitive inserts facts rather than key
pairs.

storage_delete_fact(+StorageName, +Fact, ?Inserted)

Similar to key-pair deletion, but this primitive deletes facts rather than key
pairs.

storage_find_fact(+StorageName, +Fact)

Similar to key-pair finding, but this primitive finds facts facts rather than key
pairs.
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Backtrackable Updates

storage_insert_keypair_bt(+StorageName, +Key, +Value, ?Inserted)

Calling this predicate inserts a key pair into the trie represented by StorageName,
similarly to storage_insert_keypair/4, and the key-value pair can then be
queried via storage_find_keypair/3, just as with the non-backtrackable up-
dates described above. In addition, the key-value pair can be removed from
StorageName by explicit deletion. However, the key pair will be removed from
StorageName upon failing over the insertion goal unless a commit is made to
StorageName through the goal storage_commit(StorageName). The exact se-
mantics is defined by Transaction Logic [6].

Note it is the update itself that is backtrackable, not the key-value pair. Hence, a
key-pair may be (provisionally) inserted by a backtrackable update and deleted
by a non-backtrackable update, or inserted by a non-backtrackable update and
(provisionally) deleted by a backtrackable update. Of course, whether such a
mixture makes sense would depend on a given application.

storage_delete_keypair_bt(+StorageName, +Key, ?Deleted)

Like storage_delete_keypair/3, but backtrackable as described for the pred-
icate storage_insert_keypair_bt/4.

storage_insert_fact_bt(+StorageName, +Goal)

Like storage_insert_fact/2, but backtrackable.

storage_delete_fact_bt(+StorageName, +Goal)

This is a backtrackable version of storage_delete_fact/2.

storage_commit(+StorageName)

Commits to StorageName any backtrackable updates since the last commit, or
since initialization if no commit has been made to StorageName. If StorageName

does not exist, the predicate silently fails.

Reclaiming Space

storage_reclaim_space(+StorageName)

This is similar to reclaim_space/1 for assert and retract, but it is used for
storage managed by the primitives defined in the storage module. As with
reclaim_space/1, this goal is typically called just before returning to the top
level.
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6.15 Tabling Declarations and Builtins

In XSB, tables are designed so that they can be used transparently by computations.
However, it is necessary to first inform the system of which predicates should be
evaluated using tabled resolution (Section 3.10.2) along with the properties to be
used, such as call variance or call subsumptiion (Chapter 5). Further, it is often
useful to be able to explicitly inspect a table, or to alter its state. The predicates
described in this section are provided for these purposes. In order to ground the
discussion of these predicates, we continue our overview of tables and table creation
from Chapter 5. For a detailed description of the implementation of table access
routines in XSB, the reader is referred to [64, 40, 19, 82] and other papers listed in
the bibliography.

Tables and Table Entries

Abstractly, a table T can be seen as a triple 〈S, A, Status〉 where S is a sub-
goal, A is its associated answer set, and Status its status — whether the table is
complete or incomplete, along with tabling properties it uses (e.g., incremental or
non-incremental, cf. Chapter 5 for a discussion of tabling properties). XSB’s table
inspection built-ins sometimes use a TableEntryHandle to efficiently access T and
a ReturnHandle to access A. Often is is useful to access or manipulate the set of
all (subgoal-level) tables for some tabled predicate p/n. We thus sometimes abuse
terminology slightly by referring to this set as a predicate-level table.

At execution time, invocation of a tabled subgoal S leads to the classification of
S according to the properties associated with its predicate, as well as its possible
creation of a table for S. Each occurrence of a subgoal that is not yet completely
evaluated can be classified as either (a) a generator, of answers or (b) a consumer of
those answers.

Skeletons and Predicate Specifications

A skeleton for a functor f/n is a structure of the form f(Arg1,...,Argn) where each
Argi is a distinct variable. Similarly the skeleton of a term is the skeleton formed
from the principal functor of the term, so that skeletons from the terms f(1,2)

and f(A,B) are the same. A return skeleton is a specific application of this notion to
answers. From it, one may discern the size of the template for a given subgoal. Below,
we assume that a predicate specification for a predicate p and arity n, represented
as PredSpec below, can be given either using the notation p/n or as a skeleton,
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p(t1,...,tn).

6.15.1 Declaring and Modifying Tabled Predicates

table(+Operations) Tabling
table/1 can be used either as a compiler declaration or as an executable direc-
tive. Used as a compiler declaration, it indicates that each predicate denoted
by the command is to be compiled using (a particular form of) tabling, and may
indicate that the predicate itself is dynamic or thread-shared or thread-private.
Executed as a directive in a state of execution where no clauses exist for each
denoted predicate table/1 ensures that any clauses asserted for each predicate
use tabling and may indicate the mode of tabling to be used. The parameter
Operations can take one of three forms:

1. Operations is a predicate indicator, a skeleton, or a comma-list or list of
predicate indicators or skeletons.

2. Operations is a term indicating that a predicate is to be tabled with a
particular form of answer subsumption (cf. Section 5.4).

3. Operations has the form Predspec as Options where

• PredSpec is a predicate indicator, a skeleton, or a comma-list or list
of predicate indicators or skeletons.

• Options is either a table option or a list of table options. In Version
3.8, the following table options are supported

– dynamic or dyn which causes the predicate(s) to be treated as dy-
namic in addition to being tabled, and is equivalent to ?- dynamic

PredSpec 23

– subsumptive which causes the table evaluation method of the
predicate(s) to use call subsumption.

– variant which causes the table evaluation method of the predi-
cate(s) to use call variance.

– intern which causes all ground subterms of subgoals and answers
entered into the table for the predicate(s) to be interned.

– incremental which causes the table evaluation method of the
predicate(s) to be incremental.

23Because dynamic is an operator, the declaration requires parentheses, e.g.: table p/n as

(dynamic).
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– opaque which indicates that the tables predicate is used in the
definition of an incremental table, but are not to be incrementally
maintained themselves.

– private which causes the predicate(s) to be treated as thread
private in addition to being tabled.

– shared which causes the predicate(s) to be treated as thread shared
in addition to being tabled.

– subgoal_abstract(n) which enables size-based subgoal abstrac-
tion for the predicate(s).

– answer_abstract(n) which enables depth-n answer abstraction
for the predicate(s).

If the directive

table PredList as Options.

is executed, various checks are performed on Options. These checks are (mostly)
performed before any predicates are declared as dynamic or options changed,
and reduce the possibility of leaving some p/n in PredList with inconsistent
attributes, which could cause an error to be thrown during program execution.

• If a predicate in Predlist has been declared as incremental it may be
changed to opaque at any time; similarly, a predicate that is opaque may
be changed to incremental

• If a predicate in Predlist has been declared to use call variance it may be
changed to use call subsumption at any time; similarly, a predicate that
uses call subsumption may be changed to use call variance.

• Otherwise, an attempt to change an attribute of p/n in PredList – i.e.
whether p/n is tabled or not, dynamic or not and thread-private or thread-
shared – will throw a permission error.

In addition, regardless of the state of predicates in PredList, if options contains
an unsupported set of declarations, a permission error will be thrown (see Ta-
ble 5.1 for a list of supported and non-supported combinations of tabling modes
and predicate properties). Options throws a table error in the following cases:

• Options contains dynamic and either opaque or incremental. Tabled
dynamic incremental code is not yet supported in XSB.

• Options contains (incremental or opaque) and (subsumptive or shared)

• Options contains subsumptive and (variant or shared or subgoal_abstract/1

or answer_abstract/1)
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• Options contains intern and (dynamic or subsumptive or approximate

or incremental or opaque or answer_abstract or subgoal_abstract)

• Options contains both private and shared

• Options contains both incremental and opaque

Error Cases

Error cases are summarized as follows. Let Operations be of the form PredSpec

or PredSpec as Options. Then if

• PredSpec or is a variable or a comma list containing a variable

– instantiation_error

• An element of PredSpec is neither a variable nor a predicate indicator, nor
a skeleton.

– type_error(callable,PredSpec)

• A predicate in PredSpec has been previously defined to be static or foreign
and Options contains dynamic or dyn

– permission_error(modify,static_predicate)

• Options is a variable or a list containing a variable

– instantiation_error

• Options contains an element Option that isn’t a table option (as described
above)

– domain_error(table_option,Option)

• Options contains a non-supported combination of elements (as described
above)

– permission_error

• An option in Options would modify a predicate in PredSpec in a manner
that is not allowed (as described above)

– permission_error

6.15.2 Predicates for Table Inspection

Often, the higher level inspection predicates described in Section 10.3 are the best
bet for analyzing tables and other aspects of the state of computation. However, for
some purposes, a finer level of control is needed, which these predicates provide. In
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this section we describe inspection predciates that can be used to quickly examine a
collection of tables. In the next section, we describe lower-level inspection predicates
that are special-purpose, and may not be needed by most users.

For explanitory purposes, we maintain two running examples in this section and
the next. The first uses tabling based on call variance:

Call Variance Example

Program Table

:- table p/2 as variant.

p(1,2).

p(1,3).

p(1,_).

p(2,3).

Subgoal Answer Set Status

p(1,Y) p(1,2) complete
p(1,3)
p(1,Y)

p(X,3) p(1,3) complete
p(2,3)

and the second uses tabling based on call subsumption::

Call Subsumption Example

Program Table

:- table q/2 as subsumptive.

q(a,b).

q(b,c).

q(a,c).

Subgoal Answer Set Status

q(X,Y) q(a,b) complete
q(b,c)
q(a,c)

q(a,Y) q(a,b) complete
q(a,c)

q(X,c) q(b,c) complete
q(a,c)

Note that in the call subsumption example, the subgoals q(a,Y) and q(X,c) are
subsumed by, and hence obtain their answers from, the subgoal q(X,Y).

get_calls_for_table(+PredSpec,?Call) Tabling
Identifies through backtracking all tabled subgoals whose predicate is that of
PredSpec and that unify with Call. PredSpec is left unchanged while Call

contains the unified result. Its behavior is shown in Example 6.15.1.
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Example 6.15.1 (get_calls_for_table/2)

Variant Predicate

|?- get_calls_for_table(p(1,3),Call).

Call = p(_h142,3);

Call = p(1,_h143);

no

| ?- get_calls_for_table(p/2,Call).

Call = p(_h137,3);

Call = p(1,_h138);

no

Subsumptive Predicate

| ?- get_calls_for_table(q(X,Y),Call).

X = _h80

Y = _h94

Call = q(a,_h167);

X = _h80

Y = _h94

Call = q(_h166,c);

X = _h80

Y = _h94

Call = q(_h166,_h167);

no

get_returns_for_call(+Subgoal,?AnswerTerm) Tabling
Succeeds through backtracking for each answer of the subgoal Subgoal which
unifies with AnswerTerm. Fails if Subgoal is not a tabled subgoal or AnswerTerm

does not unify with any of its answers or if Subgoal has no answers.

The answer is created in its entirety, including fresh variables so that Subgoal is
not further instantiated. Of course the user may unify Subgoal with its answer
if desired. Example 6.15.2 illustrates its behavior.
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Example 6.15.2 (get_returns_for_call/2)

Variant Predicate

| ?- get_returns_for_call(p(1,Y),

AnsTerm).

Y = _h88

AnsTerm = p(1,_h161);

Y = _h88

AnsTerm = p(1,3);

Y = _h88

AnsTerm = p(1,2);

no

| ?- get_returns_for_call(p(X,Y),

AnsTerm).

no

| ?- get_returns_for_call(p(1,2),

AnsTerm).

no

Subsumptive Predicate

| ?- get_returns_for_call(q(a,Y),

AnsTerm).

Y = _h88

AnsTerm = q(a,c);

Y = _h88

AnsTerm = q(a,b);

no

| ?- get_returns_for_call(q(X,c),

AnsTerm).

X = _h80

AnsTerm = q(b,c);

X = _h80

AnsTerm = q(a,c);

no

get_residual(#CallTerm,?DelayList) Tabling

variant_get_residual(#CallTerm,?DelayList) Tabling
get_residual/2 backtracks through the answers to each completed subgoal in
the table that unifies with CallTerm. For each such answer A, CallTerm is
unified with A, and DelayList with a delay list of A if A is conditional, and
otherwise with the empty list.

Since the delay list of an answer consists of those literals whose truth value is un-
known in the well-founded model of the program (see Chapter 5) get_residual/2

is useful to examine portions of the residual program. Example 6.15.3 illustrates
such a use.

Example 6.15.3 (get_residual/2) For the following program and table
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:- table p/2.

p(1,2).

p(1,3):- tnot(p(2,3)).

p(2,3):- tnot(p(1,3)).

Subgoal Answers

p(1,X) p(1,2)
p(1,3):- tnot(p(2,3))

p(1,3) p(1,3):- tnot(p(2,3))
p(2,3) p(2,3):- tnot(p(1,3))

the completed subgoals are p(1,X), p(1,3), and p(2,3). Calls to get_residual/2

will act as follows

| ?- get_residual(p(X,Y),List).

X = 1 % from subgoal p(1,X)

Y = 2

List = [];

X = 1 % from subgoal p(1,X)

Y = 3

List = [tnot(p(2,3))];

X = 1 % from subgoal p(1,3)

Y = 3

List = [tnot(p(2,3))];

X = 2 % from subgoal p(2,3)

Y = 3

List = [tnot(p(1,3))];

no

For other purposes, it may be desired to examine the answers for a particular
subgoal, rather than for all subgoals that unifiy with CallTerm. In this case,
variant_get_residual/2 can be used, which backtracks through all answers
for CallTerm if CallTerm is a tabled subgoal with answers, and fails otherwise.
For the above example, variant_get_residual/2 behaves as follows:

| ?- variant_get_residual(p(X,Y),List).

no

| ?- variant_get_residual(p(1,Y),List).

X = 1 % from subgoal p(1,X)
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Y = 2

List = [];

X = 1 % from subgoal p(1,X)

Y = 3

List = [tnot(p(2,3))];

no

Error Cases

• CallTerm is not a callable term

– type_error(callable_term,CallTerm)

• CallTerm does not correspond to a tabled predicate

– permission_error(table access,non-tabled predicate,CallTerm)

table_state(+Subgoal,?Strategy,?CallType,?AnsSetStatus) Tabling

table_state(+TableEntryHandle,?Strategy,?CallType,?AnsSetStatus) Tabling
May succeed whenever Subgoal is a subgoal in the table, or TableEntryHandle

is a valid reference to a table entry. In either case, certain arguments 2 through 4
unify with constants representing properties of the table. Taken together, these
properties provide a detailed description of current state of the given subgoal
within an evaluation. The combinations valid in the current version of XSB and
their specific meaning is given in the following table. Notice that not only can
these combinations describe the characteristics of a subgoal in the table, but
they are also equipped to predict how CallTerm would have been treated had
it been called at that moment.
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Strategy CallType AnsSetStatus Description

complete Self explanatory.
An incremental table that has been

producer incremental_needs_reeval invalidated, and is therefore inconsistent
with a KB and needs recomputation
(which will be lazily done).

variant incomplete Self explanatory.
no_entry undefined The call does not appear in the table.

complete Self explanatory.
producer

incomplete Self explanatory.
The call is in the table and is properly

complete
subsumed by a completed producer.

subsumed
The call is in the table and is properly

incomplete
subsumed by an incomplete producer.
The call is not in the table, but if it were

subsumptive complete to be called, it would consume from a
completed producer.
The call is not in the table, but if it had

no_entry incomplete been called at this moment, it would
consume from an incomplete producer.
The call is not in the table, but if it had

undefined been called at this moment, it would be
a producer.

undefined undefined undefined The given predicate is not tabled.

get_scc_dumpfile(-Filename) module: tables

If the Prolog flag exception_pre_action is set to print_incomplete_tables

(its default setting is none), then when an exception is thrown, incomplete tables
and their SCC information are printed to an “SCC dumpfile”. Note that the
information is output for the state of execution where the error was thrown, and
so is more informative than an action taken when the error is caught. (No file
is generated unless the exception is thrown over at least one incomplete table.)
Creation of an SCC dumpfile can triggered by any error condition, rather than
by tha more restricted set of tripwire conditions (cf. Section 10.3.4) and so
provide a complementary functionality.

This predicate returns the name of the last such file generated and fails if there
is no such file. Files are written to the $XSBDIR/etc directory with the prefix
scc_dump_. Users are responsible for removing these files.

Note that XSB backtraces (Section 12.5) provide information about the context
in which an exception is thrown, but the SCC dumpfile provides explicit SCC
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information along with argument. values for tabled predicates.

Error Cases

• Filename is a not a variable

– instantiation_error

6.15.3 Predicates for Table Inspection: Lower-level

In this section, the user should be aware that skeletons that are dynamically
created (e.g., by functor/3) are located in usermod (refer to Section 3.4.7). In
such a case, the tabling predicates below may not behave in the desired manner
if the tabled predicates themselves have not been imported into usermod.

Answers, Returns, and Return Templates

Given a table entry (S, A, Status), the vector of variables in S is sometimes
called the substitution factor of S. The order of arguments in the substitution
factor corresponds to the order of distinct variables in a left-to-right traversal
of S. Each answer in A substitutes values for the variables in the substitution
factor of S; this substitution is sometimes called an answer substitution. The
table inspection predicates allow access to substitution factors and answer sub-
stitutions through a family of terms called return templates and whose principle
functors have the form ret/n, where n is the size of the substitution factor.

Example 6.15.4 Let S = p(X,f(Y)) be a tabled subgoal. Using a return tem-
plate, the substitution factor can be depicted as ret(X,Y), while the answer
substitution {X=a,Y=b} is depicted as ret(a,b). Note that the application of
the answer substitution to the generator subgoal yields the answer p(a,f(b)).

To take a slightly more complex example, consider the subgoal q(X) where X is
an attributed variable whose attribute is f(Z,Y,Y). In this case the substitution
factor is ret(X,Z,Y). ✷

XSB overloads return templates to maintain substitutions between generator
subgoals and consuming subgoals when call subsumption is used. The return
template for a consuming subgoal is a substitution that maps variables of its
generator to subterms of the consuming subgoal. This template can then be
used to select answers from the generator that unify with the consuming call.
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Example 6.15.5 Let p/2 of the previous example be evaluated using call sub-
sumption and let the subgoal S = p(A,f(B)) be present in its table. Further, let
S1: p(A,f(B)) and S2: p(g(Z),f(b)) be two consuming subgoals of S. Then
the return template of S1 is ret(A,B) and that of S2 is ret(g(Z),b). S1, being
a variant of S, selects answers for S such that {X=A,Y=B}, i.e., all answers of
S. S2, on the other hand, selects only relevant answers of S, those that satisfy
{X=g(Z),Y=b}. ✷

Description of Low-level Inspection Predicates

get_call(+CallTerm,-TableEntryHandle,-ReturnTemplate) Tabling

If call variance is used for the predicate corresponding to CallTerm, then
this predicate searches the table for an entry whose subgoal is a variant
of CallTerm. If subsumption is used, then this predicate searches for
some entry that subsumes (properly or not) CallTerm. In either case,
should the entry exist, then the handle to this entry is assigned to the
second argument, while its return template is constructed in the third
argument. These latter two arguments must be uninstantiated at call
time. Example 6.15.6 illustrates its behavior.

Error Cases

• CallTerm is not a callable term

– type_error(callable_term,CallTerm)

• CallTerm does not correspond to a tabled predicate

– permission_error(table access,non-tabled predicate,CallTerm)
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Example 6.15.6 (get_call/2)

Variant Predicate

| ?- get_call(p(X,Y),Ent,Ret).

no

| ?- get_call(p(1,Y),Ent,Ret).

Y = _h92

Ent = 136039108

Ret = ret(_h92);

no

| ?- get_call(p(X,3),Ent,Ret).

X = _h84

Ent = 136039156

Ret = ret(_h84);

no

| ?- get_call(p(1,3),Ent,Ret).

no

Subsumptive Predicate

| ?- get_call(q(X,Y),Ent,Ret).

X = _h80

Y = _h94

Ent = 136043988

Ret = ret(_h80,_h94);

no

| ?- get_call(q(a,Y),Ent,Ret).

Y = _h88

Ent = 136069412

Ret = ret(a,_h88);

no

| ?- get_call(q(X,c),Ent,Ret).

X = _h80

Ent = 136069444

Ret = ret(_h80,c);

no

get_calls(#Subgoal,-TableEntryHandle,-ReturnTemplate) Tabling
Identifies through backtracking each tabled subgoal S that unifies with
Subgoal. For each such S, the handle to the table entry is assigned to
the second argument, and its return template is constructed in the third.
These latter two arguments must be uninstantiated at call time. The error
terms are the same as for get_calls/1. Example 6.15.7 illustrates its
behavior.
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Example 6.15.7 (get_calls/3)

Variant Predicate

| ?- get_calls(p(X,Y),Ent,Ret).

X = _h80

Y = 3

Ent = 136039156

Ret = ret(_h80);

X = 1

Y = _h94

Ent = 136039108

Ret = ret(_h94);

no

| ?- get_calls(p(X,3),Ent,Ret).

X = _h80

Ent = 136039156

Ret = ret(_h80);

X = 1

Ent = 136039108

Ret = ret(3);

no

| ?- get_calls(p(1,3),Ent,Ret).

Ent = 136039156

Ret = ret(1);

Ent = 136039108

Ret = ret(3);

no

Subsumptive Predicate

| ?- get_calls(q(X,Y),Ent,Ret).

X = a

Y = _h94

Ent = 136069412

Ret = ret(a,_h94);

X = _h80

Y = c

Ent = 136069444

Ret = ret(_h80,c);

X = _h80

Y = _h94

Ent = 136043988

Ret = ret(_h80,_h94);

no

| ?- get_calls(q(a,Y),Ent,Ret).

Y = _h88

Ent = 136069412

Ret = ret(a,_h88);

Y = c

Ent = 136069444

Ret = ret(a,c);

Y = _h88

Ent = 136043988

Ret = ret(a,_h88);

no

get_returns(+TableEntryHandlex,#ReturnTemplate) Tabling
Backtracks through the answers for the subgoal whose table entry is ref-
erenced through the first argument, TableEntryHandle, and instantiates
ReturnTemplate with the variable bindings corresponding to the answer.
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The supplied values for the entry handle and return skeleton should be
obtained from some previous invocation of a table-inspection predicate
such as get_call/3 or get_calls/3. Its behavior is illustrated in Exam-
ple 6.15.8.
Example 6.15.8 get_returns/2

Variant Predicate

| ?- get_calls(p(X,3),Ent,Ret),

get_returns(Ent,Ret).

X = 2

Ent = 136039156 % p(X,3)

Ret = ret(2);

X = 1

Ent = 136039156

Ret = ret(1);

X = 1

Ent = 136039108 % p(1,Y)

Ret = ret(3);

X = 1

Ent = 136039108

Ret = ret(3);

no

Subsumptive Predicate

| ?- get_calls(q(a,c),Ent,Ret),

get_returns(Ent,Ret).

Ent = 136069412 % q(a,Y)

Ret = ret(a,c);

Ent = 136069444 % q(X,c)

Ret = ret(a,c);

Ent = 136043988 % q(X,Y)

Ret = ret(a,c);

no

| ?- get_calls(q(c,a),Ent,Ret),

get_returns(Ent,Ret).

no

get_returns_and_tvs(+TableEntryHandle,#ReturnTemplate,-TruthValue)

Tabling
Identical to get_returns/2, but also obtains the truth value of a given
answer, setting TruthValue to t if the answer is unconditional and to u

if it is conditional. If a conditional answer has multiple delay lists, this
predicate will succeed only once, so that using this predicate may be more
efficient than get_residual/2 (although less informative).

get_returns(+TableEntryHandle,#ReturnSkeleton,-ReturnHandle) Tabling
Functions identically to get_returns/2, but also obtains a handle to the
answer given in the second argument.
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6.15.4 Abolishing Tables and Table Components

The following predicates are used to abolish tables: to ensure that they are
not used by new computations and to reclaim their space when it is safe to
do so. The use of the word “tables” in this section is rather unspecific. For
the purpose of deletion a table can either refer to a single subgoal and its
answers, or to all subgoals and answers for a tabled predicate. Predicates are
provided to abolish tables not only for particular predicates and subgoals, but
for all tabled predicates, all tabled predicates in a module, and in the multi-
threaded engine all thread-private tabled predicates or all thread-shared tabled
predicates. Overall, these predicates share similar characteristics.

Abolishing a Table that is being Computed An incomplete tabled sub-
goal S may not be directly abolished by the user. This restriction is made
since if S is incomplete there may be pointers to S from various elements of the
current execution environment, and removing all of these pointers may be dif-
ficult to do. (Not to mention that abolishing an incomplete table has a murky
semantics.) Accordingly, calling an abolish_xxx predicate on an incomplete
table raises an error.

However, note that incomplete tables may be abolished automatically by XSB
on exceptions, and when the interpreter level is resumed. Because tabled com-
putation is more complex than Prolog computation, error handling must be
correspondingly more complex. Suppose an exception is thrown over some in-
complete table, so that the system looks for some catch/3 or similar call that
will catch the error. In order to ensure safe space reclamation, XSB looks for
the catcher C that is nearest to the throw, but is also between SCCs. Both
XSB’s command line interpeter and the interpreter XSB uses when embedded
in a process use a top-level catch/3 goal, which is considered to be “between”
SCCs, so that a thrown error will eventually be caught.

Because of the complexity of error handling in tabled computations, it is usually
best to ensure that user-level catches are close to where an exception may be
thrown so that there is no goal to an incomplete table between the thrower and
catcher. In such a case XSB’s error handling mechanism conforms to the ISO
standard for Prolog.

View Consistency and Table Garbage Collection If one of the table
abolish predicates is called when the current execution environment contains a
failure continuation (i.e., a choice point) to an answer A in a completed table
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T , space for T is not immediately reclaimed. Rather the space for T will be
reclaimed by the table garbage collector at a later point. More precisely, if the
current global tabling envonment (including suspended states) has either

• a choice point that points to an answer A in T ;

• or a (heap) delay list that points to a subgoal S in T

we say that T is active. Also, since tables can be abolished and rederived
during the course of an evaluation, the table deletion system marks the tables
with versions. Accordingly, if a tabled predicate Pversion or subgoal Sversion to
be abolished is active in the current environment, reclamation of space for that
version of P or S will be delayed until no answers for Pversion or Sversion are
active. Meanwhile the older version of table will be available for backtracking,
ensuring view consistency for the choice points. New calls to P or S, however,
will force rederivation of a new table version, rather than using the abolished
information.

Maintenance of the Residual Program When conditional answers are
present, abolishing a specific table or call may lead to semantic or implementa-
tional complications. Consider the conditional answer r(a,b):- undef| from
Figure 6.2. If the predicate r/2 (or subgoal r(a,X)) is abolished and later
rederived, the rederivation of r(a,X) might have different semantics than the
original derivation (e.g. if undef depended on a database predicate whose defi-
nition has changed). From an implementation perspective, if space for r(a,X))

is reclaimed, then the call get_residual(p(a,X),Y) may core dump, even if
there are no choice points for completed tables anywhere in the choice point
stack. To address this problem, by default abolishing a subgoal S (predicate P )
will abolish all subgoals (predicates) that (transtively) depend on S (P ) 24. In
this case the goal abolish_table_call(r(a,X)) would cause the deletion of
p(a,X) while the goal abolish_table_pred(r/2) would cause the deletion of
p/2, since there are tabled subgoals of p/2 that depend on r/2. Only dependen-
cies from subgoals or answers to the answers that are conditional on them are
taken into account for table deletion: thus the deletion r(a,X) deletes p(a,X),
but not undef.

Users with programs that give rise to conditional answers in completed tables
are encouraged to maintain this default behavior. However the default behavior
may be changed either by setting a Prolog flag:

24Dao Tran Minh contributed to implementing this functionality.
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Program Table

:- table p/2, r/2.

p(X,Y):- r(X,Y).

r(a,b):- undef.

r(a,c):- undef.

r(a,d):- undef.

r(a,e):- undef.

:- table s/0, t/0.

s:- tnot(t).

t:- tnot(undef).

:- table undef/0.

undef :- tnot(undef).

Subgoal Answer Set Status

p(a,X) p(a,b):- r(a,b)| complete
p(a,c):- r(a,c)|

p(b,X) p(b,d):- r(b,d)| complete
p(b,d):- r(b,e)|

r(a,X) r(a,b):- undef| complete
r(a,c):- undef|

r(b,X) r(b,d):- undef| complete
r(b,d):- undef|

s s:- tnot(t)| complete

t t:- tnot(undef)| complete

undef undef:- tnot(undef)| complete

Figure 6.2: Example for Deleting Tables (Call-Variance)

?- set_prolog_flag(table_gc_action,abolish_tables_singly).

or by calling a 2-ary abolish command with abolish_tables_singly in the
options list.

Abolishing Incremental Tab;es In XSB, incremental tables react to changes
in underlying dynamic predicates and/or external events (cf. Section 5.6). To
support this, XSB maintains an Incremental Dependency Graph (IDG) among
incrementally tabled subgoals and incremental dynamic predicates. When an
incremental table T is abolished, the IDG needs to be restructured. Fortunately,
with lazy incremental tabling as used by XSB, the only maintenance needed for
the IDG outside of T is to delete direct links between other IDG tables and
T . In addition, all tables that depend on T are incrementally invalidated. As
a result, if some T ′ which had previously depended on T is called after T was
abolished, T ′ will be seend to be incrementally invalid and will be recomputed.
This recomputation will re-insert T into the IDG in a manner that reflects the
new state of the program.
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Multiple Threads In the multi-threaded engine abolishing tables private to
a thread behaves exactly as in the sequential engine, regardless of whether the
tables are complete or incomplete, or contain conditional answers. In addition,
when a thread T exits (by normal termination or via an exception), tables
private to T are abolished automatically and their space reclaimed, as are any
incomplete shared tables owned by T in local evaluation. Shared tables can be
abolished by the user at any time, but their space will not be reclaimed until
there is a single active thread.

Table Deletion Predicates

abolish_table_pred(+Pred) Tabling
Invalidates all tabled subgoals for the predicate denoted by the predicate
or term indicator Pred. If any subgoal for Pred contains an answer A that
is active in the current enviornment, Pred space reclamation for the Pred

tables will be delayed until A is no longer active; otherwise the space for
the Pred tables will be reclaimed immediately.

If Pred has a subgoal that contains a conditional answer, the default be-
havior will be to transitively abolish any tabled predicates with subgoals
having answers that depend on any conditional answers of S. This default
may be changed either by setting a Prolog flag:

?- set_xsb_flag(table_gc_action,abolish_tables_singly).

or by calling abolish_table_pred/2 with the appropriate option. If the
transitive abolishes are turned off, and Pred contains a conditional answer,
the warning

abolish_table_pred/[1,2] is deleting a table with conditional answers:

delay dependencies may be corrupted.

will be issued.

In the multi-threaded engine, if Pred is shared, reclamation for Pred will
be delayed until there is a single active thread and no answer in Pred is
active in the current execution environment. Otherwise, the behavior of
abolish_table_pred/1 is the same as in the sequential engine.

Finally, abolish_table_pred/1 will throw an error if the predicate to
be abolished is incremental. Until abolish_table_pred/[1,2] is ex-
tended to support incremental tables, use abolish_table_call/[1,2] or
abolish_all_tables/0.

Error Cases
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• Pred is not instantiated

– instantiation_error

• PredSpec is not a predicate_indicator or a term_indicator

– domain_error(predicate_or_term_indicator,Pred)

• PredSpec does not indicate a tabled predicate

– table_error

• PredSpec indicates an incrementally tabled predicate.

– permission_error

• There is currently an incomplete table for an atomic subgoal of Pred.

– permission_error

abolish_table_pred(+CallTerm,+Options) Tabling
Behaves as abolish_table_pred/1, but allows the default table_gc_action

to be over-ridden with a flag, which can be either abolish_tables_transitively

or abolish_tables_singly.

Error Cases Error cases are the same as abolish_table_pred/1 but
with the additions:

• Options is a variable, or contains a variable as an element

– instantiation_error

• Options is not a list

– type_error(list,Options)

• Options contains an option O that is not a table abolish option.

– domain_error([abolish_tables_transitively, abolish_tables_singly,O)

abolish_table_subgoals(+Subgoal) Tabling
Invalidates the table for any subgoal that unifies with Subgoal. If a subgoal
S unifying with Subgoal contains an answer A that is active in the current
enviornment, the table entry for S will not be reclaimed until A is no longer
active; otherwise the space for S will be reclaimed immediately.

If S contains a conditional answer, the default behavior will be to transi-
tively abolish any subgoals that depend on any conditional answers of S.
This default may be changed either by setting an XSB flag:

?- set_xsb_flag(table_gc_action,abolish_tables_singly).

or by calling abolish_table_call/2 with the appropriate option. If the
transitive abolishes are turned off, and S contains a conditional answer,
the warning
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abolish_table_call/1 is deleting a table with conditional answers:

delay dependencies may be corrupted.

will be issued.

In the multi-threaded engine, if S is a subgoal for a predicate that is shared,
reclamation for S will be delayed until there is a single active thread and
no answer in S is active in the current execution environment. Otherwise,
the behavior of abolish_table_call/1 is the same as in the sequential
engine on tabled predicates that are thread-private.

For incremental tables, abolish_table_call/[1,2] not only deletes the
table structures for Subgoal, but pointers to Subgoal in the Incremental
Dependency Graph (IDG), after invalidating all subgoals that depend on
Subgoal. The node and edges for Subgoal will be reinserted into the
IDG when Subgoal is re-evaluated, either lazily or by an explicit update
command.

Error Cases

• The term spec Subgoal does not correspond to a tabled predicate:

– table_error

• The term spec Subgoal unifies with a tabled subgoal that is incom-
plete:

– permission_error

• The term spec Subgoal is a cyclic term::

– table_error

abolish_table_subgoals(+Subgoal,+Options) Tabling
Behaves as abolish_table_subgoals/1, but allows the default table_gc_action

to be over-ridden with a flag, which can be either abolish_tables_transitively

or abolish_tables_singly.

Error Cases Error cases are the same as abolish_table_call/1 but
with the additions:

• Options is a variable, or contains a variable as an element

– instantiation_error

• Options is not a list

– type_error(list,Options)

• Options contains an option O that is not a table abolish option.

– domain_error([abolish_tables_transitively, abolish_tables_singly,O)

abolish_table_subgoal(+Subgoal) Tabling
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abolish_table_subgoal(+Subgoal,+Options) Tabling
These predicates behave as abolish_table_subgoals/[1,2]. However
rather than abolishing all tables whose subgoal unifies with Subgoal they
only abolish the table whose subgoal is a variant of Subgoal, if such a
table exists.

abolish_all_tables Tabling
In the single-threaded engine, removes all tables presently in the system
and frees all the memory held by XSB for these structures. Predicates
that have been declared tabled remain so, but information in their table
is deleted. abolish_all_tables/0 works directly on the memory struc-
tures allocated for table space. This makes it very fast for abolishing a
large amount of tables, and to maintain its speed it throws an error if
the current execution enviornment contains any incomplete tables, or any
active completed tables. abolish_all_tables/0 can be used regardless
of whether there are incremental tables, or tables that use call or answer
subsumption.

In the multi-threaded engine abolish_all_tables/0 additionally raises
an error unless it is called when there is a single active thread. In that
case, all shared tables are abolished as well as all private tables for the
main thread.

Error Cases

• There are incomplete tables at the time of the predicate’s call;

– permission_error

• The current execution environment has an active completed table T

– permission_error

• (Multi-threaded engine only) More than one thread is active:

– table_error

abolish_nonincremental_tables Tabling
Abolishes all tabled calls for predicates that are not declared to be in-
cremental. 25 This predicate allows XSB to function in a manner sim-
ilar to that of a deductive database: incremental tables will be auto-
matically updated when the data they depends on changes; while non-
incremental tables, which may have become invalid, can be abolished.
As currently implemented, abolish_nonincremental_tables/1 traverses
through each nonincremental tabled predicate, Pred, and if Pred has any
incomplete subgoals, a permission error will be thrown. However, unlike

25Calls for predicates that are declared as opaque are considered to be non-incremental.
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with abolish_all_tables/0 no errors will be thrown if there are active
completed tables: rather these tables will be marked for deletion and their
space later garbage collected. In addition, no error will be thrown if there
are incomplete incremental subgoals.

Error Cases

• There are incomplete nonincremental tables at the time of the predi-
cate’s call;

– permission_error

abolish_all_private_tables Tabling
In the multi-threaded engine, removes all tables private to the thread and
frees all the memory held by XSB for these structures, including space
for conditional answers. Predicates that have been declared tabled remain
so, but information in their table is deleted. Like abolish_all_tables/0,
abolish_all_private_tables/0 works directly on the memory structures
allocated for table space. This makes it very fast for abolishing a large
amount of tables, and to maintain its speed it throws an error if the cur-
rent execution enviornment contains any incomplete tables, or any active
completed tables. abolish_all_private_tables/0 can be used regard-
less of whether there are incremental tables, or tables that use call or
answer subsumption.

Error Cases

• There are incomplete tables at the time of the predicate’s call;

– permission_error

• The current execution environment for the thread has an active private
table T for the current thread

– table_error

abolish_all_shared_tables Tabling
In the multi-threaded engine, removes all tables private to the thread and
frees all the memory held by XSB for these structures, including space for
conditional answers. Predicates that have been declared tabled remain so,
but information in their table is deleted. abolish_all_private_tables/0

works directly on the memory structures allocated for table space. This
makes it very fast for abolishing a large amount of tables, and to maintain
its speed it throws an error if the current execution enviornment contains
any incomplete tables, or any active completed tables. abolish_all_private_tables/0

can be used regardless of whether there are incremental tables, or tables
that use call or answer subsumption. In addition, abolish_all_shared_tables/0
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raises an error unless it is called when there is a single active thread. If
called with a single active thread, all shared tables are abolished, but pri-
vate tables for the main thread are unaffected.

Error Cases

• There are incomplete tables at the time of the predicate’s call;

– permission_error

• The current execution environment has an active table T

– permission_error

• More than one thread is active:

– table_error

abolish_module_tables(+Module) Tabling
Given a module name (or the default module, usermod), this predicate
abolishes all tables for each tabled predicate in Module. It is implemented
using a series of calls to abolish_table_pred/1 and so inherits the be-
havior of that predicate.

gc_tables(-Number) Tabling
When a tabled subgoal or predicate is abolished, reclamation of its space

may be postponed if the subgoal or predicate has an answer that is active
in the current environment. A garbage collection routine is called at var-
ious points in execution to check which answers are active in the current
environment, and to reclaim the space for subgoals and predicates with no
active answers. In particular, space for all abolished tables is reclaimed
whenever the engine re-executes the main command-line or C thread inter-
preter code. However in rare situations this strategy may not be adequate.
For this reason, the user can explicitly call the table garbage collector to
reclaim space for any deleted tabled predicates or subgoals that no longer
have active answers.

gc_tables/1 always succeeds, unifying Number to −1 if garbage collection
was not attempted (due to multiple active threads) and otherwise to the
number of tables still unreclaimed at the end of garbage collection.

Error Cases

• Number is not a variable

– type_error(variable)

delete_return(+TableEntryHandle,+ReturnHandle) Tabling
Removes the answer indicated by ReturnHandle from the table entry ref-
erenced by TableEntryHandle. The value of each argument should be
obtained from some previous invocation of a table-inspection predicate.
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This predicate is low-level so no error checking is done. In Version 3.8, this
predicate does not reclaim space for deleted returns, but simply marks the
returns as invalid.

Warning: While useful for purposes such as tabled aggregation, delete_return/2

can be difficult to use, both from an implementation and semantic perspec-
tive.

invalidate_tables_for(+DynamicPredGoal,+Mode) Tabling
Note that using incremental tabling provides a simpler and much more
powerful approach to maintaining dependencies of tables on dynamic code.
invalidate_tables_for/2 should only be used in cases where incremental
tabling is not available (e.g., subsumptive tabling).

This predicate supports invalidation of tables. Tables may become invalid
if dynamic predicates on which they depend change, due to asserts or
retracts. By default XSB does not change or delete tables when they
become invalid; it is the user’s responsibility to know when a table is no
longer valid and to use the abolish_table_* primitives to delete any table
when its contents become invalid.

This predicate gives the XSB programmer some support in managing ta-
bles and deleting them when they become invalid. To use this predicate,
the user must have previously added clauses to the dynamic predicate,
invalidate_table_for/2. That predicate should be defined to take a
goal for a dynamic predicate and a mode indicator and abolish (some) ta-
bles (or table calls) that might depend on (any instance of) that fact.
invalidate_tables_for(+DynamicPredGoal),+Mode simply backtracks
through calls to all unifying clauses of
invalidate_table_for(+DynamicPredGoal,+Mode). The Mode indicator
can be any term as long as the two predicates agree on how they should
be used. The intention is that Mode will be either ’assert’ or ’retract’
indicating the kind of database change being made.

Consider a simple example of the use of these predicates: Assume the def-
inition of tabled predicate ptab/3 depends on dynamic predicate qdyn/2.
In this case, the user could initially call:

:- assert((invalidate_table_for(qdyn(_,_),_) :-

abolish_table_pred(ptab(_,_,_)))).

to declare that when qdyn/2 changes (in any way), the table for ptab/3

should be abolished. Then each time a fact such as qdyn(A,B) is asserted
to, or retracted from, qdyn/2, the user could call

:- invalidate_table_for(qdyn(A,B),_).
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The user could use the hook mechanisms in XSB (Chapter 9) to automat-
ically invoke
invalidate_tables_for whenever assert and/or retract is called.

6.15.5 Indexing using Tables

Tables are implemented in XSB using Tries, which provide powerful in-
dexing capabilities. By default every table has a trie-index based on the
left-to-right ordering of its arguments. This means that any lookup to a
table which is bound on an initial sequence of the tabled predicate’s ar-
guments is fully indexed. But if an initial sequence of a table lookup is
unbound and only a later argument is bound, indexing can be very poor.
XSB allows the user to provide table_index declarations to improve in-
dexed access to tables. In fact a table_index can be used to provide very
powerful and general indexed access to any predicate.

table_index(+PredSpec,+IndexSpec) Tabling
table_index is a compiler directive that causes the compiler to generate
code to create tables to provide the requested indexing and is normally used
with subsumptive tables. PredSpec, of the form PredName/Arity, specifies
the predicate to be indexed (and subsumptively tabled.) IndexSpec is a list
of index specifications. Each index specification is a +-term that indicates
a set of argument positions for which indexes are required. For example,
[1+2+3, 1, 2+3, 2] indicates that four indexes are desired; a multiple
argument index on arguments 1, 2, and 3; a single argument index on
argument 1; a multi-argument index on 2 and 3; and a single argument
index on argument 2. In this case, for a call to the indicated predicate,
if arguments 1, 2, and 3 are bound, that index will be used; if not, but
argument 1 is bound, then that index will be used; if not but arguments
2 and 3 are bound, then that index will be used, and finally if argument 2
is bound, then that index will be used. If none of these situations obtain,
then a table_error will be thrown.

The declared indexes should describe modes under which the predicate
will be called. Since the transformation assumes that the predicate will be
called in all indicated modes, it will normally abstract all calls to a more
general call. So any call will be abstracted to the call to the base predicate
that is bound only on argument positions that appear in all indexes. For
the example above the first call will result in a completely open call to the
base predicate, since the intersection of the four indexes is empty. An index
of 0 can be used (as the last index in the index specification) to indicate
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that any call is permitted, and this will always ensure the fully open call is
made initially. For example an index specification of [1,0] causes the first
call to be abstracted to the fully open call and the subsumptive table to
be completely filled. Then every subsequent call will use that constructed
table. A call to a table_index-ed predicate that is not of a mode explicitly
declared in the index specification may not be optimally indexed.

As mentioned above, a predicate indicated as table_index-ed should not
be declared as (normally) tabled. The indexes are created using subsump-
tive tables. An attempt is made to use the smallest number of tables
as possible, but each index does take (perhaps significant) memory. For
example the above four indexes can be accommodated using only two sub-
sumptive tables: with argument orders of [1,2,3,4] and [2,3,1,4].

The tables of table-indexed predicates can be abolished by
abolish_table_pred, which will abolish all the generated subsumptive
tables. But the tables cannot be removed by abolish_table_subgoals/1

and its finer variants. Also these predicates cannot be declared as incremental.



Chapter 7

Multi-Threaded Programming in
XSB

id with Version 3.0, XSB supports the use of POSIX threads to perform separable
computations, and in certain cases to parallelize them. POSIX threads have a simple
and clear API, and are available on all Unixes and by using open-source libraries,
on Windows as well (see Section 7.8 to configure under Windows). This chapter
introduces how to program with threads in XSB through a series of examplesi sections
discuss performance aspects of our implementation as well as describing relevant
predicates. A general knowledge of multi-threaded programming is assumed, such as
can be found in [48, 9].

7.1 Getting Started with Multi-Threading

In Version 3.8 the default configuration of XSB does not include multi-threading. This
is partly because multi-threading is new, and despite our efforts, the multi-threaded
engine may contain bugs not present in the single-threaded engine. However the
main reason is because in Version 3.8, not all libraries and packages have yet been
made thread-safe so that not all configurations are supported with multi-threading.
Both the XSB-calling-C and the C-calling-XSB interfaces are supported in the multi-
threaded engine. All XSB libraries have been ported to the multi-threaded engine
except the profiling library and the string library (which is not yet thread-safe). The
packages ODBC and CHR, FLORA-2, and regmatch are supported by the multi-threaded
engine, but the packages dbdrivers, xpath, interprolog, smodels, perlmatch,
libwww and posix are not yet fully supported. We note, however that all basic/ISO

326
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Prolog functionality is thread-safe (at least, as far as we know :-).

With this in mind, making the multi-threaded engine is simple: configure and
make XSB as in Chapter 3, but include the command –enable-mt. When you invoke
the newly made configuration of XSB you should see engine: multi-threading

in the configuration list below the banner rather than engine: slg-wam as in the
sequential engine.

Hello World for Beginners We naturally start with a program to print “hello
world”. Within the multi-threaded engine, import thread_create/2 from the module
thread, and type the command

?- thread_create(writeln(’hello world’),Id)

you should see something like

Id = 1hello world

while the output is a little ugly, the “hello world” program does illustrate simple multi-
threading at work. The calling thread (i.e. the thread controlling the command-line
interpreter which we call Tprompt) executes the predicate thread_create/2 which
creates a thread Tchild and immediately returns with the XSB thread id of the created
thread. Meanwhile, Tchild initializes its stacks and other memory areas and executes
the goal writeln(’hello world’). Tchild and Tprompt share most of their process-
level information: in particular they share a common I/O stream for standard output,
leading to the output above. What is happening may be seen a little more easily by
executing the command

?- thread_create((sleep(1),writeln(’hello world’)),Id)

In this case the interpreter reports that F is bound to a thread id, then about a second
later writeln/1 is executed.

The simple “hello world” program illustrates a couple of points. First, it is easy
to create a thread in XSB and have that thread do work. Second, it can be tricky
to coordinate actions among threads. We’ll explore these two themes in more detail,
but first suppose we are determined to extend out multi-threaded program so that it
produces good output. One way to do this is to join Tprompt and Tchild as follows

?- thread_create(writeln(’hello world’),Id),
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thread_join(Id,ExitCode).

hello world

Id = 1

ExitCode = true

In this case, as soon as Tprompt has issued a command to create Tchild, it executes
thread_join/2. This latter predicate makes a system call to the underlying operating
system to suspend Tprompt until Tchild has exited. thread_join/2 returns a status
term indicating whether the goal to thread Id succeeded, failed, exited with an error
term, or was cancelled (in this case Id succeeded).

So far, we’ve introduced a few concepts that have not been fully discussed. First
is the concept of an XSB thread id: XSB manages up to M active threads using XSB
thread ids. The default for M in Version 3.8 is 1024, but M can be reset via the
max_threads command line option to XSB (cf. Section 3.7). Once XSB is initialized,
the maximum number of threads for an XSB session can be obtained at run time via
the Prolog flag max_threads (cf. Section 6.12). It should be noted that the XSB
thread id of a thread is different from the identifier of the underlying Pthread. An
XSB thread id is a Prolog term, and unlike POSIX thread ids, XSB thread ids can
be compared for equality using unification. The actual form of an XSB thread id,
however, is subject to change between versions, so programs should not make use of
the exact form of an XSB thread id. In the multi-threaded engine, the XSB thread
id of any thread can be queried using the predicate thread_self/1.

7.2 Communication among Threads

Example 7.2.1 Consider the program fragment

:- dynamic p/1.

test:- thread_create(assert(p(1)),_X).

If you type the goal ?- test and then the goal ?- p(X), the call p(X) will fail.

This illustrates an important point about dynamic and tabled predicates in the multi-
threaded engine: by default clauses for a dynamic predicate p/n are private to the
thread that asserts them; and by default tables created in an evaluation of a goal
for p/n are private to the thread that evaluates the goal. This behavior contrasts to



CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 329

that of static code which is always shared between threads. In the example above, to
allow p(1) to be visible to various threads, p/1 must be declared to be shared with
the following declaration.

:- table p/1 as shared.

or

:- dynamic p/1 as shared.

Alternately, dynamic and tabled predicates can be made thread-shared by default
by invoking XSB with the command-line argument –shared_predicates, in which
case a predicate may be declared thread-private through the declaration

:- table p/1 as private.

or

:- dynamic p/1 as private.

The ability to share dynamic code between predicates provides an extremely pow-
erful mechanism for threads to communicate. So why does XSB make dynamic
predicates thread-private by default? The main reason for this is that if dozens
or hundreds of threads are running concurrently, shared dynamic code becomes an
expensive synchronization point. Code for shared predicates must be more heavily
mutexed than code for private predicates. In the case of dynamic code, XSB does
not always immediately reclaim the space of retracted clause, to avoid the possibility
of some computation backtracking into a clause that has been reclaimed. Rather,
(like most Prologs), XSB may decide to garbage collect the space of the retracted
clauses at a later time. While clause garbage collection is simple enough to imple-
ment for a single thread, garbage collecting clauses for shared dynamic predicates is
difficult to do when multiple threads are active. Accordingly, in Version 3.8, space for
shared dynamic clauses is not reclaimed until there is a single active thread. However
for thread-private dynamic predicates, there is no problem in reclaiming space when
multiple threads are active: from the engine’s perspective garbage collection is no
different than in the sequential case. Thus one set of reasons for making dynamic
predicates private by default are based on efficiency 1.

1Future versions may offer more powerful garbage collectors for shared predicates.
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The second reason for making dynamic predicates thread-private by default is se-
mantic. Suppose thread T1 starts a tabled computation that depends on the dynamic
shared predicate p/1. While T1 is computing the table, thread T2 asserts a clause to
p/1. T1’s table is likely to be inconsistent, leading to the problem of read consistency
of any table that depends on thread-shared dynamic predicates. In Version 3.8, users
are responsible for ensuring read consistency of any tables that depend on shared
dynamic data. Future versions of XSB are intended to allow more sophisticated
mechanisms for read consistency.

Not only can tables depend on thread-shared or thread-private dynamic data, but
the tables themselves may be thread-shared or thread-private. Like dynamic code,
the declaration table Predspec as shared allows sharing of tables for a predicate
evaluated with call-variance to be shared among threads 2. To some extent, tabling
considerations for making a predicate thread-shared or thread-private are like those
of dynamic code. Thread-private tables require fewer synchronization points overall.
The situation for reclaiming space for abolished tables is analogous to reclaiming
space for retracted dynamic clauses: the garbage collector treats abolished tables for
thread-private predicates as in the sequential case, while space for shared tables is
not reclaimed until there is a single active thread. However the precise semantics of
how tabling information is shared depends on whether the multi-threaded engine is
configured with the default local evaluation or with batched evaluation. As discussed
in Chapter 5, local evaluation is so-named because computation always takes place
in the SCC most recently created, and no answer is returned outside of an SCC until
the SCC has been completely evaluated. Within this scheduling strategy it is not
often useful to share answers between tables that have not been completed – as local
evaluation would allow these answers to be returned only if the tables were in the
same SCC. This leads to a concurrency semantics called Shared Completed Tables [54,
55, 57]. Shared Completed Tables can in fact be supported by a relatively simple
algorithm for optimistic concurrency control. If goals to two mutually dependent
tables Tablea and Tableb are called concurrently by two different threads, Threada

and Threadb, nothing is done until it is detected that Tablea and Tableb are both
incomplete and are contained in the same SCC of the table dependency graph. At
that time, one of the threads (e.g. Threada) takes over recomputation of all tables
in the SCC, and when the SCC is completed, any remaining answers are returned to
other threads that had invoked goals in the SCC. While Threada is completing this
computation, Threadb suspends until the SCC is complete. Thus the semantics of
Shared Completed Tables supports concurrency for the well-founded semantics, but
only supports the most coarse-grained parallelism.

2In Version 3.8, tabled predicates using call-subsumption are always private; an attempt to make
such a predicate thread-shared throws an exception.
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Batched evaluation, on the other hand, allows answers to be returned outside of
an SCC before that SCC has been completed. Concurrency control for batched eval-
uation is similar to that for local evaluation, except in the following case. Assume
as before that Tablea, first called by Threada, and Tableb first called by Threadb

are determined to be in the same SCC, and that Threada takes over computation of
subgoals in the SCC. Now, Threadb, rather than suspending, may continue work. In
particular, Threadb can return any answers in Tableb that it finds whenever it finds
them, regardless of whether they have been produced by Threadb (before Threada

took over the SCC) or by Threada (afterwards). We call this type of concurrency
semantics, Table Parallelism. Table Parallelism can be used to program producer-
consumer examples, as well as to implement Or- and And- parallelism. Table Par-
allelism was first introduced in [28], but the mechanism now used for implementing
Table Parallelism differs significantly from what was described there. In Version 3.8
of XSB, the implementation of Table Parallelism is experimental: in particular, it
does not yet support tabled negation.

As mentioned, for either semantics of shared tables, in Version 3.8, users of thread-
shared tables are responsible for ensuring read consistency. Note that, in principle,
thread-shared tables may depend on thread-private tables and vice-versa. Either type
of table may depend on thread-private or thread-shared dynamic code. In addition, a
predicate may be both dynamic and tabled, and its clauses and tables may be either
thread-private or thread-shared.

7.3 Thread Statuses: Joinable and Detached Threads

So far we have assumed that the goal called in thread_create/2 terminates normally
— by success or failure. But what if a thread throws an error while executing a goal?
How long should error information for a thread persist, and how can it be checked?

Our approach relies on the semantics of Pthreads, which can be either joinable
or detached. Within this framework, we consider a thread to be valid if it has not
yet terminated, or if it is joinable and has not yet been joined. After a joinable
Pthread Tdead has terminated, status information about Tdead persists until some
other thread joins it — at which time the information is removed. On the other
hand, if Tdead is detached, status information is removed as soon as Tdead terminates.
Reclamation of thread status information may be contrasted to that of thread-specific
data structures such as stacks. Upon normal or exceptional termination of Tdead, any
memory automatically allocated in the process of initializing Tdead’s, or executing its
goal – including stacks, private dynamic code, private tables is reclaimed. In addition,
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any mutexes held by Tdead, are released. On the other hand, XSB-specific status
information about threads follows the Pthread model: by default, error information
is available when joining a joinable thread, but not otherwise 3.

Example 7.3.1 Suppose the goal

?- thread_create(functor(X,Y,Z),F).

is executed. By default, this will produce the result

X = _h113

Y = _h127

Z = _h141

F = 1++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate functor/3

In fact, the variable bindings are output to STDOUT, while the error message

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate functor/3

is output to STDERR, and may be redirected. The call

?- thread_join(2,Error).

returns

Error = exception(error(instantiation_error, in arg 2 of predicate functor/3,

[[Forward Continuation...,... standard:call/1,... standard:catch/3],

Backward Continuation...]))

In other words, Error is instantiated to a exception/1 structure, containing a stan-
dard XSB error term (including backtrace).

The error term in the above example is one example of a thread status term. In XSB,
these thread statuses are as follows.

• running The thread is still executing

3This behavior can, of course, be overridden by embedding goals within catch/3 and handling
errors separately, or simply by adding a default user error handler: see Chapter 12 for details.
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• true The thread has exited and successfully evaluated its goal.

• false The thread has exited and failed its goal.

• exception(Exception) The thread has been terminated due to an uncaught
exception, represented by the term Exception which is a standard XSB error
term.

• cancelled(Exception) The thread has been terminated due to a thread can-
cellation, represented by the term Exception which is a standard XSB error
term.

• exited(ExitTerm) The thread has been terminated using the predicate thread

exit/1 with ExitTerm as its argument.

Any of these statuses except running may be returned by thread_join/2. In Prolog,
the statuses of exited threads provide much more information than C exit codes.

As with pthreads, XSB threads are created as joinable by default, but can be
created as detached using an option in thread_create/3. Alternatively, a thread
created as joinable can be made detached by thread_detach/1. All of the predicates
mentioned in this section are fully described in Section 7.9.

7.4 Prolog Message Queues

While Prolog predicates can communicate through shared dynamic code and tables,
message queues provide a useful mechanism for one thread to pass a command to
another or to synchronize on the return of data. A Prolog message queue contains
an arbitrary Prolog Term, and unification may be used to obtain a term from a
queue. More specifically, when a producer writes Term into a queue, the term is
copied into the queue so that no binding are shared between Term and the producer’s
stacks. Term may include structures or lists and need not be bound, and any variable
bindings within Term are preserved. When a consumer Tcons accesses the queue it
provides a goal G and traverses the queue until it finds a term in the queue that
unifies with G. If Tcons finds a term in the queue that unifies with G, it removes it
from the queue and continues in its computation. If there is no term in the queue
that unifies with G, Tcons will suspend until at least one other term is added to the
queue. When it awakens it will retraverse the queue from the beginning to find a
term that unifies with G 4. Because of the behavior of message queues, it is usually

4Note that this traversal is necessary since the position of Tcons may in the queue may not be
valid due to the addition and deletion of terms by other threads.



CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 334

good programming practice to ensure that terms written into the queue will unify
with the goals of consumers. This can usually be done by abstracting a consumers
goal (say to a variable, X) or by splitting one “multiplexed” queue into two separate
queues.

A Prolog message queue can be public or private: a public message queue can
have any number of readers and writers. In addition, each thread T also has a private
message queue QT : any thread can write to QT but only T can read from it. The
following example illustrates how to use private message queues:

test_private:-

thread_id(Tid),

thread_create(child(Tid),Id),

thread_get_message(’Mom Im home’(ChildId)),

thread_send_message(ChildId,’Im in the kitchen’),

thread_join(Id,_).

child(Parent):-

thread_self(Id),

thread_send_message(Parent,’Mom, Im home’(Id)),

thread_get_message(’Im in the kitchen’).

If ?- test is called by Tparent, it will obtain its own thread id, create a new thread
Tchild to execute child/1, wait for a message that Tchild is operational using thread_get_message/1,
send a message to Tchild using thread_send_message/2 and then wait for Tchild to
terminate. When it is created, Tchild immediately sends a message to its parent, waits
for a message back from its parent, and terminates.

It is illustrative to compare

test_public:-

message_queue_create(Qid)

thread_create(child(Qid),Id),

thread_get_message(Qid,’Mom Im home’(ChildQ)),

thread_send_message(ChildQ,’Im in the kitchen’),

thread_join(Id,_),

message_queue_destroy(Qid).

child(ParentQ):-

message_queue_create(Qid),

thread_send_message(ParentQ,’Mom, Im home’(Qid)),
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thread_get_message(Qid,’Im in the kitchen’),

message_queue_destroy(Qid).

test_public is essentially the same program as test_private, but uses public mes-
sage queues, rather than private queues. The public queues must be explicitly created
and destroyed, and they are referred to via a queue id (or alias) rather than via a
thread id (or alias). Like thread ids, queue ids in XSB are integers, but a user should
not depend on their precise form: aliases should be used if a user wants control of
queue or thread identifiers.

Thus, apart from who can read from them, private and public message queues
have essentially the same behavior. In addition, any queue can be created with
a bound, size on the number of messages (terms) it contains. If size is 0, the
queue is taken to be unbounded. If a bounded queue already contains size el-
ements, the producer will suspend until one or more elements are removed from
the queue. For public queues, a size argument can be passed using the predicate
message_queue_create/2 (See Section 7.9). For private queues, and for public
queues created with message_queue_create/1, the value for size is taken from the
settable Prolog flag max_queue_terms. The default value for max_queue_terms is
currently 100.

7.5 Thread Cancellation and Signalling

There may be a number of situations in which it is useful to give one thread the
ability to cancel the execution of another thread. Within the semantics of pthreads,
this is called thread cancellation. At the C level, thread cancellation can be tricky,
as mutexes must be released, allocated memory freed, and so on. Accordingly, the
predicate thread_cancel/1 cancels XSB threads by acting purely within the SLG-
WAM engine. When thread T1 interrupts thread T2, T1 writes to the thread-specific
XSB interrupt vector in T2. Later, when T2 checks its interrupt vector, it throws a
cancellation error, which causes it to clean up its mutexes, memory, private tables
and dynamic code, and then exit.

Thread cancellation is just a special case of Prolog thread signalling, in which one
thread can signl another thread to interrupt what it is doing and execute a goal 5.
The following code provides an example of thread signalling.

test_signal:-

5Prolog thread signalling should be distinguished from signalling at the OS level where functions
such as pthread_kill() or kill() are used.
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thread_self(Tid),

thread_create(child(Tid),T1,[]),

thread_get_message(’Im alive’),

thread_signal(T1,writeln(’Excuse me, but did you just kick me?’)),

thread_join(T1,_Ball),

writeln(test5_ok).

child(Tid):-

thread_send_message(Tid,’Im alive’),

loop.

loop:- loop.

test_signal begins like test_private, but rather than waiting for a signal from its
parent, the child goes into an infinite loop. The signal interrupts the child, which
writes out a message and returns to the infinite loop.

Thread signals may be any callable Prolog term. As with private message queues,
each thread is created with its own private signal queue (there are no public signal
queues). In XSB, threads handle Prolog signal interrupts (including cancellation
messages) at the same time as attributed variable interruptions. This means that
Prolog signal interrupts will be handled very quickly if SLG-WAM code is being
executed. On the other hand, if a thread executing a built-in to, e.g. waiting on
a mutex, the thread may be immediately awakened to process the signal, but not
always: if a thread is waiting for input on a stream or socket, the thread may not
handle the signal interrupt until the input is received. Furthermore, in a very few
critical sections of code, thread signal handling may be distabled. However, the thread
is guarenteed to handle the signal interrupt or cancellation message very shortly after
it finishes the built-in.

So, while thread cancellation and signalling is useful, it must be used with a certain
amount of care. Any thread can signal any other thread, and any thread can cancel
any other thread, with the exception that the main thread, which controls the console
(or interface to C or interprolog) cannot be cancelled. The main thread always has
XSB thread id 0 in both the single-threaded and multi-threaded systems, and has the
thread alias main.
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7.6 Performance and other Considerations

For running programs that do not use multiple threads, the multi-threaded engine
has a minimal overhead compared to the single-threaded engine. Times for single-
threaded execution of Prolog or tabled programs range from about 10–20% slower to
10–20% faster for the multi-threaded engine compared to the single-threaded engine.
Speedups for running multiple threads on multiple processors depends heavily on the
applications run and on the underlying operating system.

The size of a given thread may be a consideration for multi-threaded applications,
especially on a 32-bit platform (the multi-threaded engine has been tested on both
32-bit and 64-bit platforms). Each thread has an area of thread-private variables that
are “global” to its own virtual machine. This area, called the thread context, which
accounts for about 4 Kbytes of space. Much larger are the various stacks used by
the threads for tabled and Prolog execution. Almost all of XSB’s memory areas are
fully expandable, and the initial size of the execution stacks may be set explicitly
as options in thread_create/3. Explicitly setting a default thread stack size for
an XSB thread to be smaller than the default process stack size may be useful for
applications that have a large number of concurrently running threads.

Other performance considerations involve the contention by threads for shared
resources. As discussed above, contention may arise when creating or abolishing
tables, or when asserting or retracting dynamic code — however in either case thread-
private predicates give rise to less contention than thread-shared predicates. In terms
of I/O, each XSB stream up to the maximum number of file descriptors has its own
mutex; as a result threads writing to different streams will not contend for I/O. Thus,
in multi-threaded applications, it may be more efficient to open and close streams and
access these streams explicitly, than to redirect standard input or standard output
through see/1 and tell/1.

7.7 Examples of Multi-Threaded Programs in XSB

Figure 7.1 shows an example of a multi-threaded goal server in XSB, which makes use
of XSB’s socket library (see Volume 2 of this manual) 6. The server listens for requests
from clients using socket_accept/2 and spawns a thread to handle each request via
the goal accept_client/2 which actually calls the goals. The goals executed by the
server could be tabled and take advantage of the shared table implementation, shared
dynamic code, or any other mechanism in XSB. Halting of the server is done by the

6Material in this section is based on [54].
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thread cancellation mechanism, and a shared dynamic predicate is used to make the
server’s thread identifier known to the other threads. Note that this is the reason a
specific thread was created to execute server_loop, as the main thread cannot be
canceled.

Figure 7.2!la uses a multi-threaded execution model to compute a series of prime
numbers in parallel 7, The master thread partitions the work and creates two worker
threads. The worker threads each compute its portion of the interval and return their
results to the master through a message queue.

Notice how the primes/2 predicate uses difference lists to avoid the use of the
append predicate8, and while threads don’t share variables, the bindings of the terms
in the messages are correctly handled, allowing Prolog’s unification to assume its full
power. Although only two threads are used, the program could easily be extended to
use an arbitrary number of threads

7.8 Configuring the Multi-threaded Engine under

Windows

Libraries for pthreads are included on most versions of Unix and Linux. Windows also
supports multi-threading, but with a somewhat different semantics and API than that
of pthreads. To run multi-threaded XSB under Windows, a library must be included
to translate the Pthread library, used by XSB, to the native thread API of Windows.

Different libraries are available for this purpose. Internally, the multi-threaded en-
gine has been tested using the Win32 pthreads interface, available via http://sourceware.org/pthreads-win32

but other libraries may also work, including Pthread library included with Cygwin.
To install the sourceware library, let $XSBENV be the parent directory of $XSBDIR the
root directory of XSB – i.e. $XSBENV is the directory into which XSB is installed.

• Download a version such as pthreads-2005-01-25.exe or later, and extract it into
$XSBENV

pthreads. Add $XSBENV\pthreads\Pre-built\lib to your system path

• To configure with windows enter the commands:

7This example was inspired by a similar example for multi-threaded computation of primes in
from Logtalk [59]

8For a description on how to program with difference lists see a Prolog programming text, such
as[77]).
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:- dynamic server_id/1 as shared.

server :-

socket(SockFD),

socket_set_option( SockFD, linger, SOCK_NOLINGER ),

xsb_port(XSBport),

socket_bind(SockFD, XSBport),

socket_listen(SockFD,Q_LENGTH),

thread_create( server_loop(SockFD), Id, [] ),

assert( server_id(Iden) ),

thread_join( Iden ).

server_loop(SockFD) :-

socket_accept(SockFD, SockClient),

thread_create( attend_client(SockClient) ),

server_loop(SockFD).

attend_client(SockClient) :-

socket_recv_term(SockClient, Goal),

( Goal == stop ->

retract(server_id( Server )),

thread_cancel( Server ),

socket_close( SockClient ),

thread_exit

; true

),

( is_valid(Goal) ->

call(Goal),

socket_send_term(SockClient, Goal),

fail,

; socket_send_term(SockClient, invalid_goal(Goal))

),

socket_send_term(SockClient, end),

socket_close(SockClient).

Figure 7.1: A multi-threaded goal server in XSB
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prime(P, I) :- I < sqrt(P),!.

prime(P, I) :- Rem is P mod I, Rem = 0, !, fail.

prime(P, I) :- I1 is I − 1, prime(P, I1).

prime(P) :- I is P − 1, prime(P, I ).

list_of_primes(I, F, Tail, Tail) :- I > F, !.

list_of_primes(I, F, [I|List], Tail) :-

prime(I), !,

I1 is I + 1, list_of_primes(I1, F, List, Tail).

list_of_primes(I, F, List, Tail) :-

I1 is I + 1, list_of_primes(I1, F, List, Tail).

partition_space(N, H, H1) :-

H is N//2, H1 is H + 1.

worker( Q, Iden, I, F, List, Tail) :-

list_of_primes( I, F, List, Tail),

thread_send_message( Q, primes(Iden,List,Tail) ).

master( N, L ) :-

partition_space( N, H, H1),

message_queue_create(Q),

thread_create( worker(Q, p1, 1, H, L, L1) ),

thread_create( worker(Q, p2, H1, N, L1, []) ),

thread_get_message( Q, primes(p1,L,L1) ),

thread_get_message( Q, primes(p2,L1,[]) ).

Figure 7.2: A multi-threaded program to calculate prime numbers in XSB
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sh configure --enable-mt --with-wind \

--with-includes=’c:\XSBSYS\XSBENV\pthreads\Pre-built\include \

--with-static-libraries=’c:\XSBSYS\XSBENV\pthreads\Pre-built\lib

makexsb_wind

Note that the Unix sh shell must be available in order to reconfigure.

• To configure with cygwin enter the commands:

sh configure --enable-mt \

--with-includes=’/cygdrive/c/XSBSYS/XSBENV/pthreads/Pre-built/include’ \

--with-static-libraries=’/cygdrive/c/XSBSYS/XSBENV/pthreads/Pre-built/lib’

sh makexsb --config-tag=mt

7.9 Predicates for Multi-Threading

The predicates described in this section do not address tabling or dynamic code.
With only a few minor deviations the provisional working standard described in [39]
is supported. As a result, these predicates are substantially the same as those in SWI,
YAP, and other Prologs. In the single-threaded engine, semantically correct calls to
these predicates will give a miscellaneous error.

thread_create(+Goal,ThreadId,+OptionsList)

When called from thread T , this predicate creates a new XSB thread Tnew to
execute Goal. When goal either succeeds, throws an unhandled error, exits,
or fails, Tnew exits, but thread_create/2 will succeed immediately, binding
ThreadId to the XSB thread id of Tnew. Goal must be callable, but need not
be fully instantiated. No bindings from Goal are passed back from T to Tnew,
so communication between Tnew and T must be through tables, asserted code,
message queues or other side effects.

OptionList allows optional parameters in the configuration for the initial size
of XSB stacks, for aliases, and to indicate whether Tnew is to be created as
detached. Note that XSB threads allow automatic stack allocation, so that
the size options may be most useful for (32-bit) applications with very large
numbers of threads. In this case, setting initial stack sizes to be small may
allow more threads to be created on a given hardware platform. Also note that
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only XSB stacks are affected, the stack size of the underlying Pthread remains
unaltered.

• glsize(N): create thread with global (heap) plus local stack size initially
set to N kbytes. If not specified, the default size is used. The default size
can be set at the command line (cf. Section 3.7), and altered at run time
by the Prolog flag thread_glsize (cf. Section 6.12).

• tcpsize(N): create thread with trail plus choice point stack size initially
set to N kbytes. If not specified, the default size is used (cf. Section 3.7).
The default size can be set at the command line (cf. Section 3.7), and
altered at run time by the Prolog flag thread_tcpsize (cf. Section 6.12).

• complsize(N): create thread with completion stack size initially set to N

kbytes. If not specified, the default size is used (cf. Section 3.7). The
default size can be set at the command line (cf. Section 3.7), and altered
at run time by the Prolog flag thread_complsize (cf. Section 6.12).

• pdlsize(N): create thread with N kbytes of unification stack. If not spec-
ified, the default size is used (cf. Section 3.7). The default size can be
set at the command line (cf. Section 3.7), and altered at run time by the
Prolog flag thread_pdlsize (cf. Section 6.12).

• detached(Boolean): if Boolean is true, creates detached thread. If Boolean

is false, the thread created will be joinable, while if no option is given
the default will be used. In Version 3.8 threads are created joinable by
default, but this default can be altered at run time by the Prolog flag
thread_default (cf. Section 6.12).

• on_exit(Handler): Ensures that Handler is called whenever the thread
exits: whether that exit arises from success of Goal, failure, throwing
an error that is unhandled in the user’s program, or an explicit call to
thread_exit/1.

• alias(Alias): Allow thread ThreadId to be referred to via Alias in all
standard thread predicates. Alias remains active for ThreadId until it is
joined. Note that the main XSB thread has alias main.

Finally, each thread is created with a signal queue and a private message queue,
so these queues do not need to be explicitly created. Their size is obtained
through the settable Prolog flag max_queue_terms.

Error Cases

• Goal is a variable
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– instantiation_error.

• Goal is not callable

– type_error(callable,Goal).

• ThreadId is not a variable

– type_error(variable,ThreadId)

• OptionList is a partial list or contains an option that is a variable

– instantiation_error

• OptionList is neither a list nor a partial list

– type_error(list,OptionsList)

• OptionList contains an option, Option not described above

– domain_error(thread_option,Option)

• An element of OptionsList is alias(A) and A is already associated with
an existing thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of OptionsList is alias(A) and A is not an atom

– type_error(atom,A)

• An element of OptionsList is on_exit(Handler) and Handler is not
callable

– type_error(callable,Handler).

• No more system threads are available (EAGAIN)

– resource_error(system threads)

thread_create(+Goal,-ThreadId)

Acts as thread_create(Goal,ThreadId,[]).

thread_create(+Goal)

Acts as thread_create(Goal,_,[detached(true)]).

thread_join(+Threads_or_aliases,-ExitDesignators)

When thread_join/2 is called by thread T , Threads_or_aliases must be
instantiated to either 1) an XSB thread id or alias; or 2) a list where each element
is an XSB thread id or an alias; ExitDesignators must be uninstantiated.
The action of the predicate is to suspend T until all of the threads denoted by
Threads_or_aliases have exited. At this time, any remaining resources for the
threads in ThreadIds will have been reclaimed. Upon success ExitDesignators
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is either a the thread status of the associated thread (see page 332) or a list of
such elements.

Error Cases

• Thread_or_Aliases is not instantiated

– instantiation_error

• Threads_or_aliases is not a list of XSB thread ids or aliases

– domain_error(listof(thread_or_alias),ThreadIds)

• ExitDesignators is not a variable

– type_error(variable,ExitDesignatorst)

• ThreadId does not correspond to a valid thread

– existence_error(valid_thread,ThreadId)

• ThreadId does not correspond to a joinable thread (i.e. ThreadId is de-
tached).

– permission_error(join,non_joinable_thread,ThreadId)

thread_exit(+ExitTerm)

Exits a thread T with ExitTerm after releasing any mutexes held by T , freeing
any thread-specific memory allocated for T (we hope), as well as calling any
exit handlers for T . ExitTerm will be used if the caller of T joins to T , but
will be ignored in other cases. There is no need to call this routine on normal
termination of a thread as it is called implicitly on success or (final) failure of
a thread’s goal.

Error Cases

• ExitCode is a variable

– instantiation_error

thread_self(?ThreadId_or_Alias)

If ThreadId is an atom, unifies ThreadId_or_Alias with an alias of the calling
thread. Otherwise, unifies ThreadId_or_Alias with the XSB thread id of the
calling thread. There are no error conditions.

thread_detach(+Thread_or_Alias)

Detaches a joinable thread denoted by Thread_or_Alias so that all resources
will be reclaimed upon its exit. The thread denoted by ThreadId will no longer
be joinable, once it is detached. If Thread_or_Alias has already exited, all
resources used by Thread_or_Alias are removed from the system.

Error Cases
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• Thread_or_Alias is a variable

– instantiation_error

• Thread_or_Alias is not a thread id or alias

– domain_error(thread_or_alias,Thread_or_Alias)

• Thread_or_Alias does not correspond to a valid thread

– existence_error(valid_thread,Thread_or_alias)

• Thread_or_Alias is active but not joinable

– permission_error(thread_detach,thread,Thread_or_Alias)

thread_cancel(+Thread_or_Alias)

Cancels the XSB thread denoted by Thread_or_Alias. The cancellation does
not use Pthread cancellation mechanisms, rather it uses XSB’s interrupt mech-
anism to set Thread_or_Alias’s interrupt vector 9. When this interrupt vector
is checked, Thread_or_Alias will throw a thread cancellation error, which can
be caught within Thread_or_Alias like any other error. However, the default
behavior is for Thread_or_Alias to exit with an exit ball indicating that it has
been cancelled.

As noted above, an executing thread that is cancelled will exit very shortly
after the thread_cancel/1 predicate is called. Blocked threads, however, are
not always guarenteed to exit when cancelled. Currently a blocked thread may
be cancelled

• when it is waiting to read or write a message on a queue

• when it is executing thread_sleep/1

On the other hand, a blocked thread may not be cancelled while it is waiting
to read from a stream or waiting for a mutex.

During critical operations a thread may want to prevent itself from being can-
celled. This can be done by If ?- thread_cancel(T) is called for a thread T

for which cancelling has been disabled, T will be cancelled immediately after T

re-enables cancellation through calling the predicate thread_enable_cancel/0.

The main XSB thread cannot be cancelled; apart from that any thread can
cancel any other thread.

Error Cases

9This interrupt vector is checked upon every it is checked on every SLG-WAM call and execute

instruction.
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• Thread_or_Alias is not instantiated

– instantiation_error

• Thread_or_Alias is not a thread id or alias

– domain_error(thread_or_alias,Thread_or_Alias)

• Thread_or_Alias does not correspond to valid thread

– existence_error(valid_thread,Thread_or_Alias)

• Thread_or_Alias denotes the main thread.

– permission_error(cancel,main_thread,Thread_or_Alias)

thread_signal(Thread_or_Alias,Goal)

thread_signal(ThreadOrAlias, Goal) interrupts thread ThreadOrAlias so
that it executes Goal at the first opportunity. Specifically, once Goal is placed
onto the signal queue of ThreadOrAlias and the interrupt vector of ThreadOrAlias

is adjusted, thread_signal/2 succeeds. ThreadOrAlias handles the interrupt
asynchronously, and if the interrupt is handled while ThreadOrAlias is exe-
cuting a goal with continuation C, all solutions for Goal will be obtained, and
the failure continuation of Goal will be C. If Goal throws an exception E, the
continuation will be the handler for E.

For blocked threads, signalling works much like cancellation (described above),
and a blocked thread will handle a signal whenever it can be cancelled. However,
the thread does not return to the blocking operation after the signal – rather it
will execute the signal and then execute the continuation to be taken after the
blocking operation.

Error Cases

• Thread_or_Alias is not instantiated

– instantiation_error

• Thread_or_Alias is not a thread id or alias

– domain_error(thread_or_alias,Thread_or_Alias)

• Thread_or_Alias does not correspond to valid thread

– existence_error(valid_thread,Thread_or_Alias)

• Goal is not instantiated

– instantiation_error

• Goal is not callable

– type_error(callable,Goal)
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thread_disable_cancel module: thread

Disables the calling thread from being cancelled, so that it can be ensured that
critical operations can run to completion. This predicate always succeeds.

thread_enable_cancel module: thread

Enables the calling thread to be cancelled. By default, threads may be cancelled,
so this predicate needs to be called if thread_disable_cancel/0 has been
previously called. This predicate always succeeds.

thread_yield

Make the calling thread ready to be run after other threads of the same priority.
This predicate relies on the real-time extensions to pthreads specified in POSIX
1b, and may not be available on all platforms.

Error Cases

• The current platform does not support POSIX real-time extensions

– misc_error

thread_property(?ThreadOrAlias,?Property)

If ThreadOrAlias is instantiated, unifies Property with current properties of
the thread that unify with Property; if ThreadOrAlias is a variable, backtracks
through all the current threads whose properties unify with Property. Note
that there is no guarantee that that the information returned will be valid, due
to concurrency issues.

Currently Property can have the form

• detached(Bool): if Bool is true the thread is detached, otherwise it is
joinable.

• alias(Alias): if the thread has an alias Alias

• status(Status): see Section 7.3 for thread statuses that are currently
supported.

Example: The following predicate may be used to clear resources from the
thread table, although due to concurreny reasons, non-running threads may
remain in the thread table after this predicate terminates.

clear_thread_table:-

thread_property(Tid,status(S)),

\+ (S = running),

thread_join(Tid),
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fail.

clear_thread_table.

Error Cases

• ThreadOrAlias is neither a variable nor an XSB thread id nor an alias

– domain_error(thread_or_alias, ThreadOrAlias)

• ThreadOrAlias is not associated with a valid thread

– existence_error(thread, ThreadOrAlias)

thread_sleep(+Seconds)

Causes the calling thread to sleep approximately Seconds before resuming. A
thread may be cancelled while sleeping. However, a sleeping thread that is
signaled will execute the signaled goal and resume execution without returning
to sleep.

Error Cases

• Seconds is a variable

– instantiation_error.

• Seconds is not a number

– type_error(number, Seconds).

7.9.1 Predicates for Thread Synchronization and Communi-
cation

Threads can communicate to some extent through shared tables and dynamic code.
However, it is often useful to use message queues as a synchronizable form of commu-
nication. Similarly, while the XSB engine itself is thread-safe, thread synchronization
may be needed when calling a package that is not itself thread safe (see the beginning
of this chapter for a list of which packages are and are not thread-safe). Synchro-
nization may also be needed to protect data accessed by foreign function calls, or to
coordinate responses to external events.

Prolog Message Queues

As described previously, each thread is created with a private message queue that
is readable only by itself. The following predicates are used to communicate using
private and public message queues.
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message_queue_create(-Queue,+Options)

Creates a new public message queue with identifier Queue. Options allows
optional parameters to be passed for the maximum number of terms in the
queue, and for aliases of the queue.

• max_terms(N): create queue so that it can contain at most N terms be-
fore writes to the queue block. If not specified, the default size is used.
This default can be queried and altered at run time via the Prolog flag
queue_max_terms. (cf. Section 6.12). If the flag queue_max_terms is set
to 0, the queue size will be bounded only by available memory.

• alias(Alias): Allow queue Queue to be referred to via Alias in all stan-
dard queue predicates. Alias remains active for Queue until it is destroyed.

Error Cases

• Queue is not a variable

– type_error(variable,Queue)

• Options is a partial list or a list with an element that is a variable

– instantiation error

• Options is neither a partial list or a list

– type error(list, Options)

• Options contains an option, Option not described above

– domain_error(queue_option,Option)

• An element of Options is alias(A) and A is already associated with an
existing thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of Options is alias(A) and A is not an atom

– type_error(atom,A)

message_queue_detroy(+Queue_or_Alias)

Destroys a public message queue with alias or id Queue_or_alias, as created
by message_queue_create/[1,2]. If any threads are currently waiting on
Queue_or_Alias to read or write a term, they will be awakened and will throw
an existence error.

Error Cases

• Queue_or_Alias is a variable
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– instantiation_error

• Queue_or_Alias is not a queue id or alias

– domain_error(queue_or_alias,Queue_or_Alias)

• Queue_or_Alias denotes a private message queue or signal queue rather
than a public message queue

– permission_error(destroy,private_signal_or_message_queue,Queue_or_Alias)

• Queue_or_alias is not the queue name or alias of a public message queue.

– existence_error(message_queue, Queue_or_Alias)

thread_send_message(+Queue_or_Alias,#Message)

Queue_or_alias may either be a queue id or alias, or a thread id or alias in
which latter case the private queue for a thread is used. If there are fewer terms
on Queue_or_Alias than the queue’s maximum allowed number thread_send_message/2

puts Message onto Queue_or_Alias, and returns immediately. Otherwise, the
calling thread suspends until there are fewer elements on Queue_or_Alias than
the queue’s maximum allowed number, when the thread will be awakened to
put Message onto the queue.

Error Cases

• Queue_or_Alias is a variable

– instantiation_error

• Queue_or_Alias is not a queue id, queue alias, thread id, or thread alias.

– domain_error(queue_or_alias,Queue_or_Alias)

thread_get_message(+Queue_or_Alias,?Message)

If there are terms on Queue_or_Alias thread_get_message/2 traverses Queue_or_Alias

to obtain the first term T that unifies with Message. If T exists, the predicate
returns with Message bound to the most general unifier of Message and T . If
there are no terms on Queue_or_Alias or if no terms unify with Message, the
calling thread suspends until at least one term is added to Queue_or_Alias.
When the thread awakes, it will recheck Queue from its beginning for a term
that unifies with Message.

Error Cases

• Queue_or_Alias is a variable

– instantiation_error

• Queue_or_Alias is not a queue id or alias
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– domain_error(queue_or_alias,Queue_or_Alias)

– existence error(queue, Queue_or_Alias)

thread_get_message(?Message)

Acts as thread_get_message/2, but on a thread’s private queue.

thread_peek_message(+Queue_or_Alias,?Message)

If there are terms on Queue_or_Alias thread_peek_message/2 traverses Queue_or_Alias

to obtain the first term T that unifies with Message. If T exists, the predicate
returns with Message bound to the most general unifier of Message and T . If
there are no terms on Queue_or_Alias or if no terms unify with Message, the
predicate fails.

Error Cases

• Queue_or_Alias is a variable

– instantiation_error

• Queue_or_Alias is not a queue id or alias

– domain_error(queue_or_alias,Queue_or_Alias)

• Queue_or_Alias is not associated with a current queue

– existence error(queue, Queue_or_Alias)

thread_peek_message(?Message)

Acts as thread_peek_message/2, but on a thread’s private queue.

User-defined Mutexes

Usually, running multi-threaded evaluations does not requre a user to set any
mutexes – necessary mutexes are handled by XSB itself (we hope), and programs can
often be written so that user-level locking is unnecessary. However, under certain
conditions, locking is useful or even necessary: for instance, a user may need to set a
lock so that a set of shared dynamic facts cannot be accessed when it is updated.

One of the simplest and most powerful primitives for locking are mutexes. The
mutexes provided by the following predicates are recursive: if a thread T locks a
recursive mutex M , any calls to mutex_lock(M) made by T will immediately succeed
without suspending while M is locked. Other threads that attempt to lock M will
suspend until M is unlocked. To unlock M after n calls to mutex_lock(M), T must
make n calls to mutex_unlock(M).
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When using mutexes in XSB, programmers must not only avoid explicitly creat-
ing deadlocks, but must also ensure that a mutex is unlocked when leaving a critical
area, and destroyed when it is no longer needed. Making sure that this happens for
successful goals, for failed goals and for goals that raise exceptions can sometimes
be complicated. The predicate with_mutex/2 handles all of these cases. We rec-
ommend using it if possible, and making use of lower-level calls to mutex_lock/1,
mutex_unlock/1 and mutex_trylock/1 only in rare cases when with_mutex/2 is not
applicable.

with_mutex(+Mutex,?Goal)

Locks a current mutex or aliasMutex, executes Goal deterministically, then un-
locks Mutex. If Goal leaves choice-points, these are destroyed. Mutex is unlocked
regardless of whether Goal succeeds, fails or raises an exception. Any exception
thrown by Goal is re-thrown after the mutex has been successfully unlocked.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Locking Mutex would give rise to a deadlock 10

– permission_error(mutex,lock,Mutex)

• Goal is a variable

– instantiation error

• Goal is neither a variable nor a callable term

– type error(callable, Goal)

mutex_create(?Mutex)

Creates a new recursive user mutex with identifier Mutex. Options allows op-
tional parameters to be passed, currently only for aliases of the mutex.

• alias(Mutex): Allow queue Mutex to be referred to via Mutex in all stan-
dard queue predicates. Mutex remains active for Mutex until it is destroyed.

10This error case handles the EDEADLK return code on MacOS X, and other platforms.
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Error Cases

• Mutex is not a variable

– type_error(variable,Mutex)

• Options is a partial list or a list with an element that is a variable

– instantiation error

• Options is neither a partial list or a list

– type error(list, Options)

• Options contains an option, Option not described above

– domain_error(mutex_option,Option)

• An element of Options is alias(A) and A is already associated with an
existing thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of Options is alias(A) and A is not an atom

– type_error(atom,A)

mutex_destroy(+Mutex)

Destroys a current unlocked mutex with alias or id Mutex along with any mem-
ory it uses.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Mutex is locked

– permission_error(mutex,destroy,Mutex)

mutex_lock(+Mutex)

mutex_lock(Mutex) locks a (recursive) mutex with alias or id Mutex. Locking
and unlocking mutexes should be paired carefully in order to avoid deadlocks.
In particular, a programmer needs to ensure that mutexes are properly unlocked
even if the protected code fails or raises an exception.

Error Cases
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• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Locking Mutex would give rise to a deadlock 11

– permission_error(mutex,lock,Mutex)

mutex_trylock(+Mutex)

Works as mutex_lock/1 but fails immediately if Mutex is held by another
thread, rather than suspending the calling thread.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

mutex_unlock(+Mutex)

Unlocks the mutex with alias or id Mutex when called by the same thread that
locked Mutex.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Mutex is not held by the calling thread

11This error case handles the EDEADLK return code on MacOS X, and other platforms.
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– permission_error(unlock,mutex,Mutex)

mutex_unlock_all

mutex_unlock_all/0 unlocks all user mutexes owned by the current thread. It
has no error cases.

mutex_property(?MutexOrAlias,?Property)

If MutexOrAlias is instantiated, unifies Property with current properties of
the mutex; if MutexOrAlias is a variable, backtracks through all the current
mutexes whose properties unify with Property. Note that there is no guarantee
that that the information returned will be valid, due to concurrency issues.

Currently Property can have the form

• alias(Alias): if the mutex has an alias Alias

• status(Status). If the mutex is locked, Status will be a term of the
form locked(ThreadId,NumLocks) where ThreadId is the thread id of
the owner of the lock, and NumLocks is the number of times the mutex
has been locked by the current owner (recall that user-defined mutexes are
recursive and must be unlocked as many times as they have been locked
in order to be freed). If the mutex is unlocked, Status will be a term of
the form unlocked.

Example: The query

?- mutex_property(M,status(_)).

can be used to enumerate all active user-defined mutexes.

Error Cases

• MutexOrAlias is neither a variable nor an XSB mutex id nor an alias

– domain_error(mutex_or_alias, MutexOrAlias)

• MutexOrAlias is not associated with an active mutex

– existence_error(mutex, MutexOrAlias)

• Property is neither a variable nor a valid mutex property

– domain_error(mutex_property, Property)



Chapter 8

Storing Facts in Tries

XSB offers a mechanism by which large numbers of facts can be directly stored and
manipulated in tries, which can either be private to a thread or shared among threads.
The mechanism described in this chapter is in some ways similar to trie-indexed
asserted code as described in Section 6.14, but allows creation of tries that are shared
between threads, and of associative tries that support efficient memory management 1.

When stored in a trie, facts are compiled into trie-instructions similar to those
used for XSB’s tables. For instance set of facts

{ rt(a,f(a,b),a), rt(a,f(a,X),Y), rt(b,V,d) }

would be stored in a trie as shown in Figure 8, where each node corresponds to an
instruction in XSB’s virtual machine. Using a trie for storage has the advantage that
discrimination can be made on a position anywhere in a fact, and directly inserting
into or deleting from a trie is 4-5x faster than with standard dynamic code. In
addition, in trie-dynamic code, there is no distinction between the index and the code
itself, so for many sets of facts trie storage can use much less space than standard
dynamic code. For instance, Figure 8 shows how the prefix rt(a,f(a,... is shared
for the first two facts. However, trie storage comes with tradeoffs: first, only facts can
be stored in a trie; second, unlike standard dynamic code, no ordering is preserved
among the facts; and third, duplicate facts are not supported.

In Version 3.8 of XSB, tries that store facts may have the following forms:

1For nearly all purposes, the predicates in this chapter replace the low-level API for interned tries
in previous versions, which included trie_intern, trie_unintern, trie_interned etc. However
that API continues to be supported for low-level systems programming.

356
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Figure 8.1: Terms Stored as a Trie

• Private, general tries allow arbitrary terms to be inserted in a trie. These
tries are thread-private so that inserting a term in a trie Tr in one thread will
not be visible to another thread. Although such tries are general, they have
limitations in memory reclamation in Version 3.8 of XSB. If a term is deleted
from Tr, memory will be reclaimed if it is safe to do so at the time of deletion 2;
otherwise the space will not be reclaimed until all terms in Tr are removed by
truncating Tr or until the thread exits.

• Private, associative Associative tries are more restricted than general tries: an
associative trie combines a key which can be any ground term, with a value
which can be any term. Memory for deleted key-value pairs in an associative
trie is always immediately reclaimed, and insert or delete operations can be
faster for an associative trie than for a general trie. These tries are private to a
thread, and in addition to reclaiming memory when a term is deleted, memory
is reclaimed when the trie is truncated or dropped, and when the thread exits.

• Shared, associative tries are associative tries that are shared among threads.
Memory for deleted key-value pairs is always immediately reclaimed, and when
the trie is truncated or dropped.

2That is, if no choice points are around that may cause backtracking into Tr.
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8.1 Examples of Using Tries

A handle for a trie can be obtained using the trie_create/2 predicate. Terms
can then be inserted into or deleted from that trie, and terms can be unified with
information in the trie, as shown in the following example:

Example 8.1.1 First, we create a private general trie:

| ?- trie_create(X,[type(prge)]).

X = 1

yes

Next, we insert some terms into the trie

| ?- trie_insert(1,f(a,b)), trie_insert(1,[a,dog,walks]).

yes

Now we can make arbitrary queries against the trie

| ?- trie_unify(1,X).

X = [a,dog,walks];

X = f(a,b);

no

Above, a general query was made, but the query could have been any Prolog term.
Now we delete a term, and see what’s left.

| ?- trie_delete(1,f(X,B)).

X = a

B = b

yes

| ?- trie_unify(1,X).

X = [a,dog,walks];

no
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The behavior of general tries can be constrasted with that of associative tries as
seen in the next example.

Example 8.1.2 Now we start by creating a shared associative trie, with abbreviation
shas using the multi-threaded engine

| ?- trie_create(X,[type(shas),alias(foo)]).

X = 1048577

yes

This time we used an alias so now we can use foo to refer to insert a couple of
key-value pairs into the trie (we could also use the trie handle itself)

| ?- trie_insert(foo,pair(sentence(1),[a,dog,walks])),

trie_insert(foo,pair(sentence(2),[a,man,snores])).

yes

However, inserting a general term into an associative trie throws an error

| ?- trie_insert(foo,f(a,b)).

++Error[XSB/Runtime/P]: [Domain (f(a,b) not in domain pair/2)]

in arg 2 of predicate trie_insert/2

(Inserted term must be key-value pair in trie 1048577)

Finally, in an associative trie, if we insert a value for a key that is already in the trie,
it will update the value for that key.

| ?- trie_insert(foo,pair(sentence(1),[a,dog,snoress])).

yes

| ?- trie_unify(foo,pair(sentence(1),X)).

X = [a,dog,snores]

yes

8.2 Space Management for Tries

When creating or adding terms to an interned trie, XSB manages all space necessary
for the terms and their indexes. However, when removing a term from a trie an
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issue may arise if there is a possibility of backtracking into the term to be removed;
this issue also arises for retracting dynamic code. In the sequential engine and in
private tries XSB’s dynamic clause garbage collector handles space reclamation when
terms are removed from a trie through trie_delete/2 or similar low-level predicates.
However, in the case of trie_truncate/1 or trie_drop/1, an exception is thrown if
there are active choice points to terms in a trie that is to be truncated or dropped.

In the multi-threaded engine the space reclamation problem becomes even more
difficult for tries that can be shared among threads. In this case, no garbage collection
is performed until there is a single active thread.

These space reclamation issues arise for non-associative tries only. Associative
triesessentially contain key-value pairs, and so may have their space reclaimed upon
deletion of a term, or upon truncation or dropping their trie, regardless of the number
of active threads 3.

8.3 Predicates for Tries

The following subsections describe predicates for inserting terms into a trie, deleting
terms from a trie, and unifying a term with terms in a trie, predicates for creating,
dropping, and truncating tries, as well as predicates for bulk insertes into and deletes
from a trie. These predicates can apply to any type of trie, and perform full error
checking on their call arguments. As such, they are safer and more general than the
lower-level trie predicates described in Chapter 1 of Volume 2 of this manual. Use
of the predicates described here is recommended for applications unless the need for
speed is paramount.

trie_create(-TrieId,+OptionList) module: intern

OptionList allows optional parameters in the configuration of a trie to indicate
its type and whether an alias should be used. In the present version, OptionList

may contain the following terms

• type(Type) where Type can be one of

– prge (private, general) maintains information that is accessable only
to the calling thread. No other restrictions are made for accessing
information in a private trie. In the single-threaded engine, tries are
private by default.

3Future versions of XSB may extend garbage collection to handle trie truncation, trie dropping
and better space reclamation in the multi-threaded engine.



CHAPTER 8. STORING FACTS IN TRIES 361

– pras (private, associative) creates a private trie that maintains key-
value pairs in a manner similar to an associative array, using the term
pair(Key,Value). Each key must be ground, and there may be only
one value per key.

– shas (shared associative) creates a shared trie that maintains key-
value pairs in a manner similar to an associative array, using the term
pair(Key,Value). Each key must be ground, and there may be only
one value per key. This option is available only in the multi-threaded
engine

• alias(Alias): Allow trie TrieId to be referred to via Alias in all stan-
dard trie predicates. Alias remains active for TrieId until it is dropped.

• incremental: Allows tables that depend on trie TrieId to be automati-
cally updated as information in TrieId changes (cf. Section 5.6.3).

• nonincremental: Specifies that tables that depend on trie TrieId should
not be automatically updated as information in TrieId changes (cf. Sec-
tion 5.6.3).

Error Cases

• TrieId is not a variable

– type_error(variable,TrieId)

• OptionList is a partial list or contains an option that is a variable

– instantiation_error

• OptionList is neither a list nor a partial list

– type_error(list,OptionsList)

• OptionList contains an option, Option not described above

– domain_error(trie_option,Option)

• An element of OptionsList is alias(A) and A is already associated with
an existing thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of OptionsList is alias(A) and A its not an atom

– type_error(atom,A)

trie_insert(+TrieIdOrAlias,Term) module: intern

Inserts Term into the trie denoted by TrieIdOrAlias. If TrieIdOrAlias de-
notes an associative trie, Term must be of the form pair(Key,Value) where Key
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is ground. If TrieIdOrAlias is a general trie and already contains Term, the
predicate fails (as the same term cannot be inserted multiple times in the same
trie). Similarly, if TrieIdOrAlias is an associative trie and already contains a
value for Key the predicate fails.

Insertion of tries can be controlled by the flags max_answer_term_depth, max_answer_list_depth,
max_answer_term_action, and max_answer_list_action, which are also used
to control additions of answers to tables. Using these flags, if a term to be in-
serted is cyclic and exceeds a stated depth, trie insertion may either fail or
throw an error depending on the associated action: see pg. 253.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with
pair(_,_)

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value)

but Key is not ground

– misc_error

• Key or Value is a cyclic term, or exceeds the depth

– misc_error

trie_unify(+TrieIdOrAlias,Term) module: intern

Unifies Term with a term in the trie denoted by TrieIdOrAlias. If TrieIdOrAlias

denotes a general trie, successive unifications will succeed upon backtrack-
ing. If TrieIdOrAlias denotes an associative trie, Term must be of the form
pair(Key,Value) where Key is ground.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)
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• TrieIdOrAlias denotes an associative array, and Term does not unify with
pair(_,_)

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value)

but Key is not ground

– misc_error

trie_delete(+TrieIdOrAlias,Term) module: intern

Deletes a term unifying with Term from the trie denoted by TrieIdOrAlias.
TrieIdOrAlias denotes a general trie, all such terms can be deleted upon back-
tracking. If TrieIdOrAlias denotes an associative trie, Term must be of the
form pair(Key,Value) where Key is ground. In either case, if TrieIdOrAlias

does not contain a term unifying with Term the preicate fails.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with
pair(_,_)

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value)

but Key is not ground

– misc_error

trie_truncate(+TrieIdOrAlias) module: intern

Removes all terms from TrieIdOrAlias, but does not change any of its prop-
erties (e.g. the type of the trie or its aliases).

@@

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)
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• There are active failure continuations to terms in TrieIdOrAlias

– miscellaneous_error

trie_drop(+TrieIdOrAlias) module: intern

Drops TrieIdOrAlias. trie_drop/1 not only removes all terms from TrieIdOrAlias,
but also removes information about its type and any aliases the trie may have.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• There are active failure continuations to terms in TrieIdOrAlias

– miscellaneous_error

trie_bulk_insert(+TrieIdOrAlias,+Generator) module: intern

Used to insert multiple terms into the trie denoted by TrieIdOrAlias. Generator

must be a callable term. Upon backtracking through Generator its first ar-
gument should successively be instantiated to the terms to be interned in
TrieIdOrAlias. When inserting many terms into a general trie, trie_bulk_insert/2

is faster than repeated calls to trie_insert/2 as it does not need to make mul-
tiple checks that the choice point stack is free of failure continuations that point
into the TrieIdOrAlias trie. For associative tries, trie_bulk_insert/2 can
also be faster as it needs to perform fewer error checks on the arguments of the
insert.

Example 8.3.1 Given the predicate

bulk_create(p(One,Two,Three),N):-

for(One,1,N),

for(Two,1,N),

for(Three,1,N).

and a general trie Trie, the goal

?- trie_bulk_insert(Trie,bulk_create(_Term,N))

will add N3 terms to Trie.
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Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• Generator is not a compound term

– type_error(compound,Generator)

• TrieIdOrAlias denotes an associative array, and Generator does not
unify with pair(_,_)

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, and Generator succeeds with
a term that unifies with pair(Key,Value) and Key is not ground

– misc_error

• Key or Value is a cyclic term

– misc_error

trie_bulk_delete(+TrieIdOrAlias,Term) module: intern

Deletes all terms that unify with Term from TrieIdOrAlias. If TrieIdOrAlias

denotes an associative trie, the key of the key value pair need not be ground.

Example 8.3.2 For the trie in the previous example, the goal

?- trie_bulk_delete(Trie,p(1,_,_))

will delete the N2 terms that unify with p(1,_,_) from TrieIdOrAlias.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)
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trie_bulk_unify(+TrieIdOrAlias,#Term,-List) module: intern

Returns in List all terms in TrieIdOrAlias that unify with Term. If TrieIdOrAlias

denotes an associative trie, the key of the key value pair need not be ground.

This predicate is useful for two reasons. First, it provides a safe way to backtrack
through an associative trie while maintaining the memory management and
concurrency properties of associative tries. Second, it enforces read consistency
for TrieIdOrAlias, regardless of whether the trie is private or shared, general
or associative.

Example 8.3.3 Continuing from Example 8.3.2 the goal

?- trie_bulk_unify(Trie,X),List

will return the the N3 − N2 terms still in TrieIdOrAlias.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• List is not a variable

– type_error(variable,List).

trie_property(?TrieOrAlias,?Property) module: intern

If TrieOrAlias is instantiated, unifies Property with current properties of the
trie; if TrieOrAlias is a variable, backtracks through all the current tries whose
properties unify with Property. In the MT engine, thread_property/2 ac-
cesses only tries private to the calling thread and shared tries; however note
that there is no guarantee that that the information returned about shared
tries will be valid, due to concurrency issues 4.

Currently Property can have the form

• type(Type): where Type is the type of the trie.

• alias(Alias): if the trie has an alias Alias

Error Cases

4trie_property/2 is not yet implemented for shared tries.
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• TrieOrAlias is neither a variable nor an XSB trie id nor an alias

– domain_error(trie, TrieOrAlias)

• TrieOrAlias is not associated with a valid trie

– existence_error(trie, TrieOrAlias)

8.4 Low-level Trie Manipulation Utilities

The previous sections indicate how tries can be used as an efficient mechanism to
store thread-private and thread-shared terms. In this section we describe lower-level
trie manipulation predicates that are suitable for implemeting XSB libraries 5. As
with other tries, these utilities are suitable for storing terms rather than exectuable
clauses, use a set based semantics, and do not maintain an ordering among these
terms. In addition

• These predicates create and maintain thread-private, general tries.

• These predicates do not always perform error checking. If not explicitly specified
in the description of the predicate, errors returned may be confusing, and calling
with improper arguments may even cause memory violations.

• For historical reasons, the ordering of arguments in these predicates is not con-
sistent.

Despite (and sometimes because of) these limitations, the trie manipulation facilities
can be extremely fast, so that interning and uninterning terms in a trie may be much
faster than assert and retract in XSB or in any other Prolog.

8.4.1 A Low-Level API for Interned Tries

new_trie(-Root) module: intern

Root is instantiated to a handle for a new private, general trie.

trie_intern(+Term,+Root) module: intern
trie_intern(+Term,+Root,-Leaf,-Flag,-Skel) module: intern

trie_intern/2 effectively asserts Term by interning into the trie designated by

5Flora-2, XASP, XSB’s storage library and others use these predicates.
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Root. If a variant of Term is already in Root the predicate succeeds, but a new
copy of Term is not added to the trie.

trie_intern/5 acts as trie_intern/2 but returns additional information:
Leaf is the handle for the interned Term in the trie. Flag is 1 if the term is “old”
(already exists in the trie); it is 0, if the term is newly inserted. Skel represents
the collection of all the variables in Term. It has the form ret(V1,V2,...,VN),
exactly as in get_calls (see Vol. 1 of the XSB manual).

Error Cases

• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

trie_interned(?Term,+Root) module: intern
trie_interned(?Term,+Root,?Leaf,-Skel) module: intern

trie_interned/2 backtracks through the terms that unify with Term and that
are interned into the trie represented by the handle Root. Term may be free, or
partially bound.

If Leaf is a free variable, trie_interned/5 works as trie_interned/2: it
backtracks through the terms that unify with Term interned into the trie repre-
sented by the handle Root. In addition it returns Leaf as the handle for each
such term and returns in Skel the collection of all the variables in Term using
the form ret(V1,...,Vn). Otherwise, if Leaf is bound, trie_interned/5 will
unify Term with the term in the trie designated by Leaf, returning a vector of
variables in Skel.

Error Cases

• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

trie_unintern(+Root,+Leaf) module: intern
trie_unintern_nr(+Root,+Leaf) module: intern

trie_unintern(+Root,+Leaf) deletes a term from a trie using the handle Leaf,
as obtained from trie_intern/[2,4] or trie_interned/[2,4]. Space is re-
claimed for the term only if it is safe to do so – if there are no failure continua-
tions that may consume the term (cf. Section 8.2).
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trie_unintern_nr/2 does not perform space reclamation and as a result re-
quires no garbage collection – it simply marks a term as “deleted”. This makes
trie_unintern_nr/2 suitable if trie garbage collection may be an issue, and
also allows it to be used in libraries that support backtrackable updates, such
as XSB’s storage library.

Error Cases

• Root or Leaf is uninstantiated

– instantiation_error

• Root or Leaf is instantiated, but not an integer (trie handle or trie leaf)

– type_error(integer,Root) or type_error(integer,Leaf)

reclaim_uninterned_nr(+Root) module: intern

Runs through the chain of leaves of the trie Root and deletes the terms that
have been marked for deletion by trie_unintern_nr/2. This can be viewed
either as a garbage collection step or as a commit.

Error Cases

• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

unmark_uninterned_nr(+Root,+Leaf) module: intern

The term pointed to by Leaf should have been previously marked for deletion
using trie_unintern_nr/2. This term is then “unmarked” (or undeleted) and
becomes again a normal interned term.

Error Cases

• Root or Leaf is uninstantiated

– instantiation_error

• Root or Leaf is instantiated, but not an integer (trie handle or trie leaf)

– type_error(integer,Root) or type_error(integer,Leaf)

delete_trie(+Root) module: intern

Deletes all the terms in the trie pointed to by Root. Garbage collection ensures
that space reclamation is performed only if it is safe to do so.

Error Cases
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• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

• Failure continuations point to one or more nodes in the trie with root Root

– misc_error
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Hooks

Sometimes it is useful to let the user application catch certain events that occur
during XSB execution. For instance, when the user asserts or retracts a clause, etc.
XSB has a general mechanism by which the user program can register hooks to handle
certain supported events. All the predicates described below must be imported from
xsb_hook.

9.1 Adding and Removing Hooks

A hook in XSB can be either a 0-ary predicate or a unary predicate. A 0-ary hook
is called without parameters and unary hooks are called with one parameter. The
nature of the parameter depends on the type of the hook, as described in the next
subsection.

add_xsb_hook(+HookSpec) module: xsb_hook

This predicate registers a hook; it must be imported from xsb_hook. HookSpec

has the following format:

hook-type(your-hook-predicate(_))

or, if it is a 0-ary hook:

hook-type(your-hook-predicate)

For instance,

371
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:- add_xsb_hook(xsb_assert_hook(foobar(_))).

registers the hook foobar/1 as a hook to be called when XSB asserts a clause.
Your program must include clauses that define foobar/1, or else an error will
result.

The predicate that defines the hook type must be imported from xsb_hook:

:- import xsb_assert_hook/1 from xsb_hook.

or add_xsb_hook/1 will issue an error.

remove_xsb_hook(+HookSpec) module: xsb_hook

Unregisters the specified XSB hook; imported from xsb_hook. For instance,

:- remove_xsb_hook(xsb_assert_hook(foobar(_))).

As before, the predicate that defines the hook type must be imported from
xsb_hook.

9.2 Hooks Supported by XSB

The following predicates define the hook types supported by XSB. They must be
imported from xsb_hook.

xsb_exit_hook(_) module: xsb_hook

These hooks are called just before XSB exits. You can register as many hooks
as you want and all of them will be called on exit (but the order of the calls is
not guaranteed). Exit hooks are all 0-ary and must be registered as such:

:- add_xsb_hook(xsb_exit_hook(my_own_exit_hook)).

xsb_assert_hook(_) module: xsb_hook

These hooks are called whenever the program asserts a clause. An assert hook
must be a unary predicate, which expects the clause being asserted as a param-
eter. For instance,
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:- add_xsb_hook(xsb_assert_hook(my_assert_hook(_))).

registers my_assert_hook/1 as an assert hook. One can register several assert
hooks and all of them will be called (but the order is not guaranteed).

xsb_retract_hook(_) module: xsb_hook

These hooks are called whenever the program retracts a clause. A retract hook
must be a unary predicate, which expects as a parameter a list of the form
[Head,Body], which represent the head and the body parts of the clause being
retracted. As with assert hooks, any number of retract hooks can be registered
and all of them will be called in some order.



Chapter 10

Debugging and Profiling

10.1 Prolog-style Tracing and Debugging

XSB supports a version of the Byrd four-port debugger for interactive debugging
and tracing of Prolog code. In this release (Version 3.8), it does not work very well
when debugging code involving tabled predicates 1. If one only creeps (see below),
the tracing can provide some useful information. For programs that involve large
amounts of tabling forest-view tracing can be used (Section 10.2). To turn on tracing,
use trace/0, trace/1, or trace/2. To turn tracing off, use notrace/0.

trace

notrace

When tracing is on, the system will print a message each time a predicate is:

1. initially entered (Call),

2. successfully returned from (Exit),

3. failed back into (Redo), and

4. completely failed out of (Fail).

When debugging interactively, a message may be printed and tracer stopped
and prompts for input. (See the predicates show/1 and leash/1 described
below to modify what is traced and when the user is prompted.)

1The current version of XSB’s Prolog debugger does not include exceptions as a debugging port.

374
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In addition to single-step tracing, the user can set spy points to influence how
the tracing/debugging works. A spy point is set using spy/1. Spy points can
be used to cause the system to enter the tracer when a particular predicate is
entered. Also the tracer allows “leaping” from spy point to spy point during
the debugging process. The debugger also has profiling capabilities, which can
measure the cpu time spent in each call. The cpu time is measured only down
to 0.0001-th of a second.

When the tracer prompts for input, the user may enter a return, or a single
character followed by a return, with the following meanings:

• c, <CR>: Creep Causes the system to single-step to the next port (i.e.
either the entry to a traced predicate called by the executed clause, or the
success or failure exit from that clause).

• a: Abort Causes execution to abort and control to return to the top level
interpreter.

• b: Break Calls the evaluable predicate break, thus invoking recursively a
new incarnation of the system interpreter. The command prompt at break
level n is

n: ?-

The user may return to the previous break level by entering the system
end-of-file character (e.g. ctrl-D), or typing in the atom end_of_file; or
to the top level interpreter by typing in abort.

• f: Fail Causes execution to fail, thus transferring control to the Fail port
of the current execution.

• h: Help Displays the table of debugging options.

• l: Leap Causes the system to resume running the program, only stopping
when a spy-point is reached or the program terminates. This allows the
user to follow the execution at a higher level than exhaustive tracing.

• n: Nodebug Turns off debug mode.

• r: Retry (fail) Transfers to the Call port of the current goal. Note,
however, that side effects, such as database modifications etc., are not
undone.

• s: Skip Causes tracing to be turned off for the entire execution of the pro-
cedure. Thus, nothing is seen until control comes back to that procedure,
either at the Success or the Failure port.

• q: Quasi-skip This is like Skip except that it does not mask out spy points.
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• S: Verbose skip Similar to Skip mode, but trace continues to be printed.
The user is prompted again when the current call terminates with success
or failure. This can be used to obtain a full trace to the point where an
error occurred or for code profiling. (See more about profiling below.)

• e: Exit Causes immediate exit from XSB back to the operating system.

trace(+Filename,+option)

trace/2 is like trace/0 except that it is non-interactive and dumps trace
information into a log file, Filename. Currently the only supported option is
log. However, the log is written in the form of Prolog facts, which can be loaded
queried. The format of the facts is:

xsb_tracelog(CallId,CallNum,PortType,ParentCallNum,DepthOfCall,CurrentCall,Time)

where CallId is an identifier generated when XSB encounters a new top-level
call. This identifier remains the same for all subgoals called while tracing that
top-level call.

• CallNum is a generated number to show the nesting of the calls being
traced. It is the same number that the user sees when tracing interactively.

• PortType is ’Call’, ’Redo’, ’Exit’, or ’Fail’.

• ParentCallNum is the call number of the parent call.

• DepthOfCall is the nesting depth of the current call with respect to its
ancestor calls.

• CurrentCall is the call being traced

• Time is the CPU time it took to execute CurrentCall. On ’Call’ and
’Redo’, Time is always 0 — it has a meaningful value only for the ’Exit’

and ’Fail’ log entries.

It should be noted that when calls are delayed due to the well-founded negation
computation of because of the when/2 primitive, the parent call might be off in
some cases. However, the parent property repairs itself for subsequent calls.

‘The name of the predicate (xsb_tracelog) used for logging can be changed by
asserting it into the predicate debug_tracelog_predicate/1, which should be
imported from usermod. For instance,

:- import debug_tracelog_predicate/1 from usermod.

?- assert(debug_tracelog_predicate(foobar)).
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spy(Preds)

where Preds is a spy specification or a list of such specifications, and must be
instantiated. This predicate sets spy points (conditional or unconditional) on
predicates. A spy specification can be of several forms. Most simply, it is a term
of the form P/N , where P is a predicate name and N its arity. Optionally, only
a predicate name can be provided, in which case it refers to all predicates of any
arity currently defined in usermod. It may optionally be prefixed by a module
name, e.g. ModName:P/N . (Again, if the arity is omitted, the specification
refers to all predicates of any arity with the given name currently defined in the
given module.) A spy specification may also indicate a conditional spy point. A
conditional spy specification is a Prolog rule, the head indicating the predicate
to spy, and the body indicating conditions under which to spy. For example, to
spy the predicate p/2 when the first argument is not a variable, one would write:
spy(p(X, _) : −nonvar(X)). (Notice that the parentheses around the rule are
necessary). The body may be empty, i.e., the rule may just be a fact. The head
of a rule may also be prefixed (using :) with a module name. One should not
put both conditional and unconditional spy points on the same predicate.

nospy(Preds)

where Preds is a spy specification, or a list of such specifications, and must be
instantiated at the time of call. What constitutes a spy specification is described
above under spy. nospy removes spy points on the specified predicates. If a
specification is given in the form of a fact, all conditional spy points whose heads
match that fact are removed.

debug

Turns on debugging mode. This causes subsequent execution of predicates with
trace or spy points to be traced, and is a no-op if there are no such predicates.
The predicates trace/0, trace/1, trace/2, and spy/1 cause debugging mode
to be turned on automatically.

nodebug

Turns off debugging mode. This causes trace and spy points to be ignored.

debugging

Displays information about whether debug mode is on or not, and lists predi-
cates that have trace points or spy points set on them.

debug_ctl(option,value)

debug_ctl/2 performs debugger control functions as described below. These
commands can be entered before starting a trace or inside the trace. The latter
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can be done by responding with “b” at the prompt, which recursively invokes an
XSB sub-session. At this point, you can enter the debugger control commands
and type end_of_file. This returns XSB back to the debugger prompt, but
with new settings.

1. debug_ctl(prompt, off) Set non-interactive mode globally. This means
that trace will be printed from start to end, and the user will never be
prompted during the trace.

2. debug_ctl(prompt, on) Make tracing/spying interactive.

3. debug_ctl(profile, on) Turns profiling on. This means that each time
a call execution reaches the Fail or Exit port, CPU time spent in that
call will be printed. The actual call can be identified by locating a Call

prompt that has the same number as the “cpu time” message.

4. debug_ctl(profile, off) Turns profiling off.

5. debug_ctl(redirect, +File) Redirects debugging output to a file. This
also includes program output, errors and warnings. Note that usually
you cannot see the contents of +File until it is closed, i.e., until another
redirect operation is performed (usually debug_ctl(redirect, tty), see
next).

6. debug_ctl(redirect, tty) Attaches the previously redirected debug-
ging, error, program output, and warning streams back to the user ter-
minal.

7. debug_ctl(show, +PortList) Allows the user to specify at which ports
should trace messages be printed. PortList must be a list of port names,
i.e., a sublist of [’Call’, ’Exit’, ’Redo’, ’Fail’].

8. debug_ctl(leash, +PortList) Allows the user to specify at which ports
the tracer should stop and prompt the user for direction. PortList must
be a list of port names, i.e., a sublist of [’Call’, ’Exit’, ’Redo’, ’Fail’]. Only
ports that are show-n can be leash-ed.

9. debug_ctl(hide, +PredArityPairList) The list must be of the form
[P1/A1, P2/A2, ...], i.e., each either must specify a predicate-arity pair.
Each predicate on the list will become non-traceable. That is, during the
trace, each such predicate will be treated as an black-box procedure, and
trace will not go into it.

10. debug_ctl(unhide, ?PredArityPairList) If the list is a predicate-arity
list, every predicate on that list will become traceable again. Items in the
list can contain variables. For instance, debug_ctl(unhide, [_/2]) will
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make all 2-ary that were previously made untraceable traceable again. As
a special case, if PredArityPairList is a variable, all predicates previously
placed on the “untraceable”-list will be taken off.

11. debug_ctl(hidden, -List) This returns the list of predicates that the
user said should not be traced.

10.1.1 Control of Prolog-Style Tracing and Debugging

XSB debugger also provides means for the low-level control of what must be traced.
Normally, various standard predicates are masked out from the trace, since these
predicates do not make sense to the application programmer. However, if tracing
below the application level is needed, you can retract some of the facts specified in
the file syslib/debugger_data.P (and in some cases assert into them). All these
predicates are documented in the header of that file. Here we only mention the four
predicates that an XSB developer is more likely to need. To get more trace, you
should retract from the first three predicates and assert into the last one.

• hide_this_show(Pred,Arity): specifies calls (predicate name and arity) that
the debugger should not show at the prompt. However, the evaluation of this
hidden call is traced.

• hide_this_hide(Pred,Arity): specifies calls to hide. Trace remains off while
evaluating those predicates. Once trace is off, there is no way to resume it until
the hidden predicate exits or fails.

• show_this_hide(Pred,Arity): calls to show at the prompt. However, trace is
switched off right after that.

• trace_standard_predicate(Pred,Arity): Normally trace doesn’t go inside
standard predicates (i.e., those specified in syslib/std_xsb.P. If you need to
trace some of those, you must assert into this predicate.

In principle, by retracting all facts from the first three predicates and asserting enough
facts into the last one, it is possible to achieve the behavior that approximates the
-T option. However, unlike -T, debugging can be done interactively. This does not
obviate -T, however. First, it is easier to use -T than to issue multiple asserts and
retracts. Second, -T can be used when the error occurs early on, before the moment
when XSB shows its first prompt.

Finally, XSB also provides a facility for low-level tracing of Prolog execution.
This can be activated by invoking the emulator with the -T option (see Section 3.7),
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or through the predicate trace/0. It causes trace information to be printed out
at every Prolog call (including those to system predicates, and tabled predicates).
While this method can occasionally be useful, its use is limited. For tabled executions
the techniques in the following sections are much more appropriate. Ever for Prolog
programs, the volume of such trace information can become very large very quickly, so
this method of tracing is only recommended for situations where no other debugging
method is useful.

10.2 Trace-based Execution Analysis through For-

est Logging

The tracing and debugging described in previous sections has proven useful for Prolog
programs for 30 or more years. However, when tabling is added to Prolog, things
change. First, as described in Chapter 5, tabling can be used to find the least fixed
point of mutually recursive predicates. Operationally, this requires the ability to
suspend one computation path and to resume another. Second, the addition of tabled
negation for the well-founded semantics requires the ability to delay negative goals
whose only proof may be involved in a loop through negation and to simplify these
goals once their truth value has become known. Furthermore, a tabled subgoal has
different states: it may be new; it may be incomplete so that new answers might be
derived for it; or completed (completely evaluated) so that the answers may simply
be read from the table. In short, tabling, which can execute much more general
programs than Prolog and which can use the stronger well-founded semantics, requires
a more complex set of operations than Prolog’s SLDNF. Accordingsly, debugging and
tracing is correspondingly more complex. Thus, while Prolog’s 4-port debugger may
be useful for programs that involve just a few tabled predicates, it may not be useful
for programs that heavily use tabling for complex recursions, non-monotinic reasoning
or other purposes.

There is currently no standard approach to debugging tabled programs. One
possible approach would be to extend the 4-port debugger to include other ports for
tabling operations. Such extensions have not yet been explored, and whether the
paradigm of n-port debugging can be extended to full tabling so that it can be useful
to programmers is an open question. Another approach would be use the declarative
approach of justification [35, 61] to explain why derivations were or were not made.
XSB does in fact have a justification package but it is not currently robust enough
to be recommended for general use. Below we present the logforest approach [83]



CHAPTER 10. DEBUGGING AND PROFILING 381

10.2.1 Tracing a tabled evaluation through forest logging

While the operations used for tabling are more complex than those of SLDNF, they
have a clear formal operational semantics through SLG and the forest-of-trees model.
We recall this model briefly below for a definite program but assume a background
knowledge of tabled logic programming (see, for instance [85]).

Example 10.2.1 Figure 10.1 shows a program fragment along with an SLG forest
for the query ?- reach(1,Y) to the the right-recursive tabled predicate reach/1.
An SLG forest consists of an SLG tree for each tabled subgoal S: this tree has root
S :- S. In a definite program an SLG tree represents resolution of program clauses
and answers to prove S. In Figure 10.1 each non-root node of the form K.N where
N = (S :- Goals)θ is a clause in which the bindings to a subgoal S are maintained
in Sθ, the goals remaining to prove S are in Goalsθ, and the order of creation of N
within the tabled evaluation is represented by a number, K (local scheduling is used
in this example). Children of a root node are obtained through resolution of a tabled
subgoal against program clauses. Children of non-root nodes are obtained through
answer clause resolution, if the left most selected literal is tabled (e.g. children of
node 3 or 11 in the tree for reach(1,Y)), or through program clause resolution if
the leftmost selected literal is not tabled (e.g. children of nodes 2 and 18 in the
tree for reach(1,Y)). Nodes that have empty Goals are termed answers. Note that
the evaluation keeps track of each tabled subgoal S that it encounters. Later if
S is selected again, resolution will use answers rather than program clauses; if no
answers are available, the computation will suspend at that point and the evaluation
will backtrack to try to derive answers using some other computation path. Once
more answers have been derived, the evaluation resumes the suspended computation.
Similarly, once the computation has backtracked through all answers available for S
in the current state, the computation path will suspend, and resume after further
answers are found. Thus a tabled evaluation is a fixed point computation for a set
of interdependent subgoals. When it is etermined that a (perhaps singleton) set of
subgoals can produce no more answers, the subgoals are completed.

The forest logging approach (logforest) allows one to run a tabled query and
produce a log that can be interpreted as (a partial image of) an SLG forest. The
log can then used to analyze program correctness, to optimize performance and so
on. Because logforest produces a log, it superficially resembles the non-interactive
trace described earlier in this chapter. However,

• trace/1 produces a Prolog-style trace that takes little account of tabling.
logforest structures its output according to the forest-of-trees model, and
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16. reach(3,Y):− edge(3,Y)

7. reach(2,Y):− edge(2,Y)

complete (9a)

3. reach(1,Y) :− reach(2,Y)

5. reach(2,Y) :− edge(2,Z),reach(Z,Y)

6. reach(2,Y) :− reach(2,Y)

10. reach(1,2) :−

11. reach(1,Y) :− reach(3,Y)

12. reach(3,Y) ;− reach(3,Y)

13. reach(3,Y) :− edge(3,Z),reach(Z,Y)

14. reach(3,Y) :− reach(1,Y)

15. reach(3,2) :− 

4. reach(2,Y) :− reach(2,Y)

edge(3,1).edge(2,2).edge(1,3).edge(1,2)

reach(X,Y):− edge(X,Y).

:− table reach/2.
reach(X,Y):− edge(X,Z),reach(Z,Y).

25. reach(3,1) :− 

24. reach(1,3) :−23. reach(1,1) :−22. reach(1,2) :−

21. reach(3.3) :− 

20. reach(1,3) :− 19. reach(1,2) :− 

18. reach(1,Y) :− edge(1,Y)

17. reach(3,1) :− 

9. reach(2,2) :− 

8. reach(2,2) :− 

2. reach(1,Y) :− edge(1,Z), reach(Z,Y)

1. reach(1,Y) :− reach(1,Y)

Figure 10.1: A program PRrec and SLG forest for (local) evaluation of ?- reach(1,Y)
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takes little account of program clause resolution.

• logforest is implemented in C for efficiency, while trace/1 is built on top
of XSBs interactive debugger. Unlike trace/1, logforest can therefore to
produce logs for very large evaluations with little overhead.

Currently, logforest captures the following actions.

• A call to a tabled subgoal If a positive call to a tabled subgoal S1 is made from
a tree for S2 a Prolog-readable fact of the form tc(S1,S2,Stage,Counter) is
logged, where Counter is the ordinal number of the fact, and Stage is

– new if S1 is a new subgoal

– cmp if S1 is not a new subgoal and has been completed

– incmp if S1 is not a new subgoal but has not been completed

– reeval if S1 is an incremental subgoal being re-evaluated.

If the call is negative a fact of the form nc(S1,S2,Stage,Counter) is logged,
where all arguments are as above.

For instance, in the above example, node 3 would be represented as tc(reach(2,Y),reach(1,Y),2)

(the reason for using the counter value of 2 rather than 3 is explained below).
If S1 is the first tabled subgoal in an evaluation, S2 is the atom null.

• Derivation of a new answer When a new unconditional answer A is derived for
subgoal S and added to the table (i.e. A is not already an answer for S) a fact
of the form na(A,S,Counter) is logged. In the above example, the answer node
9 would be represented as na([2],reach(2,_v1),4) where the first argument
is a list of substitutions for the variables _v1,...,_vn in S.

When a new conditional answer A :- D|, with substitution A and delayed lit-
erals D. is derived for subgoal S and added to the table a fact of the form
nda(A,S,D,Counter) is logged.

• Return of an answer to a consuming subgoal When an unconditional answer
A is returned to a consuming subgoal S in a tree for ST , a fact of the form
ar(A,S,ST,Counter) is logged. A log entry is made only if the table for S is
incomplete (see the explanation below).

If the answer A is conditional, the fact has the form dar(A,S,ST,Counter),
where each argument is as above.
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• Delaying a selected negative literal. If a selected negative literal L of a node N
is delayed, because it is involved in a loop through negation, and N is in a tree
for ST , a fact of the form dly(L,ST ,Counter) is logged.

• Subgoal completion

– When a set S of subgoals is determined to be completely evaluated and is
completed, a fact of the form cmp(S,SCCNum,Counter) is logged for each
S ∈ S. Here SCCNum is simply a number giving an ordinal value that
can be used to group subgoals into mutually dependent sets of subgoals
(here called Strongly Conneced Components or SCCs), i.e. the SCCNum of
each S ∈ S has the same value, but that value is not used for a completion
fact of any subgoal not in S.

– When a subgoal S is early completed, i.e. it is determined that no more an-
swers for S are possile or are desired a fact of the form cmp(S,ec,Counter)

is logged. If S belonged to a larger mutually dependent set S when it was
early completed, S will also be included in the completion facts for S.

• Table Abolishes

– When a tabled subgoal S is abolished, a fact of the form ta(subg(S),Counter)

is logged.

– When all tables for a predicate p/n are abolished, a fact of the form
ta(pred(p/n),Counter) is logged.

– When all tables are abolished, a fact of the form ta(all,Counter) is
logged.

• Location of errors Whenever an error is thrown and the execution is in a tree
for a subgoal S, a Prolog-readable fact of the form err(S,Counter) is logged,
where Counter is the ordinal number of the fact. The primary purpose of this
fact is to indicate the nearest tabled call that gave rise to an uncaughterror.

logforest does not contain

• Information about the occurrence of program clause resolution either when used
to produce children of tabled predicates, or when it is used to produce children
whose nodes have a selected literal that is non-tabled.

• Information about the return of answers from completed tables. XSB uses a so-
called completed table optimization which treats answer return from completed
tables in a manner akin to program clause resolution.
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The inclusion of the above two features in logforest would significantly slow down
execution of XSB. However, future versions of logforest may include expanded
logging features for negation, for call and answer subsumption and for incremental
tabling 2.

Example 10.2.2 The forest for reach(1,Y) in the foregoing example has the log file
as shown in Table 10.1.

log_forest(+Call) module: tables
log_forest(+Call,+Options) module: tables

These predicates turn on forest logging, call Call, then turn logging off when
Call is finished. Options is a list of possible options.

• Options may contain the term file(File) which directs the logging to
File; otherwise the log will be sent to standard output.

• Options may contain the term level(Level) where Level may be one of
the following values.

– full which means that all tabling actions are logged as described
above.

– partial which means that answer return operations are not logged.

– calls_only which does not log answer return, new answer, nor sim-
plification operations.

The levels partial and calls_only both reduce the size of the log which
can be useful for analyzing some computations.

• Options may containt the term set_pred(PredSpec,Mode) where Mode is
on or off. This allows certain predicates not to be logged, a useful feature
if only part of a program needs to be debuged

Error Cases

• Options is a variable, or contains a variable as an element

– instantiation_error

• Options is not a list

– type_error(list,Options)

• Options contains an option O that is not a forest logging option.

– domain_error(forest_logging_option,O)

2Currently, attributes of attributed variables are not printed out.
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Log File Forest Explanation
tc(reach( 1,_v0),null,new,0) node 1

node 2 created by program clause resol.
node 3 created by program clause resol.

tc(reach( 2,_v0),reach( 1,_v0),new,1) node 4
node 5 created by program clause resol.
node 6 created by program clause resol.

tc(reach( 2,_v0),reach( 2,_v0),incmp,2) repeated subgoal registered
node 7 created by program clause resol.
node 8 created by program clause resol.

na([ 2],reach( 2,_v0),3) node 8 registered as answer
ar([ 2],reach( 2,_v0),reach( 2,_v0),4) node 9 created by answer resol.
cmp(reach( 2,_v0),2,5) 9a reach(2,_v0) completed

node 10 created by return from completed table
na([ 2],reach( 1,_v0),6) node 10 registered as an answer

node 11 created by program clause resol.
tc(reach( 3,_v0),reach( 1,_v0),new,7) node 12

node 13 created by program clause resol.
node 14 created by program clause resol.

tc(reach( 1,_v0),reach( 3,_v0),incmp,8) node 14 repeated subgoal registered
ar([ 2],reach( 1,_v0),reach( 3,_v0),9) node 15 created by answer resol.
na([ 2],reach( 3,_v0),10) node 15 registered as an answer

node 16 created by program clause resol.
node 17 created by program clause resol.

na([ 1],reach( 3,_v0),11) node 17 registered as an answer
node 18 created by program clause resol.
node 19 created by program clause resol. (repeated answer)
node 20 created by program clause resol.

na([ 3],reach( 1,_v0),12) node 20 registered as an answer
ar([ 3],reach( 1,_v0),reach( 3,_v0),13) node 21 created by answer return
na([ 3],reach( 3,_v0),14) node 21 registered as an answer
ar([ 2],reach( 3,_v0),reach( 1,_v0),15) node 22 created by answer resol.
ar([ 1],reach( 3,_v0),reach( 1,_v0),16) node 23 created by answer resol.
na([ 1],reach( 1,_v0),17) node 23 registered as an answer
ar([ 3],reach( 3,_v0),reach( 1,_v0),18) node 24 created by answer resol.
ar([ 1],reach( 1,_v0),reach( 3,_v0),19) node 25 created by answer resol.v
cmp(reach( 1,_v0),1,20)
cmp(reach( 3,_v0),1,21)

Table 10.1: Log file for computation in Figure 10.1
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load_forest_log(+File) module: tables

The log produced by log_forest/[1,2] is a Prolog file that can be compiled
and/or loaded dynamically just as any other Prolog file. However, for large
logs (i.e. those of many megabytes) use of load_dync/[1,2] XSB commands
can drastically reduce the time needed to load the file, while use of the proper
index/2 declarations can greately improve query time. The simple predicate,
load_forest_log/1 loads a log file and indexes needed arguments.

10.2.2 Analyzing the log; seeing the forest through the trees

As previously described, forest logging is based on the formal operational semantics of
SLG, and as a result the log can be analyzed to query any result that can be modelled
by the theory. But despite the power of forest logging, it can be difficult to use.
Not all users have the background to fully understand the operational semantics of
SLG. Even those users with a formal background may find it difficult to write efficient
analysis routines for logs of large computations 3. Accordingly, XSB provides routines
that analyze logs and display information about a computation. These routines can
answer many questions about a computation and can provide the starting point for
further exploration. We introduce these routines via an extended example.

Example 10.2.3 This example arises from the actual use of forest logging to under-
stand a Flora-2 computation [96], in which the Cyc reasoner (cf. http://www.cyc.com)
was translated into Silk (cf. http://silk.semwebcentral.org) and used to answer vari-
ous questions in biology. Silk itself compiles into Flora-2 which in turn compiles into
XSB 4. After translation, query answering took more resources than expected, and
users wanted to determine why. Using the features of Version 3.8, the first step is to
call statistics/0 at the end of the computation. The statistics indicated that the
computation took about 30 seconds of CPU time and 300 megabytes of table space,
while XSB’s trail had allocated over 1 gigabyte of space. The call to statistics/0

also showed the following information:

8678944 variant call check/insert ops: 615067 producers, 8063877 variants.

317346 answer check/insert ops: 304899 unique inserts, 12447 redundant.

In other words, there were nearly 10 million tabled subgoals that were called, in-
dicating that this computation was heavily tabled (a characteristic of most Flora-2

3I find it difficult myself!
4This example was run in 2012 using a 64-bit server with a large amount of RAM.
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computations), It also shows that the average number of answers per tabled subgoal
is rather small.

This basic information leads to several questions. Why were there so many tabled
subgoals? Did the tabling have anything to do with the large amount of choice-
point/trail space that was allocated? Which tabled subgoals had answers? How
many times did a given tabled predicate call another tabled predicate?

Some of these questions can be answered by table_dump/[2,3]: particularly,
what tabled subgoals were called, and which had answers. However table_dump/[2,3]

cannot provide other information, such as the dependencies of given tabled subgoals
on other tabled subgoals or the order in which operations occurred. From a formal
perspective, table_dump/[2,3] does not allow a user to analyze an entire SLG forest:
only the “table”, i.e., the subgoals in the forest and the unordered set of its answers.
The table omits any information about interior nodes or completion information, both
of which are used to compute dependency information. Dependencies are useful in
analyzing most computations, but is especially important in Flora-2 computations
such as this one, that make heavy use of HiLog. This use of HiLog means that the
dependencies of tabled predicates on one another is not at all obvious, and may not
easily be determined by static analysis.

The next step, therefore, in analyzing this computation is to rerun it with forest
logging. For this computation forest logging has no impact on memory usage, but
increases the time of the computation from about 30 seconds to about 52 seconds —
around 73% in this case. It is worthwhile noting that the actual overhead of forest
logging varies depending on how heavily the computation is tabled. The log itself had
slightly over 14 million entries which were loaded into XSB via load_forest_log/1.
The log took about 140 seconds to load and about 7.8 Gbytes of space for the log
facts and their multiple and trie indexes 5.

The easiest way to start the analysis is to ask the query ?- forest_log_overview,
which for this example gives:

There were 613496 subgoals in 463330 (completed) SCCs.

93918 subgoals were early-completed.

0 subgoals were not completed in the log.

There were a total of 8670043 tabled subgoal calls:

613496 were calls to new subgoals

4467747 were calls to incomplete subgoals

5The load time for this example, about 100,000 facts/second is typical for 2012 CPUs; the size
of the loaded code is larger than usual, due in part to the expansion in the size of terms caused by
the HiLog encoding.
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3588800 were calls to complete subgoals

Number of SCCs with 1 subgoals is 463322

Number of SCCs with 4 subgoals is 1

Number of SCCs with 7 subgoals is 1

Number of SCCs with 52 subgoals is 1

Number of SCCs with 110 subgoals is 4

Number of SCCs with 149671 subgoals is 1

The overview extends the information shown by statistics/0. First, the total num-
ber of completed and non-completed SCCs is given along with a count of how many
of the completed subgoals were early completed. Information about non-completed
SCCs is useful, since the forest log may be analyzed for a computation that does
not terminate. Since this computation did terminate, all subgoals in the log were
completed 6. Note that there is also a breakdown of calls to tabled subgoals that
distinguishes whether the tabled subgoal was new, completed, or incomplete. Recall
that calls to completed tabled subgoals essentialy treat the answers in the table as
facts, so that these calls are efficient. Making a call to an incomplete subgoals on the
other hand means that the calling and called subgoals are mutually recursive 7 and
execution of recursive sets of subgoals can be expensive, especially in terms of space.

Finally, the overview report provides the distributions of tabled subgoals across
SCCs. While most of the SCCs were small there was a large one, with nearly 150,000
mutually dependent subgoals. Clearly the large SCC should be examimed. The first
step is to obtain its index. The query

get_scc_size(SCC,Index)), Index > 1000.

returns the information that the index of the large SCC was 39. The query analyze_an_scc(39,userout)

then provides the following information.

There are 149671 subgoals and 4461290 links (average of 30.8073 edges per subgoal)

within the SCC

There are 2 subgoals in the SCC for the predicate backchainForbidden / 0

There are 2 subgoals in the SCC for the predicate

http://www.cyc.com/silk/implementation/transformationPredicate / 0

6The slight difference between the number of subgoals shown here and the number shown by
statistics/0 is due to the use of tabling in the Flora compiler.

7This statement is true in local evaluation but not in batched evaluation.
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:

There are 15613 subgoals in the SCC for the predicate gpLookupSentence / 3

There are 15613 subgoals in the SCC for the predicate removalSentence / 3

There are 18770 subgoals in the SCC for the predicate forwardSentence / 3

There are 18771 subgoals in the SCC for the predicate lookupSentence / 3

Calls from assertedSentence/3 to lookupSentence/3 : 32

Calls from backchainForbidden/0 to ’http://www.cyc.com/silk/implementation/transformationPredic

:

Calls from transformationSentence/2 to sbhlSentence/3 : 5479

Calls from tvaSentence/3 to removalSentence/3 : 7695

It is evident from the first line in this report that the vast majority of the calls to
incomplete tables during this computation occur in the SCC under investigation.
Since information on incomplete tables is kept in XSB’s choice point stack (cf. [68]),
the evaluation of SCC 39 is the likely culprit behind the large amount of stack space
required. The subgoals in the SCC are first broken out by their predicate name and
arity, then the edges within the SCC are broken out by the predicates of their caller
and called subgoals. At this point a programmer can review the various rules for
lookupSentence/3, forwardSentence/3 and other predicates to determine whether
the recursion is intended and if so, whether it can be simplified.

Using abstraction in the analysis

Within the SCC analysis, information about a given tabled subgoal S was abstracted
to the functor and arity of S. For this example, abstraction was necessary, as reporting
150,000 subgoals or 4,000,000+ would not provide useful information for a human
being. However, it could be the case that seeing the tabled subgoals themselves
would be useful for a smaller SCC. Even for an SCC of this size, different levels of
abstraction could be useful: mode information or type information might be useful
in a given circumstance.

Example 10.2.4 Making the call ?- analyze_an_scc(39,userout,abstract_modes(_,_))

applies the predicate abstract_modes/2 to each term, producing an output of the
form:

There are 149671 subgoals and 4461290 links (average of 30.8073 edges per subgoal)

within the SCC
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There are 3 subgoals in the SCC for the predicate backchainRequired(g,g)

There are 2 subgoals in the SCC for the predicate backchainForbidden(g,g)

:

There are 29254 subgoals in the SCC for the predicate gpLookupSentence(g,g)

There are 29254 subgoals in the SCC for the predicate removalSentence(g,g)

Calls from assertedSentence(g,g) to lookupSentence(g,g) : 10

Calls from assertedSentence(m,g) to lookupSentence(m,g) : 22

:

Calls from transformationSentence(m,g) to sbhlSentence(m,g) : 741

Calls from tvaSentence(g,g) to removalSentence(g,g) : 7695

abstract_modes(In,Out) simply goes through each argument of In and unifies the
corresponding argument of Out with a v if the argument is a variable, a g if the
argument is ground, and m otherwise.

abstract_modes/2 is simply an example: any term-abstraction predicate may be
passed into the last argument of analyze_an_scc/3 8.

Analyzing Negation

Many programs that use negation are stratified in such a way that they do not require
the use of Delaying and Simplification operations, and the routines described in
the previous section are sufficient for these programs. However if a program does not
have a two-valued well-founded model, a user would often like to understand why.
Even in a program that is two-valued, the heavy use of Delaying and Simplifica-

tion can indicate that some rules may need to be optimized by having their literals
reordered.

Example 10.2.5 Figure 10.2 shows a program with negation and illustrates SLG
resolution for the query p(c) to the program. The nodes in Figure 10.2 have been
annotated with the order in which they were created under local scheduling. In the
formalism used by Figure 10.2, the symbol | in a node separates the unresolved goals
to the right from the delayed goals to the left. In the evaluation state where nodes
1 through 10 have been created, p(b) has been completed, and p(a) and p(c) are in
the same SCC. There are no more clauses or answers to resolve, but p(a) is involved

8Because of the special representation of Flora-2 terms, abstraction was used to produce the
output of Example 10.2.4, while a more sophisticated version of abstract_modes/2 was used in
Example 10.2.4.
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in a loop through negation in node 5, and nodes 2 and 10 involve p(a) and p(c) in a
negative loop 9.

In situations such as this, where all resolution has been performed for nodes in an
SCC, an evaluation may have to apply a Delaying operation to a negative literal
such as not(p(a)), in order to explore whether other literals to its right might fail.
When multiple literals can be delayed, an arbitrary one is chosen to be delayed first.
So the evaluation delays the selected literal of node 2 to generate node 12 producing
a conditional answer – an answer with a non-empty delay list (cf. Section 5.3.2 for
an overview of how XSB computes and allows inspection of delayed literals). Next,
not p(a) in node 5 is delayed, failing that computation path, and not p(c) in node
10 is delayed to produce node 15 and failing the final computation path for p(a).
At this stage the SCC {p(a), p(c)} is completely evaluated meaning that there are no
more operations applicable for goal literals (as opposed to delay literals). Since p(a)
is completely evaluated with no answers, conditional or otherwise, the evaluation
determines it to be failed and a Simplification operation can be applied to the
conditional answer of node 12, leading to the unconditional answer in node 17 and
success of the literal p(c).

As indicated previously, the forest log overview includes a total count of Delay-

ing and Simplification operations, as well as a count of conditional answers. In
addition, SCC analysis counts negative as well as positive links within the SCC. The
current version of forest logging also provides a means to examine the causes of an-
swers that have an undefined truth value. Recall from Example 10.2.5 that there are
two types of causes of an undefined truth value: either 1) a negative literal explicitly
undergoes a Delaying operation; or 2) a conditional answer may be used to resolve
a literal. It can be shown that in local evaluation, a conditional answer A will never
be returned out of an SCC if A is successful or failed in the well-founded model of a
program. This means that if an answer for S is undefined, then it would be caused
operationally by a Delaying operation within the SCC of S or within some other
SCC on which S depends. So to understand why an atom is undefined it can be
useful understand the “root causes” of the delay: to examine SCCs in which Delay-

ing operations were executed and conditional answers were derived, but the answers
could not be simplified.

Example 10.2.6 As a use case, logging was made of execution of a Flora-2 program
that tested out a new defeasibility theory. The forest log overview indicated that the
top-level query was undefined:

9In this example, we ignore the effects of early completion which would complete p(b) immediately
upon creation of node 8, obviating the need to create node 9.
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p(c):− nor p(a).
p(X):− t(X,Y,Z),not p(X),not(p(Y).

:− table p/1. t(a,b,a)
t(a,a,b)p(b)

5 p(a):− |not p(a),not p(b) 6  p(a):− | not p(b), not p(a) 10 p(a):− | not p(c), not p(b).

15 p(a):− not p(c) | not p(b).13 p(a):− not p(a) | not p(b)

9 p(b):− |t(b,Y,Z),not p(Y), not p(Z).

9a complete

8 p(b) :− |

7 p(b) :− | p(b)

16 fail

11 fail

14 fail

3 p(a) :− | p(a)

17 p(c) :− |

1 p(c) :− | p(c)

12 p(c):− not p(a) |

2 p(c):− | not p(a)

4 p(a):− |t(a,Y,Z),not p(Y), not p(Z).

Figure 10.2: A Normal Program and SLG Forest for Evaluation of the Query p(c)
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:

There were a total of 55 negative delays

There were a total of 0 simplifications

There were a total of 695 unconditional answers derived:

There were a total of 66 conditional answers derived:

The analysis predicate three_valued_scc(List) produces a list of all SCC indices
in which Delaying caused the derivation of conditional answers. These SCCs can
then be analyzed as discussed in the previous section.

10.2.3 Discussion

Using log forest imposes a relatively minimal overhead on most computations, con-
sidering the information it can provide, and loading and analysis is relatively quick.
For this example, the top level analysis took around 10 seconds, and analysing SCC
39 took about 20 seconds in Example 10.2.3 and about 60 seconds in Example 10.2.4.
For more information, see [83].

10.2.4 Predicates for Forest Logging

forest_log_overview module: tables

Provides an overview of subgoals, calls, and SCCs in the forest log as indicated
in Section 10.2.2.

get_scc_size(?Index,?Size) module: tables

This simple predicate determines the indices of SCCs whose size is Size, for
use with analyze_an_scc/[2,3].

three_valued_sccs(List) module: tables

If there are any SCCs in the log where delay is performed, causing conditional
answers to be added that were not simplified into unconditional answers, unifies
List with the index of all such SCCs.

analyze_an_scc(+Index,+File) module: tables
analyze_an_scc(+Index,+File,+Abstraction) module: tables

These predicates can be used to analyze the SCC indexed by Index in a forest
log, as explained in Section 10.2.2. The output is written to File; calling the
predicate with File set to userout causes the output to be written to the
console. In analyze_an_scc/2, tabled subgoals are abstracted to predicate
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indicators, in analyze_an_scc/3, a two-ary abstraction predicate in usermod

is called.

Error conditions on File are the same as tell/1.

abstract_modes(Term,AbstractedTerm) module: usermod

abstract_modes(In,Out) simply goes through each argument of Term and uni-
fies the corresponding argument of Abstracted with a v if the argument is a
variable, a g if the argument is ground, and m otherwise.

To use this predicate, the file term_abstract.P must be loaded, via ensure_loaded/1

or similar means.

set_forest_logging_for_pred(+PredSpec,+Mode) module: tables

If forest logging is active, this predicate allows any logging specific to the pred-
icate or term indicater, PredSpec, to be turned on or off. Thus, for instance,
tabled predicates in a pre-existing library need not clutter up the log.

Error Cases

• PredSpec is not a predicate or term indicator.

– type_error

• Mode is not in the set {on,off}

– domain_error

10.3 Inspecting a Tabled Derivation

As described in the previous section, Forest Logging is a powerful technique for un-
derstanding the operational aspects of a tabled derivation, and is based on the idea
that a derivation is itself a mathematical entity that can be represented and analyzed.
This basis allows Forest Logging to support various types of analysis including profil-
ing the derivation, and understanding its termination properties [50, 49]. At the same
time, Forest Logging may not always be convenient to use. Since it is a trace-based
analysis a (sometimes very large) trace file must be created and loaded before being
analyzed.

An alternate approach is to use inspection predicates – a term that loosely refers to
predicates useful for understanding a tabled derivation. Most of these predicates can
be used in two ways. First, they can inspect an on-going derivation that has been sus-
pended through various means. Alternately, they may be used to retroatively inspect
a derivation that has completed. In this section, we first describe two important sets
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of interactive inspection predicates. First we describe the table_dump library which
provides a flexible approch to inspecting tables (Section 10.3.1).10 Next we discuss
a set of predicates for inspecting various dependency graphs of a computation (Sec-
tion 10.3.2. We then discuss how tripwires can automatically suspend a derivation
for inspection at a point where the derivation begins to use too many resources, and
so might be inefficient (Section 10.3.4).

10.3.1 Inspecting Tables with table_dump

table_dump(+Term,+OptionList) module: dump_table
table_dump(+Stream,#Term,+OptionList) module: dump_table

table_dump/[2,3] provides an easy method to view subgoals and answers that
are present in a table. Given an input Term, table_dump/[2,3] provides in-
formation about all tabled subgoals that are subsumed by Term; if Term is a
variable, information is provided about all tables.

The information can be provided at three levels of aggregation, and the form of
the information is determined by the options in OptionsList.

• If the option summary(true) is set, the aggregate sum of subgoals and
answers that are subsumed by Term is collected, along with the aggregate
sum of calls to these subgoals. If Term is a variable this information is
broken down by tabled predicates.

– If details(answers) is set, a list is collected of every tabled subgoal
S such that S is subsumed by Term along with the number of answers
for each S along with a list of those answers and the truth value of
each answer (t if true and u if undefined). If Term is a variable this
information is broken down by tabled predicates.

– If details(subgoals) is set, a list is collected of all subgoals S such
that S is subsumed by Term along with the number of answers for each
S. However, unlike the action for details(answers) the actual list
of answers for S is not returned. If Term is a variable this information
is broken down by tabled predicates.

– If details(false) is set, no detail information is provided for the
actual subgoals or their answers.

• If OptionsList contains the option results(X) for some variable X, X will
be instantiated upon backtracking to all infomation collected about the
tables.

10Other predicates for table inspection that are generally lower-level are described in Section 6.15.
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• If the option output(true) is set, the information is written to Stream or
to userout in Prolog-readable form.

If not otherwise specified the default options are summary(true), details(false),
output(true).

Example Consider the program:

:- table p/2.

p(1,a).

p(1,b) :- p(2,b).

p(2,b) :- p(1,a).

p(3,X) :- q(X).

:- table q/1.

q(1). q(2).

:- table r/1.

r(a).

:- table s/2.

s(1,a). s(2,b). s(1,a1). s(2,b1).

and suppose the top-level query ?- p(X,Y) has been made. Then table_dump/2
provides the following information (reformatted for readability):

| ?- table_dump(_X,[summary(true)]).

summary = p(A,B) - subgoals(3) - total_times_called(4) - total_answers(7)

X = p(_h243,_h244);

summary = q(A) - subgoals(1) - total_times_called(1) - total_answers(2).

X = q(_h228)

yes

| ?- table_dump(_X,[details(answers)]).

summary = p(A,B) - subgoals(3) - total_times_called(4) - total_answers(7).

details = p(A,B) - subgoals(3) - details([

p(C,D) - times_called(1) - answers(5) - [p(3,1)-t,p(3,2)-t,p(2,b)-t,
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p(1,b)-t,p(1,a)-t] - completed,

p(1,a) - times_called(2) - answers(1) - [p(1,a)-t] - completed,

p(2,b) - times_called(1) - answers(1) - [p(2,b)-t] - completed]).

X = p(_h232,_h233);

summary = q(A) - subgoals(1) - total_times_called(1) - total_answers(2).

details = q(A) - subgoals(1) - details([

q(B) - times_called(1) - answers(2) - [q(2)-t,q(1)-t] - completed]).

X = q(_h232)

yes

As the above example shows, each line of the summary has the form:

summary =
Pred/Goal - subgoals(Nsubgoals) - total_times_called(Ncalled) - total_answers(Nanswers)

where

• Pred/Goal is either a term indicator, if the Term argument of table_dump/[2,3]

was a variable (to indicate there should be no filtering of tabled calls); or
Term itself.

• Nsubgoals are the total number tabled subgoals that are subsumed by Pred/Goal
(perhaps including Pred/Goal itself).

• Ncalled is the total number of times all subgoals subsumed by Pred/Goal
have been called.

• Nanswers is the total number of answers currently derived by all subgoals
subsumed by Pred/Goal.

Each line of details has the form:

Details =
Pred/Goal - subgoals(Nsubgoals) - details(List)

where Pred/Goal and Nsubgoals are as above. If details(answers) was an input
option
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List =
Subgoal - times_called(Ncalled) - answers(Nanswers) - List_of_Answers - Status

for each Subgoal in the table subsumed by Pred/Goal. Ncalled and Nanswers

are as above, while List_of_Answers contains A − TV for each answer A with
truth value TV that is currently derived for Subgoal. On the other hand, if
details(subgoals) was an input option

List =
Subgoal - times_called(Ncalled) - answers(Nanswers) - Status

where all elements are as before. Finally Status is

• completed if Subgoal has been completed; and

• scc(NSCC) if Subgoal is incomplete. NSCC is relative: if NSCC is greater
than MSCC then NSCC is a descendent of MSCC : i.e., subgoals in SCC
MSCC depend on subgoals in SCC NSCC . However, these numbers should
only be used relatively: at a given state in the computation there may be
fewer than MSCC Sccs.11

Error Cases

• OptionList is a variable, or contains a variable as an element

– instantiation_error

• OptionList is not a list

– type_error(list,OptionList)

• OptionList contains an element, O, that is not a valid table_dump_option.

– domain_error(table_dump_option,O)

10.3.2 Inspection Predicates for Dependency Graphs

Recall that Forest Logging is based on a representation of the tabling operations of an
entire SLG evaluation, even those for completed tables. Maintaining such information
within XSB’s engine would be prohibitively expensive, which is why Forest Logging
needs a trace. Nonetheless, XSB’s engine does maintain certain information that

11XSB keeps track of SCCs through an algorithm similar to depth-first search: the numbers
associated with subgoals are the depth-first numbers of the minimal back-dependency of a subgoal
(cf. [68])
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indicates critical aspects of a tabled derivation. As discussed in the previous section,
the tables themselves can be viewed and can offer useful information. However, the
tables don’t provide information about how the different subgoals depend on one
another, an aspect that is often central to optimizing a derivation.

However, such dependency information is available in some cases. For incremen-
tal tables, dependencies among subgoals may be obtained through the Incremental
Dependency Graph (IDG). In addition, XSB maintains information about the depen-
dencies among incomplete subgoals, and this information can be viewed through the
Subgoal Dependency Graph (SDG).12 As an separate matter, it can be difficult to
understand why certain atoms are undefined from looking directly at the tables. For
this, the Residual Dependency Graph (RDG) can be inspected.

In this section we first present an adjacency list format for representing depen-
dency graphs in Prolog. We then consider predicates for obtaining information about
each type of dependency graph. As dependency graphs may be too large for humans
to productively read, we also present predicates that allow filtering, manipulation and
summary of these graphs.

A Prolog Format for Dependency Graphs

Several of the inspection predicates produce a dependency graph in Prolog in the
format of adjacency lists. This format also annotates information about each subgoal.
Specifically, an adjacency list as used here is a list of terms of the form:

subgoal(Vertex,SCCKey,SubgoalKey,CallsTo,Answers,PosEdges,NegEdges) such that:

• Vertex is a vertex in the current state of a dependency graph. For the Subgoal
Dependency Graph (SDG) and Incremental Dependency Graph (IDG), Vertex

is a subgoal; for the Residual Dependency Graph (RDG) it is a subgoal/atom
pair.

• SCCKey is a key of the SCC to which the vertex belongs.13

• VertexKey is a key that uniquely identifies Vertex and is either

– An integer value that represents the handle to the table entry; or

12Maintenance of the Subgoal Dependency Graph is in fact necessary to ensure that all appropriate
answers are returned to each incomplete subgoal.

13In general, no information can be inferred from the ordering of the returned SCC keys.
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– An atom that represents a unique generated key for the vertex of the
dependency graph, if a morphism has been applied to the dependency
graph.

• CallsTo For the SDG and IDG the number of calls that have been made to the
subgoal so far; for the RDG this value is set to 0.

• Answers For the SDG and IDG the number of distinct answers that the subgoal
has so far; 14 for the RDG this value is set to 0.

• PosEdges is a list of keys for those vertices that Vertex positively directly
affects. In the case of dependency graphs that do not have signed edges, all
edge information is kept in this argument.

• NegEdges is a list of keys for those vertices that Vertex negatively directly
affects. In the case of dependency graphs that do not have signed edges, no
edge information is kept in this argument.

Predicates to Access the Subgoal Dependency Graph

The Subgoal Dependency Graph (SDG) has as vertices those tabled subgoals that are
incomplete in the state of a suspended derivation. A depends edge exists from S1 to S2

iff a call is made to S2 while computing answers for S1, and if there are no intervening
tabled subgoals between S1 and S2. An affects edge is the inverse of a depends edge.
Edges in the SDG are signed indicating positve or negative dependence. A subgoal
and its incident edges are removed from the SDG when the subgoal is completed.

The main predicate for accessing information about the SDG is get_sdg_info/1.
Because it accesses the SDG, get_sdg_info/1 returns information concerning incom-
plete subgoals only.

get_sdg_info(-SDG) module: tables

For a suspended derivation, returns information about the Subgoal Dependency
Graph (SDG) as an adjacency list whose form is described in Section 10.3.2. If
there are no incomplete tables in the current state, an empty list is returned.

This predicate has no error conditions.

Example 10.3.1 Consider the goal ?- q(3,3) to the program:

14If the same answer was derived more than once, it is counted only one time.
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:- import get_sdg_info/1 from tables.

:- import between/3 from basics.

:- table q/2 as incremental.

q(M,N):- between(1,N,X),

(M = N,N = X -> break ; q(X,N)).

Execution of this query creates a number of tabled subgoals, but breaks before
the initial goal is completely evaluated. The SDG at the time of the break is
shown in Figure 10.3

q(1,1)

+

++

++

q(3,3)

q(2,2)

Figure 10.3: SDG for ?- q(3,3) when the derivation is suspended by break/0c

This SDG can be produced as follows:

| ?- q(3,3).

[ Break (level 1) ]

1: ?- get_sdg_info(F).

F = [subgoal(q(2,3),1,140253373671912,3,0,

[140253373671672,140253373671792,140253373671912],[]),

subgoal(q(1,3),1,140253373671792,3,0,

[140253373671792,140253373671672,140253373671912],[]),

subgoal(q(3,3),1,140253373671672,3,0,

[140253373671912,140253373671792],[])]

get_sdg_subgoal_info(-SDG) module: tables

Note that the size of the SDG, which includes dependency edges, may be
quadratic in the number of incomplete subgoals. When only summary informa-
tion about the subgoals in the subgoal dependency graph get_sdg_subgoal_info/1

can be used, rather than get_sdg_info/1. As with the previous predicate, a
list of terms of the form,
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subgoal(Vertex,SCCKey,_SubgoalKey,CallsTo,Answers,_PosEdges,_NegEdges)

is returned, but _SubgoalKey is set to the atom null, and _PosEdges and
_NegEdges are both set to the empty list.

This predicate has no error conditions.

Predicates to Access the Incremental Dependency Graph

The Incremental Dependency Graph (IDG) is used by XSB’s incremental tabling
subsystem to ensure that tables that depend on dynamic facts or rules are properly
updated when the underlying dynamic code changes.

The Incremental Dependency Graph (IDG) has as vertices those subgoals whose
predicate symbols are incrementally tabled, along with calls to dynamic predicates
that are declared as incremental. A depends edge exists from S1 to S2 iff a call is
made to S2 while computing answers for S1, and if there are no intervening tabled
subgoals between S1 and S2. An affects edge is the inverse of a depends edge. Edges
in the IDG are unsigned. XSB maintains both completed and incomplete subgoals in
the IDG. (As long as the tables for these subgoals are not abolished.)

The main predicates for inspecting the IDG as a dependency graph are, desribed
below. Additionally, Section 5.6.6 contains predicates for examining dependencies
among individual subgoals, as well as returning information about whether a subgoal
in the IDG needs to be updated or not.

get_idg_info(+SubgoalList,-SDG) module: tables
get_idg_info(-SDG) module: tables

Warning: this predicate is not yet implemented

Returns information about the Incremental Dependency Graph (IDG) as an
adjacency list whose form is described in Section 10.3.2. If there is an empty
IDG in the current state, an empty list is returned.

Recall from the previous section that if the SDG is accessed, information is
returned about all completed subgoals. The IDG however may be both very
large and disconnected. Accordingly, get_idg_info/2 allows a list of subgoals
to be specified, and returns information about all of the IDG that is connected
to any subgoal in the list; note that the resulting dependency graph may also
be disconnected. If get_idg_info/1 is called, information is returned about
the entire dependency graph.

Error Cases
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• SubgoalList is a variable

– instantiation_error

• SubgoalList is not a list

– type_error

• SubgoalList contains a predicate that is not tabled

– permission_error

Predicates to Access the Residual Dependency Graph

As discussed in Section 5.3.3, answers that are undefined in the well-founded semantics
are stored in XSB along with their delay lists, forming a residual program. The
residual program can also be represented as a Residual Dependency Graph (RDG).
Using the RDG, a user may be able to determine why an answer A to a subgoal S
was unexpectedly undefined either because that answer was involved in or depended
on a loop through negation; or because the answer depended on some other answer
that was undefined because of the use of bounded rationality (Section 5.5) or because
of floundering and the use of u_not/1.

The representation of the RDG is slightly different from that of the other depen-
dency graphs. The following example illustrates the reasons for this.

Example 10.3.2 Consider the program

:- table p/2.

p(1,2).

p(1,3):- tnot(p(2,3)).

p(2,3):- tnot(p(1,3)). p(2,3):- r(a).

r(a):- tnot(r(b))

r(b):- tnot(r(a)).

to which the query ?- p(1,X) was made, generating the tables:

Subgoal Answers

p(1,X) p(1,2)
p(1,3):- tnot(p(2,3))|

p(1,3) p(1,3):- tnot(p(2,3))|
p(2,3) p(2,3):- tnot(p(1,3))|

p(2,3):- tnot(r(a))|
r(a) r(a):- tnot(r(b))|
r(b) r(b):- tnot(r(a))|
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The residual dependency graph for this program and query would have a node for
each subgoal/answer combination with an undefined truth value, and a dependency
edge for nodes S1/A1 and S2/A2 if A2 occurs in a literal in the delay list for S1/A1, and
the original subgoal for A2 was S2 in the subcomputation for S1. The edge also has
a sign indicating whether A2 occurs positively or negatively in the delay list for A1.
In this example, the residual dependency graph could be conceptually represented as

depends_on(p(1,X)/p(1,3),p(2,3)/p(2,3),-).

depends_on(p(1,3)/p(1,3),p(2,3)/p(2,3),-).

depends_on(p(2,3)/p(2,3),p(1,3)/p(1,3),-).

depends_on(p(2,3)/p(2,3),r(a)/r(a),+).

depends_on(r(a)/r(a),r(b)/r(b),-).

depends_on(r(b)/r(b),r(a)/r(a),-).

Thus, vertices of the RDG are subgoal/atom pairs, unlike in the other dependency
graphs where they are simply subgoals. Summarizing, the RDG which has as vertices
those pairs of subgoals and answer atoms, such that the truth value of the answer
atom for that subgoal is undefined in the state of a suspended computation. A depends
edge exists from V1 to v2 iff V2 is a delay literal in a conditional answer for V1. An
affects edge is the inverse of a depends edge. Edges in the RDG are signed indicating
positve or negative dependence.15 A pair (S, A) and its incident edges are removed
from the RDG when the truth value of A changes, and of course when S is abolished.16

Information about specific vertices and edges of the RDG can be obtained through
predicates such as get_residual/2 and variant_get_residual/2.

get_rdg_info(+PairList,-SDG) module: tables
get_rdg_info(-SDG) module: tables

Warning: this predicate is not yet implemented

Returns information about the Residual Dependency Graph (RDG) as an adja-
cency list whose form is described in Section 10.3.2. If there is an empty RDG
in the current state, an empty list is returned.

15An alternative definition of the RDG has tabled subgoals as vertices, where subgoal S1 depends
on subgoal S2 if some answer for S1 depends on some answer for S2. Such a representation can be
obtained from get_rdg_info/[1,2] below by applying a morphism, as described in Section 10.3.2.

16The truth value of an atom for a given subgoal may change when a suspended state is further
evaluated, so that depending when a computation is suspended, it is possible though rare that a
given atom may have a definite truth value when associated with one subgoal, but the truth value
may not have been propiaged to another subgoal. Note that the truth value of atoms may also
change for completed subgoals when the answer completion operation is lazily performed.
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Recall from the previous section that if the SDG is accessed, information is re-
turned about all completed subgoals. The RDG however may be both very large
and disconnected. Accordingly, get_rdg_info/2 allows a list of subgoal/atom
pairs to be specified, and returns information about all of the RDG that is
connected to any subgoal in the list; note that the resulting dependency graph
may also be disconnected. If get_rdg_info/1 is called, information is returned
about the entire dependency graph.

Error Cases

• PairList is a variable

– instantiation_error

• PairList is not a list

– type_error

• PairList contains a predicate that is not tabled

– permission_error

get_residual_sccs(+Subgoal,+Answer,-SCCList) module: tables
get_residual_sccs(+Subgoal,+Answer,-SCCList,-DepList,-SignList) module:

tables

Warning: these predicates may be obsolescent.

The residual dependency graph can be constructed in a straightforward way
from variant_get_residual/2. However get_residual_sccs/[3,5] provides
an alternate view that is higher-level and much faster. Given a subgoal/answer
pair as input, each of these predicates constructs SCC-based information about
the residual dependency graph via structures of the form:

ret(Subgoal,Answer,SCCKey).

where SCCKey is a generated key for the SCC to which the Subgoal/Answer pair
belongs. Two subgoal/answer pairs are in the same SCC iff they have the same
SCCKey; however no other dependency information can be otherwise directly
inferred from the index 17.

To obtain dependency information, get_residual_sccs/5 also returns a list
indicating the direct dependencies among the SCCs, along with a list indicating
whether each SCC contains a negative edge. For Example 10.3.2, the SCC
information would have a form such as:

17The actual number used for each SCC key depends on how RDG happens to be traversed; as a
result it is best to rely on the key only as a “generated” name for each SCC.
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[ ret(p(1,X),p(1,3),1), ret(p(1,3),p(1,3),2), ret(p(2,3),p(2,3),2),

ret(r(a),r(a),3), ret(r(b),r(b),3) ]

The dependency list would have a form such as:

[ depends(1,2), depends(2,3) ]

while the sign list would have a form such as:

[ sign(1,no_neg), sign(2,neg), sign(3,neg) ]

If it is necessary to know which subgoal(s) in SCC1 directly depends on which
subgoal(s) in SCC2, the information can be easily reconstructed from the out-
put of get_residual_sccs/[4,5] using variant_get_residual/2. A similar
approach can be used to determine the actual edges within a given SCC.

SCC detection is implemented using Tarjan’s algorithm [87] in C working di-
rectly on XSB’s data structures. The algorithm is O(|V |+ |E|) where |V | is the
number of vertices and |E| the number of edges in the dependency graph. As
a result, get_residual_sccs/3 provides an efficient means to materialize the
high-level topography of the dependency graph 18.

explain_u_val(+Subgoal,+Answer,-Reason) module: tables
explain_u_val(+Subgoal,+Answer,-Sccs,-Deps,-Signs,-Reason) module:

tables

The XSB predicate explain_u_val(+Subgoal,+Answer,?Reason) can be used
to query why Answer is undefined when derived in an evaluation of Subgoal.
Reason may be

• negative_loops(cycle) if the derivation of Answer involves a loop through
though negation that includes Answer itself.

• negative_loops(dependent) if the derivation of Answer depends on an
atom that is involved in a loop through though negation.

• unsafe_negation if the derivation of Answer depends on a negative sub-
goal that is non-ground (XSB does not automatically perform subgoal
reordering). The action of making a non-ground subgoal undefined is per-
formed by u_not/1.

18Currently, the materialization of dependency information between SCCs is implemented in a
naive manner, so that get_residual_sccs/6 is O(|V |2).
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• bounded_rationality if the derivation of answer depends on bounded
rationality based on radial restraint [34].

These reasons are not exclusive, and complex derivations may well involve sev-
eral of the above reasons.

explain_u_val/[3,6] is based on the structures returned by get_residual_sccs/[3,5].
While get_residual_sccs/[3,5] is reasonably fast, it can take a peceptable
time to analyze large residual programs containing many thousands of SCCs.
Accordingly, explain_u_val/6 can reuse dependency structures returned by
get_residual_sccs/[3,5], which can be useful for justification systems and
other applciations.

Example 10.3.3 After executing the query p to the program

:- table p/0, q/0, r/0, s/1.

p:- q,tnot p. p:- s(f(f(f(f(0))))).

q:- tnot r. r:- tnot q.

s(f(X)):- s(X). s(0).

where the bounded rationality size has been set to 3. The query explain_u_val(p,P,Reason)

will bind Reason to negative_loops(cycle), to negative_loops(dependent),
and to bounded_rationality (this ordering is not guaranteed).

Filtering, Manipulating, and Summarizing Dependency Graphs

morph_dep_graph(+DG_In,+Morph,-DG_Out) module: tables

This predicate takes as input DG_In, a dependency graph in adjacency list
format and returns its image, DG_Out, under the graph homomorphism Morph.
Morph is a predicate symbol that identifies a 2-ary predicate, Morph(+In,-Out)

that is functional on In and that maps the Herbrand Base of the current program
into itself. The syntax of DG_In and DG_Out is described at the beginning of
Section 10.3.2.

To recall the definition of a graph homomorphism (cf. e.g., [36]) a functional
notation is used for Morph/2. DG_Out is a graph such that the vertices of DG_Out,
vertices(DG_Out) is the set:

{morph(V )|V ∈ vertices(DG_In)}
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while the edges of DG_Out, edges(DG_Out) are the sets

{〈morph(V1), morph(V2)〉|〈V1, V2〉 ∈ edges(DG_In)}

We adapt this definition to signed dependency graphs by mapping all positive
adjacenct edges into a positive set, and negative adjacent edges into a negative
set.

The power of morph_dep_graph/3 arises when the numbers of vertices and
edges of DG_In is large, and morph/2 ensures that numbers for DG_Out are
much smaller – thus allowing recognizable patterns to emerge.

For efficiency reasons, a special condition, C1, is assumed about morph/2: that
if two elements of its range unify, then they must be identical. For instance,
a morphism M1 that reduced the maximum depth of each non-variable ar-
gument of a term by 1 would not fit this condition, since M1(f(a, g(h(b)))) =
f(X1, g(h(X2))) while M1(f(a, g(b))) = f(X1, g(X2)), which unify. On the other
hand, a morphism that abstracts each argument to have a maximal fixed depth
would fulfill the condition. In any case, as long as C1 is observed, morph/2 may
instantiated by an abstraction function as used elsewhere in this manual: i.e., a
function such that morph(Term) subsumes Term. However, other morphisms
may also be useful as demonstrated in Example 10.3.4 below.

While the syntax of SDG_Out is the same as that of SDG_In, the meaning of the
arguments differs slightly. SDG_Out is a list of terms of the form:

subgoal(MorphSubg,null,Key,CallsTo,Answers,PosKeyList,NegKeyList)

such that

• MorphVert is morph(Vertex) for one or more subgoals that are vertices of
DG_In

• The second argument, which represents SCC information in the original
dependency graph, is the atom null when a morphism is applied, since
SCC information is not preserved in general.

• Key is an atom identifying MorphVert. Note that while each subgoal in
DG_In corresponds to e.g., a tabled subgoal, a given subgoal image in
DG_Out may not correspond to a tabled subgoal in the current state. Thus
a table entry handle may not be available, so generated keys are used in
DG_Out.

• CallsTo If DG_In originated from an SDG or IDG, CallsTo is the sum of
the number of calls to every subgoal S ∈ DG_In such that morph(S) =
MorphVert. Otherwise, CallsTo is 0.
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• Answers If DG_In originated from an SDG or IDG, Answers is the sum of
the number of answers for every subgoal S ∈ DG_In such that morph(S) =
MorphVert. Otherwise, Answers is 0.

• PosKeyList is a list of the keys to those vertices adjacent to MorphSubg

with positive sign as described above.

• NegKeyList is a list of the keys to those vertices adjacent to MorphSubg

with negative sign as described above.

Example 10.3.4 Continuing Example 10.3.1, let mymorph identify the predi-
cate

mymorph(Term,NewTerm):-

Term =.. [F,A1,A2],

map_arg_1(A1,NewA1),

NewTerm =.. [F,NewA1,A2].

map_arg_1(2,1):- !.

map_arg_1(X,X).

Thus mymorph/2 maps q(2,1) to q(1,1) and maps both q(1,1) and q(3,1)

to themselves. Then if DG_In is instantiated to the SDG produced in Ex-
ample 10.3.1, the goal ?- morph_dep_graph(DG_In,mymorph,DG_Out) would
produce:

SDG\_Out = [subgoal(morph80,q(1,3),6,0,[morph80,morph81],[]),

subgoal(morph81,q(3,3),3,0,[morph80],[])

Error Cases

• Morph is not an atom

– type_error

• DG_Out is not a variable

– type_error

• DG_In is not an adjacency list as described above

– misc_error
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dep_graph_scc_info(+SDG,-ListOut) module: tables

Given an SDG representation in the adjacency list format described above,
this predicate returns information about the SCCs that are currently under
evaluation. Upon success ListOut will contain a term

scc(SCCIndex,NumSubgoals,NumAnswers,NumPosEdges,NumNegEdges)

for each SCC under evaluation, such that:

• SCCIndex is the index of the SCC

• NumSubgoals is the number of subgoals in the SCC

• NumAnswers is the total number of answers for all subgoals in the SCC

• NumPosEdges is the total number of positive edges within the SCC.

• NumNegEdges is the total number of negative edges within the SCC.

print_sdg_info module: tables

Prints the current SDG to stdout in a readable manner.19

print_sdg_subgoal_info module: tables

Prints summary subgoal information about the current SDG to stdout in a
readable manner.

print_dep_graph(+DG) module: tables

Prints a dependency graph DG (whether its an SDG, IDG, or RDG) to stdout

in a simple, but readable manner.

Example 10.3.5 Continuing from Example 10.3.4, if

SDG = [subgoal(morph80,q(1,3),6,0,[morph80,morph81],[]),

subgoal(morph81,q(3,3),3,0,[morph80],[])

then print_dep_graph(SDG) would output

Subgoal: q(1,3)

Number of calls to this subgoal 6; Number of answers 0

Affects positively q(1,3) ; q(3,3)

Subgoal: q(3,3)

Number of calls to this subgoal 3; Number of answers 0

Affects positively q(1,3)

19This predicate, along with print_sdg_subgoal_info/0 replaces the predicate
print_incomplete_tables/0, which was included in previous releases.
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10.3.3 Summary: Inspection Predicates

XSB provides a number of ways to inspect a tabled derivation, including directly
through the tables, or through one of the dependency graphs: the IDG, RDG or
SDG. Specifically, some useful inspection predicates available in XSB are:

• statistics/[0,1,2] (Section 6.13) is a highly useful general-purpose predicate
that provides an important summary of how memory is used by the XSB process
or thread, the amount of time used by the process or thread, along with various
counts of tabling operations and measures of table space.

• table_dump/[2,3] (Section 10.3.1) allows directed and iterative inspection of
the current set of tabled subgoals and their answers, at various levels of summary
aggregation.

• Inspection of the Incremental Dependency Graph can be made via the predicate
get_idg_info/[1,2] 20 together with predicates for dependency graph ma-
nipulation such as morph_dep_graph/3 and dep_graph_scc_info/3 (cf. Sec-
tion 10.3.2). More targeted inspection of specific edges and dependencies of the
Incremental Dependency Graph is supported through incr_directly_depends/2

and incr_trans_depends/2 (cf. Section 5.6.6).

• Inspection of the Subgoal Dependency Graph can be obtained through the pred-
icate get_sdg_info/1, and its information analyzed through predicates for de-
pendency graph manipulation such as morph_dep_graph/3, and dep_graph_scc_info/2

(cf. Section 10.3.2). Note that get_sdg_info/1 returns information concerning
incomplete subgoals only.

• Inspection of the Residual Dependency Graph can be made via the predicate
get_rdg_info/[1,2],21 together with dependency graph manipulation pred-
icates such as morph_dep_graph/3 and dep_graph_scc_info/3. (cf. Sec-
tion 10.3.2). The predicates get_residual/2 and variant_get_residual/2

allow the residual program to be viewed as sets of clauses. Finally, explain_u_val/3

can be used to indicate why a given atom has the truth value undefined rather
than true or false (cf. Section 6.15.2).

All of these predicates, except for get_sdg_info/1, can be used to retrospecitively
analyze any completed derivation, as long as the derivations tables have not been abol-
ished. In addition, all of the predicates can be used to analyze an onoging derivation

20These predicates are not yet implemented: although tt get_incr_sccs/[1,2], and
get_incr_sccs_with_deps/[2,3] have been.

21This predicate is not yet implemented: although tt get_residual_sccs/[1,2] has been.



CHAPTER 10. DEBUGGING AND PROFILING 413

by suspending the derivation and then examining the computation from a subsidiary
command-line interpreter. This can be especially important for long-running com-
putaiotions or those that take a lot of space.

In XSB, a computation can be suspended in several ways, depending a user’s
tastes in and needs for debugging:

• By a call to break/0. This is usually best done by calling break/0 as part of
a handler for timed_call/2, but break/0 can also be called explicitly from a
program.

• By hitting ctrl-C if XSB is running in stand-alone mode

• By setting a tripwire as introduced below (Section 10.3.4).

10.3.4 Setting Tripwires on Tabled Derivations

A tripwire represents an unexpected property of a derivation: such as an excessive
use of time or memory; an unexpected number or complexity of tabled subgoals or
answers; or an unexpected number of mutually dependent tabled subgoals. Depend-
ing both on the class of a tripwire and on how XSB’s flags are set, a tripwire may
have different effects. Any tripwire may be treated as an error so that it throws an
exception just as any other error. Inspectable tripwires may additionally be consid-
ered as inspection points, and when hit may suspend the derivation and create a
break point.22 In such a case, a short explanation will be made of how a tripwire
was encountered, along with suggestions about how to further inspect the suspended
derivation.23 Correctable tripwires are a subset of inspectable tripwires for which an
automatic action may be taken to remedy the situation, such as rewriting a subgoal
or an answer whose size is greater than a given limit, by using subgoal abstraction or
answer restraint.

Tripwires may be set in various ways: most can be set and viewed at a session
level using Prolog flags, others can also be set at the predicate level via the table/1

declaration, while still others can only be set by explicit programming. Tripwires thus

22Note that such a suspension makes available for inspection the state of the derivation at the
point the tripwire was activated. If inspection points were implemented using ISO errors, state could
only be made available at the point where the error was caught, whose state may differ greatly from
the point where the error occurred (i.e., where the tripwire was hit).

23 This is the default behavior for XSB: handling of tripwires can be overridden by the user, as
explained later in this section.
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represent a coordinated set of tools for understanding bounds on a tabled derivation,
rather than a unified API.

For a tripwire T that can be set and viewed as a Prolog flag, the flag name has
the form tripwire(T), and this flag has two or more values. An action, designated
action(A), indicating the action to take such as error, suspend, or other actions;
and one or more parameters, designated limit(P). For example, if a user wants to
be able to suspend and inspect a computation whenever it has an active recursive
component (SCC) with over 100 subgoals, she can execute the following directives:

?- set_prolog_flag(tripwire(max_scc_subgoals),limit(100)).

?- set_prolog_flag(tripwire(max_scc_subgoals),action(suspend)).

We discuss various types of tripwires in turn, and provide informal guidelines for
inspecting a derivation when a given tripwire has been hit.

Tripwires Based on Resource Limits

Hitting a resource tripwire reflects the fact that a derivation is taking more time or
using more memory than expected. A resource tripwire is a user-imposed limit, rather
than an external limit imposed by the platform or operating system, and thus differs
from an ISO resource error.

Time-based resource tripwires can easily be programmed using a handler to timed_call/2.
Time-based tripwires are inspectable, so such a handler might throw an error after
a derivation has taken a certain amount of CPU time, or call break/0 to implement
periodic inspection points, or implement other periodic analytics or monitoring. The
parameters for timed call can be changed whenever the timed call is suspended by
timed_call_modify/1. See Section 6.11.1 for more details.

An inspectable memory-based resource tripwire can be set via the Prolog flag
tripwire(max_memory), so that the tripwire will be hit whenever XSB uses more
than a given total amount of memory. This amount can be set either as an integer,
representing an absolute number of kilobytes or as a floating point number indicating
a percentate of the RAM of the platform upon which XSB is executing. Currently, a
memory-based tripwire can only throw an error.

Guidelines for Analysis of Resource-based Tripwires

Note that the numbers and sizes below are for example purposes only.
If memory limits are set to, say, a gigabyte or more of memory, and
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time limits are set to several seconds, the numbers and sizes may be
several orders of magnitude more than those shown below.

If a resource tripwire is hit, the best course of analysis usually starts with viewing
the output of statistics/[0,1].

• Check that there are a large number of incomplete tables This can be determined,
for instance, using the output of statistics/0, by a line near the end of the
memory table. 24 E.g.:

(501227 incomplete table(s) in 89 SCCs)

– If there are a large number of incomplete tables, XSB’s stask space is likely
to be high also, since an incomplete table T needs to maintain many details
of its derivation state to ensure all answers for T are returned to all calls
to T . In this case, the predicates for analyzing the Subgoal Dependency
Graph of the suspended derivation can be used (Section 10.3.2). Note that,
here and below, when there are a large number of incomplete tables, infor-
mation returned by get_sdg_info/1, as well as by get_idg_info/1 and
get_rdg_info/1 may need to be filtered or manipulated using the predi-
cates in Section 10.3.2.

• Otherwise, Check whether there are a large number of completed subgoals. If
there are not many incomplete tables but the table space seems large, statistics/[0,1,2]

indicates both the total number of tabled subgoals and the total number of an-
swers. In this case. For instance, the beginning of the summary of tabling
operations might contain information such as:

Tabling Operations

12 subsumptive call check/insert ops: 9 producers, 3 variants,

0 properly subsumed (0 table entries), 0 used completed table.

0 relevant answer ident ops. 0 consumptions via answer list.

1065417 variant call check/insert ops: 938125 producers, 127292 variants.

46210 answer check/insert ops: 46210 unique inserts, 0 redundant.

This indicates that there are 1,065,417 subgoals (complete or incomplete) tabled
with call variance, and 12 subgoals tabled with call subsumption. Among all
subgoals there are 46,210 ansewrs.

24This line is not printed out if there are no incomplete tables.
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– To understand details of overall table space usage, table_dump/[2,3] can
be called to provide further information (Section 10.3.1).

• Check whether the IDG is large. In addition to simply having a large number of
subgoals (incomplete or complete) and answers, the use of incremental depen-
dency, which maintains an IDG, has an effect on memory. statistics/[0,1]
indicates when incremental tabling is being used heavily, by a line towards the
bottom of the output, such as:

Currently 501688 incremental subgoals, 781432 dependency edges

– When there are large numbers of incrementally tabled subgoals and de-
pendency edges, get_idg_info/1 (Section 10.3.2) can be used to obtain a
global view of the IDG. Note that incremental tabling does require more
memory for completed tables than non-incremental tabling, due to the
need to retain the IDG so that tables can be updated when dynamic code
changes.

• Check whether there are a large number of answers whose truth value is unde-
fined. This is indicated, for instance, by lines at the end of the summary of
tabling operations in statistics/0. 25 E.g.:

80005 DEs in the tables (space: 3932480 bytes allocated, 3840560 in use)

40005 DLs in the tables (space: 983200 bytes allocated, 960280 in use)

If there is indication that there are a large number of answers with truth
value undefinedget_rdg_info/[1] and/or explain_u_val/2 can be used
to understand the dependencies among these answers.

Tripwires Based on Properties of a Tabled Derivation

Theoretically speaking, in a pure logic program if a tabled derivation is not terminat-
ing it is because there are an unbounded number of SLG trees, or because one or more
of the SLG trees is of unbounded size. The former case indicates that a computation
has an unbounded number of subgoals, while the latter indicates that one or more
subgoals has an unbounded number of answers. In a similar manner, terminating but
expensive derivations also may have too many subgoals, too many answers, or too
many dependencies among incomplete subgoals. We consider these cases in turn.

• There are too many tabled subgoals

25These lines are not printed out if there are no incomplete tables.
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– There are a potentially unbounded number of tabled subgoals in a pure pro-
gram. In this case, there must be a potentially unbounded number of
distinct tabled subgoals in the derivation. If this happens using ca‘v‘vll
variance, this situation can sometimes be addressed by using call sub-
sumption instead. However termination can always be ensured by using
subgoal abstraction, as long as a derivation produces only a finite num-
ber of answers (cf. Section 5.5 and [67]). XSB allows subgoal abstrac-
tion to be applied based on term size either globally through the tripwire
max_table_subgoal_size, or on a predicate-by-predicate basis through
tabling directives. In other words, when a tabled subgoal, Sbig, is called
whose size is greater then the limit specified for its predicate, a tripwire is
activated, and various actions can be specified. In many – perhaps most –
cases, the best action is simply to abstract Sbig. However it is also possible
to suspend and inspect the derivation so that the causes that led to Sbig

can be analyzed. As a final alternative, an error can be thrown, which is
the default action.

– There are a potentially infinite number of subgoals in a program with arith-
metic.. Due to the manner in which numbers are represented in XSB,
XSB’s size metric would permit a potentially infinite number of subgoals if
numbers occurred within these subgoals. The tripwire max_incomplete_subgoals

allows a limit to be set on the maximal number of incomplete subgoals. If
a derivation exceeds that limit, the computation may be suspended, or an
error thrown.

– There are a finite but large number of tabled subgoals. A separate problem
from those above can happen as follows. If a program is written over a
language that has a finite but large number of constant symbols, then a
program that generates subgoals of the form

p(ci, cj, ck, X)

will theoretically terminate, but may be too inefficient for practical pur-
poses. This problem can be addressed by the tripwrite max_incomplete_subgoals

just discussed, but it is often helpful to have a different size limit for cases
where there are a large number of subgoals within the same SCC.

The tripwire max_scc_subgoals allows such a limit to be set on the max-
imal number of incomplete subgoals in any recursive component. If a
derivation exceeds that limit, the computation may be suspended, or an
error thrown. This situation is similar to that of simply having too many
incomplete subgoals, but may suggest a different focus when analyzing a
suspended computation. In addition, the number of dependencies can rise
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quadratically with the absolute size of an SCC. As a result, it often makes
sense to have different limit for the size of a single (incomplete) SCC and
for the number of incomplete subgoals overall.

Guidelines for Analysis If the computation is producing too many tabled
subgoals the suspension may have been triggered by one of the tripwires:
max_table_subgoal_size, max_incomplete_subgoals or max_scc_size.
In any of these cases, the suspension or error message will indicate the
tripwire that has been hit. The number of incomplete subgoals can be
seen from the output of statistics/0. The inspection predicates of Sec-
tion 10.3.2 can be used to examine these subgoals and their dependencies.

• There are too many tabled answers. The approaches to this situation are similar
in spirit to the cases of too many subgoals.

– One or more subgoals has an unbounded number of answers. In this case,
termination can be ensured by using radial restraint, which abstracts an-
swers in a manner that is sound with respect to the well-founded semantics
and can ensure that a derivation will produce only a finite number of an-
swers (cf. Section 5.5 and[34]), XSB allows radial restraint to be applied
based on term size in two ways. First, restraint can be applied globally
through the tripwire max_table_answer_size. Second, XSB allows re-
straint to be declared at a predicate-by-predicate basis. In other words,
when an answer, Abig, is to be added to a table, and its size is greater then
the limit specified for its predicate, a tripwire is activated, and various ac-
tions can be specified. In many cases, the best action is simply to abstract
Abig, which gives it the truth value undefined for that answer. However it
is also possible for the derivation to be suspended so that the causes that
led to Abig can be analyzed. As a final alternative an error can be thrown;
this is the default action for XSB.

– There are a finite but large number of tabled answers. As with subgoals,
checking for the depth of an answer may not catch certain causes of ineffi-
cency. If a program is written over a language that has a large number of
constant symbols, then a program that generates answers of the form

p(ci, cj, ck, cl)

will theoretically terminate, but may be too inefficient for practical pur-
poses.

To address such situations, XSB has the tripwire max_answers_for_subgoal

which is hit if any subgoal has more than the specified number of answers.
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If a derivation exceeds that limit, the subgoal may be eagerly completed
while maintaining soundness, the the computation may be suspended, or
an error thrown (cf. Section 5.5.3 for a discussion of how a subgoal may
be completed early while preserving soundness).

Guidelines for Analysis If the computation is producing too many tabled an-
swers, a suspension may be triggered by one of the tripwires: max_table_answer_size,
or max_answers_for_subgoal. In any of these cases, the suspension (or error
message) will indicate the subgoal whose number of answers hit the tripwire.
The number and shape of answers for that subgoal and others can be viewed
through the table_dump library (Section 10.3.1). If some answers are undefined,
the predicates get_rdg_info/1 and explain_u_val/2 can be used to explore
dependencies among the answers. In addition, dependency graph analysis based
on the predicates get_sdg_info/1 and get_idg_info/1 can help locate areas
of code that caused the profusion of answers.

The Suspend Action for Flag-Based Tripwires

If the action suspend is specified for a given flag-based tripwire T , (i.e., a tripwire
other than one based on timed_call/2), then hitting T causes XSB to take a given
action. By default, this action is to enter a break level from which the computation
can be inspected. (This default action for suspend can be overridden.) A preamble to
the break level is also presented that describes certian values pertaining to the state
of the computation, along with an attempt to summarize what the situation means.
The preamble for the tripwire max_incomplete_subgoals appears as follows.

There are currently 11 incomplete tabled subgoals, which exceeds the limit set by the

flag ’max_incomplete_subgoals’. These subgoals are in 11 separate recursive components.

The number of incomplete recursive components is close to the number of incomplete

subgoals, and furthermore, nearly all of these recursive components are trivial.

This information indicates a likelihood that the program is performing some sort of

structural recursion using tabling (i.e., recursing through a list, performing numeric

iteration, etc.)

To remedy, check that the recursion is well-founded. If so, consider executing the

recursion using a non-tabled predicate, or consider using hash-cons tabling to reduce

the space required for tables, then increase the value of the flag.
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* To continue, reset the flag and then type Ctrl-d

* To abort the suspended derivation, enter the command ’abort/0’

* To inspect the incomplete tabled subgoals, enter the command ’print_sdg_info/0’

From within a break level thrown by a tripwire, a user can perform most queries
and commands with two important exceptions.

• No tabled goals or subgoals may be executed. Of course once the break is
exited, the original comptuation can be continued, and tabled subgoals can be
executed as usual.

• Reconsulting a file containing code upon which the original query depends may
throw an error.

There are situations where the action of breaking to allow a user can inspect a
query isn’t suitable – if XSB is embedded into a process, for instance, or is part of
some other application. In such a case, the user can override XSB’s default behavior
by asserting into the user module a tripwire handler, which will be executed when a
given tripwire is hit. For instance, the tripwire max_table_subgoal_size would use
the tripwire max_table_subgoal_size_user_handler/0. Subject to the constraints
above, the handler may perform any actions desired, including increasing the tripwire
limit, adjusting its action, changing runtime tabling properties, or simply writing to
a log.26

A handler that is called when a tripwire is hit has some resemblences to a handler
called when an error is caught, but there are important differences. A condition
triggering a tripwire might or might not reflect an error in a program. So the handler
is invoked when the tripwire is hit, rather than after exiting portions of that derivation
as is the case when an error is caught. If the user wants to exit some or all of a
derivation when a tripwire is hit, it is simple to change the tripwire’s action to error,
and arrange to catch the error with a suitable handler.

Summary of Flag-Based Tripwires

Each of the tripwires described below can be queried and set via prolog flags. For
instance the query

26As a further example, when XSB supports the language Ergo the tripwire may set on forest
logging to support termination analysis via the Terminyzer tool.
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| ?- current_prolog_flag(tripwire(max_table_subgoal_size),Property).

Property = limit(12)

Property = action(error);

indicates the current values of this tripwire. (Also see the description of Prolog flags
in Section 6.12.)

• max_table_subgoal_size.

– Limit: The maximum size of a given argument in a subgoal (cf. Sec-
tion 5.5.1). A limit of 0 means that this tripwire is disabled.

– Possible actions: abstract, suspend or error.

– Default. Limit: 0; Action: error.

– User handler for suspend: max_table_subgoal_size_handler.

• max_incomplete_subgoals

– Limit: The maximum number of subgoals that are incomplete at any given
time. A limit of 0 means that this tripwire is disabled.

– Possible actions: suspend, error or warning.

– Default. Limit: 0; Action: error.

– User handler for suspend: max_incomplete_subgoals_user_handler.

• max_scc_subgoals

– Limit: The maximum number of subgoals that are incomplete, and are in
the same SCC at any given time. A limit of 0 means that this tripwire is
disabled.

– Possible actions: suspend, error or warning.

– Default. Limit: 0; Action: error.

– User handler for suspend: max_scc_subgoals_user_handler.

• max_table_answer_size

– Limit: The maximum size of a given argument of an answer (cf. Sec-
tion 5.5.1). A limit of 0 means that this tripwire is disabled.
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– Possible actions: abstract, suspend, or error.

– Default. Limit: 0; Action: error.

– User handler for suspend: max_table_answer_size_user_handler.

• max_answers_for_subgoal

– Limit: The maximum number of answers for any single tabled subgoal. A
limit of 0 means that this tripwire is disabled.

– Possible actions: suspend, error, warning or complete_soundly.

– Default. Limit: 0; Action: error.

– User handler for suspend: max_answers_for_subgoal_user_handler.

• max_memory

– Limit: If an integer, the limit is the maximum amount of memory allowed
for a computation, in kilobytes. If a floating-point number, the limit is the
proportion of RAM for the machine on which XSB is running. A limit of
0 means that this tripwire is disabled.

– Possible actions: suspend or error.

– Default. Limit: 0; Action: error.

– User handler for suspend: max_memory_user_handler.



Chapter 11

Definite Clause Grammars

11.1 General Description

Definite clause grammars (DCGs) are an extension of context free grammars that
have proven useful for describing natural and formal languages, and that may be
conveniently expressed and executed in Prolog. A Definite Clause Grammar rule is
executable because it is just a notational variant of a logic rule that has the following
general form:

Head --> Body.

with the declarative interpretation that “a possible form for Head is Body”. The
procedural interpretation of a grammar rule is that it takes an input sequence of
symbols or character codes, analyses some initial portion of that list, and produces
the remaining portion (possibly enlarged) as output for further analysis. In XSB, the
exact form of this sequence is determined by whether XSB’s DCG mode is set to use
tabling or not, as will be discussed below. In either case, the arguments required for
the input and output lists are not written explicitly in the DCG rule, but are added
when the rule is translated (expanded) into an ordinary normal rule during parsing.
Extra conditions, in the form of explicit Prolog literals or control constructs such as
if-then-elses (’->’/2) or cuts (’!’/0), may be included in the Body of the DCG rule
and they work exactly as one would expect.

The syntax of DCGs is orthogonal to whether tabling is used for DCGs or not.
An overview of DCG syntax supported by XSB is as follows:

1. A non-terminal symbol may be any HiLog term other than a variable or a

423
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number. A variable which appears in the body of a rule is equivalent to the
appearance of a call to the standard predicate phrase/3 as it is described below.

2. A terminal symbol may be any HiLog term. In order to distinguish terminals
from nonterminals, a sequence of one or more terminal symbols α, β, γ, δ, . . .
is written within a grammar rule as a Prolog list [ α, β, γ, δ, . . . ], with the
empty sequence written as the empty list [ ]. The list of terminals may contain
variables but it has to be a proper list, or else an error message is sent to the
standard error stream and the expansion of the grammar rule that contains this
list will fail. If the terminal symbols are UTF-8 character codes, they can be
written (as elsewhere) as strings.

3. Extra conditions, expressed in the form of Prolog predicate calls, can be included
in the body (right-hand side) of a grammar rule by enclosing such conditions
in curly brackets, ’{’ and ’}’. For example, one can write:

positive_integer(N) --> [N], {integer(N), N > 0}. 1

4. The left hand side of a DCG rule must consist of a single non-terminal, possibly
followed by a sequence of terminals (which must be written as a unique Prolog
list). Thus in XSB, unlike SB-Prolog version 3.1, Semicontext (formerly called
push-back lists) is supported.

5. The right hand side of a DCG rule may contain alternatives (written using
the usual Prolog’s disjunction operator ’;’ or using the usual BNF disjunction
operator ’|’.

6. The Prolog control primitives if-then-else (’->’/2), nots (not/1, fail_if/1,
′\ +′/1 or tnot/1) and cut (’!’/0) may also be included in the right hand side
of a DCG rule. These symbols need not be enclosed in curly brackets. 2 All
other Prolog’s control primitives, such as repeat/0, must be enclosed explicitly
within curly brackets if they are not meant to be interpreted as non-terminal
grammar symbols.

1A term like {foo} is just a syntactic-sugar for the term ’{}’(foo).
2Readers familiar with Quintus Prolog may notice the difference in the treatment of the various

kinds of not. For example, in Quintus Prolog a not/1 that is not enclosed within curly brackets is
interpreted as a non-terminal grammar symbol.
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11.2 Translation of Definite Clause Grammar rules

In this section we informally describe the translation of DCG rules into normal rules
in XSB. Each grammar rule is translated into a Prolog clause as it is consulted or
compiled. This is accomplished through a general mechanism of defining the hook
predicate term_expansion/2, by means of which a user can specify any desired
transformation to be done as clauses are read by the reader of XSB’s parser. This
DCG term expansion is as follows:

A DCG rule such as:

p(X) --> q(X).

will be translated (expanded) into:

p(X, Li, Lo) :-

q(X, Li, Lo).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) --> q(X), r(X, Y), s(Y).

the corresponding input and output arguments are identified, translating into:

p(X, Y, Li, Lo) :-

q(X, Li, L1),

r(X, Y, L1, L2),

s(Y, L2, Lo).

Terminals are translated using the predicate ’C’/3 (See section 11.3 for its de-
scription). For instance:

p(X) --> [go, to], q(X), [stop].

is translated into:

p(X, S0, S) :-

’C’(S0, go, S1),

’C’(S1, to, S2),

q(X, S2, S3),

’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate into
themselves. For example,

positive_number(X) -->

[N], {integer(N), N > 0},

fraction(F), {form_number(N, F, X)}.
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translates to:

positive_number(X, Li, Lo) :-

’C’(Li, N, L1),

integer(N),

N > 0,

L1 = L2,

fraction(F, L2, L3),

form_number(N, F, N),

L3 = Lo.

Similarly, a cut is translated literally.

Semicontext (or a push-back list, which is a proper list of terminals on the left-
hand side of a DCG rule) translate into a sequence of ’C’/3 goals with the first and
third arguments reversed. For example,

it_is(X), [is, not] --> [aint].

becomes

it_is(X, Li, Lo) :-

’C’(Li, aint, L1),

’C’(Lo, is, L2),

’C’(L2, not, L1).

Disjunction has a fairly obvious translation. For example, the DCG clause:

expr(E) -->

expr(X), "+", term(Y), {E is X+Y}
| term(E).

translates to the Prolog rule:

expr(E, Li, Lo) :-

( expr(X, Li, L1),

’C’(L1, 43, L2), % 0’+ = 43

term(Y, L2, L3)

E is X+Y,

L3 = Lo

; term(E, Li, Lo)

).
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11.2.1 Definite Clause Grammars and Tabling

Tabling can be used in conjunction with Definite Clause Grammars to get the effect
of a more complete parsing strategy. When Prolog is used to evaluate DCG’s, the
resulting parsing algorithm is “recursive descent”. Recursive descent parsing, while
efficiently implementable, is known to suffer from several deficiencies: 1) its time can
be exponential in the size of the input, and 2) it may not terminate for certain context-
free grammars (in particular, those that are left or doubly recursive). By appropriate
use of tabling, both of these limitations can be overcome. With appropriate tabling,
the resulting parsing algorithm is a variant of Earley’s algorithm and of chart parsing
algorithms.

In the simplest cases, one needs only to add the directive :- auto_table (see
Section 3.10.5) to the source file containing a DCG specification. This should generate
any necessary table declarations so that infinite loops are avoided (for context-free
grammars). That is, with a :- auto_table declaration, left-recursive grammars can
be correctly processed. Of course, individual table directives may also be used, but
note that the arity must be specified as two more than that shown in the DCG source,
to account for the extra arguments added by the expansion. However, the efficiency
of tabling for DCGs depends on the representation of the input and output sequences
used, a topic to which we now turn.

Consider the expanded DCG rule from the previous section:

p(X, S0, S) :-

’C’(S0, go, S1),

’C’(S1, to,S2),

q(X, S2, S3),

’C’(S3, stop, S).

In a Prolog system, each input and output variable, such as S0 or S is bound
to a variable or a difference list. In XSB, this is called list mode. Thus, to parse
go to lunch stop the phrase would be presented to the DCG rule as a list of tokens
[go,to,lunch,stop] via a call to phrase/3 such as:

phrase(p(X),[go,to,lunch,stop]).

or an explicit call to p/3, such as:

p(X,[go,to,lunch,stop|X],X).

Terminal elements of the sequence are consumed (or generated) via the predicate
’C’/3 which is defined for Prolog systems as:

’C’([Token|Rest],Token,Rest).
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While such a definition would also work correctly if a DCG rule were tabled, the
need to copy sequences into or out of a table can lead to behavior quadratic in the
length of the input sequence (See Section 5.2.5). As an alternative, XSB allows a
mode of DCGs that defines ’C’/3 as a call to a Datalog predicate word/3 :

’C’(Pos,Token,Next_pos):- word(Pos,Token,Next_pos).

assuming that each token of the sequence has been asserted as a word/3 fact, e.g:

word(0,go,1).

word(1,to,2).

word(2,lunch,3).

word(3,stop,4).

The above mode of executing DCGs is called datalog mode.

word/3 facts are asserted via a call to the predicate tphrase_set_string/1.
Afterwards, a grammar rule can be called either directly, or via a call to tphrase/1.
To parse the list [go,to,lunch,stop] in datalog mode using the predicate p/3 from
above, the call

tphrase_set_string([go,to,lunch,stop])

would be made, afterwards the sequence could be parsed via the goal:

tphrase(p(X)).

or

p(X,0,F).

To summarize, DCGs in list mode have the same syntax as they do in datalog
mode: they just use a different definition of ’C’/3. Of course tabled and non-tabled
DCGs can use either definition of ’C’/3. Indeed, this property is necessary for tabled
DCG predicates to be able to call non-tabled DCG predicates and vice-versa. At the
same time,tabled DCG rules may execute faster in datalog mode, while non-tabled
DCG rules may execute faster in list mode.

Finally, we note that the mode of DCG parsing is part of XSB’s state. XSB’s
default mode is to use list mode: the mode is set to datalog mode via a call to
tphrase_set_string/3 and back to list mode by a call to phrase/2 or by a call to
reset_dcg_mode/0.

11.3 Definite Clause Grammar predicates

The library predicates of XSB that support DCGs are the following:
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phrase(+Phrase, ?List)

This predicate is true iff the list List can be parsed as a phrase (i.e. sequence
of terminals) of type Phrase. Phrase can be any term which would be accepted
as a nonterminal of the grammar (or in general, it can be any grammar rule
body), and must be instantiated to a non-variable term at the time of the call;
otherwise an error message is sent to the standard error stream and the predicate
fails. This predicate is the usual way to commence execution of grammar rules.

If List is bound to a list of terminals by the time of the call, then the goal
corresponds to parsing List as a phrase of type Phrase; otherwise if List is
unbound, then the grammar is being used for generation.

tphrase(+Phrase)

This predicate succeeds if the current database of word/3 facts can be parsed
via a call to the term expansion of +Phrase whose input argument is set to 0

and whose output argument is set to the largest N such that word(_,_,N) is
currently true.

The database of word/3 facts is assumed to have been previously set up via a
call to tphrase_set_string/1 (or variant). If the database of word/3 facts is
empty, tphrase/1 will abort.

phrase(+Phrase, ?List, ?Rest)

This predicate is true iff the segment between the start of list List and the start
of list Rest can be parsed as a phrase (i.e. sequence of terminals) of type Phrase

. In other words, if the search for phrase Phrase is started at the beginning
of list List, then Rest is what remains unparsed after Phrase has been found.
Again, Phrase can be any term which would be accepted as a nonterminal of
the grammar (or in general, any grammar rule body), and must be instantiated
to a non-variable term at the time of the call; otherwise an error message is sent
to the standard error stream and the predicate fails.

Predicate phrase/3 is the analogue of call/1 for grammar rule bodies, and
provides a semantics for variables in the bodies of grammar rules. A variable
X in a grammar rule body is treated as though phrase(X) appeared instead, X

would expand into a call to phrase(X, L, R) for some lists L and R.

expand_term(+Term1, ?Term2)

This predicate is used to transform terms that appear in a Prolog program before
the program is compiled or consulted. The default transformation performed
by expand_term/2 is that when Term1 is a grammar rule, then Term2 is the
corresponding Prolog clause; otherwise Term2 is simply Term1 unchanged. If
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Term1 is not of the proper form, or Term2 does not unify with its clausal form,
predicate expand_term/2 simply fails.

Users may augment the default transformations by asserting clauses for the
predicate term_expansion/2 to usermod. After term_expansion(Term_a,Term_b)

is asserted, then if a consulted file contains a clause that unifies with Term_a

the clause will be transformed to Term_b before further compilation. (Term_b

can be a list of clauses, so term_expansion can transform a single clause into a
sequence of clauses.) expand_term/2 calls user clauses for term_expansion/2

first; if the expansion succeeds, the transformed term so obtained is used and the
standard grammar rule expansion is not tried; otherwise, if Term1 is a grammar
rule, then it is expanded using dcg/2; otherwise, Term1 is used as is.

Example: Suppose the following clause is asserted:

?- assert(term_expansion(foo(X),bar(X))).

and that the file te.P contains the clause foo(a) then the clause will automat-
ically be expanded upon consulting the file:

| ?- [te].

[Compiling /Users/macuser/te]

[te compiled, cpu time used: 0.0170 seconds]

[te loaded]

yes

| ?- bar(X).

X = a

yes

| ?- foo(X).

++Error[XSB/Runtime/P]: [Existence (No procedure usermod : foo / 1 exists)] []

Forward Continuation...

However, read/[1,2] does not automatically perform term expansion

| ?- use_module(standard,[expand_term/2]).

yes

| ?- read(X),expand_term(X,Y).
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foo(a).

X = foo(a)

Y = bar(a)

yes

’C’(?L1, ?Terminal, ?L2)

This predicate generally is of no concern to the user. Rather it is used in the
transformation of terminal symbols in grammar rules and expresses the fact
that L1 is connected to L2 by the terminal Terminal. This predicate is needed
to avoid problems due to source-level transformations in the presence of control
primitives such as cuts (’!’/0), or if-then-elses (’->’/2) and is defined by the
single clause:

’C’([Token|Tokens], Token, Tokens).

The name ’C’ was chosen for this predicate so that another useful name might
not be preempted.

tphrase_set_string(+List)

This predicate

1. abolishes all tables;

2. retracts all word/3 facts from XSB’s store; and

3. asserts new word/3 facts corresponding to List as described in Section
11.2.1.

implicitly changing the DCG mode from list to datalog.

tphrase_set_string_keeping_tables(+List) module: dcg

This predicate is the same as tphrase_set_string, except it does not abolish
any tables. When using this predicate, the user is responsible for explicitly
abolishing the necessary tables.

tphrase_set_string_auto_abolish(+List) module: dcg

This predicate is the same as tphrase_set_string, except it abolishes ta-
bles that have been indicated as dcg-supported tables by a previous call to
set_dcg_supported_table/1.
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set_dcg_supported_table(+TabSkel) module: dcg

This predicate is used to indicate to the DCG subsystem that a particular
tabled predicate is part of a DCG grammar, and thus the contents of its table
depends on the string being parsed. TabSkel must be the skeleton of a tabled
predicate. When tphrase_set_string_auto_abolish/1 is called, all tables
that have been indicated as DCG-supported by a call to this predicate will be
abolished.

dcg(+DCG_Rule, ?Prolog_Clause) module: dcg

Succeeds iff the DCG rule DCG_Rule translates to the Prolog clause Prolog_Clause.
At the time of call, DCG_Rule must be bound to a term whose principal functor
is ’-->’/2 or else the predicate fails. dcg/2 must be explicitly imported from
the module dcg.

11.4 Two differences with other Prologs

The DCG expansion provided by XSB is in certain cases different from the ones
provided by some other Prolog systems (e.g. Quintus Prolog, SICStus Prolog and
C-Prolog). The most important of these differences are:

1. XSB expands a DCG clause in such a way that when a ’!’/0 is the last goal
of the DCG clause, the expanded DCG clause is always steadfast.

That is, the DCG clause:

a --> b, ! ; c.

gets expanded to the clause:

a(A, B) :- b(A, C), !, C = B ; c(A, B).

and not to the clause:

a(A, B) :- b(A, B), ! ; c(A, B).

as in Quintus, SICStus and C Prolog.

The latter expansion is not just optimized, but it can have a different (unin-
tended) meaning if a/2 is called with its second argument bound.

However, to obtain the standard expansion provided by the other Prolog sys-
tems, the user can simply execute:

set_dcg_style(standard).

To switch back to the XSB-style DCG’s, call
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set_dcg_style(xsb).

This can be done anywhere in the program, or interactively. By default, XSB
starts with the XSB-style DCG’s. To change that, start XSB as follows:

xsb -e "set_dcg_style(standard)."

Problems of DCG expansion in the presence of cuts have been known for a long
time and almost all Prolog implementations expand a DCG clause with a ’!’/0

in its body in such a way that its expansion is steadfast, and has the intended
meaning when called with its second argument bound. For that reason almost
all Prologs translate the DCG clause:

a --> ! ; c.

to the clause:

a(A, B) :- !, B = A ; c(A, B).

But in our opinion this is just a special case of a ’!’/0 being the last goal in
the body of a DCG clause.

Finally, we note that the choice of DCG style is orthogonal to whether the DCG
mode is list or datalog.

2. Most of the control predicates of XSB need not be enclosed in curly brackets.
A difference with, say Quintus, is that predicates not/1, ′\ +′/1, or fail_if/1

do not get expanded when encountered in a DCG clause. That is, the DCG
clause:

a --> (true -> X = f(a) ; not(p)).

gets expanded to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not p(A,B))

and not to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not(p,A,B))

that Quintus Prolog expands to.

However, note that all non-control but standard predicates (for example true/0

and ’=’/2) get expanded if they are not enclosed in curly brackets.
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Exception Handling

We define the term exceptions as errors in program execution that are handled by a
non-local change in execution state. Exception handling in XSB is ISO-compatible,
and has been extended to handle tabled evaluations.

12.1 The Mechanics of Exception Handling

We address the case of non-tabled evaluations before discussing the extensions for
tabling.

12.1.1 Exception Handling in Non-Tabled Evaluations

The preferred mechanism for dealing with exceptions in XSB is to use the pred-
icates catch/3 and default_user_error_handler/1 together with one of XSB’s
error predicates (such as misc_error/1). These predicates are ISO-compatible, and
their use can give a great deal of control to exception handling. At a high level, when
an exception is encountered an error term T is thrown. In a non-tabled Prolog pro-
gram, throwing an error term T causes XSB to examine its choice point stack until
it finds a catcher that unifies with T . This catcher then calls a handler. If no explicit
catcher for T exists, a default handler is invoked, which usually results in an abort,
and returns execution to the top-level of the interpreter, or to the calling C function.1

A handler is set up when catch(Goal,Catcher,Handler) is called. At the time

1Starting in Version 3.5.1, XSB uses the ISO compliant error/2 for error terms, rather than
error/3 as in previous versions.

434
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of the call, a continuation is saved (i.e. a Prolog choice point), and Goal is called.
If no exceptions are encountered, answers for Goal are obtained as usual. However,
within the execution of Goal, an exception might be thrown by calling a Prolog pred-
icate in the error_handler module, or by executing a C-level error function. 2 As
mentioned above, when an error is thrown in an environment Env, XSB searches for
an ancestor Envanc of Env in which catch/3 was called, and in which the catcher
(second argument) unifies with Error. If such an ancestor is found, program exe-
cution reverts to the ancestor and all intervening choice points are removed. The
catcher’s Handler goal is called and the exception is thereby handled. On the other
hand, if no ancestor in the user’s program was called using catch/3 the exception
is handled via the handler associated with XSB’s goal interpreter at the top-level
command line or C API. This top-level handler checks whether a clause with head
default_user_error_handler(Term) has been asserted, such that Term unifies with
Error. If so, this handler is executed. If not, XSB’s default system error handler
in invoked an error message is output and execution returns to the top level of the
interpreter.

The following, somewhat fanciful, example helps clarify these concepts 3. Consider
the predicate userdiv/2 (Figure 12.1) which is designed to be called with the first
argument instantiated to a number. A second number is then read from a console,
and the first number is divided by the second, and unified with the second argument
of userdiv/2. By using catch/3 and throw/1 together the various types of errors
can be caught.

The behavior of this program on some representative inputs is shown below.

| ?- userdiv(p(1),F).

++Error[XSB/Runtime/P]: [Type (p(1) in place of number)] in arg 1 of predicate userdiv1/2

Forward Continuation...

... machine:xsb_backtrace/1

... error_handler:type_error/4

... standard:call/1

... x_interp:_$call/1

... x_interp:call_query/1

... standard:call/1

... standard:catch/3

... x_interp:interpreter/0

... loader:ll_code_call/3

... standard:call/1

2A user-defined error type is desired, the Prolog predicate throw/1 can also be called directly.
3Code for this example can be found in $XSBDIR/examples/exceptions.P.
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:- import error_writeln/1 from standard.

:- import type_error/4 from error_handler.

userdiv(X,Ans):-

catch(userdiv1(X,Ans),mydiv1(Y),handleUserdiv(Y,X)).

userdiv1(X,Ans):-

(number(X) -> true; type_error(number,X,userdiv1/2,1)),

write(’Enter a number: ’),read(Y),

(number(Y) -> true ; throw(mydiv1(error1(Y)))),

(Y < 0 -> throw(mydiv1(error2(Y))); true),

(Y =:= 0 -> throw(error(zerodivision,userdiv/1,[])); true),

Ans is X/Y.

handleUserdiv(error1(Y),_X):-

error_writeln([’a non-numeric denominator was entered in userdiv/1: ’,Y]),fail.

handleUserdiv(error2(Y),_X):-

error_writeln([’a negative denominator was entered in userdiv/1: ’,Y]),fail.

Figure 12.1: The userdiv/1 program
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... standard:catch/3

no

| ?- userdiv(3,F).

Enter a number: foo.

a non-numeric denominator was entered in userdiv/1: foo

no

|| ?- userdiv(3,F).

Enter a number: -1.

a negative denominator was entered in userdiv/1: -1

no

| ?- userdiv(3,Y).

Enter a number: 2.

Y = 1.5000

yes

Note, however the following behavior.

| ?- userdiv(3,F).

Enter a number: 0.

++Error[XSB/Runtime/P] uncaught exception: error(zerodivision,userdiv / 1)

Aborting...

By examining the program above, it can be seen that if p(1) is entered, the predicate
type_error/3 is called. type_error/3 is an XSB mechanism to throw a type error
from Prolog. Error terms thrown by system predicates such as type_error/3 are in
XSB’s standard error format, which is ISO-compatable and which may encode useful
information. For instance, the type error thrown in the above example is known to
XSB’s default system error handler which prints out a message along with a backtrace
that indicates the calling context in which the error arose (this behavior can be
controlled: see Section 12.5). Alternately, in the second case, when -1 is entered, the
(non-standard) error term mydiv1(error2(-1)) is thrown, which is caught within
userdiv/2 and handled by handleUserdiv/2. Finally, when 0 is entered for the
denominator, an error term of the form error(zerodivision,userdiv/1) is thrown,
and this term does not unify with the second argument of the catch/3 literal in the
body of userdiv/1, or with any error in standard format. The error is instead caught
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by XSB’s default system error handler which prints an uncaught exception message
and aborts to the top level of the interpreter.

XSB has two default system error handlers: one used when XSB is called as a
stand-alone process, and another when XSB is embedded in a process. Each rec-
ognizes the same error formats (see Section 12.2), and handles the rest as uncaught
exceptions. However, there may be times when an application requires special default
handling: perhaps the application calls XSB from through a socket, so that aborts
are not practical. As another example, perhaps XSB is being called from a graphical
user interface via InterProlog [10] or some other interface, so that in addition to a
special abort handling, one would like to display an error window. In these cases it is
convenient to make use of the dynamic predicate default_user_error_handler/1.
default_user_error_handler/1 is called immediately before the default system er-
ror handler, and after it is ascertained that no catcher for an error term is available
via a catch/3 ancestor.

It is important to note that the system error handlers catch errors only in the main
thread, and do not affect errors thrown by goals executed by thread_create/[2,3].
Error terms thrown by goals executed by non-detached threads are stored internally,
and can be obtained by thread_join/2. Error terms thrown by detached threads are
lost when the thread exits, so that any error handling for a detached thread should
be performed within the thread itself. See Chapter 7 for further information.

Accordingly, suppose the following clause is asserted into usermod:

?- assert((default_user_error_handler(error(zerodivision,Pred)):-

error_writeln([’Aborting: division by 0 in: ’,Pred]))).

The behavior will now be

| ?- userdiv(4,F).

Enter a number: 0.

Aborting: division by 0 in: userdiv / 1

The actions of catch/3 and throw/1 resemble that of the Prolog cut in that they
remove choice points that lie between a call to throw/1 and the matching catch/3

that serves as its ancestor.

The predicate call_cleanup/2 (cf. Section 6.11) can be used with catch/3, since
the goal call_cleanup(Goal,Cleanup) executes Cleanup whenever computation of
Goal is completed, whether because Goal has thrown an exception, has failed, or has
succeeded with its last answer. call_cleanup/2 can thus be used to release resources
created by Goal (such as streams, mutexes, database cursors, etc.). However, if Goal
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throws an exception, call_cleanup/2 will re-throw the exception after executing
cleanup.

12.1.2 Exception Handling in Tabled Evaluation

The exception handling as previously described requires extensions in order to work
well with tabled predicates. First, if an unhandled exception is thrown duing evalua-
tion of a tabled subgoal S and S is not completed, the table for S is not meaningful
and should be removed. (Tables that have been completed are not affected by excep-
tions.) Accordingly, the user will sometimes see the message:

Removing incomplete tables...

written to standard feedback. But what about exceptions that are caught during the
computation of S?

The proper action to take in such a case is complicated by the scheduling mech-
anism of tabling which, as discussed in Chapter 5, is more complex than in Prolog.
Rather than a simple depth-first search, as in Prolog, tabled evaluations effectively
perform a series of fixed-point computations for various sets of mutually dependent
subgoals, which are termed SCCs 4. In fact, a tabled evaluation can be seen as a
tree of SCCs (in batched evaluation) or a chain of SCCs (in local evaluation). In a
tabled evalution XSB’s throw mechanism searches for the nearest catcher C among
its ancestors

• whose first argument unifies with the thrown error; and

• where C is between SCCs: that is where the set of subgoals that depend on C
is disjoint from the set of subgoals upon which C depends. We term this the
SCC restriction for exception handling.

This behavior can be best understood by an example. Consider the query a(X)

to the program in Figure 12.2 which has the following output:

| ?- a(X).

a_calling_b

b_calling_a

4This term is used since sets of mutually dependent subgoals are formally modelled as (approxi-
mate) Strongly Connected Components within a dependency graph.
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:- table a/1, b/1, c/1,d/1.

a(X):- writeln(a_calling_b),b(X).

b(X):- writeln(b_calling_a),a(X).

b(X):- writeln(b_calling_c),catch(c(X),_,(writeln(handled_1),fail)).

c(X):- writeln(c_calling_d),d(X).

c(X):- writeln(c_aborting),abort.

d(X):- writeln(d_calling_c),catch(c(X),_,(writeln(handled_2),fail)).

Figure 12.2: A program to illustrate exception handling in tabled evaluations

b_calling_c

c_calling_d

d_calling_c

c_aborting

Removing incomplete tables...

handled_1

Note that there are 2 SCCs, {a(X), b(X)} and {c(X), d(X)}. When the abort is
called in the body of c(X) the catch in the body of d(X) is its nearest ancestor;
however this catch is skipped over, and the catch in the body of b(X) takes effect.
This catch is between the SCCs – the first SCC depends on it, but the second doesn’t.
Due to the SCC restriction, the actual behavior of exception handling with tabling
is thus somewhat less intuitive than in Prolog. If this restriction were lifted, there
would be no guarantee that there existed a unique catch that was the closest ancestor
of an exception.

While the above mechanism offers a great deal of flexibility, for many cases the
best approach to exception handling is to keep it simple.

1. Use catches when there will be no tabled subgoal between an exception and its
catcher. For instance, sometimes it may be annoying to have atom_codes/2

throw an exception rather than failing, if given an integer in its first argument.
This can be addressed by the predicate

my_atom_codes(X,Y):-

catch(atom_codes(1,B),error(type_error(A,B),C,D),writeln(E)).
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which, for a type error, does not interact with tabling in any way.

2. Similarly, if only subgoals to completed tables occur between an exception and
its catcher, exception handling behaves just as in case 1).

3. Otherwise, abort the entire tabled computation and handle it from there. (Un-
less you really know what you’re doing!)

Obtaining Information about a Tabled Computation after an Exception is
Thrown

XSB backtraces (Section 12.5) provide information about the context in which error
is thrown, but in a tabled computation additional information is available. If the Pro-
log flag exception_pre_action is set to print_incomplete_subgoals (its default
setting is none), then when an exception is thrown, incomplete tables and their SCC
information at the time an exception is thrown are printed to a file. The file may be
obtained through the predicate get_scc_dumpfile/1 in the module tables. No file
is generated unless the exception is thrown over at least one incomplete table.

12.2 XSB’s Standard Format for Errors

All exceptions that occur during the execution of an XSB program can be caught.
However, by structuring error terms in a consistent manner, different classes of errors
can be handled much more easily by handlers, both system- and user-defined. This
philosophy partly underlies the ISO Standard for defining classes of Prolog errors
[37]. While the ISO standard defines various types of errors and how they should
arise during execution of ISO Prolog predicates, it only partially defines the actual
error terms a system should use. The ISO format can be represented as:

error(Tag,Context),

where Tag is specific to each class of error, while Context is implementation-dependent.5

5If a program catches errors itself, error/2 may need to be imported from error_handler.
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12.2.1 Error Tags

In XSB, the ISO-compliant values for Tag are given below.

domain_error(Valid_type,Culprit) is the tag for an ISO domain error, where
Valid_type is the domain expected and Culprit is the term observed. Various
ISO predicates may have specific domains for input values; and in addition
unlike types, domains can be user-defined.

evaluation_error(Flag) is the tag for an ISO evaluation error (e.g. overflow or un-
derflow), and Flag is the type of evaluation error encountered (e.g., undefined,
if an arithmetic function is undefined for a given input).

existence_error(Type,Culprit) is the tag for an ISO existence error, where Type

is the type of a resource (e.g., a predicate, stream, attribute handler, etc.) and
Culprit is the term observed.

instantiation_error is the tag for an ISO instantiation error.

permission_error(Op,Obj_type,Culprit) is the tag for an ISO permission error,
when an operation Op was applied to an object of type Obj_type, but Culprit

was observed.

representation_error(Flag) is the tag for an ISO representation error (e.g., the
maximum arity of a predicate has been exceeded), and Flag is the type of
representation error encountered.

resource_error(Flag) is the tag for an ISO resource error (e.g. allowed memory
has been used, or too many files have been opened), and Flag is the type of
resource error encountered.

syntax_error and syntax_error(Culprit) are alternate tags for an ISO syntax
error, where Culprit denotes a syntactically-incorrect sequence of tokens.

system_error(Flag) is the tag for an ISO system error, and Flag is the type of
system error encountered.

type_error(Valid_type,Culprit) is the tag for an ISO type error, where Valid_type

is the type expected and Culprit is the term observed. As opposed to domain
errors, type errors should be used for checks of Prolog types only (i.e. integers,
floats, atoms, etc.)

In addition, XSB also makes use of two other classes of errors.
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table_error and type_error(Subtype) are the tags for an error arising when using
XSB’s tabling mechanism, when the condition giving rise to the error does npt
easily fit under one of the above classes.

error(thread_cancel,Id) is the format of an error ball for a thread that has been
cancelled by XSB thread Id (See Chapter 7 for details on thread cancellation.)

misc_error is the tag for an error that is not otherwise classified.

misc_error(Level) is the tag for abort/0-1, and is used to allow users to abort a
suspended query. Level is the break level at which the error was thrown.

In Version 3.8 of XSB, errors for ISO predicates are usually, but always ISO-
compliant (we still have a few non-compliant errors to catch). However, when XSB
determines it is out of available system memory, recovering from such an error may
be difficult at best. Accordingly the computation is aborted in the sequential engine,
or XSB exits in the multi-threaded engine 6.

12.2.2 XSB-Specific Information in Error Terms

XSB also encodes other information in error terms, which may vary with the error
thrown, the form in which XSB was compiled, and the version of XSB. In addition,
the specifics of how the information is represented may vary, so that this information
should always be represented through the access methods described in this section
along with Section 12.3.2.

Message describes the error in human-readable format. Messages are present in all of
XSB’s system errors, and can be obtained through xsb_error_get_message/2.

Goal represents tabled goal that is closest to the environment of the thrown error.
It is present in some, but not all error terms thrown by XSB and can be ob-
tained as a term through xsb_error_get_goal/2, and as an atom through
xsb_error_get_goalatom/2.

Thread Id is an atom ’th <tid>’ indicating the id of the thread that threw the
error. Thread Id information is only present when using the multi-threaded
version of XSB, and even in that version is not present in all error terms.
The predicate xsb_error_get_tid/2 can be used to obtain this information if
present.

6This does not include overflowaing a memory limit specified by the flag max_memory.
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Backtrace represents the stack of the forward continuations in the execution stack
at the time the error was thrown. Backtraces are present by default in all XSB
system error terms, and are described in Section 12.5. They may be obtained
from an error term using the predicate xsb_error_get_backtrace/2.

12.3 Predicates to Throw and Handle Errors

12.3.1 Predicates to Throw Errors

XSB provides a variety of predicates that throw errors 7. In general, we recommend
the use of predicates such as domain_error/4 over the direct use of throw/1 when
possible.

throw(+ErrorTerm) ISO
Throws the error ErrorTerm. Execution traverses up the choice point stack until
a goal of the form catch(Goal,Term,Handler) is found such that Term uni-
fies with ErrorTerm. In this case, Handler is called. If no catcher is found in the
main thread, the system looks for a clause of default_user_error_handler(Term)

such that Term unifies with ErrorTerm — if no such clause is found the default
system error handler is called. In a non-main joinable thread, the error term
is stored internally and the thread exits; in a detached thread, the thread exits
with no action taken. throw/1 is most useful in conjunction with specialized
handlers for new types of errors not already supported in XSB.

domain_error(+Valid_type,-Culprit,+Predicate,+Arg) module:
error_handler
Throws a domain error. Using the default system error handler (with the Prolog
flag backtrace_on_error set to off) an example is

domain_error(posInt,-1,checkPosInt/3,3).

++Error[XSB/Runtime/P]: [Domain (-1 not in domain posInt)] in arg 3 of predicate

checkPosInt/3

evaluation_error(+Flag,+Predicate,+Arg) module: error_handler
Throws an evaluation error. Using the default system error handler (with the
Prolog flag backtrace_on_error set to off) an example is

7C functions for throwing terms and ISO-style errors are described in Volume 2, Chapter 3 Foreign
Language Interface.



CHAPTER 12. EXCEPTION HANDLING 445

evaluation_error(zero_divisor,unidiv/1,2).

++Error[XSB/Runtime/P]: [Evaluation (zero_divisor)] in arg 2 of predicate unidiv/2

existence_error(+Object_type,?Culprit,+Predicate,+Arg) module:
error_handler
Throws an existence error. Using the default system error handler (with the
Prolog flag backtrace_on_error set to off) an example is

existence_error(file,’myfile.P’,’load_intensional_rules/2’,2).

++Error[XSB/Runtime/P]: [Existence (No file myfile.P exists)] in arg 2 of predicate

load_intensional_rules/2

instantiation_error(+Predicate,+Arg,+State) module: error_handler
Throws an instantiation error. Using the default system error handler, an ex-
ample (with the Prolog flag backtrace_on_error set to off) is

?- instantiation_error(foo/1,1,nonvar).

++Error[XSB/Runtime/P]: [Instantiation] in arg 1 of predicate foo/1: must be nonvar

permission_error(+Op,+Obj_type,?Culprit,+Predicate) module:
error_handler
Throws a permission error. Using the default system error handler, an example
(with the Prolog flag backtrace_on_error set to off) is

| ?- permission_error(write,file,’myfile.P’,foo/1).

++Error[XSB/Runtime/P]: [Permission (Operation) write on file: myfile.P] in foo/1

representation_error(+Flag,+Predicate,+Arg) module: error_handler
Throws a representation error. Using the default system error handler, an
example (with the Prolog flag backtrace_on_error set to off) is

representation_error(max_arity,assert/1,1).

++Error[XSB/Runtime/P]: [Representation (max_arity)] in arg 1 of predicate assert/1

resource_error(+Flag,+Predicate) module: error_handler
Throws a resource error. Using the default system error handler (with the
Prolog flag backtrace_on_error set to off) and example is

resource_error(open_files,open/3)

++Error[XSB/Runtime/P]: [Resource (open_files)] in predicate open/3
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type_error(+Valid_type,-Culprit,+Predicate,+Arg) module: error_handler
Throws a type error. Using the default system error handler, an example (with
the Prolog flag backtrace_on_error set to off) is

| ?- type_error(atom,f(1),foo/1,1).

++Error[XSB/Runtime/P]: [Type (f(1) in place of atom)] in arg 1 of predicate foo/1

misc_error(+Message) module: error_handler

Throws a miscellaneous error that will be caught by the default system handler
at the current break level. Usually, miscellaneous errors should only be thrown
when the cases above are not applicable, and the type of error is not of interest
for structured error handling. Such situations occur can occur for instance in
debugging, during program development. or for other reasons. Conceptually,
misc_error/1 differs from abort/0-1 only when called from a break level.

abort(+Message)

abort

Throws a type of miscellaneous error that will be caught by the default system
handler at the top level of the command-line intepreter (CLI), but not at the
current break level (if any). This type of exception can be useful, for instance if
a long-running query is interrupted by a ctrl-C, which suspends the query and
starts a new break level for XSB. If a regular error is thrown, it will be caught
by the CLI for the current break level, and so does not provide a way to abort
the top-level query. On the other hand, the exception thrown by abort/0-1

will only be caught by the top-level CLI.

12.3.2 Predicates used in Handling Errors

For best results, output for handling errors should be sent to XSB’s standard error
stream using the alias user_error or one of the predicates described below.

catch(?Goal,?CatchTerm,+Handler) ISO
Calls Goal, and sets up information so that future throws will be able to access
CatchTerm under the mechanism mentioned above. catch/3 does not attempt
to clean up system level resources with the exception of incomplete tables, which
are abolished as discussed in Section 12.1.2. However, it is left up to the handler
to close any open files, reset current input and output, and so on 8.

8cf. the default system error handler, which performs these functions, if needed.
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default_user_error_handler(?CatchTerm)

Handles any error terms that unify with CatchTerm that are not caught by
invocations of catch/3. This predicate closes open tables and release mutexes
held by the calling thread, but does not attempt to clean up other system level
resources, which is left to the handler.

error_write(?Message) module: standard
error_writeln(?Message) module: standard

Utility routines for user-defined error catching. These predicates output Message

to XSB’s STDERR stream, rather than to XSB’s STDOUT stream, as does write/1

and writeln/1. In addition, if Message is a comma list, the elements in the
comma list are output as if they were concatenated together. Each of these
predicates must be implicitly from the module standard.

xsb_error_get_message(Error,Message) module: error_handler

Obtains the message associated with an error in XSB’s standard format. All
errors in standard format have messages.

xsb_error_get_goal(Error,?Goal module: error_handler

Obtains the goal (represented as a Prolog term), if any, from an error term that
is in XSB’s standard format. If the error term has no goal, the predicate fails.

xsb_error_get_goalatom(Error,?GoalAtom module: error_handler

Obtains the goal (represented as a Prolog atom), if any, from an error term that
is in XSB’s standard format. If the error term has no goal, the predicate fails.
This routine is slightly more efficient than xsb_error_get_goal/2.

xsb_error_get_tid(Error,?Tid) module: error_handler

Obtains the atom ’th <tid>’ indicating the id of the thread that threw the
error. Thread Id information is only present when using the multi-threaded
version of XSB, and even in that version is not present in all error terms.

xsb_error_get_backtrace(+Error,-Backtrace) module: error_handler

Obtains the backtrace — the stack of the forward continuations in the execution
stack at the time the error was thrown. Backtraces are present by default in all
XSB system error terms, and are described in Section 12.5.

12.4 Convenience Predicates

The following convenience predicates are provided to make a commonly used check
and to throw an ISO error if the check is not satisfied; some are written directly in C
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for speed. All these predicates must be imported from the module error_handler,
which also contains provides a few other specialized checks.

check_acyclic(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is acyclic. If so, the predicate succeeds; if not it throws a
miscellaneous error.

check_atom(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is an atom. If so, the predicate succeeds; if not it throws a
type error.

check_callable(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is callable. If so, the predicate succeeds; if not it throws a
type error.

check_ground(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is ground. If so, the predicate succeeds; if not it throws an
instantiation error.

check_integer(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is an integer. If so, the predicate succeeds; if not it throws a
type error.

check_nonvar(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is not a variable. If not, the predicate succeeds; if Term is a
variable, it throws an instantiation error.

check_nonvar_list(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is a list, each of whose elements is ground. If so, the predicate
succeeds; if not it throws an instantiation error.

check_one_thread(+Operation,+Object_Type,+Predicate) module:
error_handler

In the multi-threaded engine, check_one_thread/3 checks that there is only one
active thread: if not, a miscellaneous error is thrown indicating that Operation

is not permitted on ObjectType as called by Predicate, when more than one
thread is active. This check provides a convenient way to allow inclusion of
certain operations that are difficult to make thread-safe by other means.

In the single-threaded engine this predicate always succeeds.
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check_stream(?Stream,+Predicate,+Arg) module: error_handler

Checks that Stream is a stream. If so, the predicate succeeds; if not it throws
an instantiation error 9.

check_var(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is a variable. If so, the predicate succeeds; if not it throws an
instantiation error.

12.5 Backtraces

Displaying a backtrace of the calling context of an error in addition to an error
message can greatly expedite debugging. For XSB’s default error handler, backtraces
are printed out by default, a behavior that can be overridden for a given thread by the
command: set_prolog_flag(backtrace_on_error,off). For users who write their
own error handlers, the following predicates can be used to manipulate backtraces.

It is important to note that Prolog backtraces differ in a significant manner from
backtraces obtained from other languages, such as C backtraces produced by GDB.
This is because a Prolog backtrace obtains forward continuations from the local en-
vironment stack, and in the WAM, local stack frames are only created when a given
clause requires permanent variables – otherwise these stack frames are optimized
away. The precise conditions for optimizing away a local stack frame require an un-
derstanding of the WAM (and of a specific compiler). However in general, longer
clauses with many variables require a local stack frame and their forward continua-
tions will be displayed, while shorter clauses with fewer variables do not and their
forward continuations will not be displayed.

xsb_backtrace(-Backtrace) module: machine

Upon success Backtrace is bound to a structure indicating the forward contin-
uations for a point of execution. This structure should be treated as opaque,
and manipulated by one of the predicates below.

get_backtrace_list(+Backtrace,-PredicateList) module: error_handler

Given a backtrace structure, this predicate produces a list of predicate identifiers
or the form Module:Predicate/Arity. This list can be manipulated as desired
by error handling routines.

9The representation of streams in XSB is subject to change.
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print_backtrace(+Backtrace) module: error_handler

This predicate, which is used by XSB’s default error handler, prints a backtrace
structure to XSB’s standard error stream.

When XSB generates a memory exception at the OS level (e.g., a segmentation
violation or bus error) it prints out a backtrace and exits. This should be caused
only by a bug in XSB or included C code. The first predicate in the backtrace that
is printed in these circumstances may be incorrect or redundant. This is because
the memory structures used to generate the backtrace are not always completely
consistent, and so an interrupt at an unexpected point may result in the use of
somewhat inconsistent information.



Chapter 13

Foreign Language Interface

When XSB is used to build real-world systems, a foreign-language interface may be
necessary to:

• combine XSB with existing programs and libraries, thereby forming composite
systems;

• interface XSB with the operating system, graphical user interfaces or other
system level programs;

• speed up certain critical operations.

XSB has both a high-level and the low-level interface to C. The low-level interface
is much more flexible, but it requires greater attention to details of how the data is
passed between XSB and C. To connect XSB to a C program using the high-level
interface requires very little work, but the program must be used “as is” and it must
take the input and produce the output supported by this high-level interface. Before
describing the interfaces themselves, we first describe aspects common to both the
lower- and higher-level foreign language interfaces.

The foreign language interface can also support C++ programs. Since XSB is writ-
ten in C, the interface functions in the foreign C++ module must have the declaration
extern “C”, and a separate compiler option (e.g. specifying g++ rather than gcc)
may need to be given to ensure proper linkage, inclusion of C++ libraries, etc. In
addition, on certain platforms compilation may need to be done externally to XSB
– see the xasp 1package for a example of using the foreign language interface with
C++ files. For the rest of this chapter, we restrict our attention to foreign predicates
written in C.

451
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13.1 Foreign Language Modules

Foreign predicates must always appear in modules, and these modules can contain
only foreign predicates. A foreign module differs from a Prolog module in that the
foreign module’s source file must appear in a *.c file rather than a *.P file (or .pl

file). This *.c file cannot contain a main() function. Furthermore, a *.P file with
the same name must not be present or else the *.c file is ignored and the module is
compiled as a regular Prolog module. The interface part of a foreign module, which
has the same syntax as that of a normal module, is written in Prolog and must appear
in a *.H file. If the lower-level interface is used, this *.H file contains explicit export/1

declarations for the the foreign predicates that are to be used by other modules; if
the higher-level interface is used, the declarations have the form foreign_pred/1.

The Prolog predicates attached to foreign functions are deterministic, in the sense
that they succeed at most once for a given call and are not re-entered on backtracking.
Note that this requirement imposes no serious limitation, since it is always possible
to divide a foreign predicate into the part to be done on the first call and the part
to be redone on backtracking. Backtracking can then take place at the Prolog level
where it is more naturally expressed.

A foreign module can be compiled or consulted just like a normal Prolog module.
Currently, predicates consult/[1,2] recompile both the *.c and the *.H files of
a foreign module when at least one of them has been changed from the time the
corresponding object files have been created (see the section Compiling and Consulting
in Volume 1) 1. The C compiler used to compile the *.c files can be set as a defaults
to that used for the configuration of XSB (refer to the section Getting Started with
XSB in Volume 1). This default behavior includes the C compilation options used to
compile XSB when it was configured, along with a default set of include files so that
header files in XSB directories can be obtained. Alternately, the user can add options
to be passed to the C compiler. To give an example, the following command will
compile file file.c using the default C Compiler with optimization and by including
/usr/local/X11/R6/include to the directories that will be searched for header files.

:- consult(file, [cc_opts(’-O2 -I/usr/local/X11/R6/include’)]).

Note in particular, that if XSB were compiled with the -g debugging option, then
the C file will be also 2. Any Prolog compiler options are ignored when compiling a
foreign module.

1In addition, if a C module compiled by the single-threaded XSB engine is loaded by the multi-
threaded engine, it will be recompiled, and vice-versa.

2 In a 64-bit platform, users may override the default compilation of XSB by the configuration
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Prolog-specific directives such as index, hilog, table, auto_table or even import

make no sense in the case of a foreign module and thus are ignored by the compiler.
However, another directive, namely ldoption, is recognized in a foreign module and
is used to instruct the dynamic loading and linking of the module. The syntax of the
ldoption directive is simply:

:- ldoption(Option).

where Option should either be an atom or a list of atoms. Multiple ldoption direc-
tives may appear in the same .H file of a foreign module 3. In Unix-derived systems,
the foreign language interface of XSB uses ld command that combines object pro-
grams to create an executable file or another object program suitable for further ld

processing. Version 3.8 of XSB assumes that the ld command resides in the file
/usr/bin/ld.

13.2 Lower-Level Foreign Language Interface

Creating a foreign predicate using the lower-level foreign language interface is almost
entirely a matter of writing C code. Consider the foreign module $XSBDIR/examples/XSB_calling_c/simple_foreign.[cH]

The .H file has the form:

:- export minus_one/2, my_sqrt/2, change_char/4.

:- ldoption(’-lm’). % link together with the math library

When the lower level foreign language interface is used, C functions that imple-
ment foreign predicates must return values of type int. The return value is not used
by a Prolog argument; rather if a non-zero is returned, the foreign predicate succeeds;
a zero return value means failure.

options -with-bits32 or -with-bits64. If either of these options is used, the default compilation
options will pass along the appropriate memory options. If XSB is compiled with a memory option
that is not the default of the platform, and if an externally compiled C file is to be loaded into XSB,
it must be ensured that the C file has been compiled with the appropriate memory options: -m32

or -m64 if gcc is used.
3Mac OSX users using 10.3 or above should have the environment variable

MACOSX_DEPLOYMENT_TARGET set to 10.3 so that the compiler generates code that can be
dynamically linked by XSB. This should be done automatically by XSB on initialization, but it is
useful to check if encountering problems.
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At the C level, the function that implements the Prolog predicate must have the
same name as the Prolog predicate (that is declared in the *.H file), and must have a
special context parameter macro. The context parameter macro allows C functions to
be used with both the single-threaded and multi-threaded engines, and are described
in detail in Section 13.2.1. The Prolog level arguments are converted to C data
structures through several predefined functions rather than through direct parameter
passing 4. The C file simple_foreign.c corresponding to the above .H file is as
follows.

/*----------------------------------------------------------------------*/

#include <math.h>

#include <stdio.h>

#include <string.h>

#include <alloca.h>

/*----- Make sure your C compiler finds the following header file. -----

----- One way to do this is to include the directory XSB/emu on the -----

----- compiler’s command line with the -I (/I in Windows) option -----*/

#include "cinterf.h"

/*-----------------------------------------*/

int minus_one(CTXTdecl)

{

int i = ptoc_int(CTXTc 1);

ctop_int(CTXTc 2, i-1);

return TRUE;

}

/*-----------------------------------------*/

int my_sqrt(CTXTdecl)

{

int i = ptoc_int(CTXTc 1);

4The inclusion of context parameters changes the lower-level interface for Version 3.0. C files
written for previous versions of XSB continue to work properly for the single-threaded engine in,
but will not work properly for the multi-threaded engine.
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ctop_float(CTXTc 2, (float) pow((double)i, 0.5));

return TRUE;

}

/*-----------------------------------------*/

int change_char(CTXTdecl)

{

char *str_in;

int pos;

int c;

char *str_out;

str_in = (char *) ptoc_string(CTXTc 1);

str_out = (char *) alloca(strlen(str_in)+1);

strcpy(str_out, str_in);

pos = ptoc_int(CTXTc (2);

c = ptoc_int(CTXTc (3);

if (c < 0 || c > 255) /* not a character */

return FALSE; /* this predicate will fail on the Prolog side */

str_out[pos-1] = c;

extern_ctop_string(CTXTc 4, str_out);

return TRUE;

}

/*----------------------------------------------------------------------*/

Before describing the C program used, here is a sample session illustrating the
behavior of the predicates in simple_foreign.

XSB Version 2.0 (Gouden Carolus) of June 26, 1999

[i686-pc-linux-gnu; mode: optimal; engine: slg-wam; scheduling: batched]

| ?- [simple_foreign].

[Compiling C file ./simple_foreign.c using gcc]

[Compiling Foreign Module ./simple_foreign]

[simple_foreign compiled, cpu time used: 0.0099993 seconds]

[simple_foreign loaded]

yes

| ?- change_char(’Kostis’, 2, w, TempStr),
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change_char(TempStr, 5, h, GrkName).

TempStr = Kwstis

GrkName = Kwsths;

no

| ?- minus_one(43, X).

X = 42;

no

| ?- minus_one(43, 42). % No output unification is allowed

Wrong arg in ctop_int 2a2 (Reg = 2)

yes

| ?- my_sqrt(4,X).

X = 2

yes

| ?- my_sqrt(23,X).

X = 4.7958;

no

Consider the function minus_one() above. As discussed, it takes a context param-
eter (explained below), and returns an integer, and as can be seen the return values
can be specified by the macros TRUE and FALSE. From the Prolog perspective the first
argument to minus_one/2 is an (integer) input argument, while the second is an (in-
teger) output argument. Input arguments for basic C types are translated from their
Prolog representation to a C representation by functions of the form ptoc\_<type>()

– here ctop_int(). The single parameter of such a function is the number of the Pro-
log argument that is to be transformed and the function returns the C representation.
Output arguments are converted from C to Prolog by corresponding functions of the
form ctop_<type>() – here ctop_int(). For converting C back to Prolog, the first
parameter of ctop_int() is the number of the Prolog argument to be transformed
and the second is the C value to be transformed. In the session output above, if an
improper argument is given to minus_one/2 it will emit a warning, and succeed. Also
note that the call my_sqrt(23,X) succeeds once, but fails on backtracking since it is
deterministic, as are all other foreign language functions.
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The above example illustrates the exchange of basic types through the lower-level
interface – e.g. atoms, integers, and floating-point numbers. The lower-level interface
also allows a user to pass lists and terms between XSB and C as will be discussed in
Section 13.2.3.

13.2.1 Context Parameters

When using the lower-level interface, context parameters must be added to many C
functions in order for the functions to be used with XSB’s multi-threaded engine.
In the multi-threaded engine, variables for Prolog’s virtual machine, as well as for
thread-private data structures are stored in a context structure. This context structure
must be passed to any functions that need to access elements of a thread’s virtual
machine – including many of the functions that are used to exchange data between
Prolog and C. We note in passing that when using the multi-threaded engine, a
user must ensure that foreign-language functions are thread-safe, by using standard
multi-threaded programming techniques, including XSB’s mutex predicates (see the
Section Predicates for Thread Synchronization in Volume 1 of this manual). On the
other hand, in the single-threaded engine virtual machine elements are kept in static
variables, so that context parameters are not required.

The lower-level C interface makes use of a set of macros to address the require-
ments of the different engines. The data exchange functions discussed in this chapter,
ptoc_xxx, ctop_xxx, c2p_xxx, p2c_xxx, and p2p_xxx usually, but not always, re-
quire information about a threads virtual machine state. If a C function directly
or indirectly calls a data interchange function that requires a context parameter, the
function must have a context parameter in its declaration, calls, and prototypes in
order to be used by the multi-threaded engine. These context parameters have the
following forms:

• In function declarations, use the macro CTXTdecl in the code for a function
that would otherwise be void, and CTXTdeclc as the first argument in the code
for a function with parameters (CTXTdeclc and CTXTdecl are similar, except
that macro expansion of CTXTdeclc for the multi-threaded engine includes a
comma). The example for minus_one(CTXTdecl) shows use of this macro.

• In function calls use the macro CTXT in the code for a function that would
otherwise be void, and CTXTc as the first argument in the code for a function
with parameters. As an example, a call to minus_one would have the form
minus_one(CTXT).
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• In function prototypes use the macro CTXTdecltype in the code for a function
that would otherwise be void, and CTXTdecltypec as the first argument in the
code for a function with parameters. As an example, a prototype for minus_one

would have the form minus_one(CTXTdecltype).

Fortunately, when compiling with the multi-threaded engine, it is easy to deter-
mine at compile time whether context parameters are correct. If compilation of a
function foo gives an error along the lines of:

foofile.c: In function ‘foo’:

foofile.c:109: error: ‘th’ undeclared (first use in this function)

Then the declaration of foo omitted a context parameter. If compilation gives an
error along the lines of

foofile.c: In function ‘foo_caller’:

:

foofile.c:149: error: too few arguments to function ‘foo’

Then the call to foo may have omitted a context parameter.

Note that context parameters are only necessary if the lower-level interface is used.
The higher-level interface automatically generates any context parameters it needs.

13.2.2 Exchanging Basic Data Types

The basic interface assumes that correct modes (i.e., input or output parameters) and
types are being passed between the C and Prolog levels. As a result, output unification
should be explicitly performed in the Prolog level. The prototypes for the conversion
functions between Prolog and C should be declared before the corresponding functions
are used. This is done by including the "cinterf.h" header file. Under Unix, the
XSB foreign C interface automatically finds this file in the XSB/emu directory. Under
Windows, the user must compile and create the DLL out of the C file manually, so
the compiler option ‘/I...\XSB\emu’ is necessary.5

The following C functions are used to convert basic types between Prolog and C.

int ptoc_int(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corre-
sponding to the Nth argument of a Prolog predicate. This function returns the
value of that argument in as a C int.

5The foreign interface does not Cygwin.
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double ptoc_float(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corre-
sponding to the Nth argument of a Prolog predicate. This function returns the
value of that argument as a C double. By default, XSB provides double pre-
cision, but if XSB was configured with –enable-fast-floats less than single
precision can be provided 6.

char *ptoc_string(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corre-
sponding to the Nth argument of a Prolog predicate. This function returns the
value the C string (of type char *) that corresponds to this interned Prolog
atom. WARNING: the string should be copied before being manipulated in any
way: otherwise unexpected results may arise whenever the interned Prolog atom
is unified.

void ctop_int(CTXTdeclc int N, int V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free
variable, and this function binds that variable to an integer of value V.

void ctop_float(CTXTdeclc int N, float V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free
variable, and this function binds that variable to a floating point number of
value V.

void extern_ctop_string(CTXTdeclc int N, char * V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free
variable. If needed, this function interns the string to which V points as a Prolog
atom and then binds the variable in argument N to that atom.

13.2.3 Exchanging Complex Data Types

If the lower-level interface is used, exchanging basic data types is sufficient for most
applications. Exchanging complex data types is also possible, although doing so is
slightly more involved than exchanging basic types. To exchange complex data types,
the lower-level interface uses only one C data type: prolog_term, which can point
to any XSB term. On the C side, the type of the term can be checked and then

6The fast float configuration option does represents floating point values as directly tagged single
precision values rather than as indirectly tagged double precision values. Speed increases in arith-
metic can be gained from this optimization, in exchange for significant precision loss on floating
point numbers.
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processed accordingly. For instance, if the term turns out to be a structure, then it
can be decomposed and the functor can be extracted along with the arguments. If
the term happens to be a list, then it can be processed in a loop and each list member
can be further decomposed into its atomic components. The advanced interface also
provides functions to check the types of these atomic components and for converting
them into C types.

We begin by presenting the functions used to exchange complex data types, before
presenting a detailed example below. As when exchanging basic C types, the file
emu/cinterf.h must be included in the C program in order to make the prototypes
of the relevant functions known to the C compiler.

The first set of functions is typically used to check the type of Prolog terms passed
into the C program.

xsbBool is_attv((prolog_term) T) C function
is_attv(T) returns TRUE if T represents an XSB attributed variable, and FALSE

otherwise.

xsbBool is_float((prolog_term) T) C function
is_float(T) returns TRUE if T represents an XSB float value, and FALSE oth-
erwise.

xsbBool is_functor((prolog_term) T) C function
is_functor(T) returns TRUE if T represents an XSB structure value (not a list),
and FALSE otherwise.

xsbBool is_int((prolog_term) T) C function
is_int(T) returns TRUE if T represents an XSB integer value, and FALSE oth-
erwise.

xsbBool is_list((prolog_term) T) C function
is_list(T) returns TRUE if T represents an XSB list value (not nil), and FALSE

otherwise.

xsbBool is_nil((prolog_term) T) C function
is_nil(T) returns TRUE if T represents an XSB [] (nil) value, and FALSE oth-
erwise.

xsbBool is_string((prolog_term) T) C function
is_string(T) returns TRUE if T represents an XSB atom value, and FALSE

otherwise.
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xsbBool is_var((prolog_term) T) C function
is_var(T) returns TRUE if T represents an XSB variable, and FALSE otherwise.

After checking the types of the arguments passed in from the Prolog side, the next
task usually is to convert Prolog data into the types understood by C. This is done
with the following functions. The first three convert between the basic types. The
last two extract the functor name and the arity. Extraction of the components of a
list and the arguments of a structured term is explained later.

int p2c_int((prolog_term) V) C function
The prolog_term parameter must represent a Prolog integer, and p2c_int

returns the C representation of that integer.

double p2c_float((prolog_term) V) C function
The prolog_term parameter must represent a Prolog floating point number,
and p2c_float returns the C representation of that floating point number.

char *p2c_string((prolog_term) V) C function
The prolog_term parameter must represent a (Prolog) atom, and p2c_string

returns that atom as a C string. The pointer returned points to the actual atom
name in XSB ’s atom table, and thus it must NOT be modified by the calling
program.

char *p2c_functor((prolog_term) V) C function
The prolog_term parameter must represent a structured term (not a list).
p2c_functor returns the name of the main functor symbol of that term as a
string. The pointer returned points to the actual functor name in XSB ’s space,
and thus it must NOT be modified by the calling program.

int p2c_arity((prolog_term) V) C function
The prolog_term parameter must represent a structured term (not a list).
p2c_arity returns the arity of the main functor symbol of that term as a C
int.

The next batch of functions support conversion of data in the opposite direction:
from basic C types to the type prolog_term. These c2p_* functions all return a
boolean value TRUE if successful and FALSE if unsuccessful. The XSB term argument
must always contain an XSB variable, which will be bound to the indicated value as
a side effect of the function call.
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xsbBool c2p_int(CTXTdeclc (int) N, (prolog_term) V) C function
CTXTdeclc is a context parameter; c2p_int binds the prolog_term V (which
must be a variable) to the integer value N, creating a Prolog integer.

xsbBool c2p_float(CTXTdeclc (double) F, (prolog_term) V) C function
CTXTdeclc is a context parameter; c2p_float binds the prolog_term V (which
must be a variable) to the (double) float value F, creating a double Prolog float.

xsbBool c2p_string(CTXTdeclc (char *) S, (prolog_term) V) C function
CTXTdeclc is a context parameter; c2p_string binds the prolog_term V (which
must be a variable) to the Prolog atom corresponding to the char *S. During
this process the Prolog atom is interned into XSB’s atom table.

The following functions create Prolog data structures within a C program. This
is usually done in order to pass these structures back to the Prolog side.

xsbBool c2p_functor(CTXTdeclc (char *) S, (int) N, (prolog_term) V) C function
CTXTdeclc is a context parameter; c2p_functor binds the prolog_term V

(which must be a variable) to an open term whose main functor symbol is
given by S (of type char *) and whose arity is N. An open term is one with all
arguments as new distinct variables.

xsbBool c2p_list(CTXTdeclc (prolog_term) V) C function
CTXTdeclc is a context parameter; c2p_list binds the prolog_term V (which
must be a variable) to an open list term, i.e., a list term with both car and
cdr as new distinct variables. Note: to create an empty list use the function
c2p_nil described below.

xsbBool c2p_nil(CTXTdeclc (prolog_term) V) C function
CTXTdeclc is a context parameter; c2p_nil binds the prolog_term V (which
must be a variable) to the atom [] (nil).

prolog_term p2p_new() C function
Create a new Prolog variable. This is sometimes needed when you want to
create a Prolog term on the C side and pass it to the Prolog side.

To use the above functions, one must be able to get access to the components of
the structured Prolog terms. This is done with the help of the following functions:

prolog_term p2p_arg((prolog_term) T, (int) A) C function
Parameter T must be a prolog_term that is a structured term (but not a list).
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A is a positive integer (no larger than the arity of the term) that specifies an
argument position of the term T. p2p_arg returns the Ath subfield of the term
T.

prolog_term p2p_car((prolog_term) T) C function
Parameter T must be a prolog_term that is a list (not nil). p2p_car returns
the car (i.e., head of the list) of the term T.

prolog_term p2p_cdr((prolog_term) T) C function
Parameter T must be a prolog_term that is a list (not nil). p2p_cdr returns
the cdr (i.e., tail of the list) of the term T.

It is important to realize that these functions return the actual Prolog term that
is, say, the head of a list or the actual argument of a structured term. Thus, assigning
a value to such a Prolog term also modifies the head of the corresponding list or the
relevant argument of the structured term. It is precisely this feature that allows
passing structured terms and lists from the C side to the Prolog side. For instance,

prolog_term plist, /* a Prolog list */

structure; /* something like f(a,b,c) */

prolog_term tail, arg;

..........

tail = p2p_cdr(plist); /* get the list tail */

arg = p2p_arg(structure, 2); /* get the second arg */

/* Assume that the list tail was supposed to be a prolog variable */

if (is_var(tail))

c2p_nil(CTXTc tail); /* terminate the list */

else {

fprintf(stderr, "Something wrong with the list tail!");

exit(1);

}

/* Assume that the argument was supposed to be a prolog variable */

c2p_string(CTXTc "abcdef", arg);

In the above program fragment, we assume that both the tail of the list and the
second argument of the term were supposed to be bound to Prolog variables. In case
of the tail, we check if this is, indeed, the case. In case of the argument, no checks
are done; XSB will issue an error (which might be hard to track down) if the second
argument is not currently bound to a variable.
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The last batch of functions is useful for passing data in and out of the Prolog side
of XSB. The first function is the only way to get a prolog_term out of the Prolog
side; the second function is sometimes needed in order to pass complex structures
from C into Prolog.

prolog_term reg_term(CTXTdeclc (int) R) C function
CTXTdeclc is a context parameter. Parameter R is an argument number of the
Prolog predicate implemented by this C function (range 1 to 255). The function
reg_term returns the prolog_term in that predicate argument.

xsbBool p2p_unify(CTXTdeclc prolog_term T1, prolog_term T2) C function
Unify the two Prolog terms. This is useful when an argument of the Prolog
predicate (implemented in C) is a structured term or a list, which acts both as
input and output parameter. CTXTdeclc is a context parameter.

For instance, consider the Prolog call test(X, f(Z)), which is implemented by a
C function with the following fragment:

prolog_term newterm, newvar, z_var, arg2;

.....

/* process argument 1 */

c2p_functor(CTXTc "func",1,reg_term(CTXTc 1));

c2p_string(CTXTc "str",p2p_arg(reg_term(CTXTc 1),1));

/* process argument 2 */

arg2 = reg_term(CTXTc 2);

z_var = p2p_arg(arg2, 1); /* get the var Z */

/* bind newterm to abc(V), where V is a new var */

c2p_functor(CTXTc "abc", 1, newterm);

newvar = p2p_arg(newterm, 1);

newvar = p2p_new();

....

/* return TRUE (success), if unify; FALSE (failure) otherwise */

return p2p_unify(CTXTc z_var, newterm);

On exit, the variable X will be bound to the term func(str). Processing argument
2 is more interesting. Here, argument 2 is used both for input and output. If test is
called as above, then on exit Z will be bound to abc(_h123), where _h123 is some
new Prolog variable. But if the call is test(X,f(1)) or test(X,f(Z,V)) then this
call will fail (fail as in Prolog, i.e., it is not an error), because the term passed back,
abc(_h123), does not unify with f(1) or f(Z,V). This effect is achieved by the use
of p2p_unify above.
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We conclude this section with two real examples of functions that pass complex
data in and out of the Prolog side of XSB. These functions are part of the POSIX
regular expression matching package of XSB. The first function uses argument 2 to
accept a list of complex Prolog terms from the Prolog side and does the processing
on the C side. The second function does the opposite: it constructs a list of complex
Prolog terms on the C side and passes it over to the Prolog side in argument 5.

(We should note that this second function could cause a heap overflow in XSB
were it to build a large list of values. Instead of building a large list of values on the
XSB heap, one would better design the functions to return smaller values, in which
case XSB will be able to automatically expand the heap as necessary.)

/* XSB string substitution entry point: replace substrings specified in Arg2

with strings in Arg3.

In:

Arg1: string

Arg2: substring specification, a list [s(B1,E1),s(B2,E2),...]

Arg3: list of replacement string

Out:

Arg4: new (output) string

Always succeeds, unless error.

*/

int do_regsubstitute__(CTXTdecl)

{

/* Prolog args are first assigned to these, so we could examine the types

of these objects to determine if we got strings or atoms. */

prolog_term input_term, output_term;

prolog_term subst_reg_term, subst_spec_list_term, subst_spec_list_term1;

prolog_term subst_str_term=(prolog_term)0,

subst_str_list_term, subst_str_list_term1;

char *input_string=NULL; /* string where matches are to be found */

char *subst_string=NULL;

prolog_term beg_term, end_term;

int beg_offset=0, end_offset=0, input_len;

int last_pos = 0; /* last scanned pos in input string */

/* the output buffer is made large enough to include the input string and the

substitution string. */

char subst_buf[MAXBUFSIZE];

char *output_ptr;

int conversion_required=FALSE; /* from C string to Prolog char list */

input_term = reg_term(CTXTc 1); /* Arg1: string to find matches in */
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if (is_string(input_term)) /* check it */

input_string = string_val(input_term);

else if (is_list(input_term)) {

input_string =

p_charlist_to_c_string(input_term, input_buffer, sizeof(input_buffer),

"RE_SUBSTITUTE", "input string");

conversion_required = TRUE;

} else

xsb_abort("RE_SUBSTITUTE: Arg 1 (the input string) must be an atom or a character list");

input_len = strlen(input_string);

/* arg 2: substring specification */

subst_spec_list_term = reg_term(CTXTc 2);

if (!is_list(subst_spec_list_term) && !is_nil(subst_spec_list_term))

xsb_abort("RE_SUBSTITUTE: Arg 2 must be a list [s(B1,E1),s(B2,E2),...]");

/* handle substitution string */

subst_str_list_term = reg_term(CTXTc 3);

if (! is_list(subst_str_list_term))

xsb_abort("RE_SUBSTITUTE: Arg 3 must be a list of strings");

output_term = reg_term(CTXTc 4);

if (! is_var(output_term))

xsb_abort("RE_SUBSTITUTE: Arg 4 (the output) must be an unbound variable");

subst_spec_list_term1 = subst_spec_list_term;

subst_str_list_term1 = subst_str_list_term;

if (is_nil(subst_spec_list_term1)) {

strncpy(output_buffer, input_string, sizeof(output_buffer));

goto EXIT;

}

if (is_nil(subst_str_list_term1))

xsb_abort("RE_SUBSTITUTE: Arg 3 must not be an empty list");

/* initialize output buf */

output_ptr = output_buffer;

do {

subst_reg_term = p2p_car(subst_spec_list_term1);

subst_spec_list_term1 = p2p_cdr(subst_spec_list_term1);
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if (!is_nil(subst_str_list_term1)) {

subst_str_term = p2p_car(subst_str_list_term1);

subst_str_list_term1 = p2p_cdr(subst_str_list_term1);

if (is_string(subst_str_term)) {

subst_string = string_val(subst_str_term);

} else if (is_list(subst_str_term)) {

subst_string =

p_charlist_to_c_string(subst_str_term, subst_buf, sizeof(subst_buf),

"RE_SUBSTITUTE", "substitution string");

} else

xsb_abort("RE_SUBSTITUTE: Arg 3 must be a list of strings");

}

beg_term = p2p_arg(subst_reg_term,1);

end_term = p2p_arg(subst_reg_term,2);

if (!is_int(beg_term) || !is_int(end_term))

xsb_abort("RE_SUBSTITUTE: Non-integer in Arg 2");

else{

beg_offset = int_val(beg_term);

end_offset = int_val(end_term);

}

/* -1 means end of string */

if (end_offset < 0)

end_offset = input_len;

if ((end_offset < beg_offset) || (beg_offset < last_pos))

xsb_abort("RE_SUBSTITUTE: Substitution regions in Arg 2 not sorted");

/* do the actual replacement */

strncpy(output_ptr, input_string + last_pos, beg_offset - last_pos);

output_ptr = output_ptr + beg_offset - last_pos;

if (sizeof(output_buffer)

> (output_ptr - output_buffer + strlen(subst_string)))

strcpy(output_ptr, subst_string);

else

xsb_abort("RE_SUBSTITUTE: Substitution result size %d > maximum %d",

beg_offset + strlen(subst_string),

sizeof(output_buffer));

last_pos = end_offset;
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output_ptr = output_ptr + strlen(subst_string);

} while (!is_nil(subst_spec_list_term1));

if (sizeof(output_buffer) > (output_ptr-output_buffer+input_len-end_offset))

strcat(output_ptr, input_string+end_offset);

EXIT:

/* get result out */

if (conversion_required)

c_string_to_p_charlist(output_buffer,output_term,"RE_SUBSTITUTE","Arg 4");

else

/* DO NOT intern. When atom table garbage collection is in place, then

replace the instruction with this:

c2p_string(CTXTc output_buffer, output_term);

The reason for not interning is that in Web page

manipulation it is often necessary to process the same string many

times. This can cause atom table overflow. Not interning allows us to

circumvent the problem. */

extern_ctop_string(CTXTc 4, output_buffer);

return(TRUE);

}

/* XSB regular expression matcher entry point

In:

Arg1: regexp

Arg2: string

Arg3: offset

Arg4: ignorecase

Out:

Arg5: list of the form [match(bo0,eo0), match(bo1,eo1),...]

where bo*,eo* specify the beginning and ending offsets of the

matched substrings.

All matched substrings are returned. Parenthesized expressions are

ignored.

*/

int do_bulkmatch__(CTXTdecl)

{

prolog_term listHead, listTail;

/* Prolog args are first assigned to these, so we could examine the types
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of these objects to determine if we got strings or atoms. */

prolog_term regexp_term, input_term, offset_term;

prolog_term output_term = p2p_new();

char *regexp_ptr=NULL; /* regular expression ptr */

char *input_string=NULL; /* string where matches are to be found */

int ignorecase=FALSE;

int return_code, paren_number, offset;

regmatch_t *match_array;

int last_pos=0, input_len;

char regexp_buffer[MAXBUFSIZE];

if (first_call)

initialize_regexp_tbl();

regexp_term = reg_term(CTXTc 1); /* Arg1: regexp */

if (is_string(regexp_term)) /* check it */

regexp_ptr = string_val(regexp_term);

else if (is_list(regexp_term))

regexp_ptr =

p_charlist_to_c_string(regexp_term, regexp_buffer, sizeof(regexp_buffer),

"RE_MATCH", "regular expression");

else

xsb_abort("RE_MATCH: Arg 1 (the regular expression) must be an atom or a character list");

input_term = reg_term(CTXTc 2); /* Arg2: string to find matches in */

if (is_string(input_term)) /* check it */

input_string = string_val(input_term);

else if (is_list(input_term)) {

input_string =

p_charlist_to_c_string(input_term, input_buffer, sizeof(input_buffer),

"RE_MATCH", "input string");

} else

xsb_abort("RE_MATCH: Arg 2 (the input string) must be an atom or a character list");

input_len = strlen(input_string);

offset_term = reg_term(CTXTc 3); /* arg3: offset within the string */

if (! is_int(offset_term))

xsb_abort("RE_MATCH: Arg 3 (the offset) must be an integer");

offset = int_val(offset_term);

if (offset < 0 || offset > input_len)

xsb_abort("RE_MATCH: Arg 3 (=%d) must be between 0 and %d", input_len);
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/* If arg 4 is bound to anything, then consider this as ignore case flag */

if (! is_var(reg_term(CTXTc 4)))

ignorecase = TRUE;

last_pos = offset;

/* returned result */

listTail = output_term;

while (last_pos < input_len) {

c2p_list(CTXTc listTail); /* make it into a list */

listHead = p2p_car(listTail); /* get head of the list */

return_code = xsb_re_match(regexp_ptr, input_string+last_pos, ignorecase,

&match_array, &paren_number);

/* exit on no match */

if (! return_code) break;

/* bind i-th match to listHead as match(beg,end) */

c2p_functor(CTXTc "match", 2, listHead);

c2p_int(CTXTc match_array[0].rm_so+last_pos, p2p_arg(listHead,1));

c2p_int(CTXTc match_array[0].rm_eo+last_pos, p2p_arg(listHead,2));

listTail = p2p_cdr(listTail);

last_pos = match_array[0].rm_eo+last_pos;

}

c2p_nil(CTXTc listTail); /* bind tail to nil */

return p2p_unify(CTXTc output_term, reg_term(CTXTc 5));

}

13.3 Foreign Modules That Call XSB Predicates

A C function that has been called from XSB through the lower-level foreign language
interface may want to call back into XSB to have XSB evaluate a predicate. This
can be done by using the interface described in Chapter 3 (Volume 2) on calling XSB
from another language. The interface described there allows a caller to initialize XSB
and pass queries to it. However, since XSB has already called a foreign module, XSB
does not need to be initialized. However it does need to manage the registers that are
in use to support interaction with the foreign module currently executing. So there
are some minor differences with the interface described in Chapter 3.

First, XSB should not be initialized. I.e., a foreign module should not call
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xsb_init or xsb_init_string. Second, the foreign module must protect the XSB
registers it is currently using when it calls XSB. To do this, after it has retrieved
its arguments into local variables and before it calls any XSB predicate, it must call
xsb_query_save(NumRegs), which saves the current XSB registers and initializes
them to be able to accept a new query. NumRegs is the number of registers used to
interact with the currently executing foreign routine (i.e., the arity of the predicate
that called this foreign code.) When the foreign routine has completed its work, it
will set the appropriate registers with the appropriate return values and return to the
caller. Before it does this, it must call xsb_query_restore() to restore the saved
registers and prepare XSB for the return. Note that it must be called before any of
the output registers are accessed to set return values. (It must also be called even if
no values are returned.)

In summary the extra functions needed to call XSB from a foreign module are:

int xsb_query_save(CTXTc (byte) NumRegs) C function
This function is used in a foreign routine that is called from XSB. It is used
to save the current contents of the XSB registers and to initialize them to be
prepared to accept a query. It must be called after a foreign routine collects
its input arguments from the XSB registers and before it invokes any XSB
predicate.

int xsb_query_restore(CTXT) C function
This function is used in a foreign routine that is called from XSB and in turn
calls an XSB predicate. It is used to restore the previously saved contents of
the XSB registers. It must be called after all XSB predicates have been called
and returned, and before the current foreign routine sets its output parameters
and returns to XSB.

An example where a foreign module and XSB call each other recursively can be
found in the directory $XSB_DIR/examples/XSB_calling_c and files fibr.[cH] and
fibp.P.

13.4 Foreign Modules That Link Dynamically with

Other Libraries

Sometimes a foreign module might have to link dynamically with other (non-XSB)
libraries. Typically, this happens when the foreign module implements an interface
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to a large external library of utilities. One example of this is the package libwww

in the XSB distribution, which provides a high-level interface to the W3C’s Libwww
library for accessing the Web. The library is compiled into a set of shared objects
and the libwww module has to link with them as well as with XSB.

The problem here is that the loader must know at run time where to look for the
shared objects to link with. On Unix systems, this is specified using the environment
variable LD_LIBRARY_PATH; on Windows, the variable name is LIBPATH. For instance,
under Bourne shell or its derivatives, the following will do:

LD_LIBRARY_PATH=dir1:dir2:dir3

export LD_LIBRARY_PATH

One problem with this approach is that this variable must be set before starting XSB.
The other problem is that such a global setting might interact with other foreign
modules.

To alleviate the problem, XSB dynamically sets LD_LIBRARY_PATH (LIBPATH on
Windows) before loading foreign modules by adding the directories specified in the -L

option in ldoption. Unfortunately, this works on some systems (Linux), but not on
others (Solaris). One route around this difficulty is to build a runtime library search
path directly into the object code of the foreign module. This can be specified using
a loader flag in ldoption. The problem here is that different systems use a different
flag! To circumvent this, XSB provides a predicate that tries to guess the right flag
for your system:

runtime_loader_flag(+Hint,-Flag)

Currently it knows about a handful of the most popular systems, but this will be
expanded. The argument Hint is not currently used. It might be used in the future
to provide runtime_loader_flag with additional information that can improve the
accuracy of finding the right runtime flags for various systems.

The above predicate can be used as follows:

...,

runtime_loader_flag(_,Flag),

fmt_write_string(LDoptions, ’%sdir1:dir2:dir2 %s’, args(Flag,OldLDoption)),

fmt_write(File, ’:- ldoption(%s).’, LDoptions),

file_nl(File).
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13.5 Higher-Level Foreign Language Interface

The high-level foreign predicate interface was designed to release the programmer
from the burden of having to write low-level code to transfer data from XSB to C
and vice-versa. Instead, all the user needs to do is to describe each C function and
its corresponding Prolog predicates in the .H files. The interface then automatically
generates wrappers that translate Prolog terms and structures to proper C types,
and vice-versa. These wrappers also check for type-correctness of arguments to the
C function; in addition, in Unix-derived systems the wrappers are automatically
compiled and loaded along with the foreign predicates in the .c file 7.

As with the lower-level foreign interfaces, when predicates are defined in a foreign
module myfile.[cH], the predicates must be explicitly imported from the module to
be used 8. For an example of using the higher level interface, see $XSBDIR/examples/XSB_calling_c/second_foreign.[cH]

13.5.1 Declaration of high level foreign predicates

The basic formats of a foreign predicate declaration are:

:- foreign_pred predname ([+-]parg1, [+-]parg2,... )

from funcname (carg1:type1, carg2:type2,

... ):functype.

and

:- private_foreign_pred predname ([+-]parg1, [+-]parg2,... )

from funcname (carg1:type1, carg2:type2,

... ):functype.

where:

foreign_pred

private_foreign_pred

These declare new foreign predicates. For most cases, the declaration foreign_pred

can be used in both the multi-threaded and the sequential engine. The declara-
tion private_foreign_pred needs to be used only in the multi-threaded engine

7for Windows, please see special instructions in Section 13.6.
8In Version 3.8, a foreign module that uses the higher-level C interface must be explicitly consulted

before it can be used.
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when the external foreign function, funcname contains a context parameter as
its first argument because funcname needs to access thread-private data or other
information from the context of the XSB thread (see Section 13.2.1). This case
is uncommen, and mostly occurs for users who are creating XSB packages (e.g.
the XASP interface to Smodels).

predname

is the name of the foreign Prolog predicate.

parg1, parg2, ...

are the predicate arguments. Each argument is preceded by either ’+’ or ’-’,
indicating its mode as input or output respectively. The names of the argu-
ments must be the same as those used in the declaration of the corresponding
C function. If a C argument is used both for input and output, then the cor-
responding Prolog argument can appear twice: once with “+” and once with
“-”. In addition, a special argument retval is used to denote the argument
that corresponds to the return value of the C function; it must always have the
mode ’-’.

funcname

is the name of the function in the .c file. At compile-time a C function with
name predname will be generated which will translate arguments from Prolog
to C, call funcname, and then translate arguments back from C to Prolog.

carg1, carg2, ...

is the list of arguments of the C function. The names used for the arguments
must match the names used in the Prolog declaration.

type1, type2, ...

are the types associated to the arguments of the C function. This is not the set
of C types, but rather a set of descriptive types, as defined in Table 13.5.1.

functype

is the return type of the C function.

Using the higher-level interface, the same C code can be used for both the se-
quential and the multi-threaded engines, and no context parameters are required in
a user’s C code unless thread context information is explicitly needed. However, a
foreign module compiled for the single-threaded engine will need to be recompiled for
the multi-threaded engine and vice-versa.
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Descriptive Type Mode Usage Associated C Type Comments

int + int integer numbers
float + double floating point numbers
atom + unsigned long atom represented as an unsigned long
chars + char * the textual representation of an atom is passed to C as a string
chars(size) + char * the textual representation of an atom is passed to C

as a string in a buffer of size size

string + char * a prolog list of characters is passed to C as a string
string(size) + char * a prolog list of characters is passed to C as a string
term + prolog_term the unique representation of a term
intptr + int * the location of a given integer
floatptr + double * the location of a given floating point number
atomptr + unsigned long * the location of the unique representation of a given atom
charsptr + char ** the location of the textual representation of an atom
stringptr + char ** the location of the textual representation of a list of characters
termptr + prolog_term * the location of the unique representation of a term
intptr - int * the integer value returned is passed to Prolog
floatptr - double * the floating point number is passed back to Prolog
charsptr - char ** the string returned is passed to Prolog as an atom
stringptr - char ** the string returned is passed back as a list of characters
atomptr - unsigned long * the number returned is passed back to Prolog as the

unique representation of an atom
termptr - prolog_term * the number returned is passed to Prolog as the unique

representation of a term
chars(size) +- char * the atom is copied from Prolog to a buffer, passed to C

and converted back to Prolog afterwards
string(size) +- char * the list of characters is copied from Prolog to a buffer,

passed to C and back to Prolog afterwards
intptr +- int * an integer is passed from Prolog to C and from C back to Prolog
floatptr +- double * a float number is passed from Prolog to C, and back to Prolog
atomptr +- unsigned long * the unique representation of an atom is passed to C, and back to Prolog
charsptr +- char ** the atom is passed to C as a string, and a string is passed to

Prolog as an atom
stringptr +- char ** the list of characters is passed to C, and a string passed to Prolog

as a list of characters
termptr +- prolog_term * the unique representation of a term is passed to C,

and back to Prolog

Table 13.1: Allowed combinations of types and modes, and their meanings

Table 13.5.1 provides the correspondence between the types allowed on the C
side of a foreign module declaration and the types allowed on the Prolog side of the
declaration.

In all modes and types, checks are performed to ensure the types of the arguments.
Also, all arguments of type ’-’ are checked to be free variables at call time.
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13.6 Compiling Foreign Modules on Windows and

under Cygwin

Due to the complexity of creating makefiles for the different compilers under Windows,
XSB doesn’t attempt to compile and build DLL’s for the Windows foreign modules
automatically. However, for almost all typical cases the user should be able to easily
adapt the sample makefile for Microsoft VC++:

XSB/examples/XSB_calling_c/MakefileForCreatingDLLs

It is important that the C program will have the following lines near the top of the
file:

#include "xsb_config.h"

#ifdef WIN_NT

#define XSB_DLL

#endif

#include "cinterf.h"

Note that these same DLLs will work under Cygwin — XSB’s C interface under
Cygwin is like that under Windows rather than Unix.

If the above makefile cannot be adapted, then the user has to create the DLL
herself. The process is, roughly, as follows: first, compile the module from within XSB.
This will create the XSB-specific object file, and (if using the higher-level C interface)
the wrappers. The wrappers are created in a file named xsb_wrap_modulename.c.

Then, create a project, using the compiler of choice, for a dynamically-linked
library that exports symbols. In this project, the user must include the source code
of the module along with the wrapper created by XSB. This DLL should be linked
against the library

XSB\config\x86-pc-windows\bin\xsb.lib

which is distributed with XSB. In VC++, this library should be added as part of the
linkage specification. In addition, the following directories for included header files
must be specified as part of the preprocessor setup:

XSB\config\x86-pc-windows

XSB\prolog_includes

XSB\emu
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In VC++, make sure you check off the “No precompiled headers” box as part of
the “Precompiled headers” specification. All these options are available through the
Project»Settings menu item.

13.7 Functions for Use in Foreign Code

In addition to functions for passing data between Prolog an C, XSB contains other
functions that may be useful in Foreign C code. We mention a few here that pertain
to throwing exceptions from C code (cf. Volume 1 Chapter 8: Exception Handling).
These functions can be used by code that uses either the lower- or higher-level inter-
face.

void xsb_domain_error(CTXTdeclc char *valid_domain,Cell culprit,char *pred,int arity,int

C function
Used to throw an ISO-style domain error from foreign code, indicating that
culprit is not in domain valid_domain in argument arg of pred/arity.

Example: The code fragment

Cell num;

:

xsb_domain_error(CTXTc "not_less_than_zero",num,"atom_length",2,2);

in atom_length/2 gives rise to the behavior

| ?- atom_length(abcde,-1).

++Error[XSB/Runtime/P]: [Domain (-1 not in domain not_less_than_zero)]

in arg 2 of predicate atom_length/2)

void xsb_existence_error(CTXTdeclc char *objType,Cell culprit,char *pred,int arity,int arg)

C function
Used to throw an ISO-style existence error from foreign code, indicating that an
object culprit of type objType does not exist, in argument arg of pred/arity.

Example: The code fragment

Cell tid;

:

xsb_existence_error(CTXTc "thread",reg[2],"xsb_thread_join",1,1);
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in thread_join/1 gives rise to a the behavior

| ?- thread_join(7).

++Error[XSB/Runtime/P]: [Existence (No thread 1 exists)]

in arg 1 of predicate thread_join/1)

if a thread with thread id 7 does not exist.

void xsb_instantiation_error(CTXTdeclc char *pred,int arity,int arg,char *state)

C function
Used to throw an ISO-style instantiation error from foreign code. If state is a
NULL pointer, the message indicates that there is an instantiation error for ar-
gument arg of of pred/arity. If state is non-NULL, the message additionally
indicates that argument arg must be state.

Example: The code fragment

xsb_instantiation_error(CTXTc "atom_length",2,1,NULL);

in atom_length/2 gives rise to a the behavior

| ?- atom_length(X,Y).

++Error[XSB/Runtime/P]: [Instantiation] in arg 1 of predicate atom_length/2

void xsb_misc_error(CTXTdeclc char *message,char *pred,int arity) C function
Used to throw a non ISO-error from foreign code, printing message and indi-
cating that the error arose in pred/arity.

void xsb_permission_error(CTXTdeclc char *op,char *obj,Cell culprit,char *pred,int arity)

C function
Used to throw an ISO-style permission error from foreign code, indicating that
an operation of type op on type obj is not permitted on culprit, in argument
arg of pred/arity.

Example: The code fragment

xsb_permission_error(CTXTc "unlock mutex","mutex not held by thread",

xsb_thread_id,"mutex_unlock",2);

in mutex_unlock/1 gives rise to a the behavior
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| ?- mutex_unlock(mymut).

++Error[XSB/Runtime/P]: [Permission (Operation) unlock mutex on mutex not held

by thread: 0] in predicate mutex_unlock/1)

if thread 0 does not own mutex mymut.

void xsb_resource_error(CTXTdeclc char *resource,char *pred,int arity)

C function
Used to indicate that there are not sufficient resources of type resource for
pred/arity to succeed.

Example: The code fragment

xsb_resource_error(th,"system threads","thread_create",2);

in thread_create/1 gives rise to a the behavior

| ?- thread_create(X).

++Error[XSB/Runtime/P]: [Resource (system threads))] in predicate thread_create/2)

If the number of system threads has been exceeded.

void xsb_type_error(CTXTdeclc char *valid_type,Cell culprit,char *pred,int arity,int arg)

C function
Used to throw an ISO-style type error from foreign code, indicating that culprit

is not in ISO type valid_type in argument arg of pred/arity.

Example: The code fragment

Cell num;

:

if (!isinteger(num)) xsb_type_error(CTXTc "integer",num,"atom_length",2,2);

in atom_length/2 gives rise to the behavior

| ?- atom_length(foo,a).

++Error[XSB/Runtime/P]: [Type (a in place of integer)] in arg 2

of predicate atom_length/2)

void xsb_throw(CTXTdeclc prolog_term Ball) C function
Used to throw a Prolog term from C code, when an ISO-style error is not
required. The term can be caught and handled by the Prolog predicate catch/3

just as any other thrown term; however if it is not caught, XSB’s default error
handler will treat it as an unhandled exception.
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Embedding XSB in a Process

There are many situations in which it is desirable to use XSB as a rule- or constraint-
processing subcomponent of a larger system that is written in another language.
Depending on the intended architecture, it may be appropriate for XSB to reside in its
own process, separate from other components of an application, and communicating
through sockets, a database, or some other mechanism. However it is often useful for
XSB to reside in the same process as other components. To do this, one wants to be
able to call XSB from the host language, providing queries for XSB to evaluate. An
interface for calling XSB from C is provided for this purpose and is described in this
chapter. Based on this C interface, XSB can also be called from Java either through
a JNI or a socket-based interface, as described in the documentation for InterProlog,
available through xsb.sourceforge.net. To call XSB from Visual Basic, a DLL is
created as described in this chapter, and additional declarations must be made in
visual basic as described in the web page “How to use XSB DLL from Visual Basic”
http://xsb.sourceforge.net/vbdll.html. In addition, the interface described in
this chapter has also been extended to allow XSB to be called from Delphi and Ruby.
However, since all of these interfaces – Java, Ruby, Delphi and Visual Basic – depend
on XSB’s C API, we refer in this chapter to C programs or threads calling XSB,
although each of the examples suitably modified can be extended to other calling
languages.

New to Version 3.1 are extensions to the C API to allow multiple XSB threads
to be called from multiple C threads 1. In this Chapter, we provide an overview of
XSB’s C API, and then elaborate its use through a series of examples, beginning with
a single XSB thread called by a single C thread, then showing how a C thread can

1XSB’s threading model is based on POSIX threads, which can be called in Windows through a
variety of POSIX APIs – see Volume 1 chapter 8 Multi-threaded Programming in XSB.
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interact with multiple XSB threads, and finally discuss how multiple XSB threads
can interact with multiple POSIX threads. Finally, Section 14.3 describes each C
function in the API.

14.1 Calling XSB from C

XSB provides several C functions (declared in $XSBDIR/emu/cinterf.h and defined
in $XSBDIR/emu/cinterf.c), which can be called from C to interact with XSB as a
subroutine. These functions allow a C program to interact with XSB in a number of
ways.

• XSB may be initialized, using most of the parameters available from the command-
line.

• XSB may then execute a series of commands or queries. A command is a deter-
ministic query which simply succeeds or fails without performing any unification
on the query term. On the other hand, a non-deterministic query can be eval-
uated so that its answer substitutions are retrieved one at a time, as they are
produced, just as if XSB were called on a command line. Alternately a non-
deterministic query can be closed in the case where not every answer to the
query is needed. Only one query per thread can be active at a time. I.e., an ap-
plication must completely finish processing one query to a given thread T (either
by retrieving all the answers for it, or by issuing a call to xsb_close_query(),
before trying to evaluate another using T .

• Finally, XSB can be closed, so that no more queries can be made to any XSB
threads.

In general, while any functions in the C API to XSB can be intermixed, the
functions can be classified as belonging to three different levels.

• A VarString level which uses an XSB-specific C-type definition for variable-
length strings (Section 14.4), to return answers.

• A fixed-string level provides routines that return answers in fixed-length strings.

• A register-oriented level that requires users to set up queries by setting registers
for XSB which are made globally available to calling functions. The mechanisms
for this resemble the lower-level C interface discussed in Chapter 13. This level
of interface should only be used for the single-threaded applications, as it is
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difficult to prevent race-conditions at this level of interface when multiple C
threads are used to call XSB.

The appropriate level to use depends on the nature of the calling program, the
speed desired, and the expertise of the programmer. By and large, functions in
the VarString level are the the easiest and safest to use, but they depend on a C
type definition that may not be available to all calling programs (e.g. it may be
difficult to use if the calling program is not directly based on C, such as Visual Basic
or Delphi). For such applications functions from the fixed-string level would need to
be used instead. In general, most applications should use either functions from the
VarString or the fixed-string level, rather than the register-oriented level. This latter
level should only be used by programmers who are willing to work at a low interface
level, when the utmost speed is needed by an application, and when multiple threads
do not need to interact with XSB.

14.2 Examples of Calling XSB

We introduce a series of examples of how XSB would be called using the string-
level interfaces. Simple examples of the register-level interface are given in the
XSB/examples/c_calling_XSB subdirectory, in files cmain.c, cmain2.c, ctest.P,
and Makefile, but are not discussed in this section.

We structure out discussion by first showing how to construct a C program to call
the single-threaded engine alone in Section 14.2.1. This example is mostly pedagogic:
with a small amount of extra coding a C program can be constructed to call both
the single- and the multi-threaded engine, and these extensions are discussed in Sec-
tion 14.2.2. Next, we show how to a C program can call and manage multiple XSB
threads in Section 14.2.3. Finally, we show how multiple XSB threads can interact
with multiple C threads in Section 14.2.3.

14.2.1 The XSB API for the Sequential Engine Only

We start with a simple program shown, in Figure 14.1, that will call the following
XSB predicate

p(a,b,c).

p(1,2,3).

p([1,2],[3,4],[5,6]).

p(A,B,A).
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r(c,b,a).

r(3,2,1).

r([5,6],[3,4],[1,2]).

r(_A,B,B).

and backtrack through unifying answers (cf. $XSBDIR/examples/c_calling_xsb/edb.P).
. This example will only compile properly if the sequential engine is used, and its
style is not recommended: it will be shown in Section 14.2.2 how to extend the style.

We discuss the program in Figure 14.1 in detail. This program, slightly modified so
that it compiles with the multi-threaded engine is in $XSBDIR/examples/c_calling_xsb/cvartest.c.
An executable for this program can be make most easily by calling $XSBDIR/examples/c_calling_xsb/make.P

which makes the executable cvstest.

The program begins by including some standard C headers: note that string.h

is needed for string manipulation routines such as strcpy. In addition, the XSB
library header cinterf.h is necessary for the XSB C API. Since the program in
Figure 14.1 uses functions in the VarString interface, within main() the routine
XSB_StrDefine(return_string) declares and initializes a structure of type VarString,
named return_string.

The next order of business is to initialize XSB. In order to do this, xsb_init_string()

needs to know the installation directory for XSB, which must be passed as part of the
initialization string. In Figure 14.1 this is done by manipulating the path of the exe-
cutable (cvstest) that calls XSB. In fact any other approach would also work as long
as the XSB installation directory were passed. Within the initialization string, other
command line arguments can be passed to XSB if desired with the following excep-
tions: the arguments -B (boot module), -D (command loop driver), -i (interpreter)
and -d (disassembler) cannot be used when calling XSB from a foreign language 2.
As a final point on initialization, note that the function xsb_init() can also be used
to initialize XSB based on an argument vector and count (see Section 14.3).

Note that the calling program checks for any errors returned by xsb_init_string()

and other API commands. In general, xsb_init_string() may throw an error if
the XSB’s installation directory has become corrupted, or for similar reasons. This
mechanism for error handling is different than that used if XSB is called in its usual
stand-alone mode, in which case such an error would cause XSB to exit). An error

2In previous versions of XSB, initialization from the C level required a -n option to be passed.
This is no longer required.
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#include <stdio.h>

#include <string.h>

/* cinterf.h is necessary for the XSB API, as well as the path manipulation routines*/

#include "cinterf.h"

extern char *xsb_executable_full_path(char *);

extern char *strip_names_from_path(char*, int);

int main(int argc, char *argv[]) {

char init_string[1024];

int rc;

XSB_StrDefine(return_string);

/* xsb_init_string() relies on the calling program to pass the absolute or relative

path name of the XSB installation directory. We assume that the current

program is sitting in the directory ../examples/c_calling_xsb/

To get the installation directory, we strip 3 file names from the path. */

strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));

if (xsb_init_string(init_string) == XSB_ERROR) {

fprintf(stderr,"++initializing XSB: %s/%s\n",xsb_get_init_error_type(),

xsb_get_init_error_message());

exit(XSB_ERROR);

}

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string("consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(),xsb_get_error_message());

rc = xsb_query_string_string("p(X,Y,Z).",&return_string,"|");

while (rc == XSB_SUCCESS) {

printf("Return %s\n",(return_string.string));

rc = xsb_next_string(&return_string,"|");

}

if (rc == XSB_ERROR)

fprintf(stderr,"++Query Error: %s/%s\n"xsb_get_error_type(),xsb_get_error_message());

xsb_close();

}

Figure 14.1: Calling the Sequential Engine Using the VarString Interface
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returned by XSB’s API are similar to an error ball described in Volume 1 Exception
Handling in that it has both a type and a message. For normal Prolog exceptions,
XSB’s API will throw the same kinds of errors as XSB called in a stand-alone (or
server) mode, i.e. instantiation errors, type errors, etc. However XSB’s API adds two
new error types:

• init_error is used as the type of an error discovered upon initialization of
XSB, before query and command processing has begun. If an init_error is
raised, XSB has not been properly initialized and will not run.

• unrecoverable_error is used to indicate that XSB has encountered an error,
(such as a memory allocation error), during command or query processing from
which it cannot recover. Such an error would cause XSB to immediately exit
if it were called in a stand-alone mode. In general the calling program should
handle unrecoverable errors as fatal since there is a good chance that the error
conditions will affect the calling program as well as XSB.

Errors raised by xsb_init_string() usually have type init_type.

and a string pointer to the associated message can be found by the function
xsb_get_init_error_message().

As can be seen from the example, handling errors from commands is done in
manner similar to that of initialization. For non-initialization errors, a string pointer
to the type can be obtained by xsb_get_error_type(), while a string pointer to the
message can be obtained by xsb_get_error_message().

Next in Figure 14.1 the file edb.P is consulted (containing the p/3 and r/3

predicates shown above). Note, that the argument to xsb_command_string must
be a syntactically valid Prolog term ending with a period, otherwise a syntax er-
ror will be thrown, which may be displayed through xsb_get_error_type() and
xsb_get_error_message() 3.

Queries to XSB are a little more complicated than commands. Since a query may
return multiple solutions, a query should usually be called from inside a loop. In
Figure 14.1, the query is opened with xsb_query_string(). If the query has at least
one answer, xsb_query_string() will return XSB_SUCCESS; if the query fails, it will
return XSB_FAILURE, and if there is an exception it will return XSB_ERROR as usual.
Any answer will be returned as a string in the VarString return_string, and each

3Most XSB errors are handled in this manner when XSB is called through its API. A few errors
will print directly to stderr and some XSB warnings will print to stdwarn which upon startup is
dup-ed to stderr.
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argument of the query will be separated by the character |. Thus, in our example,
the first answer will write the string

a|b|c

Once a query has been opened, subsequent answers can be obtained via xsb_next_string().
These answers are written to return_string in the same manner as xsb_query_string_string().

1|2|3

[1,2]|[3,4]|[5,6]

_h102|_h116|_h102

A query is automatically closed when no more answers can be derived from it. Alter-
nately, a query that may have answers remaining can be closed using the command
xsb_close_query(). If the calling application will need to pass more queries or com-
mands to XSB nothing need be done at this point: a new queries or commands can
be invoked using one of the functions just discussed. However if the calling process is
finished with XSB and will never need it again during the life of the process, it can
call xsb_close().

An Example using Fixed Strings

Figure 14.2 shows a fragment of code indicating how the previous example would
be modified if the fixed-string interface were used. Note that return_string now
becomes a pointer to explicitly malloc-ed memory. To open the query p(X,Y,Z) the
function xsb_query_string_string_b() is called, with the _b indicating that a fixed
buffer is being used rather than a VarString. The call is similar to xsb_query_string_string(),
except that the length anslen of the buffer pointed to by return_string is now
also required. If the answer to be returned (including separators) is longer than
anslen, xsb_query_string_string_b() will return XSB_OVERFLOW. If this happens,
a new answer buffer can be used (here the old one is realloc-ed) and the answer re-
trieved via xsb_get_last_answer_string. Similarly, further answers are obtained
via xsb_next_string_b() whose length must be checked. Thus the only difference
between the fixed-string level and the VarString level is that the length of each
answer should be checked and xsb_get_last_answer_string() called if necessary.

14.2.2 The General XSB API

The previous section showed how to use the XSB API with both the VarString

type and without, but did not consider the multi-threaded engine. In fact, there



CHAPTER 14. EMBEDDING XSB IN A PROCESS 487

int retsize = 15;

char *return_string;

int anslen;

return_string = malloc(retsize);

rc = xsb_query_string_string_b(CTXTc "p(X,Y,Z).",return_string,retsize,&anslen,"|");

while (rc == XSB_SUCCESS || rc == XSB_OVERFLOW) {

if (rc == XSB_OVERFLOW) {

return_string = (char *) realloc(return_string,anslen);

return_size = anslen;

rc = xsb_get_last_answer_string(CTXTc return_string,retsize,&anslen);

}

printf("Return %s %d\n",return_string,anslen);

rc = xsb_next_string_b(CTXTc return_string,15,&anslen,"|");

}

Figure 14.2: Calling XSB using the Fixed String Interface
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are different ways to use XSB’s multi-threading that can have advantages for various
situations. In the first mode, threads are managed from Prolog, with a single XSB
thread called from the API; that XSB thread can then create another XSB thread
that does work, and the first thread can return almost immediately to handle more
requests from the API’s caller. A second model allows the caller to manipulate a pool
of several XSB threads, so that different XSB threads may be called from different
threads over the API. In this model each C, Java, Ruby, or other thread could a
number of different Prolog threads. In this section we sketch how to use the API to
illustrate the first model, and sketch the second model in the next section.

Figure 14.3 shows how relevant portions of the previous VarString example can
be adapted to use the multi-threaded engine. The main change is that a new variable
is introduced on the C side that points to the context of the main thread. As pointed
out in Chapter 13, each thread in the multi-threaded engine has a context in which
is kept much of its thread-specific data (excluding tables and dynamic code). Of
the threads running in the multi-threaded engine the thread created upon the call
to xsb_init() is designated as the main thread, and is closed only upon calling
xsb_close().

Within the multi-threaded engine, a call to an API function such as xsb_query_string_string()

is actually a call to a specific thread to do some work (using a thread context pointer).
Accordingly, since any errors produced will be specific to a given thread, all calls to
error reporting functions are also thread-specific. If no specific thread is needed,
it may be best just to use the main thread, which is what is done in Figure 14.3.
The thread context pointer th is initialized to the main thread using the API macro
xsb_get_main_thread(). Afterwards, this pointer is passed into the various interface
functions by making use of XSB macros defined in context.h In the multi-threaded
engine, these macros are defined as

#define CTXT th

#define CTXTc th,

while in the single-threaded engine they are defined as empty strings, as is xsb_get_main_thread().
As a result the code in Figure 14.3 will compile and run properly both for the single-
threaded and the multi-threaded engines.

At this stage, suppose one wanted a new thread to execute a specific command,
say do_foo. In this case, a C call such as

xsb_query_string_string(CTXTc "thread_create(do_foo,Id).",&return_string,"|")

creates a thread to execute the command, and returns the thread id of the newly
created thread in return_string. The behavior of this newly created thread is
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.....

/* context.h is necessary for the type of a thread context. */

#include "context.h"

int main(int argc, char *argv[])

{

char init_string[MAXPATHLEN];

int rc;

XSB_StrDefine(return_string);

strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));

if (xsb_init_string(init_string) == XSB_ERROR) {

fprintf(stderr,"++initializing XSB: %s/%s\n",xsb_get_init_error_type(),

xsb_get_init_error_message());

exit(XSB_ERROR);

}

#ifdef MULTI_THREAD

th_context *th = xsb_get_main_thread();

#endif

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string(CTXTc "consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(CTXT),

xsb_get_error_message(CTXT));

rc = xsb_query_string_string(CTXTc "p(X,Y,Z).",&return_string,"|");

while (rc == XSB_SUCCESS) {

printf("Return %s\n",(return_string.string));

rc = xsb_next_string(CTXTc &return_string,"|");

}

if (rc == XSB_ERROR)

fprintf(stderr,"++Query Error: %s/%s\n",xsb_get_error_type(CTXT),xsb_get_error_message(CTXT));

xsb_close();

}

Figure 14.3: Calling the Single- or Multi-Threaded Engine Using the VarString

Interface
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exactly the same as if it were created from the XSB command line: in particular the
newly created thread will automatically exit upon completion of its command. As a
somewhat technical point, there are two different ways of referring to XSB threads.
The foreign language interfaces described in Chapter 13 and here use pointers to
thread contexts so that the interfaces use much of the same code as the XSB engine.
However Prolog refers to threads using thread identifiers. The two different forms
can be converted into each other by the functions xsb_thread_id_to_context()

and xsb_thread_context_to_id().

14.2.3 Managing Multiple XSB Threads through the API

The ability to pass thread contexts into query and command functions allows a great
deal of flexibility 4. Once XSB is initialized, XSB threads can be created from C and
can execute independently of each other, effectively giving the ability for different
calling threads to query XSB in a mechanism reminiscent of database cursors.

Figure 14.4 illustrates a very simple example of this. XSB is initialized and the file
edb.P consulted exactly as in Figure 14.4. However, the function xsb_ccall_thread_create()

causes the XSB thread p_th to create a new thread, causes the new thread to call
the same command loop as the main thread, and sets r_th to point to the context
of the new thread. The new thread r_th can be used for commands or queries just
as p_th. Figure 14.4 shows that queries to the two threads can be interleaved, and
errors for both threads can be checked and reported independently.

It is important to note that since each thread created by xsb_ccall_thread_create()

goes into a command-loop similar to the command loop, it will stay around until it
is explicitly killed or until XSB is closed. The call

xsb_kill_thread(r_th);

is needed to make r_th to exit. Once a thread is exited, all of its data structures will be
freed, including those that support xsb_get_error_type() and xsb_get_error_message() 5.

4For the sake of brevity, we sometimes abuse notation and do not always distinguish between
thread-contexts and their pointers.

5Note that causing XSB’s main thread to exit will cause the entire process to exit – not just
XSB.
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.....

/* context.h is necessary for the type of a thread context. */

#include "context.h"

int main(int argc, char *argv[])

{

static th_context *p_th, *r_th;

char init_string[MAXPATHLEN];

int rcp, rcr;

XSB_StrDefine(p_return_string);

XSB_StrDefine(r_return_string);

strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));

if (xsb_init_string(init_string)) {

fprintf(stderr,"%s initializing XSB: %s/%s\n",xsb_get_init_error_type(),

xsb_get_init_error_message());cin

exit(XSB_ERROR);

}

p_th = xsb_get_main_thread();

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string(p_th, "consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(p_th),

xsb_get_error_message(p_th));

xsb_ccall_thread_create(p_th,&r_th);

rcp = xsb_query_string_string(p_th,"p(X,Y,Z).",&p_return_string,"|");

rcr = xsb_query_string_string(r_th,"r(X,Y,Z).",&r_return_string,"|");

while (rcp == XSB_SUCCESS && rcr == XSB_SUCCESS) {

printf("Return p %s\n",(p_return_string.string));

rcp = xsb_next_string(p_th, &p_return_string,"|");

printf("Return r %s\n",(r_return_string.string));

rcr = xsb_next_string(r_th, &r_return_string,"|");

}

if (rcp == XSB_ERROR)

fprintf(stderr,"++Query Error p: %s/%s\n",xsb_get_error_type(p_th),xsb_get_error_message(p_th));

if (rcr == XSB_ERROR)

fprintf(stderr,"++Query Error r: %s/%s\n",xsb_get_error_type(r_th),xsb_get_error_message(r_th));

xsb_close();

}
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14.2.4 Calling Multiple XSB Threads using Multiple C Threads

Figure 14.4 shows how two XSB threads can be created, can receive different queries
and can interleave their backtracking and answer return. Although Figure 14.4
demonstrated only backtracking through simple predicates, the mechanism employed
works for complicated examples using tabling, dynamic code, and other features. All
this provides a sophisticated interface, but it is not “fully” multi-threaded in the
following sense. When a C thread T causes XSB to execute a command or query
the thread must wait until the calling function returns before proceeding. In certain
applications it may be useful, for example, for T to create a C thread Tnew which
runs asynchronously from T , executing the XSB command or query and then exiting.
Alternately, an application may want to have a pool of C threads that can interact
with a pool of XSB threads.

XSB’s C API has been designed to support these features. Figure 14.5 shows
fragments of Figure 14.4 rewritten so that the routines to print out the answers
to the queries p(X,Y,Z) and r(X,Y,Z) can be called from C threads specially de-
signed for this purpose. More specifically, the routine query_ps() calls p_th to query
p(X,Y,Z) and backtrack through its answers – its use of a single void * argument
and a void * return reflect the requirements of functions that are to be called using
pthread_create().

We note several points about this example. First the XSB API is a low-level
API that can be used to build application specific interfaces, and some experience
with pthread programming is useful if multiple XSB threads are called from multiple
C threads. For instance, one issue is fairness. When called from the C API each
XSB thread XT makes use of mutexes to ensure that it answers only one query or
command at a time. If multiple C threads are are waiting for XT to respond to
requests or queries, there is no guarantee that the requests will be processed in any
sort of order, or even that a request will eventually be handled (In order to ensure this,
the calling program would have to use a queue or some other scheduling mechanism
to send requests to the XSB thread). In addition, it is important to note that, the
main XSB thread should only be called from the C thread that initialized XSB.. This
restriction is due to the current design of synchronizing an XSB thread with calling
threads, and may be lifted in the future.

Protected and Non-Protected API Functions

Example 14.5 shows that, when the Varstring functions are used, if a single call-
ing thread opens a query to an XSB thread XT , XT will be protected from queries
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.....

void *query_ps(void * arg) {

int rc;

th_context *p_th;

XSB_StrDefine(p_return_string);

p_th = (th_context *)arg;

rc = xsb_query_string_string(p_th,"p(X,Y,Z).",&p_return_string,"|");

while (rc == XSB_SUCCESS) {

printf("Return p %s\n",(p_return_string.string));

rc = xsb_next_string(p_th, &p_return_string,"|");

}

if (rc == XSB_ERROR)

fprintf(stderr,"++Query Error p: %s/%s\n",xsb_get_error_type(p_th),xsb_get_error_message(p_th));

return NULL;

}

int main(int argc, char *argv[]) {

char init_string[MAXPATHLEN];

static th_context *p_th, *r_th;

int pstatus, rstatus;

pthread_t pthread_id,rthread_id;

XSB_StrDefine(p_return_string);

XSB_StrDefine(r_return_string);

.....

main_th = xsb_get_main_thread();

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string(xsb_get_main_thread(), "consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(main_th),

xsb_get_error_message(main_th));

xsb_ccall_thread_create(main_th,&r_th);

xsb_ccall_thread_create(main_th,&p_th);

pthread_create(&rthread_id,NULL,command_rs,r_th);

pthread_create(&pthread_id,NULL,command_ps,p_th);

pthread_create(&rthread_id,NULL,command_rs,r_th);

pthread_create(&pthread_id,NULL,command_ps,p_th);

rstatus = pthread_join(rthread_id,&rreturn);

if (rstatus != 0) fprintf(stderr,"R join returns status %d\n",rstatus);

pstatus = pthread_join(pthread_id,&preturn);

if (pstatus != 0) fprintf(stderr,"P join returns status %d\n",pstatus);
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and commands posed by other C threads until the query is closed, failed out of,
or exits via an error. In fact, queries (and commands) are protected when the
Varstring or fixed string interfaces are used. However, consider what may hap-
pen when the register level interface is used. In this case, a calling thread may call
one or more API functions to set up the registers, execute a command or query,
call several more API functions to obtain the output, and so on. For this reason,
if an application uses API commands that depend on user manipulation of regis-
ters (xsb_command(),xsb_query(),xsb_query_string(), and xsb_next()) the user
must ensure that only one calling thread interacts with an XSB thread when that
thread in the course of executing a command or query. See $XSB_DIR/examples/c_calling_xsb/cregs_thread2.c

for an example of how mutexes can be used to protect XSB threads.

When writing multi-threaded applications in XSB, be sure to be aware of how
multiple threads share (and do not share) dynamic data and tables. By default
dynamic predicates (and tables) are unique to a given thread. For data to be shared
by multiple threads, a predicate must be declared to be shared. See section 7.2 for
details.

14.3 A C API for XSB

14.3.1 Initializing and Closing XSB

int xsb_init_string(char *options) C function
This function is used to initialize XSB via an initialization string *options, and
must be called before any other calls can be made. The initialization string must
include the path to the XSB directory installation directory $XSB_DIR, which is
expanded to an absolute path by XSB. Any other command line options may
be included just as in a command line except -D, -d, -B and -i. For example,
a call from an executable in a sibling directory of XSB might have the form

xsb_init_string("../XSB -e startup.");

which initializes XSB with the goal ?- startup.

Return Codes

• XSB_SUCCESS indicates that initialization returned successfully.

• XSB_ERROR

– init_error if any error occurred during initialization.
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– permission_error if xsb_init_string() is called after XSB has al-
ready been correctly initialized.

int xsb_init(int argc, char *argv[]) C function
This function is a variant of xsb_init_string() which passes initialization
arguments as an argument vector: argc is the count of the number of arguments
in the argv vector. The argv vector is exactly as would be passed from the
command line to XSB.

• argv[0] must be an absolute or relative path name of the XSB installation
directory (i.e., $XSB_DIR). Here is an example, which assumes that we
invoke the C program from the XSB installation directory.

int main(int argc, char *argv[])

{

int myargc = 1;

char *myargv[1];

/* XSB_init relies on the calling program to pass the addr of the XSB

installation directory. From here, it will find all the libraries */

myargv[0] = ".";

/* Initialize xsb */

xsb_init(myargc,myargv);

}

The return codes for xsb_init() are the same as those for xsb_init_string().

int xsb_close() C function
This routine closes the entire connection to XSB . After this, no more calls can
be made (not even calls to xsb_init_string() or xsb_init()). In Version
3.8, no guarantee is made that all space used by XSB will be restored to the
process (even when the process has dynamically linked to XSB), but space for
any XSB tables is freed.

Return Codes

• XSB_SUCCESS indicates that XSB was closed successfully.

• XSB_ERROR

– permission_error if xsb_closed() when XSB has not been (cor-
rectly) initialized.
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14.3.2 Passing Commands to XSB

int xsb_command_string(th_context *th, char *cmd) C function
This function passes a command to the XSB thread designated by th (the first
argument is not used in the single-threaded engine). No query can be active
in th when the command is called. The command is a string consisting of a
Prolog (or HiLog) term terminated by a period (.).

When used in the multi-threaded engine, xsb_command_string protects the
called thread from API calls from other pthreads until the command is finished.

Return Codes

• XSB_SUCCESS indicates that the command succeeded.

• XSB_FAILURE indicates that the command failed.

• XSB_ERROR

– permission_error if xsb_command_string() is called while a query
is open in th.

– Otherwise, any queries thrown during execution of the command are
accessable through xsb_get_error_type(th) and xsb_get_error_message(th).

int xsb_command(th_context *th) C function
This function passes a command to the XSB thread designated by th (the first
argument is not used in the single-threaded engine). Any previous query must
have already been closed. Before calling xsb_command(), the calling program
must construct the term representing the command in register 1 in the XSB
thread’s space. This can be done by using the c2p_* (and p2p_*) routines,
which are described in Section 13.2.3 below. Register 2 may also be set before
the call to xsb_query() (using xsb_make_vars(int) and xsb_set_var_*())
in which case any variables set to values in the ret/n term will be so bound in
the call to the command goal. xsb_command invokes the command represented
in register 1 and returns XSB_SUCCESS if the command succeeds, XSB_FAILURE

if it fails, and XSB_ERROR if an error is thrown while executing the command.

When used in the multi-threaded engine, xsb_command_string does not protect
the called thread from API calls from other pthreads until the command is
finished. It is the user’s responsibility to protect the XSB thread, using a mutex
or other concurrency control, from the time the goal begins to be constructed
in the register 1 until the command has completed.

Apart from the steps necessary to formulate the query and the lack of protec-
tion of the XSB thread, the behavior of xsb_command() is similar to that of
xsb_command_string(), including its return codes.
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14.3.3 Querying XSB

int xsb_query_string_string(th_context *th, char *query, VarString *buff,char *sep)

C function
This function opens a query to the XSB thread designated by th (the first ar-
gument is not used in the single-threaded engine); it returns the first answer
(if there is one) as a VarString. Any previous query to th must have already
been closed. Any query may return multiple data answers. The first is found
and made available to the caller as a result of this call. To get any subsequent
answers, xsb_next_string() must be called. An example call is:

rc = xsb_query_string_string(th, "append(X,Y,[a,b,c]).",buff,";");

The second argument is the period-terminated query string. The third argument
is a pointer to a variable string buffer in which the subroutine returns the answer
(if any.) The variable string data type VarString is explained in Section 14.4.
(Use xsb_query_string_string_b() if you cannot declare a parameter of this
type in your programming language.) The last argument is a string provided
by the caller, which is used to separate arguments in the returned answer. For
the example query, buff would be set to the string:

[];[a,b,c]

which is the first answer to the append query. There are two fields of this
answer, corresponding to the two variables in the query, X and Y. The bindings
of those variables make up the answer and the individual fields are separated
by the sep string, here the semicolon (;). In the answer string, XSB atoms are
printed without quotes. Complex terms are printed in a canonical form, with
atoms quoted if necessary, and lists produced in the normal list notation.

When used in the multi-threaded engine, xsb_query_string_string protects
the called thread from API calls from other pthreads until the entire query is
finished.

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR

– permission_error if xsb_query_string_string() is called while a
query to th is open.
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– Otherwise, any errors thrown during execution of the query are access-
able through xsb_get_error_type() and xsb_get_error_message().

int xsb_query_string_string_b(th_context *th,char *query,char *buff,int bufflen,int *anslen,char

This function provides a lower-level alternative to xsb_query_string_string

(not using the VarString type), which makes it easier for non-C callers (such
as Visual Basic or Delphi) to access XSB functionality. Any previous query
to th must have already been closed. Any query may return possibly multiple
data answers. The first is found and made available to the caller as a result
of this call. To get any subsequent answers, xsb_next_string_b() or a sim-
ilar function must be called. The first and last arguments are the same as in
xsb_query_string_string(). The buff, bufflen, and anslen parameters are
used to pass the answer (if any) back to the caller. buff is a character array
provided by the caller in which the answer is returned. bufflen is the length
of the buffer (buff) and is provided by the caller. anslen is returned by this
routine and is the length of the computed answer. If that length is less than
bufflen, then the answer is put in buff (and null-terminated). If the answer
is longer than will fit in the buffer (including the null terminator), then the
answer is not copied to the buffer and XSB_OVERFLOW is returned. In this case
the caller can retrieve the answer by providing a bigger buffer (of size greater
than the returned anslen) in a call to xsb_get_last_answer_string().

When used in the multi-threaded engine, xsb_query_string_string_b pro-
tects the called thread from API calls from other pthreads until the entire
query is finished.

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR

– permission_error if xsb_query_string_string_b() is called while
a query to th is open.

– Otherwise, any queries thrown during execution of the command are
accessable through xsb_get_error_type() and xsb_get_error_message().

• XSB_OVERFLOW indicates that the query succeeded, but the answer was too
long for the buffer.

int xsb_query(th_context *th) C function
This function passes a query to the XSB thread th. Any previous query to
th must have already been closed. Any query may return possibly multiple
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data answers. The first is found and made available to the caller as a result
of this call. To get any subsequent answers, xsb_next() or a similar function
must be called. Before calling xsb_query() the caller must construct the term
representing the query in the XSB thread’s register 1 (using routines described
in Section 13.2.3 below.) If the query has no answers (i.e., just fails), register
1 is set back to a free variable and xsb_query() returns XSB_FAILURE. If the
query has at least one answer, the variables in the query term in register 1 are
bound to those answers and xsb_query() returns XSB_SUCCESS. In addition,
register 2 is bound to a term whose main functor symbol is ret/n, where n
is the number of variables in the query. The main subfields of this term are
set to the variable values for the first answer. (These fields can be accessed by
the functions p2c_*, or the functions xsb_var_*, described in Section 13.2.3
below.) Thus there are two places the answers are returned. Register 2 is used
to make it easier to access them. Register 2 may also be set before the call
to xsb_query() (using xsb_make_vars(int) and xsb_set_var_*()) in which
case any variables set to values in the ret/n term will be so bound in the call
to the goal.

When used in the multi-threaded engine, xsb_query does not protect the called
thread from API calls from other pthreads until the query is finished, or even
when the registers are being accessed. It is the user’s responsibility to protect
the XSB thread, using a mutex or other concurrency control, from the time the
goal begins to be constructed in the register 1 until the query is closed, failed,
or exited upon error.

int xsb_get_last_answer_string(th_context *th, char *buff, int bufflen, int *anslen)

C function
This function is used only when a call xsb_query_string_string_b() or xsb_next_string_b()

to th returns XSB_OVERFLOW, indicating that the buffer provided was not big
enough to contain the computed answer. In that case the user may allocate a
larger buffer and then call this routine to retrieve the answer (that had been
saved.) Only one answer is saved per thread, so this routine must called imme-
diately after the failing call in order to get the right answer. The parameters are
the same as the 2nd through 4th parameters of xsb_query_string_string_b().

Return Codes

• XSB_OVERFLOW indicates that the answer was still too long for the buffer.

int xsb_query_string(th_context *th,char *query) C function
This function passes a query to the XSB thread th. The query is a string
consisting of a term that can be read by the XSB reader. The string must
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be terminated with a period (.). Any previous query must have already been
closed. In all other respects, xsb_query_string() is similar to xsb_query(),
except the only way to retrieve answers is through Register 2. The ability to
create the return structure and bind variables in it is particularly useful in this
function.

When used in the multi-threaded engine, xsb_query_string does not protect
the called thread from API calls from other pthreads until the query is finished,
or even when the registers are being accessed. It is the user’s responsibility to
protect the XSB thread, using a mutex or other concurrency control, from the
time the goal begins to be constructed in the register 1 until the query is closed,
failed, or exited upon error.

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR indicates that an error occurred while executing the query.

int xsb_next_string(th_context *th,VarString *buff,char *sep) C function
This routine is called after xsb_query_string() to retrieve a subsequent an-
swer in buff. If a query is not open in th, an error is returned. This function
treats answers just as xsb_query_string_string(). For example after the
example call

rc = xsb_query_string_string(th,"append(X,Y,[a,b,c]).",buff,";");

which returns with buff set to

[];[a,b,c]

Then a call:

rc = xsb_next_string(th,buff,";");

returns with buff set to

[a];[b,c]
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the second answer to the indicated query.

In the multi-threaded engine, xsb_next_string() protects the XSB thread
from concurrent access by other threads as long as the query was invoked by
xsb_query_string_string(_b).

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR indicates that an error occurred while executing the query.

int xsb_next_string_b(th_context *th, char *buff, int bufflen, int *anslen, char *sep)

C function
This function is a variant of xsb_next_string() that does not use the VarString

type. Its parameters are the same as the 3rd through 6th parameters of xsb_query_string_string_b()

The next answer to the current query is returned in buff, if there is enough
space. If the buffer would overflow, this routine returns XSB_OVERFLOW, and the
answer can be retrieved by providing a larger buffer in a call to xsb_get_last_answer_string_b().
In any case, the length of the answer is returned in anslen.

In the multi-threaded engine, xsb_next_string() protects the XSB thread
from concurrent access by other threads as long as the query was invoked by
xsb_query_string_string(_b).

Return Codes

• XSB_SUCCESS indicates that backtracking into the query succeeded.

• XSB_FAILURE indicates that backtracking into the query failed.

• XSB_ERROR indicates that an error occurred while further executing the
query.

• XSB_OVERFLOW indicates that backtracking into the query succeeded, but
the new answer was too long for the buffer.

int xsb_next(th_context *) C function
This function is called after xsb_query() (which must have returned XSB_SUCCESS)
to retrieve more answers. It rebinds the query variables in the term in register 1
and rebinds the argument fields of the ret/n answer term in register 2 to reflect
the next answer to the query. Its return codes are as with xsb_next_string().

When used in the multi-threaded engine, xsb_next does not protect the called
thread from API calls from other pthreads until the query is finished, or even
when the registers are being accessed. It is the user’s responsibility to protect
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the XSB thread, using a mutex or other concurrency control, through the time
that registers are accessed by the calling program.

int xsb_close_query(th_context *th) C function
This function allows a user to close a query to th before all its answers have
been retrieved. Since XSB is (usually) a tuple-at-a-time system, answers that
are not retrieved are not computed so that closing a query may save time. If
a given query Q is open, it is an error to open a new query without closing
Q either by retrieving all its answers or explicitly calling xsb_close_query()

to close Q. Calling xsb_close_query() when no query is open gives an error
message, but otherwise has no effect.

Return Codes

• XSB_SUCCESS indicates that the current query was closed.

• XSB_ERROR

– permission_error if xsb_close_query() is called while no query is
open.

int xsb_add_c_predicate(th_context *,char *,char *,int,int(*)()) C function
This function, called for example as:
xsb_add_c_predicate(th, modname, predname, arity, cfunc)

registers a C function (defined by the caller, here named cfunc) as a foreign
function to be invoked by a Prolog predicate. The arguments are: the name
of the module of the Prolog predicate being defined (NULL indicates user-
mod), the name of the Prolog predicate, the arity of the Prolog predicate, and
the function pointer of the function defining the foreign routine. That func-
tion must get (and return) its arguments using the ctop (and ptoc) functions
of the cinterf Foreign Language Interface (13). This xsb_add_c_predicate

function always returns 0. After this function has been called, the predicate
modname:predname/arity can be called in Prolog and will result in cfunc be-
ing invoked as a foreign language function.

The th_context argument is used only for the multi-threaded XSB engine.

14.3.4 Obtaining Information about Errors

char * xsb_get_init_error_message() C function
Used to find error messages if xsb_init_string() or xsb_init() returns XSB_ERROR.
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Any errors returned by these functions have type init_error. Because initial-
ization errors occur before XSB or any of its threads have been initialized,
initialization errors do not require a thread context for input.

char * xsb_get_error_type(th_context *th) C function
If a function called for th returned XSB_ERROR this function provides a pointer to
a string representing the type of the error. Types are as in Volume 1 Exception
Handling with the addition of init_error for errors that occur during initial-
ization of XSB, and unrecoverable_error for errors from which no recovery
is possible for XSB (e.g. inability to allocate new memory).

char *xsb_get_error_message(th_context *th) C function
If a function called for th returned XSB_ERROR this function provides a pointer
to a string representing a message associated with the error. For errors raised
within the Prolog portion of execution, messages are as in Volume 1 Exception
Handling.

14.3.5 Thread Management from Calling Programs

int xsb_ccall_thread_create(th_context *callingThread, th_context **newThread)

C function
Causes callingThread to create a thread pointed to by newThread. newThread

runs exactly the same interpreter loop as callingThread and all API func-
tions will work on newThread just as on the main thread, or any other thread.
newThread will be non-detached, and will inherit any private parameters from
callingThread. To create a thread to do a specific task or a detached thread,
rather than one that executes a command loop, simply call the query thread_create/[2,3]

from one of the query functions.

th_context *xsb_get_main_thread() C function
Returns a pointer to the thread context of XSB’s main thread. If XSB has not
been initialized or has been closed this function returns 0.

xsb_tid xsb_thread_id_to_context(th_context *th) C function

th_context *xsb_thread_context_to_id(xsb_tid id) C function
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14.4 The Variable-length String Data Type

XSB uses variable-length strings to communicate with certain C subroutines when
the size of the output that needs to be passed from the Prolog side to the C side is not
known. Variable-length strings adjust themselves depending on the size of the data
they must hold and are ideal for this situation. For instance, as we have seem the two
subroutines xsb_query_string_string(query,buff,sep) and xsb_next_string(buff,sep)

use the variable string data type, VarString, for their second argument. To use this
data type, make sure that

#include "cinterf.h"

appears at the top of the program file. Variables of the VarString type are declared
using a macro that must appear in the declaration section of the program:

XSB_StrDefine(buf);

There is one important consideration concerning VarString with the automatic stor-
age class: they must be destroyed on exit (see XSB_StrDestroy, below) from the
procedure that defines them, or else there will be a memory leak. It is not necessary
to destroy static VarString’s.

The public attributes of the type are int length and char *string. Thus,
buf.string represents the actual contents of the buffer and buf.length is the length
of that data. Although the length and the contents of a VarString string is readily
accessible, the user must not modify these items directly. Instead, he should use the
macros provided for that purpose:

• XSB_StrSet(VarString *vstr, char *str): Assign the value of the regular
null-terminated C string to the VarString vstr. The size of vstr is adjusted
automatically.

• XSB_StrSetV(VarString *vstr1, VarString *vstr2): Like XSB_StrSet, but
the second argument is a variable-length string, not a regular C string.

• XSB_StrAppend(VarString *vstr, char *str): Append the null-terminated
string str to the VarString vstr. The size of vstr is adjusted.

• XSB_StrPrepend(VarString *vstr, char *str): Like XSB_StrAppend, ex-
cept that str is prepended.



CHAPTER 14. EMBEDDING XSB IN A PROCESS 505

• XSB_StrAppendV(VarString *vstr1, VarString *vstr2): Like XSB_StrAppend,
except that the second string is also a VarString.

• XSB_StrPrependV(VarString *vstr1, VarString *vstr2): Like XSB_StrAppendV,
except that the second string is prepended.

• XSB_StrCompare(VarString *vstr1, VarString *vstr2): Compares two VarString.
If the first one is lexicographically larger, then the result is positive; if the first
string is smaller, than the result is negative; if the two strings have the same
content (i.e., vstr1->string equals vstr2->string then the result is zero.

• XSB_StrCmp(VarString *vstr, char *str): Like XSB_StrCompare but the
second argument is a regular, null-terminated string.

• XSB_StrAppendBlk(VarString *vstr, char *blk, int size): This is like
XSB_StrAppend, but the second argument is not assumed to be null-terminated.
Instead, size characters pointed to by blk are appended to vstr. The size of
vstr is adjusted, but the content is not null terminated.

• XSB_StrPrependBlk(VarString *vstr, char *blk, int size): Like XSB_StrPrepend,
but blk is not assumed to point to a null-terminated string. Instead, size char-
acters from the region pointed to by blk are prepended to vstr.

• XSB_StrNullTerminate(VarString *vstr): Null-terminates the VarString

string vstr. This is used in conjunction with XSB_StrAppendBlk, because the
latter does not null-terminate variable-length strings.

• XSB_StrEnsureSize(VarString *vstr, int minsize): Ensure that the string
has room for at least minsize bytes. This is a low-level routine, which is used
to interface to procedures that do not use VarString internally. If the string
is larger than minsize, the size might actually shrink to the nearest increment
that is larger minsize.

• XSB_StrShrink(VarString *vstr, int increment): Shrink the size of vstr

to the minimum necessary to hold the data. increment becomes the new in-
crement by which vstr is adjusted. Since VarString is automatically shrunk
by XSB_StrSet, it is rarely necessary to shrink a VarString explicitly. How-
ever, one might want to change the adjustment increment using this macro (the
default increment is 128).

• XSB_StrDestroy(VarString *vstr): Destroys a VarString. Explicit de-
struction is necessary for VarString’s with the automatic storage class. Oth-
erwise, memory leak is possible.
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14.5 Passing Data into an XSB Module

The previous chapter described the low-level XSB/C interface that supports passing
the data of arbitrary complexity between XSB and C. However, in cases when data
needs to be passed into an executable XSB module by the main C program, the
following higher-level interface should suffice. (This interface is actually implemented
using macros that call the lower level functions.) These routines can be used to
construct commands and queries into XSB ’s register 1, which is necessary before
calling xsb_query() or xsb_command().

void xsb_make_vars((int) N) C function
xsb_make_vars creates a return structure of arity N in Register 2. So this rou-
tine may called before calling any of xsb_query, xsb_query_string, xsb_command,
or xsb_command_string if parameters are to be set to be sent to the goal. It
must be called before calling one of the xsb_set_var_* routines can be called.
N must be the number of variables in the query that is to be evaluated.

void xsb_set_var_int((int) Val, (int) N) C function
set_and_int sets the Nth field in the return structure to the integer value Val.
It is used to set the value of the Nth variable in a query before calling xsb_query

or xsb_query_string. When called in XSB, the query will have the Nth variable
set to this value.

void xsb_set_var_string((char *) Val, (int) N) C function
set_and_string sets the Nth field in the return structure to the atom with
name Val. It is used to set the value of the Nth variable in a query before calling
xsb_query or xsb_query_string. When called in XSB, the query will have
the Nth variable set to this value.

void xsb_set_var_float((float) Val, (int) N) C function
set_and_float sets the Nth field in the return structure to the floating point
number with value Val. It is used to set the value of the Nth variable in a
query before calling xsb_query or xsb_query_string. When called in XSB,
the query will have the Nth variable set to this value.

prolog_int xsb_var_int((int) N) C function
xsb_var_int is called after xsb_query or xsb_query_string returns an an-
swer. It returns the value of the Nth variable in the query as set in the returned
answer. This variable must have an integer value (which is cast to long in a
64-bit architecture).
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char* xsb_var_string((int) N) C function
xsb_var_string is called after xsb_query or xsb_query_string returns an
answer. It returns the value of the Nth variable in the query as set in the
returned answer. This variable must have an atom value.

prolog_float xsb_var_float((int) N) C function
xsb_var_float is called after xsb_query or xsb_query_string returns an an-
swer. It returns the value of the Nth variable in the query as set in the returned
answer. This variable must have a floating point value (which is cast to double

in a 64-bit architecture).

14.6 Creating an XSB Module that Can be Called

from C

To create an executable that includes calls to the above C functions, these routines,
and the XSB routines that they call, must be included in the link (ld) step.

Unix instructions: You must link your C program, which should include the main
procedure, with the XSB object file located in

$XSBDIR/config/<your-system-architecture>/saved.o/xsb.o

Your program should include the file cinterf.h located in the XSB/emu subdirectory,
which defines the routines described earlier, which you will need to use in order to
talk to XSB. It is therefore recommended to compile your program with the option
-I$XSB_DIR/XSB/emu.

The file $XSB_DIR/config/your-system-architecture/modMakefile is a make-
file you can use to build your programs and link them with XSB. It is generated
automatically and contains all the right settings for your architecture, but you will
have to fill in the name of your program, etc.

It is also possible to compile and link your program with XSB using XSB itself as
follows:

:- xsb_configuration(compiler_flags,CFLAGS),

xsb_configuration(loader_flags,LDFLAGS),

xsb_configuration(config_dir,CONFDIR),

xsb_configuration(emudir,EMUDIR),
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xsb_configuration(compiler,Compiler),

str_cat(CONFDIR, ’/saved.o/’, ObjDir),

write(’Compiling myprog.c ... ’),

shell([Compiler, ’ -I’, EMUDIR, ’ -c ’, CFLAGS, ’ myprog.c ’]),

shell([Compiler, CFLAGE, ’ -o ’, ’./myprog ’,

ObjDir, ’xsb.o ’, ’ myprog.o ’, LDFLAGS]),

writeln(done).

This works for every architecture and is often more convenient than using the make
files 6. There are simple examples of C programs calling XSB in the $XSB_DIR/examples/c_calling_XSB

directory, in files cmain.c, ctest.P, cmain2.c.

Windows instructions: To call XSB from C, you must build it as a DLL, which
is done as follows:

cd $XSB_DIR\XSB\build

makexsb_wind DLL="yes"

The DLL, which you can call dynamically from your program is then found in

$XSB_DIR\config\x86-pc-windows\bin\xsb.dll

Since your program must include the file cinterf.h, it is recommended to compile
it with the option /I$XSB_DIR\XSB\emu.

6The variable CFLAGS is needed in the linking stage in order to ensure that the appropriate memory
option is passed if XSB is configured –with-bits32 or –with-bits64 to override the default on a
64-bit platform.



Chapter 15

Library Utilities

In this chapter we introduce libraries of some useful predicates that are supplied
with XSB. Interfaces and more elaborate packages are documented in later chapters.
These predicates are available only when imported them from (or explicitly consult)
the corresponding modules.

15.1 List Processing

The XSB library contains various list utilities, some of which are listed below. These
predicates should be explicitly imported from the module specified after the skeletal
specification of each predicate. There are a lot more useful list processing predicates
in various modules of the XSB system, and the interested user can find them by
looking at the sources.

append(?List1, ?List2, ?List3) module: basics

Succeeds if list List3 is the concatenation of lists List1 and List2.

member(?Element, ?List) module: basics

Checks whether Element unifies with any element of list List, succeeding more
than once if there are multiple such elements.

memberchk(?Element, ?List) module: basics

Similar to member/2, except that memberchk/2 is deterministic, i.e. does not
succeed more than once for any call.

ith(?Index, ?List, ?Element) module: basics

Succeeds if the Indexth element of the list List unifies with Element. Fails if

509
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Index is not a positive integer or greater than the length of List. Either Index

and List, or List and Element, should be instantiated (but not necessarily
ground) at the time of the call.

delete_ith(+Index, +List, ?Element, ?RestList) module: listutil

Succeeds if the Indexth element of the list List unifies with Element, and
RestList is List with Element removed. Fails if Index is not a positive integer
or greater than the length of List.

log_ith(?Index, ?Tree, ?Element) module: basics

Succeeds if the Indexth element of the Tree Tree unifies with Element. Fails
if Index is not a positive integer or greater than the number of elements that
can be in Tree. Either Index and Tree, or Tree and Element, should be
instantiated (but not necessarily ground) at the time of the call. Tree is a list
of full binary trees, the first being of depth 0, and each one being of depth one
greater than its predecessor. So log_ith/3 is very similar to ith/3 except it
uses a tree instead of a list to obtain log-time access to its elements.

log_ith_bound(?Index, ?Tree, ?Element) module: basics

is like log_ith/3, but only if the Indexth element of Tree is non-variable and
equal to Element. This predicate can be used in both directions, and is most
useful with Index unbound, since it will then bind Index and Element for each
non-variable element in Tree (in time proportional to N ∗ logN , for N the
number of non-variable entries in Tree.)

log_ith_new(?Index, ?Tree, ?Element) module: basics

binds Element to the “end” of the log_list Tree, and unifies Index with its
corresponding index. The “end” of a log_list is the first element after the one
with the largest index that has been added. This can be used to simulate adding
an element to the end of an open-tailed list, but with better complexity.

log_ith_to_list(?Tree, ?List) module: basics

constructs the List that contains all bound values in the log_list Tree, in the
order they appear in Tree.

length(?List, ?Length) module: basics

Succeeds if the length of the list List is Length. This predicate is deterministic
if List is instantiated to a list of definite length, but is nondeterministic if List

is a variable or has a variable tail. If List is uninstantiated, it is unified with
a list of length Length that contains variables.
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same_length(?List1, ?List2) module: basics

Succeeds if list List1 and List2 are both lists of the same number of elements.
No relation between the types or values of their elements is implied. This
predicate may be used to generate either list (containing variables as elements)
given the other, or to generate two lists of the same length, in which case the
arguments will be bound to lists of length 0, 1, 2, . . ..

select(?Element, ?L1, ?L2) module: basics

List2 derives from List1 by selecting (removing) an Element non-deterministically.

reverse(+List, ?ReversedList) module: basics

Succeeds if ReversedList is the reverse of list List. If List is not a proper
list, reverse/2 can succeed arbitrarily many times. It works only one way.

perm(+List, ?Perm) module: basics

Succeeds when List and Perm are permutations of each other. The main use of
perm/2 is to generate permutations of a given list. List must be a proper list.
Perm may be partly instantiated.

subseq(?Sequence, ?SubSequence, ?Complement) module: basics

Succeeds when SubSequence and Complement are both subsequences of the
list Sequence (the order of corresponding elements being preserved) and every
element of Sequence which is not in SubSequence is in the Complement and
vice versa. That is,

length(Sequence) = length(SubSequence) + length(Complement)

for example, subseq([1,2,3,4], [1,3], [2,4]). The main use of subseq/3

is to generate subsets and their complements together, but can also be used to
interleave two lists in all possible ways.

merge(+List1, +List2, ?List3) module: listutil

Succeeds if List3 is the list resulting from “merging” lists List1 and List2,
i.e. the elements of List1 together with any element of List2 not occurring in
List1. If List1 or List2 contain duplicates, List3 may also contain duplicates.

absmerge(+List1, +List2, ?List3) module: listutil

Predicate absmerge/3 is similar to merge/3, except that it uses predicate
absmember/2 described below rather than member/2.

absmember(+Element, +List) module: listutil

Similar to member/2, except that it checks for identity (through the use of
predicate ’==’/2) rather than unifiability (through ’=’/2) of Element with
elements of List.
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member2(?Element, ?List) module: listutil

Checks whether Element unifies with any of the actual elements of List. The
only difference between this predicate and predicate member/2 is on lists having
a variable tail, e.g. [a, b, c | _ ]: while member/2 would insert Element at
the end of such a list if it did not find it, Predicate member2/2 only checks for
membership but does not insert the Element into the list if it is not there.

closetail(?List) module: listutil

Predicate closetail/1 closes the tail of an open-ended list. It succeeds only
once.

15.1.1 Processing Comma Lists

It is often useful to process comma lists when meta-interpreting or preprocessing.
XSB libraries include the following simple utilities.

comma_to_list(+CommaList,-List) module: basics

Transforms CommaList to List.

comma_append(?CL1,?CL2,?CL3) module: basics
comma_length(?CommaList,?Length) module: basics
comma_member(?Element,?CommaList) module: basics
comma_memberchk(?Element,?CommaList) module: basics

Analogues for comma lists of append/3, length/3, member/2 and memberchk/2,
respectively.

15.2 Attributed Variables

Attributed variables are a special data type that associates variables with arbitrary
attributes as well as supports extensible unification. Attributed variables have proven
to be a flexible and powerful mechanism to extend a classic logic programming sys-
tem with the ability of constraint solving. Our low-level API for constraints closely
resembles that of hProlog [23] and SWI [95].
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15.2.1 Low-level Interface

Attributes of variables are pairs of attribute module names and values. An attribute
module name can be any atom. A value can be any XSB value (term, variable,
atom, . . . ). Any variable has at most one attribute for a particular attribute module.
Attribute modules are distinct from XSB modules: although it is most efficient to
keep each handlers for each attribute module in their own XSB module. c Attributes
can be manipulated with the following three predicates (get_attr/3, put_attr/3

and del_attr/2) defined in the module machine.

get_attr(-Var,+Mod, ?Val) module: machine

Gets the value of the attribute of Var in attribute module Mod. Non-variable
terms in Var cause a type error. Val will be unified with the value of the
attribute, if it exists. Otherwise the predicate fails.

put_attr(-Var,+Mod, ?Val) module: machine

Sets the value of the attribute of Var in attribute module Mod. Non-variable
terms in Var cause a type error. The previous value of the attribute is over-
written, if it exists.

del_attr(-Var, +Mod) module: machine

Removes the attribute of Var in attribute module Mod. Non-variable terms in
Var cause a type error. The previous value of the attribute is removed, if it
exists.

One has to extend the default unification algorithm for used attributes by in-
stalling a handler in the following way:

:- install_verify_attribute_handler(+Mod, −AttrV alue, −Target, +Handler, +WarningF lag)

:- install_verify_attribute_handler(+Mod, −AttrV alue, −Target, +Handler)

The predicates install_verify_attribute_handler/5 and install_verify_attribute_handler/4

are defined in module machine. Mod is the attribute Module and Handler is a term
with arguments AttrV alue and Target. The Handler term has to correspond to a
handler predicate that takes the value of the attribute (AttrV alue) and the term that
the attributed value is bound to (Target) as arguments. The argument WarningF lag
in the 5-argument version of the predicate can be used to suppress the warning issued
when replacing the verify_attribute_handler for a module. If the argument is
warning_on then the warning is issued if a handler for the module already exists.
Otherwise, the warning is suppressed. The 4-argument version of the predicate does
not suppress the warning.
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To get good efficiency, it is usually best to keep the handlers for each attribute
module in separate XSB modules. The handler is called after the unification of an
attributed variable with a term or other attributed variable, if the attributed variable
has an attribute in the corresponding module. The two arguments of the unification
are already bound at the time the handler is called, i.e. the handler is a post-unify
handler.

Here, by giving the implementation of a simple finite domain constraint solver (see
the file fd.P below), we show how these low-level predicates for attributed variables
can be used. In this example, an attribute in the module fd is used and the value of
this attribute is a list of terms.

%% File: fd.P

%%

%% A simple finite domain constrait solver implemented using the low-level

%% attributes variables interface.

:- import put_attr/3, get_attr/3, del_attr/2,

install_verify_attribute_handler/4 from machine.

:- import member/2 from basics.

:- install_verify_attribute_handler(fd,AttrValue,Target,fd_handler(AttrValue,Target)).

fd_handler(Da, Target) :-

(var(Target), % Target is an attributed variable

get_attr(Target, fd, Db) -> % has a domain

intersection(Da, Db, [E|Es]), % intersection not empty

(Es = [] -> % exactly one element

Target = E % bind Var (and Value) to E

; put_attr(Target, fd, [E|Es]) % update Var’s (and Value’s)

)

; member(Target, Da) % is Target a member of Da?

).

intersection([], _, []).

intersection([H|T], L2, [H|L3]) :-

member(H, L2), !,

intersection(T, L2, L3).

intersection([_|T], L2, L3) :-

intersection(T, L2, L3).

domain(X, Dom) :-
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var(Dom), !,

get_attr(X, fd, Dom).

domain(X, List) :-

List = [El|Els], % at least one element

(Els = [] % exactly one element

-> X = El % implied binding

; put_attr(Fresh, fd, List), % create a new attributed variable

X = Fresh % may call verify_attributes/2

).

show_domain(X) :- % print out the domain of X

var(X), % X must be a variable

get_attr(X, fd, D),

write(’Domain of ’), write(X),

write(’ is ’), writeln(D).

When writing or porting a constraint package, it is usually useful to adjust the
way that correct answer substitutions are shown in the command line. This can be
controlled using the following two predicates:

install_attribute_portray_hook(Module,Attribute,Handler) module:
machine
This hook is called by the command-line interpreter when printing out the value
of each variable in a top-level query. When a printing out an attributed variable,
any appropriate handlers are called to portray the constraints represented by
the attribute. As an example, the bounds package (cf. Volume II: Constraints
Packages) uses a hook to print out the bounds of variables:

| ?- X in 1..10,Y in 1..10,X + 4 #< Y -3.

X = _h629 { bounds : 1 .. 2 }

Y = _h673 { bounds : 9 .. 10 }

Writing a handler can be as simple as possible or as elaborate as desired. In
the case of bounds the handler is simple:

bounds_attr_portray_hook(bounds(L,U,_)) :- write(L..U).

The hook is installed when the constraint package is loaded by placing in the
package loader directive such as:

:- install_attribute_portray_hook(bounds,Attr,bounds_attr_portray_hook(Attr)).
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Note that the hook will be indexed on the module associated with the attribute
(in this case bounds). XSB’s command-line interpreter will unify the second
argument of the portray hook with the attribute, and then call Handler.

install_attribute_constraint_hook(Module,Vars,Names,Handler) module:
machine
For some constraint packages, it may not be particularly useful to associate
constraints with variables: instead, the projection of global constraints onto the
variables of the top-level query may be more useful. This is the case in the
CLP(R) package (cf. Volume II Constraints Packages), where the command-
line interaction may look as follows:

| ?- {X = 2*Y,Y >= 7},inf(X,F).

{ X >= 14.0000 }

{ Y = 0.5000 * X }

X = _h8841

Y = _h9506

F = 14.0000

In XSB, the (projection of the) global constraints in CLP(R) are displayed by
the following routines:

clpr_portray_varlist(Vars,Names):-

filter_varlist(Vars,Names,V1,N1),

dump(V1,N1,Constraints),

member(C,Constraints),

console_write(’ { ’), console_write(C),console_writeln(’ } ’),

fail.

clpr_portray_varlist(_V,_N).

filter_varlist([],[],[],[]).

filter_varlist([V1|R1],[N1|R2],[V1|R3],[N1|R4]):-

var(V1),!,

filter_varlist(R1,R2,R3,R4).

filter_varlist([_V1|R1],[_N1|R2],R3,R4):-

filter_varlist(R1,R2,R3,R4).

This predicate sets up a call to the CLP(R) library predicate dump/3, whose
constraints it then writes out to the console. Analogous to the portray hook,
the console hook is installed using the directive:

:- install_constraint_portray_hook(clpr,Vars,Names,clpr_portray_varlist(Vars,Names)).
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If the clpr module is loaded, the command line interpreter checks any constraint
portray hooks upon the first success of a top-level goal. It then unifies the second
argument Vars with the variables of the goal, and Names with the names of the
variables of the goal which are then passed on to Handler

15.3 constraintLib: a library for CLP

XSB supports constraint logic programming through its engine-level support of at-
tributed variables (Section 15.2), and its support for constraint handling rules (CHR)
(cf. Volume II: Constraint Handling Rules). The constraintLib library includes
routines for delaying and examining bindings that are commonly used to implement
CHR and other constraint libraries.

When processing constraints, it is often useful to delay a goal based on the instan-
tiation level of a term or set of terms. For instance a 3 > X + Y should be delayed
until both X and Y are instantiated. However the goal should be reinvoked as soon as
possible after both are instantiated in order to prune search paths that may not be
useful to pursue. The predicate when/2 provides a useful mechanism to delay goals
based on instantiation patterns 1.

when(+Condition,Goal) module: constraintLib

Delays the execution of Goal until Condition is satisfied, whereupon Goal will
be executed. Condition can have the form

• ?=(Term1,Term2)

• nonvar(Term)

• ground(Term) 2

• (Condition,Condition)

• (Condition ; Condition)

Example: The following session illustrates the use of when/2 to delay a goal.

|?- when(nonvar(X),writeln(test(1-2,nonvar))),writeln(test(1,nonvar)),X = f(_Y).

1Despite the similar name, this method of delaying is conceptually different from SLG delaying

discussed in Volume 1 of this manual, which is used for resolving cycles of dependencies in computing
the well-founded semantics, and is not based on the state of instantiation of a term.

2To use ground/1 in the condition, it must be imported into the file where it is used.
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test(1,nonvar)

test(1 - 2,nonvar)

X = f(_h245)

unifiable(X, Y, -Unifier) module: constraintLib

If X and Y can unify, succeeds unifying Unifier with a list of terms of the
form Var = Value representing a most general unifier of X and Y. unifiable/3

can handle cyclic terms. Attributed variables are handled as normal variables.
Associated hooks are not executed 3.

setarg(+Index,+Term,+Value) module: constraintLib

set_arg(+Index,+Term,+Value) module: machine

The predicate setarg/3 provides an efficient but non-logical way to update
argument Index of a Prolog term Term to Value via destructive assignment
and without the necessity of copying Term. setarg/3 should be used sparingly,
to ensure both clarity and portability of code.

Example

|?- X = p(f(1),g(2),r([a])),

writeln(zero(X)),

( setarg(2,X,g([b])),

writeln(one(X)),

fail

; writeln(two(X))).

zero(p(f(1),g(2),r([a])))

one(p(f(1),g([b]),r([a])))

two(p(f(1),g(2),r([a])))

X = p(f(1),g(2),r([a]))

Error Cases

• Index is a variable

– instantiation_error

• Index neither a variable nor an integer

– type_error(integer,Index)

• Index is less than 0

3In Version 3.8, unifiable/3 is implemented as a Prolog predicate and so is slower than many
of the predicates in this section.
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– domain_error(not_less_than_zero,Index)

• Term is a variable

– instantiation_error

• Term neither a variable nor a compound term

– type_error(compound,Term)

term_variables(+Term,-Variables) module: constraintLib

Given any Prolog term Term as input, returns a sorted list of variables in the
term.

15.4 Formatted Output

format(+String,+Control) module: format
format(+Stream,+String,+Control) module: format

format/2 and format/3 act as a Prolog analog to the C stdio function printf(),
allowing formatted output 4.

Output is formatted according to String which can contain either a format
control sequence, or any other character which will appear verbatim in the
output. Control sequences act as place-holders for the actual terms that will be
output. Thus

?- format("Hello ~q!",world).

will print Hello world!.

If there is only one control sequence, the corresponding element may be supplied
alone in Control. If there are more, Control must be a list of these elements.
If there are none then Control must be an empty list. There have to be as
many elements in Control as control sequences in String.

The character ~ introduces a control sequence. To print a ~ just repeat it:

?- format("Hello ~~world!", []).

4The format family of predicates is due to Quintus Prolog, by way of Ciao.
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will output Hello ~world!.

The general format of a control sequence is ~NC. The character C determines the
type of the control sequence. N is an optional numeric argument. An alternative
form of N is *. * implies that the next argument in Arguments should be used
as a numeric argument in the control sequence. For example:

?- format("Hello~4cworld!", [0’x]).

and

?- format("Hello~*cworld!", [4,0’x]).

both produce

Helloxxxxworld!

The following control sequences are available in XSB.

• ~a The argument is an atom. The atom is printed without quoting.

• ~Nc (Print character.) The argument is a number that will be interpreted
as an UTF-8 code. N defaults to one and is interpreted as the number of
times to print the character.

• ~f (Print float). The argument is a float. The float will be printed out by
XSB.

• ~d (Print integer). The argument is an integer, and will be printed out by
XSB.

• ~Ns (Print string.) The argument is a list of UTF-8 codes. Exactly N

characters will be printed. N defaults to the length of the string. Example:

?- format("Hello ~4s ~4s!", ["new","world"]).

?- format("Hello ~s world!", ["new"]).

will print as

Hello new worl!

Hello new world!

respectively.
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• ~i (Ignore argument.) The argument may be of any type. The argument
will be ignored. Example:

?- format("Hello ~i~s world!", ["old","new"]).

will print as

Hello new world!

• ~k (Print canonical.) The argument may be of any type. The argument
will be passed to write_canonical/2 ). Example:

?- format("Hello ~k world!", a+b+c).

will print as

Hello +(+(a,b),c) world!

• ~q (Print quoted.) The argument may be of any type. The argument will
be passed to writeq/2. Example:

?- format("Hello ~q world!", [[’A’,’B’]]).

will print as

Hello [’A’,’B’] world!

• ~w (write.) The argument may be of any type. The argument will be
passed to write/2. Example:

?- format("Hello ~w world!", [[’A’,’B’]]).

will print as

Hello [A,B] world!

• ~Nn (Print newline.) Print N newlines. N defaults to 1. Example:

?- format("Hello ~n world!", []).

will print as

Hello

world!
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15.5 Low-level Atom Manipulation Predicates

XSB has a number of low-level predicates that, despite their names, examine prop-
erties of atoms. The functionality of these predicates is often a subset of the ISO
predicate sub_atom/5, but these predicates are faster, as they are more specialized,
and have been written in C.

These predicates are especially powerful when they are combined with pattern-
matching facilities provided by the pcre package described in Volume 2 of this man-
ual).

It is important to note, that not all string manipulation predicates have been
made thread-safe in Version 3.8. In addition, as noted, the predicates may or may
not properly handle (non-ASCII) UTF-8 characters.

str_sub(+Sub, +Str, ?Pos) module: string
str_sub(+Sub, +Str) module: string

Succeeds if Sub is a substring of Str. In that case, Pos unifies with the position
where the match occurred. Positions start from 0. str_sub/2 is also available,
which is equivalent to having _ in the third argument of str_sub/3 5.

str_match(+Sub, +Str, +Direction, ?Beg, ?End) module: string

This is an enhanced version of the previous predicate. Direction can be
forward or reverse (or any abbreviation of these). If forward, the predi-
cate finds the first match of Sub from the beginning of Str. If reverse, it finds
the first match from the end of the string (i.e., the last match of Sub from the
beginning of Str). Beg and End must be integers or unbound variables. (It is
possible that one is bound and another is not.) Beg unifies with the offset of the
first character where Sub matched, and End unifies with the offset of the next
character to the right of Sub (such a character might not exist, but the offset is
still defined). Offsets start from 0.

Both Beg and End can be bound to negative integers. In this case, the value
represents the offset from the second character past the end of Str. Thus -1

represents the character next to the end of Str and can be used to check where
the end of Sub matches in Str. In the following examples

5Currently, str_sub/2 works properly for UTF-8 characters, but str_sub/3 does not.



CHAPTER 15. LIBRARY UTILITIES 523

?- string_match(Sub,Str,forw,X,-1).

?- string_match(Sub,Str,rev,X,-1).

?- string_match(Sub,Str,forw,0,X).

the first checks if the first match of Sub from the beginning of Str is a suffix
of Str (because End represents the character next to the last character in Sub,
so End=-1 means that the last characters of Sub and of Str occupy the same
position). If so, X is bound to the offset (from the end of Str) of the first
character of Sub. The second example checks if the last match of Sub in Str is
a suffix of Str and binds X to the offset of the beginning of that match (counted
from the beginning of Str). The last example checks if the first match of Sub

is a prefix of Str. If so, X is bound to the offset (from the beginning of Str) of
the last character of Sub 6.

substring(+String, +BeginOffset, +EndOffset, -Result) module: string

String can be an atom or a list of characters, and the offsets must be integers.
If EndOffset is negative, endof(String)+EndOffset+1 is assumed. Thus, -1

means end of string. If BeginOffset is less than 0, then 0 is assumed; if it is
greater than the length of the string, then string end is assumed. If EndOffset

is non-negative, but is less than BeginOffset, then empty string is returned.

Offsets start from 0.

The result returned in the fourth argument is a string, if String is an atom, or
a list of characters, if so is String.

The substring/4 predicate always succeeds (unless there is an error, such as
wrong argument type).

Here are some examples:

| ?- substring(’abcdefg’, 3, 5, L).

L = de

| ?- substring("abcdefg", 4, -1, L).

L = [101,102]

(i.e., L = ef represented using ASCII codes) 7.

6Currently, string_match/5 does not work properly for UTF-8 characters.
7Currently, substring/4 works properly for UTF-8 characters.
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15.6 Script Writing Utilities

Prolog, (in particular XSB!) can be useful for writing scripts. Prolog’s simple syntax
and declarative semantics make it especially suitable for scripts that involve text
processing. There are several ways to access script-writing commands from XSB.
The first is to execute the command via the predicates shell/1 or shell/2. These
predicates can execute any command but they do not provide streamability across
UNIX and Windows commands, and they do not return any output of commands to
Prolog. Special predicates are provided to handle cross-platform compatibility and
to bring output into XSB.

Effort has been made to make the these thread-safe; however in Version 3.8, calls to
the XSB script writing utilities go through a single mutex, and may cause contention
if many threads seek to concurrently use sockets.

expand_filename(+FileName,-ExpandedName) module: machine

Expands the file name passed as the first argument and binds the variable in
the second argument to the expanded name. This includes (1) expanding Unix
tildes, (2) prepending FileName to the current directory, and (3) “rectifying”
the expanded file name. In rectification, the expanded file name is “rectified”
so that multiple repeated slashes are replaced with a single slash, the inter-
vening “./” are removed, and “../” are applied so that the preceding item in
the path name is deleted. For instance, if the current directory is /home, then
abc//cde/..///ff/./b will be converted into /home/abc/ff/b.

Under Windows, this predicates does rectification as described above, (using
backslashes when appropriate), but it does not expand the tildes.

expand_filename_no_prepend(+FileName,-ExpandedName) module: shell

This predicate behaves as expand_filename/2, but only expands tildes and
does rectification. It does not prepend the current working directory to relative
file names.

parse_filename(+FileName,-Dir,-Base,-Extension) module: machine

This predicate parses file names by separating the directory part, the base name
part, and file extension. If file extension is found, it is removed from the base
name. Also, directory names are rectified and if a directory name starts with a
tilde (in Unix), then it is expanded. Directory names always end with a slash
or a backslash, as appropriate for the OS at hand.

For instance, ∼john///doe/dir1//../foo.bar will be parsed into: /home/john/doe/,
foo, and bar (where we assume that /home/john is what ∼john expands into).
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sys_pid(-Pid) module: shell

Get Id of the current process.

sys_main_memory(-RamInBytes) module: shell

Provides a platform-independent way to return the amount of RAM for the
current machine, in bytes. 8

15.6.1 Communication with Subprocesses

In the previous section, we have seen several predicates that allow XSB to create other
processes. However, these predicates offer only a very limited way to communicate
with these processes. The predicate spawn_process/5 and friends come to the rescue.
It allows a user to spawn any process (including multiple copies of XSB) and redirect
its standard input and output to XSB streams. XSB can then write to the process
and read from it. The section of socket I/O describes yet another mode of interprocess
communication.

In addition, the predicate pipe_open/2 described in this section lets one create
any number of pipes (that do not need to be connected to the standard I/O stream)
and talk to child processes through these pipes. All predicates in this section, ex-
cept pipe_open/2 and fd2stream/2, must be imported from module shell. The
predicates pipe_open/2 and fd2stream/2 must be imported from file_io.

spawn_process(+CmdSpec,-StreamToProc,-StreamFromProc,-ProcStderrStream,-ProcId)

module: shell

Spawn a new process specified by CmdSpec. CmdSpec must be either a single
atom or a list of atoms. If it is an atom, then it must represent a shell command.
If it is a list, the first member of the list must be the name of the program to
run and the other elements must be arguments to the program. Program name
must be specified in such a way as to make sure the OS can find it using the
contents of the environment variable PATH. Also note that pipes, I/O redirection
and such are not allowed in command specification. That is, CmdSpec must rep-
resent a single command. (But read about process plumbing below and about
the related predicate shell/5.)

The next three parameters of spawn_process are XSB I/O stream identifiers
for the process (leading to the subprocess standard input), from the process
(from its standard output), and a stream capturing the subprocess standard
error output. The last parameter is the system process id.

8Based on code by David Robert Nadeau under the Creative Commons license.
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Here is a simple example of how it works.

| ?- import file_flush/2, file_read_line_atom/2 from file_io.

| ?- import file_nl/1 , file_write/2 from xsb_writ.

| ?- spawn_process([cat, ’-’], To, From, Stderr, Pid),

writeln(To,’Hello cat!’), flush_output(To,_), file_read_line_atom(From,Y).

To = 3

From = 4

Stderr = 5

Pid = 14328

Y = Hello cat!

yes

Here we created a new process, which runs the “cat” program with argument “–”.
This forces cat to read from standard input and write to standard output. The next
line writes an atom and newline to the XSB stream To, which is bound to the standard
input of the cat process (proc id 14328). The cat process then copies the input to
its standard output. Since standard output of the cat process is redirected to the
XSB stream From in the parent process, the last line in our program is able to read it
and return in the variable Y. Note that in the second line we used flush_output/2.
Flushing the output is extremely important here, because XSB I/O pipe (file) streams
are buffered. Thus, cat might not see its input until the buffer is filled up, so the
above clause might hang. flush_output/2 makes sure that the input is immediately
available to the subprocess.

In addition to the above general schema, the user can tell spawn_process/5 not to
open one of the communication streams or to use one of the existing communication
streams. This is useful when you do not expect to write or read to/from the subprocess
or when one process wants to write to another (see the process plumbing example
below). To tell that a certain stream is not needed, it suffices to bind that stream to
an atom. For instance,

| ?- spawn_process([cat, ’-’], To, none, none, _),

nl(To), writeln(To,’Hello cat!’), flush_output(To).

To = 3,

Hello cat!
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reads from XSB and copies the result to standard output. Likewise,

| ?- spawn_process(’cat library.tex’, none, From, none, _),

file_read_line_atom(From, S).

From = 4

S = \chapter{Library Utilities} \label{library_utilities}

In each case, only one of the streams is open. (Note that the shell command is
specified as an atom rather than a list.) Finally, if both streams are suppressed, then
spawn_process reduces to the usual shell/1 call (in fact, this is how shell/1 is
implemented):

| ?- spawn_process([pwd], none, none).

/usr/local/foo/bar

On the other hand, if any one of the three stream variables in spawn_process is
bound to an already existing file stream, then the subprocess will use that stream
(see the process plumbing example below).

One of the uses of XSB subprocesses is to create XSB servers that spawn subpro-
cesses and control them. A spawned subprocess can be another XSB process. The
following example shows one XSB process spawning another, sending it a goal to
evaluate and obtaining the result:

| ?- spawn_process([xsb], To, From,Err,_),

write(To,’assert(p(1)).’), flush_output(To,_),

write(To,’p(X), writeln(X).’), flush_output(To,_),

file_read_line_atom(From,XX).

XX = 1

yes

| ?-

Here the parent XSB process sends “assert(p(1)).” and then “p(X), writeln(X).”
to the spawned XSB subprocess. The latter evaluates the goal and prints (via
“writeln(X)”) to its standard output. The main process reads it through the From

stream and binds the variable XX to that output.
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Finally, we should note that the stream variables in the spawn_process predicate
can be used to do process plumbing, i.e., redirect output of one subprocess into the
input of another. Here is an example:

| ?- open(test,write,Stream),

spawn_process([cat, ’data’], none, FromCat1, none, _),

spawn_process([sort], FromCat1,Stream, none, _).

Here, we first open file test. Then cat data is spawned. This process has the input
and standard error stream blocked (as indicated by the atom none), and its output
goes into stream FromCat1. Then we spawn another process, sort, which picks the
output from the first process (since it uses the stream FromCat1 as its input) and sends
its own output (the sorted version of data) to its output stream Stream. However,
Stream has already been open for output into the file test. Thus, the overall result
of the above clause is tantamount to the following shell command:

cat data | sort > test

Important notes about spawned processes:

1. Asynchronous processes spawned by XSB do not disappear (at least on Unix)
when they terminate, unless the XSB program executes a wait on them (see
process_control below). Instead, such processes become defunct zombies (in
Unix terminology); they do not do anything, but consume resources (such as file
descriptors). So, when a subprocess is known to terminate, it must be waited
on.

2. The XSB parent process must know how to terminate the asynchronous sub-
processes it spawns. The drastic way is to kill it (see process_control below).
Sometimes a subprocess might terminate by itself (e.g., having finished read-
ing a file). In other cases, the parent and the child programs must agree on a
protocol by which the parent can tell the child to exit. The programs in the
XSB subdirectory examples/subprocess illustrate this idea. If the child sub-
process is another XSB process, then it can be terminated by sending the atom
end_of_file or halt to the standard input of the child. (For this to work, the
child XSB must waiting at the prompt).

3. It is very important to not forget to close the streams that the parent uses to
communicate with the child. These are the streams that are provided in argu-
ments 2,3,4 of spawn_process. The reason is that the child might terminate,
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but these streams to the standard input of the child will remain open, since
they belong to the parent process. As a result, the parent will own defunct I/O
streams and might eventually run out of file descriptors or streams.

process_status(+Pid,-Status) module: shell

This predicate always succeeds. Given a process id, it binds the second argument
(which must be an unbound variable) to one of the following atoms: running,
stopped, exited_normally, exited_abnormally, aborted, invalid, and unknown.
The invalid status is given to processes that never existed or that are not chil-
dren of the parent XSB process. The unknown status is assigned when none of
the other statuses can be assigned.

Note: process status (other than running) is system dependent. Windows
does not seem to support stopped and aborted. Also, processes killed using
the process_control predicate (described next) are often marked as invalid

rather than exited, because Windows seems to lose all information about such
processes. Process status might be inaccurate in some Unix systems as well, if
the process has terminated and wait() has been executed on that process.

process_control(+Pid,+Operation) module: shell

Perform a process control operation on the process with the given Pid. Cur-
rently, the only supported operations are kill (an atom) and wait(Code) (a
term). The former causes the process to exit unconditionally, and the latter
waits for process completion. When the process exits, Code is bound to the
process exit code. The code for normal termination is 0.

This predicate succeeds, if the operation was performed successfully. Otherwise,
it fails. The wait operation fails if the process specified in Pid does not exist
or is not a child of the parent XSB process.

The kill operation might fail, if the process to be killed does not exist or if
the parent XSB process does not have the permission to terminate that process.
Unix and Windows have different ideas as to what these permissions are. See
kill(2) for Unix and TerminateProcess for Windows.

Note: under Windows, the programmer’s manual warns of dire consequences if
one kills a process that has DLLs attached to it.

get_process_table(-ProcessList) module: shell

This predicate is imported from module shell. It binds ProcessList to the
list of terms, each describing one of the active XSB subprocesses (created via
spawn_process/5). Each term has the form:
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process(Pid,ToStream,FromStream,StderrStream,CommandLine).

The first argument in the term is the process id of the corresponding process,
the next three arguments describe the three standard streams of the process,
and the last is an atom that shows the command line used to invoke the process.
This predicate always succeeds.

shell(+CmdSpec,-StreamToProc, -StreamFromProc, -ProcStderr, -ErrorCode)

module: shell

The arguments of this predicate are similar to those of spawn_process, except
for the following: (1) The first argument is an atom or a list of atoms, like in
spawn_process. However, if it is a list of atoms, then the resulting shell com-
mand is obtained by string concatenation. This is different from spawn_process

where each member of the list must represent an argument to the program be-
ing invoked (and which must be the first member of that list). (2) The last
argument is the error code returned by the shell command and not a process
id. The code -1 and 127 mean that the shell command failed.

The shell/5 predicate is similar to spawn_process in that it spawns another
process and can capture that process’ input and output streams. The impor-
tant difference, however, is that XSB will wait until the process spawned by
shell/5 terminates. In contrast, the process spawned by spawn_process will
run concurrently with XSB. In this latter case, XSB must explicitly synchronize
with the spawned subprocess using the predicate process_control/2 (using the
wait operation), as described earlier.

The fact that XSB must wait until shell/5 finishes has a very important im-
plication: the amount of data the can be sent to and from the shell command
is limited (1K is probably safe). This is because the shell command communi-
cates with XSB via pipes, which have limited capacity. So, if the pipe is filled,
XSB will hang waiting for shell/5 to finish and shell/5 will wait for XSB
to consume data from the pipe. Thus, use spawn_process/5 for any kind of
significant data exchange between external processes and XSB.

Another difference between these two forms of spawning subprocesses is that
CmdSpec in shell/5 can represent any shell statement, including those that have
pipes and I/O redirection. In contrast, spawn_process only allows command
of the form “program args”. For instance,

| ?- open(test,write,Stream),

shell(’cat | sort > data’, Stream, none, none, ErrCode)
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As seen from this example, the same rules for blocking I/O streams apply to
shell/5. Finally, we should note that the already familiar standard predi-
cates shell/1 and shell/2 (documented in Volume 1) are implemented using
shell/5, and shell/5 shares their error cases.

Notes:

1. With shell/5, you do not have to worry about terminating child pro-
cesses: XSB waits until the child exits automatically. However, since com-
munication pipes have limited capacity, this method can be used only for
exchanging small amounts of information between parent and child.

2. The earlier remark about the need to close I/O streams to the child does
apply.

pipe_open(-ReadPipe, -WritePipe) module: shell

Open a new pipe and return the read end and the write end of that pipe.
If the operation fails, both ReadPipe and WritePipe are bound to negative
numbers. The pipes returned by the pipe_open/2 predicate are small integers
that represent file descriptors used by the underlying OS. They are not XSB
I/O streams, and they cannot be used for I/O directly. To use them, one
must convert them to streams using open/3 or open/4. 9

The best way to illustrate how one can create a new pipe to a child (even if the
child has been created earlier) is to show an example. Consider two programs,
parent.P and child.P. The parent copy of XSB consults parent.P, which
does the following: First, it creates a pipe and spawns a copy of XSB. Then it
tells the child copy of XSB to assert the fact pipe(RP), where RP is a number
representing the read part of the pipe. Next, the parent XSB tells the child
XSB to consult the program child.P. Finally, it sends the message Hello!.

The child.P program gets the pipe from predicate pipe/1 (note that the parent
tells the child XSB to first assert pipe(RP) and only then to consult the child.P

file). After that, the child reads a message from the pipe and prints it to its
standard output. Both programs are shown below:

%% parent.P

9 XSB does not convert pipe file descriptors into I/O streams automatically. Because of the way
XSB I/O streams are represented, they are not inherited by the child process and they do not make
sense to the child process (especially if the child is not another XSB process). Therefore, we must
pass the child processes an OS file descriptor instead. The child then converts these descriptor into
XSB I/O streams.
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:- import pipe_open/2 from file_io.

%% Create the pipe and pass it to the child process

?- pipe_open(RP,WP),

%% WF is now the XSB I/O stream bound to the write part of the pipe

open(pipe(WP),write,WF),

%% ProcInput becomes the XSB stream leading directly to the child’s stdin

spawn_process(nxsb1, ProcInput, block, block, Process),

%% Tell the child where the reading part of the pipe is

fmt_write(ProcInput, "assert(pipe(%d)).\n", arg(RP)),

fmt_write(ProcInput, "[child].\n", _),

flush_output(ProcInput, _),

%% Pass a message through the pipe

fmt_write(WF, "Hello!\n", _),

flush_output(WF, _),

fmt_write(ProcInput, "end_of_file.\n",_), % send end_of_file atom to child

flush_output(ProcInput, _),

%% wait for child (so as to not leave zombies around;

%% zombies quit when the parent finishes, but they consume resources)

process_control(Process, wait),

%% Close the ports used to commuicate with the process

%% Otherwise, the parent might run out of file descriptors

%% (if many processes were spawned)

close(ProcInput), close(WF).

%% child.P

:- import file_read_line_atom/2 from file_io.

:- dynamic pipe/1.

?- pipe(P), open(pipe(P),read,F),

%% Acknowledge receipt of the pipe

fmt_write("\nPipe %d received\n", arg(P)),

%% Get a message from the parent and print it to stdout

file_read_line_atom(F, Line), write(’Message was: ’), writeln(Line).

This produces the following output:

| ?- [parent]. <- parent XSB consults parent.P

[parent loaded]

yes
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| ?- [xsb_configuration loaded] <- parent.P spawns a child copy of XSB

[sysinitrc loaded] Here we see the startup messages of

[packaging loaded] the child copy

XSB Version 2.0 (Gouden Carolus) of June 27, 1999

[i686-pc-linux-gnu; mode: optimal; engine: slg-wam; scheduling: batched]

| ?-

yes

| ?- [Compiling ./child] <- The child copy of received the pipe from

[child compiled, cpu time used: 0.1300 seconds] the parent and then the

[child loaded] request to consult child.P

Pipe 15 received <- child.P acknowledges receipt of the pipe

Message was: Hello! <- child.P gets the message and prints it

yes

Observe that the parent process is very careful about making sure that the
child terminates and also about closing the I/O streams after they are no longer
needed.

Finally, we should note that this mechanism can be used to communicate
through pipes with non-XSB processes as well. Indeed, an XSB process can
create a pipe using pipe_open (before spawning a child process), pass one end
of the pipe to a child process (which can be a C program), and use open/3 to
convert the other end of the pipe to an XSB stream. The C program, of course,
does not need open/3, since it can use the pipe file handle directly. Likewise, a
C program can spawn off an XSB process and pass it one end of a pipe. The
XSB child-process can then convert this pipe fd to a file using fd2iostream

and then talk to the parent C program.

fd2iostream(+Pipe, -IOstream) module: shell

Take a file descriptor and convert it to an XSB I/O stream. This predicate
should be used only for user-defined I/O. Otherwise, use open/{3,4} when
possible.

15.7 Socket I/O

The XSB socket library defines a number of predicates for communication over BSD-
style sockets. Most are modeled after and are interfaces to the socket functions with
the same name. For detailed information on sockets, the reader is referred to the
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Unix man pages (another good source is Unix Network Programming, by W. Richard
Stevens). Several examples of the use of the XSB sockets interface can be found in
the XSB/examples/ directory in the XSB distribution.

XSB supports two modes of communication via sockets: stream-oriented and
message-oriented. In turn, stream-oriented communication can be buffered or character-
at-a-time.

To use buffered stream-oriented communication, system socket handles must be
converted to XSB I/O streams using fd2iostream/2. In these stream-oriented com-
munication, messages have no boundaries, and communication appears to the pro-
cesses as reading and writing to a file. At present, buffered stream-oriented commu-
nication works under Unix only.

Character-at-a-time stream communication is accomplished using the primitives
socket_put/3 and socket_get0/3. These correspond to the usual Prolog put/1 and
get0/1 I/O primitives.

In message-oriented communication, processes exchange messages that have well-
defined boundaries. The communicating processes use socket_send/3 and socket_recv/3

to talk to each other. XSB messages are represented as strings where the first four
bytes (sizeof(int)) is an integer (represented in the binary network format — see
the functions htonl and ntohl in socket documentation) and the rest is the body of
the message. The integer in the header represents the length of the message body.

Effort has been made to make the socket interface thread-safe; however in Version
3.8, calls to the XSB socket interface go through a single mutex, and may cause
contention if many threads seek to concurrently use sockets.

We now describe the XSB socket interface. All predicates below must be imported
from the module socket. Note that almost all predicates have the last argument that
unifies with the error code returned from the corresponding socket operation. This
argument is explained separately.

General socket calls. These are used to open/close sockets, to establish connec-
tions, and set special socket options.

socket(-Sockfd, ?ErrorCode) module: socket

A socket Sockfd in the AF_INET domain is created. (The AF_UNIX domain
is not yet implemented). Sockfd is bound to a small integer, called socket
descriptor or socket handle.

socket_set_option(+Sockfd,+OptionName,+Value) module: socket
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Set socket option. At present, only the linger option is supported. “Lingering”
is a situation when a socket continues to live after it was shut down by the
owner. This is used in order to let the client program that uses the socket to
finish reading or writing from/to the socket. Value represents the number of
seconds to linger. The value -1 means do not linger at all.

socket_close(+Sockfd, ?ErrorCode) module: socket

Sockfd is closed. Sockets used in socket_connect/2 should not be closed by
socket_close/1 as they will be closed when the corresponding stream is closed.

socket_bind(+Sockfd,+Port, ?ErrorCode) module: socket

The socket Sockfd is bound to the specified local port number.

socket_connect(+Sockfd,+Port,+Hostname,?ErrorCode) module: socket

The socket Sockfd is connected to the address (Hostname and Port). If socket_connect/4

terminates abnormally for any reason (connection refused, timeout, etc.), then
XSb closes the socket Sockfd automatically, because such a socket cannot be
used according to the BSD semantics. Therefore, it is always a good idea to
check to the return code and reopen the socket, if the error code is not SOCK_OK.

socket_listen(+Socket, +Length, ?ErrorCode) module: socket

The socket Sockfd is defined to have a maximum backlog queue of Length

pending connections.

socket_accept(+Sockfd,-SockOut, ?ErrorCode) module: socket

Block the caller until a connection attempt arrives. If the incoming queue is not
empty, the first connection request is accepted, the call succeeds and returns a
new socket, SockOut, which can be used for this new connection.

Buffered, message-based communication. These calls are similar to the recv

and send calls in C, except that XSB wraps a higher-level message protocol around
these low-level functions. More precisely, socket_send/3 prepends a 4-byte field to
each message, which indicates the length of the message body. When socket_recv/3

reads a message, it first reads the 4-byte field to determine the length of the message
and then reads the remainder of the message.

All this is transparent to the XSB user, but you should know these details if you
want to use these details to communicate with external processes written in C and
such. All this means that these external programs must implement the same protocol.
The subtle point here is that different machines represent integers differently, so an
integer must first be converted into the machine-independent network format using
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the functions htonl and ntohl provided by the socket library. For instance, to send
a message to XSB, one must do something like this:

char *message, *msg_body;

unsigned int msg_body_len, network_encoded_len;

msg_body_len = strlen(msg_body);

network_encoded_len = (unsigned int) htonl((unsigned long int) msg_body_len);

memcpy((void *) message, (void *) &network_encoded_len, 4);

strcpy(message+4, msg_body);

To read a message sent by XSB, one can do as follows:

int actual_len;

char lenbuf[4], msg_buff;

unsigned int msglen, net_encoded_len;

actual_len = (long)recvfrom(sock_handle, lenbuf, 4, 0, NULL, 0);

memcpy((void *) &net_encoded_len, (void *) lenbuf, 4);

msglen = ntohl(net_encoded_len);

msg_buff = calloc(msglen+1, sizeof(char))); // check if this suceeded!!!

recvfrom(sock_handle, msg_buff, msglen, 0, NULL, 0);

If making the external processes follow the XSB protocol is not practical (because you
did not write these programs), then you should use the character-at-a-time interface
or, better, the buffered stream-based interface both of which are described in this
section. At present, however, the buffered stream-based interface does not work on
Windows.

socket_recv(+Sockfd,-Message, ?ErrorCode) module: socket

Receives a message from the connection identified by the socket descriptor
Sockfd. Binds Message to the message. socket_recv/3 provides a message-
oriented interface. It understands message boundaries set by socket_send/3.

socket_send(+Sockfd,+Message, ?ErrorCode) module: socket

Takes a message (which must be an atom) and sends it through the connection
specified by Sockfd. socket_send/3 provides message-oriented communica-
tion. It prepends a 4-byte header to the message, which tells socket_recv/3

the length of the message body.
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Stream-oriented, character-at-a-time interface. Internally, this interface uses
the same sendto and recvfrom socket calls, but they are executed for each character
separately. This interface is appropriate when the message format is not known or
when message boundaries are determined using special delimiters.

socket_get0/3 creates the end-of-file condition when it receives the end-of-file
character CH_EOF_P (a.k.a. 255) defined in char_defs.h (which must be included
in the XSB program). C programs that need to send an end-of-file character should
send (char)-1.

socket_get0(+Sockfd, -Char, ?ErrorCode) module: socket

The equivalent of get0 for sockets.

socket_put(+Sockfd, +Char, ?ErrorCode) module: socket

Similar to put/1, but works on sockets.

Socket-probing. With the help of the predicate socket_select/6 one can estab-
lish a group of asynchronous or synchronous socket connections. In the synchronous
mode, this call is blocked until one of the sockets in the group becomes available for
reading or writing, as described below. In the asynchronous mode, this call is used
to probe the sockets periodically, to find out which sockets have data available for
reading or which sockets have room in the buffer to write to.

The directory XSB/examples/socket/select/ has a number of examples of the
use of the socket-probing calls.

socket_select(+SymConName,+Timeout,-ReadSockL,-WriteSockL,-ErrSockL,?ErrorCode)

module: socket

SymConName must be an atom that denotes an existing connection group, which
must be previously created with socket_set_select/4 (described below). ReadSockL,
WriteSockL, ErrSockL are lists of socket handles (as returned by socket/2)
that specify the available sockets that are available for reading, writing, or on
which exception conditions occurred. Timeout must be an integer that specifies
the timeout in seconds (0 means probe and exit immediately). If Timeout is a
variable, then wait indefinitely until one of the sockets becomes available.

socket_set_select(+SymConName,+ReadSockFdLst,+WriteSockFdLst,+ErrorSockFdLst)

module: socket

Creates a connection group with the symbolic name SymConName (an atom) for
subsequent use by socket_select/6. ReadSockFdLst, WriteSockFdLst, and
ErrorSockFdLst are lists of sockets for which socket_select/6 will be used
to monitor read, write, or exception conditions.
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socket_select_destroy(+SymConName) module: socket

Destroys the specified connection group.

Error codes. The error code argument unifies with the error code returned by the
corresponding socket commands. The error code -2 signifies timeout for timeout-
enabled primitives (see below). The error code of zero signifies normal termination.
Positive error codes denote specific failures, as defined in BSD sockets. When such a
failure occurs, an error message is printed, but the predicate succeeds anyway. The
specific error codes are part of the socket documentation. Unfortunately, the symbolic
names and error numbers of these failures are different between Unix compilers and
Visual C++. Thus, there is no portable, reliable way to refer to these error codes.
The only reliably portable error codes that can be used in XSB programs defined
through these symbolic constants:

#include "socket_defs_xsb.h"

#define SOCK_OK 0 /* indicates sucessful return from socket */

#define SOCK_EOF -1 /* end of file in socket_recv, socket_get0 */

#include "timer_defs_xsb.h"

#define TIMEOUT_ERR -2 /* Timeout error code */

Timeouts. XSB socket interface allows the programer to specify timeouts for cer-
tain operations. If the operations does not finish within the specified period of
time, the operation is aborted and the corresponding predicate succeeds with the
TIMEOUT_ERR error code. The following primitives are timeout-enabled: socket_connect/4,
socket_accept/3, socket_recv/3, socket_send/3, socket_get0/3, and socket_put/3.
To set a timeout value for any of the above primitives, the user should execute
set_timer/1 right before the subgoal to be timed. Note that timeouts are disabled
after the corresponding timeout-enabled call completes or times out. Therefore, one
must use set_timer/1 before each call that needs to be controlled by a timeout
mechanism.

The most common use of timeouts is to either abort or retry the operation that
times out. For the latter, XSB provides the sleep/1 primitive, which allows the
program to wait for a few seconds before retrying.

The set_timer/1 and sleep/1 primitives are described below. They are standard
predicates and do not need to be explicitly imported.
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set_timer(+Seconds) S
et timeout value. If a timer-enabled goal executes after this value is set, the
clock begins ticking. If the goal does not finish in time, it succeeds with the
error code set to TIMEOUT_ERR. The timer is turned off after the goal executes
(whether timed out or not and whether it succeeds or fails). This goal always
succeeds.

Note that if the timer is not set, the timer-enabled goals execute “normally,”
without timeouts. In particular, they might block (say, on socket_recv, if data
is not available).

sleep(+Seconds) P
ut XSB to sleep for the specified number of seconds. Execution resumes after
the Seconds number of seconds. This goal always succeeds.

Here is an example of the use of the timer:

:- compiler_options([xpp_on]).

#include "timer_defs_xsb.h"

?- set_timer(3), % wait for 3 secs

socket_recv(Sockfd, Msg, ErrorCode),

(ErrorCode == TIMEOUT_ERR

-> writeln(’Socket read timed out, retrying’),

try_again(Sockfd)

; write(’Data received: ’), writeln(Msg)

).

Apart from the above timer-enabled primitives, a timeout value can be given to
socket_select/6 directly, as an argument.

Buffered, stream-oriented communication. In Unix, socket descriptors can be
“promoted” to file streams and the regular read/write commands can be used with
such streams. In XSB, such promotion can be done using the following predicate:

fd2ioport(+Pipe, -IOport) module: shell

Take a socket descriptor and convert it to an XSB I/O port that can be used
for regular file I/O.

Once IOport is obtained, all normal I/O primitives can be used by specifying the
IOport as their first argument. This is, perhaps, the easiest and the most convenient
way to use sockets in XSB. (This feature has not been implemented for Windows.)
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Here is an example of the use of this feature:

:- compiler_options([xpp_on]).

#include "socket_defs_xsb.h"

?- (socket(Sockfd, SOCK_OK)

-> socket_connect(Sockfd1, 6020, localhost, Ecode),

(Ecode == SOCK_OK

-> fd2ioport(Sockfd, SockIOport),

file_write(SockIOport, ’Hello Server!’)

; writeln(’Can’’t connect to server’)

),

; writeln(’Can’’t open socket’), fail

).

15.8 Arrays

The module array1 provides a simple backtrackable array implementation that re-
quires no copying. In Version 3.2, this package was changed to make use of the
backtrackable destructive assignment made possible by setarg/3. We note that as
of Version 3.2 this library provides simple syntactic sugar for functor/3, arg/3 and
setarg/3 and relies on error messages for these predicates.

array_new(-Array,+Size) module: array

Creates a one dimensional empty array of size Size. All the elements of this
array are variables.

array_elt(+Array, +Index, ?Element) module: array

Succeeds iff Element unifies with the Index-th element of array Array.

array_update(+Array, +Index, +Elem) module: array

Updates the array Array such that the Index-th element of the new array is
Elem using destructive assignement. The implementation is quite efficient in
that it avoids the copying of the entire array.

The following example shows the use of these predicates:

| ?- import array_new/2, array_elt/3, array_update/4 from array.
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yes

| ?- array_new(A,3), array_update(A,1,1), array_update(A,2,2),

( array_update(A,3,3), writeln(first(A))

; array_update(A,3,6), writeln(second(A))

; array_update(A,3,7), writeln(third(A))),fail.

first(array(1,2,3))

second(array(1,2,6))

third(array(1,2,7))

no

15.9 The Profiling Library

XSB can provide Prolog-level profiling for Prolog programs, which allows the Prolog
programmer to estimate what proportion of time is spent executing code for each
predicate, and also what modes have been used to call a given predicate. It also
helps to find unindexed accesses to dynamic predicates which may be the cause of
poor performance. To enable profiling, XSB must be started with the command line
parameter of -p. The module xsb_profiling contains the predicate profile_call/1

that invokes profiling. The profiling library should only be used with the single-
threaded engine in Version 3.8.

profile_call(+Goal) module: xsb_profiling

Calls Goal, and when it first succeeds, prints to userout a table of predicate
names indicating for each, the percentage of time spent executing that predi-
cate’s code. Within the table, the sum of the predicate times for each module
is also given. Goal may backtrack, but profiling is done only for the time to
the first success, so it is most appropriate to profile succeeding deterministic
goals 10.

Profiling works by starting another thread that interrupts every 100th of a second
and sets a flag so that the XSB emulator will determine the predicate of the currently
executing code. The printout also includes the total number of interrupts and for
each predicate, the raw number of times its code was determined to be executing. A
predicate is printed only if its code was interrupted at least once. The numbers will

10This includes tabled subgoals under Local Evaluation, as such as goal will only succeed after
deriving all of its answers.
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be meaningful only for relatively long-running predicates, taking more than a couple
of seconds.

When an interrupt occurs, the next interrupt instruction to be executed – a
WAM call, execute, proceed or trust instruction – will charge its associated predicate
by logging that predicate to a table. The system does not keep track of code addresses
for tries (used to represent the results of completed tables, and trie-indexed asserted
code), so for some interrupts the associated executing predicate cannot be determined.
In these cases the interrupt is charged against an “unknown/?” pseudo-predicate, and
this count is included in the output.

Profiling does not give the context from which the predicate is called, so you may
want to make renamed copies of basic predicates to use in particular circumstances
to determine their times.

Predicates compiled with the “optimize” option may provide misleading results
under profiling. Note that all system predicates (including those in basics) are
compiled with the “optimize” option, by default. That option causes tail-recursive
predicates to use a “jump” instruction rather than an “execute” instruction to make
the recursive call, and so an interrupt in such a loop will not be charged until the next
interrupt instruction is executed. If much time is spent in the recursion, this might
not be for a long time, and the interrupt might ultimately be charged to another
predicate. (If an interrupt has not been charged by the time of the next interrupt, it
is lost.)

Profiling is currently available under Windows, Mac OS X, and Linux. However,
for the profiling algorithm to provide a good estimation, the thread that wakes and
sets the interrupt flag must be of high priority and given the CPU when it wants
it. Accordingly, the estimates may be better or worse depending on the scheduling
strategy of a given platform 11.

The profiling module also provides support for determining when a dynamic pred-
icate is invoked in a mode that isn’t supported by any index. The XSB programmer
can set a flag that will cause a message to be printed when a dynamic predicate is
invoked, no index is applicable, and there are more than 20 potentially matching
clauses. See profile_unindexed_calls/1 below for details.

profile_mode_call(+Goal) module: xsb_profiling

11Windows and Mac OS X 10.6 provide good estimates. Some Linuxes however, do not charge
about 20% of their interrupts due to thread scheduling issues. This loss of interrupts makes the
profile estimate inefficient, but does not bias the estimate. We haven’t figured out how to get
priority scheduling for interrupts on all machines, so if you want profiling to work more efficiently,
maybe you can help figure out how to get appropriate scheduling.
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Calls the goal Goal and constructs a table of the modes in which the predicate is
called and the number of times it is called in that mode. Modes are simply “b”
for ground and “f” for variable. Counts are kept in a table with entries of the
form Pred(Md1,Md2,..,Mdn) where Pred is the name of the called predicate
and the Mdi are either ’f’ or ’b’, indicating free or bound for the corresponding
argument. The table can be printed using profile_mode_dump/0 and can be
cleared using profile_mode_init/0.

profile_mode_dump module: xsb_profiling

Prints out the counts of calls in particular modes as accumulated using
profile_mode_call(+Goal).

profile_mode_init module: xsb_profiling

Clears the table that accumulates counts of calls in particular modes (done by
profile_mode_call(+Goal).

profile_unindexed_calls(+Par) module: xsb_profiling

Sets the kind of unindexed profiling to perform. If Par is off, no unindexed
logging will be done. This is the default. If Par is once each call to a dynamic
predicate that cannot use any index (and would backtrack through more than
20 clauses) will generate a log message to userout. Note that the predicate of
the goal may have indexes, but the particular goal may not be able to take
advantage of them. E.g., a totally open call to a predicate with many clauses
will generate an unindexed message. By setting the once parameter, each unin-
dexed call to a predicate will be logged only once; after logging is done, the log
instruction is changed to a branch, so it will never produce another log message
for that dynamic code. If Par is on, logging is done as for once, except every
unindexed call to any dynamic predicate will be logged; i.e. the logging instruc-
tion is not changed after logging. If Par is a predicate specification (of the form
Pred/Arity, Module:Pred/Arity, Term, or Module:Term), only unindexed calls
to the indicated goal will be logged, and when each is logged a back-trace will
be printed. This allows the programmer to find the location of an unindexed
call.
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15.10 Gensym

The Gensym library provides a convenient way to generate unique integers or con-
stants.

prepare(+Index) module: gensym

Sets the initial integer to be used for generation to Index. Thus, the command
?- prepare(0) would cause the first call to gennum/1 to return 1. Index must
be a non-negative integer.

gennum(-Var) module: gensym

Unifies Var with a new integer.

gensym(+Atom,-Var) module: z

zzzgensym Generates a new integer, and concatenates this integer with Atom,
unifying the result with Var. For instance a call ?- gensym(foo,Var) might
unify Var with foo32.

15.11 Random Number Generator

The following predicates are provided in module random to generate random numbers
(both integers and floating numbers), based on the Wichmann-Hill Algorithm [94, 58].
The random number generator is entirely portable, and does not require any calls to
the operating system. As noted below, it does require 3 seeds, each of which must
be an integer in a given range. These seeds are thread-specific: thus different threads
may generate independent sequences of random numbers.

random(-Number) module: random

Binds Number to a random float in the interval [0.0, 1.0). Note that 1.0 will
never be generated.

random(+Lower,+Upper,-Number) module: random

Binds Number to a random integer in the interval [Lower,Upper) if Lower and
Upper are integers. Otherwise Number is bound to a random float between
Lower and Upper. Upper will never be generated.

getrand(?State) module: random

Tries to unify State with the term rand(X,Y,Z) where X,Y,and Z are integers
describing the state of the random generator.
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setrand(rand(+X,+Y,+Z)) module: random

Sets the state of the random generator. X,Y, and Z must be integers in the
ranges [1,30269), [1,30307), [1,30323), respectively.

datime_setrand module: random

This simple initialization utility sets the random seed triple based on a function
of the current day, hour, minute and second.

randseq(+K, +N, -RandomSeq) module: random

Generates a sequence of K unique integers chosen randomly in the range from
1 to N. RandomSeq is not returned in any particular order.

randset(+K, +N, -RandomSet) module: random

Generates an ordered set of K unique integers chosen randomly in the range
from 1 to N. The set is returned in reversed order, with the largest element first
and the smallest last.

gauss(-G1,-G2) module: random

Generates two random numbers that are normally distributed with mean 0 and
standard deviation 1. It uses the polar form of the Box-Muller transformation [8]
of uniform random variables as generated by random/1.

weibull(K,Lambda,X) module: random

Generates a random number for the Weibull distribution:

f(x; k, λ) =
k

λ
(
x

λ
)k−1e−(x/λ)h

based on the transformation

x = λ(−ln(U))1/k

of a uniformly distributed random variable produced by random/1

exponential(K,X) module: random

Generates a random number for the exponential distribution:

f(x; k, λ) =
e−(x/λ)h

λ

based on the transformation

x = λ(−ln(U))

of a uniformly distributed ranom variable produce by random/1. This is the
same as the Weibull distribution with k = 1.
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15.12 Loading Delimiter-Separated Files

A common file format uses comma separated values, the so-called csv files. The XSB
module, proc_files, supports the loading of files in this, and similar, formats to
define Prolog predicates.

load_csv(+FileName,+PredSpec) module: proc_files

load_csv/2 takes a file name and a predicate specification, and reads a csv-
formatted file into memory, defining the indicated dynamic predicate. The
simplest form of PredSpec is PredName/Arity. In this case the arity must
equal the number of fields in the csv file, and the predicate must be dynamic.
Each line in the file will define one fact of the predicate PredName/Arity. Fields
in the file enclosed in double quotes will be treated as single fields (and thus
can contain commas and new-lines.) The dynamic predicate will be emptied
before the facts from the file are added. Each field will be loaded as an atom
(including fields that contain just integers.)

Alternatively, PredSpec may be of the form predName(TypeSpec1,...,TypeSpecN),
where predName is the name of the dynamic predicate to be defined by the file
contents, and each TypeSpecI indicates the type of the corresponding field in
the file. The permitted values of TypeSpec are:

atom The corresponding field value will become an atom in the loaded fact.

integer The corresponding field value will be converted to an integer in the loaded
fact.

float The corresponding field value will be converted to a float in the loaded
fact.

term The corresponding field must contain a Prolog term in canonical form, and
it will be converted to that term in the loaded fact.

__ (A variable) Treated as atom.

load_dsv(+FileName,+PredSpec,+Options) module: proc_files

This predicate supports the loading of more general forms of files with value-
separated fields. The FileName and PredSpec parameters are exactly as in
load_csv/2, as described just above. Options is a list of options. (With an
empty list, load_dsv acts as load_csv/2.) The options are:
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separator=”Sep” which indicates that the character(s) Sep will be used as the field separator.
There may be one or more characters.

delimiter=”C” which indicates that the single character C will be used as the field delimiter
(the default being “”””, and I’ve yet to find a situation in which I want to
change it.)

titles which indicates that the first line of the file should be ignored and not
contribute a fact to the dynamic predicate.

15.13 Scanning in Prolog

Scanners, (sometimes called tokenizers) take an input string, usually in UTF-8 or
similar format, and produce a scanned sequence of tokens. The requirements that
various applications have for scanning differ in small but important ways – a character
that is special to one application may be part of the token of another; or some
applications may want lower case text converted to upper-case test. The stdscan.P

library provides a simple scanner written in XSB that can be configured in several
ways. While useful, this scanner is not intended to be as powerful as general-purpose
scanners such as lex or flex.

scan(+List,-Tokens) module: stdscan

Given as input a List of character codes, scan/2 scans this list producing
a list of atoms constituting the lexical tokens. Its parameters are set via
set_scan_pars/1.

Tokens produced are either a sequence of letters and/or numbers or consist of a
single special character (e.g. ( or )). Whitespaces may occur between tokens.

scan(+List,+FieldSeparator,-Tokens) module: stdscan

Given as input a List of character codes, along with a character code for a field
separator, scan/3 scans this list producing a list of list of atoms constituting the
lexical tokens in each field. scan/3 thus can be used to scan tabular information.
Its parameters are set via set_scan_pars/1.

set_scan_pars(+List) module: stdscan

set_scan_pars(+List) is used to configure the tokenizer to a particular need.
List is a list of parameters including the following:
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• whitespace. The default action of the scanner is to return a list of tokens,
with any whitespace removed. If whitespace is a parameter, then the
scanner returns the token ” when it finds whitespace separating two to-
kens (unless the two tokens are letter sequences; since two letter sequences
can be two tokens ONLY if they are separated by whitespace, such an
indication of whitespace would be redundant.) Including the parameter
no_whitespace undoes the effect of previously including whitespace.

• upper_case The default action of the parser is to treat lowercase letter dif-
ferently from uppercase letters. This parameter should be set if conversion
to uppercase should be done when producing a token that does not consist
entirely of letters (e.g. one with mixed letters and digits). Including the
parameter no_case undoes the effect of previously including upper_case.

• upper_case_in_lit The default action of the parser is to treat lowercase
letter differently from uppercase letters. This parameter should be set if
conversion to uppercase should be done when producing a token that con-
sists entirely of letters. Including the parameter no_case_in_lit undoes
the effect of previously including upper_case.

• whitespace(Code) adds Code as a whitespace code. By default, all ASCII
codes less than or equal to 32 are regarded as whitespace.

• letter(Code) adds Code as a letter constituting a token. By default,
ASCII codes for characters a–z and A–Z are regarded as letters.

• special_char(Code) adds Code as a special character. By default, ASCII
codes for the following characters are regarded as special characters:

| { } [ ] " % $ & ’ ( ) * + , - . / : ; < = > ? @ \ ^ _ ~ ‘

get_scan_pars(-List) module: stdscan

get_scan_pars/1 returns a list of the currently active parameters.

15.14 XSB Lint

The xsb_lint_impexp.P file contains a simple tool to analyze import/exports along
with definitions and uses of predicates. It tries to find possible inconsistencies, pro-
ducing warnings when it finds them and generating import, document_import, and
document_export declarations that might (or might not) be useful. It can be used
after a large multi-file, multi-module XSB program has been written to find possible
inconsistencies in (or interesting aspects of) how predicates are defined and used.
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We emphasize that the import and export statements generated by checkImpExps/1/2

are suggestions only. The user is responsible for determining if they are indeed correct
and should be added to the corresponding source file. There are situations in which
adding such a generated import declaration may break existing code.

XSB source files that contain an export compiler directive are considered as mod-
ules. Predicates defined in modules, but not exported, are local to that module. When
compiling a module, the XSB compiler generates useful warnings when predicates are
used but not defined or defined but not used. All predicates that are defined in source
files that do not contain an export directive are compiled to be defined in a global
module, called usermod, and no undefined/unused warning messages are generated.
The user may add document_export and document_import compiler directives (ex-
actly analogous to the export and import directives) to non-module source files.
These directives are ignored by the compiler in terms of code generation, but cause
the define-use analysis to be performed, issuing warning messages as appropriate.
This allows a user to get the benefit of the define-use analysis without using modules.
(See Volume 1, Chapter 3 for more details.)

The xsb_lint_impexp utility processes both modules and regular XSB source files
that may or may not contain document_export statements. xsb_lint_impexp is it-
self a module. To use it, one may explicitly call xsb_lint_impexp:checkImpExps(...),
or may consult [xsb_lint_impexp] and then call the checkImpExps/{1,2} predi-
cate.

checkImpExps(+Options,+FileNameList)

checkImpExps/2xsb_lint checkImpExps/2 reads all the XSB source files named
in the list FileNameList, and all files they reference (recursively), and pro-
duces a listing that describes properties of how they reference predicates. All
referenced files are found using the XSB library_directory/1 predicate of
directories. checkImpExps/2 uses add_lib_dir/1/2 directives in code files to
update the directory paths. The user may also explicitly add paths by calling
add_lib_dir/1/2 before calling this predicate.

Options is a list of atoms (from the following list) indicating details of how
checkImpExps should work and the messages it should produce.

1. used_elsewhere: Print a warning message in the case of a predicate de-
fined in a file, not used there, but used elsewhere (in a file in FileNameList

or a recursively referenced file). This can be useful to see whether it might
be better to move the predicate definition to another file, but it produces
many (irrelevant) warnings for predicates in multi-use libraries.
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2. unused: Print a warning message in the case of a predicate that is exported
but never used. This can be useful to see if a predicate might be deleted.
Again this option produces many (irrelevant) warnings for predicates in
multi-use libraries.

3. all_files: By default, only predicates in files that contain a :- document_export

or :- export declaration are processed for warnings. This option causes
predicates of all files (and modules) to be processed. This means that
usermod code files without document_export declarations will have them
generated.

4. all_symbol_uses: Treat all uses of symbols (even constants) as predicate
uses for the purpose of generating imports. This means that symbols used
as functor symbols but not a predicate symbols, will be treated as referring
to the predicate symbol. This can be useful when a program defines its
own meta-predicates and passes predicate terms to another module to be
called. However, it can generate spurious messages when a common symbol
is used as both a predicate and as an unrelated functor symbol. This differs
from the default behavior of checkImpExps/1/2 only in that the default
does not consider 0-ary functor symbols as predicate uses, whereas this
option does.

5. no_symbol_uses: Don’t treat any purely functor uses of symbols as pred-
icate uses for the purpose of generating imports. This means that a term
that appears in an argument position (i.e., not as a called predicate) will
not be considered as a use of the predicate symbol at the root of the term.
Only symbols that are called (or appear in meat-argument positions of
system-defined meta-predicates) will be considered as used.

The final two options allow the user to control predicate usage analysis – analysis
of when a symbol s might be used as a predicate symbol. We term occurrences
of s as a body literal of a rule or in a callable argument in a meta-predicate, as
strict predicate contexts. The default behavior of this library is as follows.

• if s is a constant symbol, the predicate usage analysis of s is restricted to
strict predicate contexts.

• if s is not a constant symbol, the predicate usage analysis of s is based on
non-strict predicate contexts. I.e, all occurrences of s count as predicate
contexts.

Predicate usage analysis can be restricted to strict predicate contexts for all sym-
bols by the option no_symbol_uses. Alternatively analysis can be expanded so
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that non-struct predicate contexts are used for all symbols (including constants)
by the option all_symbol_uses.

checkImpExps(+FileNameList) module: xsb_lint

checkImpExps/1 is currently equivalent to checkImpExps([],FileNameList).

15.15 “Pure” Meta-programming in XSB with pro-

log_db.P

The prolog_db library provides predicates that support a form of “pure” meta-
programming in XSB. A programmer can create a term data structure that represents
a Prolog database (i.e., a set of rules, and herein called a Prolog DB), and then ask
for a goal to be proved in such a Prolog DB.

A Prolog DB is kept as a trie, which is a ground Prolog term. Each level in the
trie is implemented by a hash table, and hash tables are expanded and contracted as
necessary. A set of clauses is canonically represented, i.e., no matter what sequence
of assert_in_db’s and retractall_in_db’s one uses to construct a particular set of
clauses, the resulting Prolog DBs (i.e. Prolog terms) are identical.

A Prolog DB represents an unordered set of clauses. The order in which clauses
are returned from clause_in_db (and thus for call_in_db) is indeterminate, and
may change from one call to the next (due to possible expansion or contraction of a
hash table in the representation of a Prolog DB.)

A Prolog DB that is obtained from another Prolog DB by adding or deleting a
single clause differs from it in only log subterms (unless a hash table has been resized).
This means that it is efficient to intern these DB’s, and to table them (as intern).

The predicates provided by the Prolog DB interface are as follows:

empty_db(-EmptyPrologDB) module: prolog_db

empty_db/1 returns an empty Prolog DB. It is used to create an initial Prolog
DB to pass to the other in_db predicates. 12

assert_in_db(+Clause,+DB0,-DB) module: prolog_db

assert_in_db/3 adds the clause, Clause, to the Prolog DB, DB0, and returns
a new Prolog DB, DB. A Prolog DB is a set of clauses, so asserting a clause

12Since a Prolog DB is a term and must be passed as an argument, it differs from other implemen-
tations of tries in XSB, such as interned tries (cf. Chapter 8), or trie-indexed facts (cf. Section 6.14),
which are persistent.
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that is already in DB0 just returns that same database. No ordering of clauses
is preserved, so cuts do not make sense and cannot be used in clauses. (The
if-then else (’->’/3) should be used instead.)

retractall_in_db(+ClauseHead,+DB0,-DB) module: prolog_db

retractall_in_db/3 removes all clauses whose heads unify with ClauseHead

from DB0 returning DB. If no clauses in DB0 unify, then DB0 is returned un-
changed.

clause_in_db(?ClauseHead,?ClauseBody,+DB) module: prolog_db

clause_in_db/3 returns all clauses in DB whose heads and bodies unify with
ClauseHead and ClauseBody, respectively. (Note that, unlike clause/2 in
Prolog, clause_in_db can be called with ClauseHead as a variable.) Note also
that the order of clauses is not preserved and is indeterminate.

call_in_db(?Goal,+DB) module: prolog_db

call_in_db/2 calls Goal in DB and returns all instances of Goal provable by
rules in DB. Clauses must not contain cuts (!). They can contain most Prolog
constructs, including and, or, if-then-else, \+, calls to standard predicates, and
calls explicitly modified by a module name. Such calls will be satisfied by calling
the goal in the indicated module. So in this case one can think of a Prolog DB
as being extended by the code in any module.

load_in_db(+FileName,+DB0,-DB) module: prolog_db

load_in_db/3 reads the clauses from the file named FileName and asserts them
into database DB0 returning DB.

load_in_db(+FileName,-DB) module: prolog_db

load_in_db/2 reads the clauses from the file named FileName and asserts them
into an empty database returning DB.

union_db(+DB1,+DB2,-DB3) module: prolog_db

union_db/3 returns in DB3 the union of the sets of clauses in DB1 and DB2.

15.16 Range Trees

This library contains predicates that provide support for range queries via range trees.
Range trees store a set of keys and associated values. Arbitrary ranges of keys (along
with their associated values) can be retrieved efficiently; such keys do not need to
be numeric.. Such a library is needed because all engine-level indexes in XSB are
hash-based and as such do not support efficient range queries.
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Given a set of ground facts to be range-indexed on various arguments, several
predicates support the easy construction of range trees from these facts. This basic
interface includes predicates to create, add to, retrieve from, and delete from range
trees.

Range trees use a balanced sort tree, similar to a B-Tree in that all leaf nodes
are equidistant from the root, and nodes are at least half full. (Deletion of key-value
pairs is supported, but trees are not rebalanced on delete, so significant use of delete
can seriously degrade performance.) Range trees are stored in dynamic predicates
and are identified by user-provided handles.

Example A user may have a predicate data(Key,Val1,Val2,Val3) and want to
be able to do efficient range-valued queries for the second field, Val1, or for the fourth
field, Val3. Key is a key for the data/4 relation, i.e., no two different tuples have the
same value for the Key fields. The user would make the following definitions: (See
the specific predicate documentation below for these range predicates to understand
their parameters in detail.)

:- import range_call/4, range_assert/3, range_retractall/4 from range_trees.

% to retrieve data by range from a range-indexed predicate

range_data(K,RV1,V2,RV3) :- range_call(data(K,_,V2,_),[1],[2,4],[RV1,RV3]).

% to add data to range-indexed predicate

assert_data(K,V1,V2,V3) :- range_assert(data(K,V1,V2,V3),[1],[2,4]).

% to delete data from range-indexed predicate

retractall_data(K,RV1,V2,RV3) :-

range_retractall(data(K,_,V2,_),[1],[2,4],[RV1,RV3]).

With these definitions, the user will (init) and then add all data to data/4 using
assert_data/4, which will both assert a tuple to data/4 and add the tuples to
the necessary range trees to support efficient range queries on the second or fourth
argument.

A range query to data/4 now is posed by calling the user-defined predicate
range_data/4. For example to retrieve all tuples whose second field is between 4000
and 5000 (inclusive), the user would pose the query:

| ?- range_data(K,V1:[4000,5000],V2,V3).
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This query will bind K,V1,V2,V3 to quadruples in the data/4 relation where V1

is between 4000 and 5000 (inclusive.) Ranges are indicated by terms of the form
Var:[Low,High], where Var is the variable that will be bound on return, and Low

and High are ground values indicating the lower and upper bounds of the desired
range, respectively. The order of answers returned to a range query is indeterminate
(i.e., not necessarily in increasing order on the range variable.)

One may also use a query such as:

| ?- range_data(K,4015,V2,V3).

which is treated as a range query with the same lower and upper bounds. For the
declarations shown above, which indicate two range-indexed fields for data/4, one
may also pose a query:

| ?- range_data(K,V1,V2,V3:[6015,7000]).

which would efficiently retrieve data/4 tuples whose fourth field is between 6015 and
7000 (inclusive.)

When multiple range-indexed arguments are given ranges (or constants) in a range
query, only the first will be used for indexing.

init_range_tree(+TreeId) module: range_trees

This predicate initializes a named tree which will provide access to key-value
pairs through range queries on the keys. TreeId is an arbitrary user-supplied
ground term that identifies the particular tree.

get_from_range_tree(+TreeId,+Lo,+Hi,?Key,-Val) module: range_trees

Gets a range of Keys (and their associated values) between Lo and Hi (in-
clusive), using the ordering defined by range_tree_compare/2. TreeId is a
user-provided tree identifier.

add_to_range_tree(+TreeId,+Key,+Val) module: range_trees

Adds a key-value pair to a range tree.

delete_from_range_tree(+TreeId,+Key,?Val) module: range_trees

Deletes all key-value pairs with the given Key and Val from the range tree. It
does not re-balance the range tree, so after many deletes the tree may give bad
performance.
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delete_from_range_tree(+TreeId,+Key) module: range_trees

Deletes all key-value pairs with the given Key from the range tree. It does
not re-balance the range tree, so after many deletes the tree may give bad
performance.

delete_range_tree(+TreeId) module: range_trees

Deletes everything from the named tree (i.e., deletes the tree).

delete_all_range_trees module: range_trees

Deletes all range trees, reinitializing everything.

range_call(Goal,KeyPosList,RangePosList,RangeFormList) module:
range_trees

Calls Goal using range indexing specifications in RangeFormList, which binds
variables in Goal in positions RangePosList. For example, to call a predicate
data/4, whose key is field 1 and which has range indexes on fields 2 and 4, one
could call:

| ?- range_call(data(K,X,Y,Z),[1],[2,4],[_,_:[4000,4500]]).

This will efficiently return all triples of the stored predicate data/4 whose fourth
field is in the range 4000-4500. It is assumed that range indexes have been built
for the second and fourth fields of data/4 (normally by using range_assert/3.)
This predicate is intended to be used by the user to define a predicate that can
be used to get range-indexed access to another data predicate, as in the example
above.

The KeyPosList is the list of positions in Goal that provide a key to the base
predicate of Goal. That predicate should be indexed on this key. (If it is not
a key or if it is not indexed on this key, there may be serious degradation of
performance.) The RangeFormList is a list of range specifications, i.e., terms
of form Var:[Low,High], or constants or variables. The first in this list that
has a value or range-specification (i.e., not a variable) will be used for range-
indexing. The RangePosList is the (corresponding) list of argument positions
in Goal that are range-indexed. These argument position lists must correspond
to those used in range_assert/3.

range_retractall(Goal,KeyPosList,RangePosList,RangeFormList) module:
range_trees

Removes all tuples in the database that would be retrieved by a call to range_call/4,
with the same arguments. This also updates the range-indexes for this predicate.
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Notice that this supports efficient retraction through use of range-restricted ar-
guments in Goal. Note also, however, that since range trees are not rebalanced
after deletion, heavy use of this predicate may cause performance degradation.

15.17 Miscellaneous Predicates

term_hash(+Term,+HashSize,-HashVal) module: machine

Given an arbitrary Prolog term, Term, that is to be hashed into a table of
HashSize buckets, this predicate returns a hash value for Term that is between
0 and HashSize -1.

crypto_hash(+Type,+Input,-Output) module: machine

Given an atom Input, produces an encrypted string Output according to the
algorithm specified in Type, which currently can be sha1 or md5.

pretty_print(+ClausePairs) module: pretty_print
pretty_print(+Stream,+ClausePairs) module: pretty_print

The input to pretty_print/1, ClausePairs, can be either a list of clause pairs
or a single clause pair. A clause pair is either a Prolog clause (or declaration)
or a pair:

(Clause,Dict)

Where Dict is a list of the form A = V where V is a variable in Clause and A is
the string to be used to denote the variable 13.

By default, pretty_print/1 outputs atomic terms using writeq/1, but spe-
cialized output can be configured via asserting in usermod a term of the form

user_replacement_hook(Term,Call)

which will use Call to output an atomic literal A whenever A unifies with Term.
For example, pretty printing weight constraints in XSB’s XASP package is done
via the hook

user_replacement_hook(weight_constr(Term),output_weight_constr(Term))

13Thus the list of variable names returned by read_term/{2,3} can be used directly in Dict.



CHAPTER 15. LIBRARY UTILITIES 557

which outputs a weight constraint in a (non-Prolog) syntax that is used by
several ASP systems.

module_of_term(+Term,?Module) module: machine

Given a term Term, module_of_term/2 returns the module of its main functor
symbol in Module. If the module cannot be determined wither unknown1 or
unknown2 is returrned, depending on the reason the module name cannot be
determined.



Appendix A

GPP - Generic Preprocessor

Version 2.0 - (c) Denis Auroux 1996-99
http://www.math.polytechnique.fr/cmat/auroux/prog/gpp.html

As of version 2.1, XSB uses gpp as a source code preprocessor for Prolog programs.
This helps maintain consistency between the C and the Prolog parts of XSB through
the use of the same .h files. In addition, the use of macros improves the readability
of many Prolog programs, especially those that deal with low-level aspects of XSB.
Chapter 3.10 explains how gpp is invoked in XSB.

A.1 Description

gpp is a general-purpose preprocessor with customizable syntax, suitable for a wide
range of preprocessing tasks. Its independence on any programming language makes
it much more versatile than cpp, while its syntax is lighter and more flexible than
that of m4.

gpp is targeted at all common preprocessing tasks where cpp is not suitable and
where no very sophisticated features are needed. In order to be able to process equally
efficiently text files or source code in a variety of languages, the syntax used by gpp
is fully customizable. The handling of comments and strings is especially advanced.

Initially, gpp only understands a minimal set of built-in macros, called meta-
macros. These meta-macros allow the definition of user macros as well as some
basic operations forming the core of the preprocessing system, including conditional
tests, arithmetic evaluation, and syntax specification. All user macro definitions

558
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are global, i.e. they remain valid until explicitly removed; meta-macros cannot be
redefined. With each user macro definition gpp keeps track of the corresponding
syntax specification so that a macro can be safely invoked regardless of any subsequent
change in operating mode.

In addition to macros, gpp understands comments and strings, whose syntax and
behavior can be widely customized to fit any particular purpose. Internally comments
and strings are the same construction, so everything that applies to comments applies
to strings as well.

A.2 Syntax

gpp [-o outfile] [-I/include/path] [-Dname=val ...]

[-z|+z] [-x] [-m] [-n] [-C|-T|-H|-P|-U ... [-M ...]]

[+c<n> str1 str2] [-c str1]

[+s<n> str1 str2 c] [infile]

A.3 Options

gpp recognizes the following command-line switches and options:

• -h
Print a short help message.

• -o outfile
Specify a file to which all output should be sent (by default, everything is sent
to standard output).

• -I /include/path
Specify a path where the #include meta-macro will look for include files if they
are not present in the current directory. The default is /usr/include if no -
I option is specified. Multiple -I options may be specified to look in several
directories.

• -D name=val
Define the user macro name as equal to val. This is strictly equivalent to
using the #define meta-macro, but makes it possible to define macros from the
command-line. If val makes references to arguments or other macros, it should
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conform to the syntax of the mode specified on the command-line. Note that
macro argument naming is not allowed on the command-line.

• +z
Set text mode to Unix mode (LF terminator). Any CR character in the input
is systematically discarded. This is the default under Unix systems.

• -z
Set text mode to DOS mode (CR-LF terminator). In this mode all CR charac-
ters are removed from the input, and all output LF characters are converted to
CR-LF. This is the default if gpp is compiled with the WIN_NT option.

• -x
Enable the use of the #exec meta-macro. Since #exec includes the output of
an arbitrary shell command line, it may cause a potential security threat, and
is thus disabled unless this option is specified.

• -m
Enable automatic mode switching to the cpp compatibility mode if the name
of an included file ends in ’.h’ or ’.c’. This makes it possible to include C header
files with only minor modifications.

• -n
Prevent newline or whitespace characters from being removed from the input
when they occur as the end of a macro call or of a comment. By default, when
a newline or whitespace character forms the end of a macro or a comment it
is parsed as part of the macro call or comment and therefore removed from
output. Use the -n option to keep the last character in the input stream if it
was whitespace or a newline.

• -U arg1 ... arg9
User-defined mode. The nine following command-line arguments are taken to be
respectively the macro start sequence, the macro end sequence for a call without
arguments, the argument start sequence, the argument separator, the argument
end sequence, the list of characters to stack for argument balancing, the list of
characters to unstack, the string to be used for referring to an argument by
number, and finally the quote character (if there is none an empty string should
be provided). These settings apply both to user macros and to meta-macros,
unless the -M option is used to define other settings for meta-macros. See the
section on syntax specification for more details.
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• -M arg1 ... arg7
User-defined mode specifications for meta-macros. This option can only be used
together with -M. The seven following command-line arguments are taken to
be respectively the macro start sequence, the macro end sequence for a call
without arguments, the argument start sequence, the argument separator, the
argument end sequence, the list of characters to stack for argument balancing,
and the list of characters to unstack. See below for more details.

• (default mode)
The default mode is a vaguely cpp-like mode, but it does not handle comments,
and presents various incompatibilities with cpp. Typical meta-macros and user
macros look like this:

#define x y

macro(arg,...)

This mode is equivalent to

-U "" "" "(" "," ")" "(" ")" "#" "\\"

-M "#" "\n" " " " " "\n" "(" ")"

• -C
cpp compatibility mode. This is the mode where gpp’s behavior is the closest
to that of cpp. Unlike in the default mode, meta-macro expansion occurs only
at the beginning of lines, and C comments and strings are understood. This
mode is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+c "/*" "*/" +c "//" "\n" +c "\\\n" ""

+s "\"" "\"" "\\" +s "’" "’" "\\"

• -T
TeX-like mode. In this mode, typical meta-macros and user macros look like
this:

\define{x}{y}

\macro{arg}{...}

No comments are understood. This mode is equivalent to
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-U "\\" "" "{" "}{" "}" "{" "}" "#" "@"

• -H
HTML-like mode. In this mode, typical meta-macros and user macros look like
this:

<#define x|y>

<#macro arg|...>

No comments are understood. This mode is equivalent to

-U "<#" ">" "\B" "|" ">" "<" ">" "#" "\\"

• -P
Prolog-compatible cpp-like mode. This mode differs from the cpp compatibility
mode by its handling of comments, and is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+ccss "\!o/*" "*/" +ccss "%" "\n" +ccii "\\\n" ""

+s "\"" "\"" "" +s "\!#’" "’" ""

• +c <n> str1 str2
Specify comments. Any unquoted occurrence of str1 will be interpreted as the
beginning of a comment. All input up to the first following occurrence of str2
will be discarded. This option may be used multiple times to specify different
types of comment delimiters. The optional parameter <n> can be specified
to alter the behavior of the comment and e.g. turn it into a string or make it
ignored under certain circumstances, see below.

• -c str1
Un-specify comments or strings. The comment/string specification whose start
sequence is str1 is removed. This is useful to alter the built-in comment speci-
fications of a standard mode, e.g. the cpp compatibility mode.

• +s <n> str1 str2 c
Specify strings. Any unquoted occurrence of str1 will be interpreted as the
beginning of a string. All input up to the first following occurrence of str2 will
be output as is without any evaluation. The delimiters themselves are output.
If c is non-empty, its first character is used as a string-quote character, i.e. a
character whose presence immediately before an occurrence of str2 prevents it
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from terminating the string. The optional parameter <n> can be specified
to alter the behavior of the string and e.g. turn it into a comment, enable
macro evaluation inside the string, or make the string specification ignored
under certain circumstances, see below.

• -s str1
Un-specify comments or strings. Identical to -c.

• infile
Specify an input file from which gpp reads its input. If no input file is specified,
input is read from standard input.

A.4 Syntax Specification

The syntax of a macro call is the following : it must start with a sequence of characters
matching the macro start sequence as specified in the current mode, followed imme-
diately by the name of the macro, which must be a valid identifier, i.e. a sequence
of letters, digits, or underscores ("_"). The macro name must be followed by a short
macro end sequence if the macro has no arguments, or by a sequence of arguments
initiated by an argument start sequence. The various arguments are then separated
by an argument separator, and the macro ends with a long macro end sequence.

In all cases, the parameters of the current context, i.e. the arguments passed to
the body being evaluated, can be referred to by using an argument reference sequence
followed by a digit between 1 and 9. Macro parameters may alternately be named
(see below). Furthermore, to avoid interference between the gpp syntax and the
contents of the input file a quote character is provided. The quote character can be
used to prevent the interpretation of a macro call, comment, or string as anything but
plain text. The quote character "protects" the following character, and always gets
removed during evaluation. Two consecutive quote characters evaluate as a single
quote character.

Finally, to facilitate proper argument delimitation, certain characters can be
"stacked" when they occur in a macro argument, so that the argument separator
or macro end sequence are not parsed if the argument body is not balanced. This
allows nesting macro calls without using quotes. If an improperly balanced argument
is needed, quote characters should be added in front of some stacked characters to
make it balanced.

The macro construction sequences described above can be different for meta-
macros and for user macros: this is e.g. the case in cpp mode. Note that, since meta-
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macros can only have up to two arguments, the delimitation rules for the second
argument are somewhat sloppier, and unquoted argument separator sequences are
allowed in the second argument of a meta-macro.

Unless one of the standard operating modes is selected, the above syntax sequences
can be specified either on the command-line, using the -M and -U options respectively
for meta-macros and user macros, or inside an input file via the #mode meta and
#mode user meta-macro calls. In both cases the mode description consists of 9
parameters for user macro specifications, namely the macro start sequence, the short
macro end sequence, the argument start sequence, the argument separator, the long
macro end sequence, the string listing characters to stack, the string listing characters
to unstack, the argument reference sequence, and finally the quote character. As
explained below these sequences should be supplied using the syntax of C strings;
they must start with a non-alphanumeric character, and in the first five strings special
matching sequences can be used (see below). If the argument corresponding to the
quote character is the empty string that functionality is disabled. For meta-macro
specifications there are only 7 parameters, as the argument reference sequence and
quote character are shared with the user macro syntax.

The structure of a comment/string is the following : it must start with a sequence
of characters matching the given comment/string start sequence, and always ends
at the first occurrence of the comment/string end sequence, unless it is preceded
by an odd number of occurrences of the string-quote character (if such a character
has been specified). In certain cases comment/strings can be specified to enable
macro evaluation inside the comment/string: in that case, if a quote character has
been defined for macros it can be used as well to prevent the comment/string from
ending, with the difference that the macro quote character is always removed from
output whereas the string-quote character is always output. Also note that under
certain circumstances a comment/string specification can be disabled, in which case
the comment/string start sequence is simply ignored. Finally, it is possible to specify
a string warning character whose presence inside a comment/string will cause gpp to
output a warning (this is useful e.g. to locate unterminated strings in cpp mode).
Note that input files are not allowed to contain unterminated comments/strings.

A comment/string specification can be declared from within the input file using
the #mode comment meta-macro call (or equivalently #mode string), in which case
the number of C strings to be given as arguments to describe the comment/string
can be anywhere between 2 and 4: the first two arguments (mandatory) are the start
sequence and the end sequence, and can make use of the special matching sequences
(see below). They may not start with alphanumeric characters. The first character
of the third argument, if there is one, is used as string-quote character (use an empty
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string to disable the functionality), and the first character of the fourth argument, if
there is one, is used as string-warning character. A specification may also be given
from the command-line, in which case there must be two arguments if using the +c
option and three if using the +s option.

The behavior of a comment/string is specified by a three-character modifier string,
which may be passed as an optional argument either to the +c/+s command-line
options or to the #mode comment/#mode string meta-macros. If no modifier string
is specified, the default value is "ccc" for comments and "sss" for strings. The first
character corresponds to the behavior inside meta-macro calls (including user-macro
definitions since these come inside a #define meta-macro call), the second character
corresponds to the behavior inside user-macro parameters, and the third character
corresponds to the behavior outside of any macro call. Each of these characters can
take the following values:

• i: disable the comment/string specification.

• c: comment (neither evaluated nor output).

• s: string (the string and its delimiter sequences are output as is).

• q: quoted string (the string is output as is, without the delimiter sequences).

• C: evaluated comment (macros are evaluated, but output is discarded).

• S: evaluated string (macros are evaluated, delimiters are output).

• Q: evaluated quoted string (macros are evaluated, delimiters are not output).

Important note: any occurrence of a comment/string start sequence inside another
comment/string is always ignored, even if macro evaluation is enabled. In other
words, comments/strings cannot be nested. In particular, the ’Q’ modifier can be a
convenient way of defining a syntax for temporarily disabling all comment and string
specifications.

Syntax specification strings should always be provided as C strings, whether they
are given as arguments to a #mode meta-macro call or on the command-line of a Unix
shell. If command-line arguments are given via another method than a standard Unix
shell, then the shell behavior must be emulated, i.e. the surrounding "" quotes should
be removed, all occurrences of ’\\’ should be replaced by a single backslash, and
similarly ’\"’ should be replaced by ’"’. Sequences like ’\n’ are recognized by gpp and
should be left as is.
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Special sequences matching certain subsets of the character set can be used. They
are of the form ’\x’, where x is one of:

• b: matches any sequence of one or more spaces or TAB characters (’\b’ is
identical to ’ ’).

• w: matches any sequence of zero or more spaces or TAB characters.

• B: matches any sequence of one or more spaces, tabs or newline characters.

• W: matches any sequence of zero or more spaces, tabs or newline characters.

• a: an alphabetic character (’a’ to ’z’ and ’A’ to ’Z’).

• A: an alphabetic character, or a space, tab or newline.

• #: a digit (’0’ to ’9’).

• i: an identifier character. The set of matched characters is customizable using
the #mode charset id command. The default setting matches alphanumeric
characters and underscores (’a’ to ’z’, ’A’ to ’Z’, ’0’ to ’9’ and ’_’).

• t: a TAB character.

• n: a newline character.

• o: an operator character. The set of matched characters is customizable using
the #mode charset op command. The default setting matches all characters in
"+-*/\ˆ<>=‘∼:.?@#&!%|", except in Prolog mode where ’!’, ’%’ and ’|’ are
not matched.

• O: an operator character or a parenthesis character. The set of additional
matched characters in comparison with ’\o’ is customizable using the #mode
charset par command. The default setting is to have the characters in "()[]{}"
as parentheses.

Moreover, all of these matching subsets except ’\w’ and ’\W’ can be negated by
inserting a ’!’, i.e. by writing ’\!x’ instead of ’\x’.

Note an important distinctive feature of start sequences: when the first character of
a macro or comment/string start sequence is ’ ’ or one of the above special sequences, it
is not taken to be part of the sequence itself but is used instead as a context check: for
example a start sequence beginning with ’\n’ matches only at the beginning of a line,
but the matching newline character is not taken to be part of the sequence. Similarly



APPENDIX A. GPP - GENERIC PREPROCESSOR 567

a start sequence beginning with ’ ’ matches only if some whitespace is present, but
the matching whitespace is not considered to be part of the start sequence and is
therefore sent to output. If a context check is performed at the very beginning of a
file (or more generally of any body to be evaluated), the result is the same as matching
with a newline character (this makes it possible for a cpp-mode file to start with a
meta-macro call).

A.5 Evaluation Rules

Input is read sequentially and interpreted according to the rules of the current mode.
All input text is first matched against the specified comment/string start sequences of
the current mode (except those which are disabled by the ’i’ modifier), unless the body
being evaluated is the contents of a comment/string whose modifier enables macro
evaluation. The most recently defined comment/string specifications are checked for
first. Important note: comments may not appear between the name of a macro and
its arguments (doing so results in undefined behavior).

Anything that is not a comment/string is then matched against a possible meta-
macro call, and if that fails too, against a possible user-macro call. All remaining
text undergoes substitution of argument reference sequences by the relevant argument
text (empty unless the body being evaluated is the definition of a user macro) and
removal of the quote character if there is one.

Note that meta-macro arguments are passed to the meta-macro prior to any eval-
uation (although the meta-macro may choose to evaluate them, see meta-macro de-
scriptions below). In the case of the #mode meta-macro, gpp temporarily adds a
comment/string specification to enable recognition of C strings ("...") and prevent
any evaluation inside them, so no interference of the characters being put in the C
string arguments to #mode with the current syntax is to be feared.

On the other hand, the arguments to a user macro are systematically evaluated,
and then passed as context parameters to the macro definition body, which gets
evaluated with that environment. The only exception is when the macro definition
is empty, in which case its arguments are not evaluated. Note that gpp temporarily
switches back to the mode in which the macro was defined in order to evaluate it: so
it is perfectly safe to change the operating mode between the time when a macro is
defined and the time when it is called. Conversely, if a user macro wishes to work
with the current mode instead of the one that was used to define it it needs to start
with a #mode restore call and end with a #mode save call.

A user macro may be defined with named arguments (see #define description
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below). In that case, when the macro definition is being evaluated, each named
parameter causes a temporary virtual user-macro definition to be created; such a
macro may only be called without arguments and simply returns the text of the
corresponding argument.

Note that, since macros are evaluated when they are called rather than when they
are defined, any attempt to call a recursive macro causes undefined behavior except
in the very specific case when the macro uses #undef to erase itself after finitely many
loop iterations.

Finally, a special case occurs when a user macro whose definition does not involve
any arguments (neither named arguments nor the argument reference sequence) is
called in a mode where the short user-macro end sequence is empty (e.g. cpp or
TeX mode). In that case it is assumed to be an alias macro: its arguments are first
evaluated in the current mode as usual, but instead of being passed to the macro
definition as parameters (which would cause them to be discarded) they are actually
appended to the macro definition, using the syntax rules of the mode in which the
macro was defined, and the resulting text is evaluated again. It is therefore important
to note that, in the case of a macro alias, the arguments actually get evaluated twice
in two potentially different modes.

A.6 Meta-macros

These macros are always pre-defined. Their actual calling sequence depends on the
current mode; here we use cpp-like notation.

• #define x y
This defines the user macro x as y. y can be any valid gpp input, and may
for example refer to other macros. x must be an identifier (i.e. a sequence of
alphanumeric characters and ’_’), unless named arguments are specified. If x is
already defined, the previous definition is overwritten. If no second argument
is given, x will be defined as a macro that outputs nothing. Neither x nor y are
evaluated; the macro definition is only evaluated when it is called, not when it
is declared.

It is also possible to name the arguments in a macro definition: in that case,
the argument x should be a user-macro call whose arguments are all identifiers.
These identifiers become available as user-macros inside the macro definition;
these virtual macros must be called without arguments, and evaluate to the
corresponding macro parameter.
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• #defeval x y
This acts in a similar way to #define, but the second argument y is evaluated
immediately. Since user macro definitions are also evaluated each time they
are called, this means that the macro y will undergo two successive evaluations.
The usefulness of #defeval is considerable, as it is the only way to evaluate
something more than once, which can be needed e.g. to force evaluation of
the arguments of a meta-macro that normally doesn’t perform any evaluation.
However since all argument references evaluated at define-time are understood
as the arguments of the body in which the macro is being defined and not as
the arguments of the macro itself, usually one has to use the quote character to
prevent immediate evaluation of argument references.

• #undef x
This removes any existing definition of the user macro x.

• #ifdef x
This begins a conditional block. Everything that follows is evaluated only if
the identifier x is defined, until either a #else or a #endif statement is reached.
Note however that the commented text is still scanned thoroughly, so its syntax
must be valid. It is in particular legal to have the #else or #endif statement
ending the conditional block appear as only the result of a user-macro expansion
and not explicitly in the input.

• #ifndef x
This begins a conditional block. Everything that follows is evaluated only if the
identifier x is not defined.

• #ifeq x y
This begins a conditional block. Everything that follows is evaluated only if
the results of the evaluations of x and y are identical as character strings. Any
leading or trailing whitespace is ignored for the comparison. Note that in cpp-
mode any unquoted whitespace character is understood as the end of the first
argument, so it is necessary to be careful.

• #ifneq x y
This begins a conditional block. Everything that follows is evaluated only if
the results of the evaluations of x and y are not identical (even up to leading or
trailing whitespace).

• #else
This toggles the logical value of the current conditional block. What follows is
evaluated if and only if the preceding input was commented out.
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• #endif
This ends a conditional block started by a #if... meta-macro.

• #include file
This causes gpp to open the specified file and evaluate its contents, inserting the
resulting text in the current output. All defined user macros are still available
in the included file, and reciprocally all macros defined in the included file will
be available in everything that follows. The include file is looked for first in
the current directory, and then, if not found, in one of the directories specified
by the -I command-line option (or /usr/include if no directory was specified).
Note that, for compatibility reasons, it is possible to put the file name between
"" or <>.

Upon including a file, gpp immediately saves a copy of the current operating
mode onto the mode stack, and restores the operating mode at the end of the
included file. The included file may override this behavior by starting with a
#mode restore call and ending with a #mode push call. Additionally, when the
-m command line option is specified, gpp will automatically switch to the cpp
compatibility mode upon including a file whose name ends with either ’.c’ or
’.h’.

• #exec command
This causes gpp to execute the specified command line and include its standard
output in the current output. Note that this meta-macro is disabled unless the
-x command line flag was specified, for security reasons. If use of #exec is not
allowed, a warning message is printed and the output is left blank. Note that
the specified command line is evaluated before being executed, thus allowing
the use of macros in the command-line. However, the output of the command
is included verbatim and not evaluated. If you need the output to be evaluated,
you must use #defeval (see above) to cause a double evaluation.

• #eval expr
The #eval meta-macro attempts to evaluate expr first by expanding macros
(normal gpp evaluation) and then by performing arithmetic evaluation. The
syntax and operator precedence for arithmetic expressions are the same as in
C ; the only missing operators are <<, >>, ?: and assignment operators. If
unable to assign a numerical value to the result, the returned text is simply
the result of macro expansion without any arithmetic evaluation. The only
exceptions to this rule are the == and != operators which, if one of the sides
does not evaluate to a number, perform string comparison instead (ignoring
trailing and leading spaces).
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Inside arithmetic expressions, the defined(...) special user macro is also avail-
able: it takes only one argument, which is not evaluated, and returns 1 if it is
the name of a user macro and 0 otherwise.

• #if expr
This meta-macro invokes the arithmetic evaluator in the same manner as #eval,
and compares the result of evaluation with the string "0" in order to begin a
conditional block. In particular note that the logical value of expr is always true
when it cannot be evaluated to a number.

• #mode keyword ...
This meta-macro controls gpp’s operating mode. See below for a list of #mode
commands.

The key to gpp’s flexibility is the #mode meta-macro. Its first argument is always
one of a list of available keywords (see below); its second argument is always a sequence
of words separated by whitespace. Apart from possibly the first of them, each of these
words is always a delimiter or syntax specifier, and should be provided as a C string
delimited by double quotes (" "). The various special matching sequences listed in
the section on syntax specification are available. Any #mode command is parsed in a
mode where "..." is understood to be a C-style string, so it is safe to put any character
inside these strings. Also note that the first argument of #mode (the keyword) is
never evaluated, while the second argument is evaluated (except of course for the
contents of C strings), so that the syntax specification may be obtained as the result
of a macro evaluation.

The available #mode commands are:

• #mode save / #mode push
Push the current mode specification onto the mode stack.

• #mode restore / #mode pop
Pop mode specification from the mode stack.

• #mode standard name
Select one of the standard modes. The only argument must be one of: default
(default mode); cpp, C (cpp mode); tex, TeX (tex mode); html, HTML (html
mode); prolog, Prolog (prolog mode). The mode name must be given directly,
not as a C string.

• #mode user "s1" ... "s9"
Specify user macro syntax. The 9 arguments, all of them C strings, are the
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mode specification for user macros (see the -U command-line option and the
section on syntax specification). The meta-macro specification is not affected.

• #mode meta {user | "s1" ... "s7"}
Specify meta-macro syntax. Either the only argument is user (not as a string),
and the user-macro mode specifications are copied into the meta-macro mode
specifications, or there must be 7 string arguments, whose significance is the
same as for the -M command-line option (see section on syntax specification).

• #mode quote ["c"]
With no argument or "" as argument, removes the quote character specification
and disables the quoting functionality. With one string argument, the first
character of the string is taken to be the new quote character. The quote
character cannot be alphanumeric nor ’_’, and cannot be one of the special
matching sequences either.

• #mode comment [xxx] "start" "end" ["c" ["c"]]
Add a comment specification. Optionally a first argument consisting of three
characters not enclosed in " " can be used to specify a comment/string modifier
(see the section on syntax specification). The default modifier is ccc. The first
two string arguments are used as comment start and end sequences respectively.
The third string argument is optional and can be used to specify a string-quote
character (if it is "" the functionality is disabled). The fourth string argument
is optional and can be used to specify a string delimitation warning character
(if it is "" the functionality is disabled).

• #mode string [xxx] "start" "end" ["c" ["c"]]
Add a string specification. Identical to #mode comment except that the default
modifier is sss.

• #mode nocomment / #mode nostring ["start"]
With no argument, remove all comment/string specifications. With one string
argument, delete the comment/string specification whose start sequence is the
argument.

• #mode preservelf { on | off | 1 | 0 }
Equivalent to the -n command-line switch. If the argument is on or 1, any
newline or whitespace character terminating a macro call or a comment/string
is left in the input stream for further processing. If the argument is off or 0 this
feature is disabled.
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• #mode charset { id | op | par } "string"
Specify the character sets to be used for matching the \o, \O and \i special
sequences. The first argument must be one of id (the set matched by \i), op
(the set matched by \o) or par (the set matched by \O in addition to the one
matched by \o). "string" is a C string which lists all characters to put in the
set. It may contain only the special matching sequences \a, \A, \b, \B, and \#
(the other sequences and the negated sequences are not allowed). When a ’-’ is
found in-between two non-special characters this adds all characters in-between
(e.g. "A-Z" corresponds to all uppercase characters). To have ’-’ in the matched
set, either put it in first or last position or place it next to a \x sequence.

A.7 Examples

Here is a basic self-explanatory example in standard or cpp mode:

#define FOO This is

#define BAR a message.

#define concat #1 #2

concat(FOO,BAR)

#ifeq (concat(foo,bar)) (foo bar)

This is output.

#else

This is not output.

#endif

Using argument naming, the concat macro could alternately be defined as

#define concat(x,y) x y

In TeX mode and using argument naming, the same example becomes:

\define{FOO}{This is}

\define{BAR}{a message.}

\define{\concat{x}{y}}{\x \y}

\concat{\FOO}{\BAR}

\ifeq{\concat{foo}{bar}}{foo bar}

This is output.

\else
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This is not output.

\endif

In HTML mode and without argument naming, one gets similarly:

<#define FOO|This is>

<#define BAR|a message.>

<#define concat|#1 #2>

<#concat <#FOO>|<#BAR>>

<#ifeq <#concat foo|bar>|foo bar>

This is output.

<#else>

This is not output.

<#endif>

The following example (in standard mode) illustrates the use of the quote character:

#define FOO This is \

a multiline definition.

#define BLAH(x) My argument is x

BLAH(urf)

\BLAH(urf)

Note that the multiline definition is also valid in cpp and Prolog modes despite the
absence of quote character, because ’\’ followed by a newline is then interpreted as a
comment and discarded.

In cpp mode, C strings and comments are understood as such, as illustrated by
the following example:

#define BLAH foo

BLAH "BLAH" /* BLAH */

’It\’s a /*string*/ !’

The main difference between Prolog mode and cpp mode is the handling of strings
and comments: in Prolog, a ’...’ string may not begin immediately after a digit, and
a /*...*/ comment may not begin immediately after an operator character. Further-
more, comments are not removed from the output unless they occur in a #command.

The differences between cpp mode and default mode are deeper: in default mode
#commands may start anywhere, while in cpp mode they must be at the beginning
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of a line; the default mode has no knowledge of comments and strings, but has
a quote character (’\’), while cpp mode has extensive comment/string specifications
but no quote character. Moreover, the arguments to meta-macros need to be correctly
parenthesized in default mode, while no such checking is performed in cpp mode.

This makes it easier to nest meta-macro calls in default mode than in cpp mode.
For example, consider the following HTML mode input, which tests for the availability
of the #exec command:

<#ifeq <#exec echo blah>|blah

> #exec allowed <#else> #exec not allowed <#endif>

There is no cpp mode equivalent, while in default mode it can be easily translated as

#ifeq (#exec echo blah

) (blah

)

\#exec allowed

#else

\#exec not allowed

#endif

In order to nest meta-macro calls in cpp mode it is necessary to modify the mode
description, either by changing the meta-macro call syntax, or more elegantly by
defining a silent string and using the fact that the context at the beginning of an
evaluated string is a newline character:

#mode string QQQ "$" "$"

#ifeq $#exec echo blah

$ $blah

$

\#exec allowed

#else

\#exec not allowed

#endif

Note however that comments/strings cannot be nested ("..." inside $...$ would go
undetected), so one needs to be careful about what to include inside such a silent
evaluated string.

Remember that macros without arguments are actually understood to be aliases
when they are called with arguments, as illustrated by the following example (default
or cpp mode):



APPENDIX A. GPP - GENERIC PREPROCESSOR 576

#define DUP(x) x x

#define FOO and I said: DUP

FOO(blah)

The usefulness of the #defeval meta-macro is shown by the following example in
HTML mode:

<#define APPLY|<#defeval TEMP|<\##1 \#1>><#TEMP #2>>

<#define <#foo x>|<#x> and <#x>>

<#APPLY foo|BLAH>

The reason why #defeval is needed is that, since everything is evaluated in a single
pass, the input that will result in the desired macro call needs to be generated by a
first evaluation of the arguments passed to APPLY before being evaluated a second
time.

To translate this example in default mode, one needs to resort to parenthesizing
in order to nest the #defeval call inside the definition of APPLY, but need to do so
without outputting the parentheses. The easiest solution is

#define BALANCE(x) x

#define APPLY(f,v) BALANCE(#defeval TEMP f

TEMP(v))

#define foo(x) x and x

APPLY(\foo,BLAH)

As explained above the simplest version in cpp mode relies on defining a silent eval-
uated string to play the role of the BALANCE macro.

The following example (default or cpp mode) demonstrates arithmetic evaluation:

#define x 4

The answer is:

#eval x*x + 2*(16-x) + 1998%x

#if defined(x)&&!(3*x+5>17)

This should be output.

#endif

To finish, here are some examples involving mode switching. The following example
is self-explanatory (starting in default mode):
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#mode push

#define f(x) x x

#mode standard TeX

\f{blah}

\mode{string}{"$" "$"}

\mode{comment}{"/*" "*/"}

$\f{urf}$ /* blah */

\define{FOO}{bar/* and some more */}

\mode{pop}

f($FOO$)

A good example where a user-defined mode becomes useful is the gpp source of this
document (available with gpp’s source code distribution).

Another interesting application is selectively forcing evaluation of macros in C
strings when in cpp mode. For example, consider the following input:

#define blah(x) "and he said: x"

blah(foo)

Obviously one would want the parameter x to be expanded inside the string. There
are several ways around this problem:

#mode push

#mode nostring "\""

#define blah(x) "and he said: x"

#mode pop

#mode quote "‘"

#define blah(x) ‘"and he said: x‘"

#mode string QQQ "$$" "$$"

#define blah(x) $$"and he said: x"$$

The first method is very natural, but has the inconvenient of being lengthy and
neutralizing string semantics, so that having an unevaluated instance of ’x’ in the
string, or an occurrence of ’/*’, would be impossible without resorting to further
contortions.

The second method is slightly more efficient, because the local presence of a quote
character makes it easier to control what is evaluated and what isn’t, but has the
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drawback that it is sometimes impossible to find a reasonable quote character without
having to either significantly alter the source file or enclose it inside a #mode push/pop
construct. For example any occurrence of ’/*’ in the string would have to be quoted.

The last method demonstrates the efficiency of evaluated strings in the context
of selective evaluation: since comments/strings cannot be nested, any occurrence of
’"’ or ’/*’ inside the ’$$’ gets output as plain text, as expected inside a string, and
only macro evaluation is enabled. Also note that there is much more freedom in the
choice of a string delimiter than in the choice of a quote character.

A.8 Advanced Examples

Here are some examples of advanced constructions using gpp. They tend to be pretty
awkward and should be considered as evidence of gpp’s limitations.

The first example is a recursive macro. The main problem is that, since gpp
evaluates everything, a recursive macro must be very careful about the way in which
recursion is terminated, in order to avoid undefined behavior (most of the time gpp
will simply crash). In particular, relying on a #if/#else/#endif construct to end
recursion is not possible and results in an infinite loop, because gpp scans user macro
calls even in the unevaluated branch of the conditional block. A safe way to proceed
is for example as follows (we give the example in TeX mode):

\define{countdown}{

\if{#1}

#1...

\define{loop}{\countdown}

\else

Done.

\define{loop}{}

\endif

\loop{\eval{#1-1}}

}

\countdown{10}

The following is an (unfortunately very weak) attempt at implementing functional
abstraction in gpp (in standard mode). Understanding this example and why it can’t
be made much simpler is an exercise left to the curious reader.

#mode string "‘" "‘" "\\"
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#define ASIS(x) x

#define SILENT(x) ASIS()

#define EVAL(x,f,v) SILENT(

#mode string QQQ "‘" "‘" "\\"

#defeval TEMP0 x

#defeval TEMP1 (

\#define \TEMP2(TEMP0) f

)

TEMP1

)TEMP2(v)

#define LAMBDA(x,f,v) SILENT(

#ifneq (v) ()

#define TEMP3(a,b,c) EVAL(a,b,c)

#else

#define TEMP3(a,b,c) \LAMBDA(a,b)

#endif

)TEMP3(x,f,v)

#define EVALAMBDA(x,y) SILENT(

#defeval TEMP4 x

#defeval TEMP5 y

)

#define APPLY(f,v) SILENT(

#defeval TEMP6 ASIS(\EVA)f

TEMP6

)EVAL(TEMP4,TEMP5,v)

This yields the following results:

LAMBDA(z,z+z)

=> LAMBDA(z,z+z)

LAMBDA(z,z+z,2)

=> 2+2

#define f LAMBDA(y,y*y)

f

=> LAMBDA(y,y*y)

APPLY(f,blah)

=> blah*blah
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APPLY(LAMBDA(t,t t),(t t))

=> (t t) (t t)

LAMBDA(x,APPLY(f,(x+x)),urf)

=> (urf+urf)*(urf+urf)

APPLY(APPLY(LAMBDA(x,LAMBDA(y,x*y)),foo),bar)

=> foo*bar

#define test LAMBDA(y,‘#ifeq y urf

y is urf#else

y is not urf#endif

‘)

APPLY(test,urf)

=> urf is urf

APPLY(test,foo)

=> foo is not urf

A.9 Author

Denis Auroux, e-mail: auroux@math.polytechnique.fr.

Please send me e-mail for any comments, questions or suggestions.

Many thanks to Michael Kifer for valuable feedback and for prompting me to go
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xsb_resource_error(), 479
xsb_retract_hook/1, 373
xsb_set_var_float(), 506
xsb_set_var_int(), 506
xsb_set_var_string(), 506
xsb_thread_context_to_id(), 503
xsb_thread_id_to_context(), 503
xsb_throw(), 479
xsb_type_error(), 479
xsb_var_float(), 507
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xsb_var_int(), 506
xsb_var_string(), 507
!/0, 241, 423, 424, 431
\+/1, 104
->/2, 196
do_all/1, 197
64-bit architectures, 13, 452, 507

abort
trace facility, 375

abstraction of terms
answer, 122, 126
size metric, 124
subgoal, 122, 125

acc (compiler), 10
aggregate predicates

prolog, 236
aliases

message queues, 348
mutexes, 352
streams, 149

user_error, 149
user_input, 149
user_message, 149
user_output, 149
user_warning, 149

threads, 341
tries, 360

answer abstraction, 116
answer substitution, 309
attributed variables, 4, 92, 144, 171,

173, 174, 208, 219, 220, 256,
385

backtrackable updates, 296–298
base file name, 22
bounded rationality, 122, 126
break level, 375, 446
byte code

files

compiler, 50

canonical format, 49, 172, 294
cc (compiler), 10
character code constancts, 74
character sets, 151, 257
Code authors

Warren, David S., 551, 552
compilation

conditional
gpp, 54
Prolog directives, 63

compiler, 50
cmplib, 50
directives, 62
inlines, 71
invoking, 50
options, 52
specialization, 60

compiler options
xpp_on, 53

compiler options
mi_warn, 59
modeinfer, 59
optimize, 53
spec_dump, 59
spec_off, 59
spec_repr, 59
ti_dump, 59
ti_long_names, 59
unfold_off, 59

configuration, 8
Constraint Handling Rules, 4
control, 193
CP1252, 151
cut, 193, 241, 423, 424, 431

debugger, 374
ports, 374

declarations
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auto_table, 58, 66, 91
document_export/1, 31
document_import/1, 31
import/1, 39
index/2, 68
multifile/2, 50
suppl_table, 58, 67, 91
table as, 94

definite clause grammars, 423
datalog mode, 428
list mode, 427
style, 433

directives
Compiler, 62
indexing, 68
modes, 64
tabling, 66

dynamic loading of files, 49

emulator
command line options, 40

errors with position, 257
exceptions, 434–450

Flora-2, 6, 221
floundering, 194, 195

garbage collection, 45, 255
atoms, 235
dynamic clauses, 286
heap, 273
tables, 322

gcc, 10
GPP, 50, 53

gpp_include_dir, 53
gpp_options, 54
quit_on_error, 58
xpp_dump/N, 55
xpp_dump, 55
xpp_on/N, 55

grammars

definite clause, 423

Incremental Dependency Graph
(IDG), 132, 136, 141, 279, 319,
405, 412

displaying, 278
indexing, 281–283, 286, 387

composite, 288
directives, 68
dynamic predicates, 286
hash-based, 287
multiple-argument, 288
star, 4, 288
transformational, 69
trie-based, 288, 356

inlines
Compiler, 71

installation into shared directories, 8
Interface

InterProlog, 11
ODBC, 11
Oracle, 11
SModels, 11

interned terms, 220
InterProlog, 4

Interface, 11
interrupt instruction, 542
invoking the Compiler, 50
ISO

errors, 441
ISO Compatibility, 71

LATIN-1, 151
LD_LIBRARY_PATH, 472
LIBPATH, 472
load search path, 36
low-level tracing, 379

memory management, 45
message queues, 333
mode analysis
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compiler options, 59
modes

directives, 64
multi-threading, 4, 326–355
mutexes

user defined, 351

negation
stable models, 112
stratified, 102
unstratified, 106

notational conventions, 7

occurs check, 198, 220, 257
ODBC Interface, 4, 11
options

command line arguments, 40
compiler, 52

Oracle Interface, 11

packages, 38
bootstrap_userpackage/3, 38
package_configuration/2, 39
unload_package/1, 39

permanent variables, 449
predicate indicator, 252, 253
preprocessing, 50
Prolog flags

max_table_subgoal_size, 126
Prolog flags, 253

atom_garbage_collection, 235,
255

backtrace_on_error, 255, 449
bounded, 254
character_set, 257
clause_garbage_collection, 255
dcg_style, 255
debug, 254
dialect, 254
double_quotes, 254
errors_with_position, 257

exception_action, 188, 257
exception_pre_action, 258, 308,

441
goal, 255
heap_garbage_collection, 255,

273
heap_margin, 255
integer_rounding_function, 254
max_answer_list_action, 220
max_answer_list_depth, 220
max_answer_term_action, 220
max_answer_term_depth, 220
max_answers_for_subgoal_action,

259
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max_integer, 254
max_memory, 46, 260
max_queue_size, 261
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max_tab_usage, 258
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259
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max_table_subgoal_action, 126,

220
max_table_subgoal_depth, 220
max_table_subgoal_size_action,

258
max_table_subgoal_size, 258
max_threads, 261, 328
min_integer, 254
shared_predicates, 261
table_gc_action, 255, 315,

317–319
thread_complsize, 261, 342
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thread_detached, 261, 342
thread_glsize, 261, 342
thread_pdlsize, 261, 342
thread_tcpsize, 261, 342
tracing, 256
unify_with_occurs_check, 198,

220, 257
unknown, 29, 254
version_data, 254
warning_action, 175, 256
write_attributes, 171, 256
write_depth, 256

Prolog-commons, 253
Prologs

hProlog, 512
SWI, 281, 512
YAP, 281

Random Variables, 544
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Normal, 545
Weibull, 545

residual dependency graph, 130, 141,
405, 412

residual program, 111, 305, 405, 412
restraint

answer count, 129
radial, 127, 407

ReturnHandle, 299

scheduling strategy, 11
sets, bags, 236
shared_predicates, 44, 262, 329
Silk, 221
skeleton, 299
SModels Interface, 11
source file designator, 22
specialization

Compiler, 60
compiler options, 59

stable models, 110
stacks

default sizes, 40
expanding, 40

standard predicates, 39, 53, 60
state of the system, 252
streams, 148

STDDBG, 150
STDERR, 150, 175, 255, 447
STDFDBK, 150, 175
STDIN, 150
STDMSG, 150, 176
STDOUT, 150, 175
STDWARN, 150, 175
system, 150, 158

strongly connected components
(SCCs), 96, 308, 384, 439, 441

substitution factor, 309
syntax

atoms, 75
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floats, 75
integers, 73

binary, 73
hexidecimal, 73
octal, 73

system, state of, 252

table_index, 324
tabled subgoals

complete, 104
incomplete, 104, 279

TableEntryHandle, 299
tabling

abolishes, 317, 320–322
incremental, 319, 320
multi-threading, 317, 319–321
transitive vs. single, 317, 318

and exceptions, 258, 308, 439
answer completion, 109
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117, 144, 265, 300

automatic, 58
call subsumption, 40, 44, 91, 92,
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309, 310

interaction with meta-logical
predicates, 100

call variance, 91, 92, 144, 265, 273,
300, 302, 309, 310

compiler options, 58
complete evaluation, 103, 389
conditional answers, 106, 315, 317
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cuts, 98
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directives, 66, 300
dynamic predicates, 300
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incremental, 130, 138, 144, 265,

273, 300, 317, 361
invalid subgoals, 132

interned terms, 94
multi-threaded, 316, 317
negation, 102
opaque, 138, 300
private, 300
producer, generator, 88
scheduling strategies, 95
shared, 44, 300
similarity measures, 91
strategy selection, 300
supplemental, 58
table abolishing, 314
table inspection, 302, 309

Tck/Tk, 11
term depth

definition, 219
term indicator, 252, 253

term size, 258
definition, 220

termination, 67, 90, 91
answer count restraint, 122
answer subsumption, 114
radial restraint, 122, 258, 406, 407
subgoal abstraction, 122, 258
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comparison of, 198
cyclic, 198, 201, 219, 220, 257,

361, 365
unification of, 198

thread
thread status, 332
valid, 331

trace
logging, 376
options, 375

tracing, 374–387
low-level, 379
Prolog Program

Controls, 379
Prolog Programs, 374

transaction logic, 296
tries

and incremental tabling, 135
asserted, 287

indexing, 288
depth limit, 221
interned, 356–370

tripwires, 258, 413
max_answers_for_subgoal, 129,

422
max_incomplete_subgoals, 421
max_memory, 414
max_scc_subgoals, 421
max_table_answer_size, 125,

128, 421
max_table_subgoal_size, 421
timed call, 246, 414
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Unicode

UTF-8, 75, 151, 161, 166, 223,
226, 235

unification factoring

compiler options, 59

Unknown predicate handling, 254

VarString, 504
view consistency, 133, 315

well-founded semantics, 109

XASP, 6, 11
xsbdoc, 6, 31
xsbrc.P initialization file, 36
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\+/1, 193
\=/2, 200
\==/2, 200
ˆ /2, 192
!/0, 193
’∨’/2, 190
’∧’/2, 190
’/’/2, 189
’//’/2, 189
’«’/2, 190
’><’/2, 190
’»’/2, 190
**/2, 192
*/2, 189
+/2, 189
-/1, 190
-/2, 189
=../2, 216
=/2, 199
==/2, 199
?=/2, 200
@</2, 200
@= /2, 200
@=< /2, 200
@>/2, 200
@>= /2, 200
ISO, 207, 253, 272
[]/1 (consult), 47
$trace/0, 380

ˆ /2, 240
ˆ=../2, 218
‘C’/3, 431
abolish/1, 285
abolish_all_private_tables/0, 321
abolish_all_shared_tables/0, 321
abolish_all_tables/0, 320
abolish_module_tables/1, 322
abolish_nonincremental_tables/0,

320
abolish_table_pred/1, 317
abolish_table_pred/2, 318
abolish_table_subgoal/1, 319
abolish_table_subgoal/2, 320
abolish_table_subgoals/1, 318
abolish_table_subgoals/2, 319
abort/0, 446
abort/1, 446
acos/1, 192
acyclic_term/1, 222
arg/3, 214
arg0/3, 215
asin/1, 192
assert/1, 283
assert/3, 283
asserta/1, 282
assertz/1, 282
at_end_of_stream/0, 156
at_end_of_stream/1, 156

604
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atan/1, 192
atan/2, 192
atan2/2, 192
atom/1, 206
atom_chars/2, 226
atom_codes/2, 223
atom_concat/3, 229
atom_length/2, 228
atomic/1, 207
bagof/3, 237
break/0, 271
call/1, 241
call/[2,10], 242
call_cleanup/2, 244
call_tv/2, 242
callable/1, 209
catch/3, 446
cd/1, 185
ceiling/1, 191
char_code/2, 228
clause/2, 286
close/1, 154
close/2, 153
compare/3, 201
compile/1, 47, 51
compile/2, 47, 50
compound/1, 207
consult, 36, 37
copy_term/2, 219
cos/1, 192
current_atom/1, 265
current_functor/1, 264
current_index/2, 264
current_input/1, 253
current_module/1, 263
current_module/2, 264
current_op/3, 271
current_predicate/1, 263
current_prolog_flag/2, 254
current_timed_call/2, 250

debug/0, 377
debug_ctl/2, 377
debugging/0, 377
default_user_error_handler/1, 447
delete_returns/2, 322
div/2, 189
do_all/1, 197
do_all/2, 197
dynamic/1, 139, 289
e/0, 192
else/0, 64
elseif/1, 64
endif/0, 64
ensure_loaded/1, 48
ensure_loaded/2, 295
epsilon/0, 192
expand_term/2, 429
fail/0, 193
fail_if/1, 193
false/0, 193
file_clone/3, 157
file_exists/1, 160
file_read_line_atom/1, 179
file_read_line_atom/2, 180
file_read_line_list/1, 179
file_read_line_list/2, 179
file_reopen/3, 157
findall/3, 238
findall/4, 238
float/1, 191
floor/1, 191
flush_output/0, 155
flush_output/1, 155
fmt_read/3, 176
fmt_read/4, 176
fmt_write/2, 177
fmt_write/3, 177
fmt_write_string/3, 179
forall/2, 244
foreign_pred/0, 473
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functor/3, 210
gc_atoms/0, 235
gc_dynamic/1, 286
gc_heap/0, 273
gc_tables/1, 322
get_byte/1, 163
get_byte/2, 162
get_call/3, 310
get_calls/3, 311
get_calls_for_table/2, 303
get_char/1, 161
get_char/2, 161
get_code/1, 162
get_code/2, 162
get_residual/2, 305
get_returns/2, 312
get_returns/3, 313
get_returns_and_tvs/3, 313
get_returns_for_call/2, 304
ground/1, 201
ground_and_acyclic/1, 201
ground_or_cyclic/1, 201
hilog_arg/3, 215
hilog_functor/3, 212
hilog_op/3, 271
hilog_symbol/1, 270
if/1, 64
include/1, 63
index/2, 286
integer/1, 207
invalidate_tables_for/2, 323
is/2, 188
is_acyclic/1, 222
is_attv/1, 209
is_charlist/1, 208
is_charlist/2, 208
is_cyclic/1, 222
is_list/1, 208
is_most_general_term/1, 209
is_number_atom/1, 209

keysort/2, 204
listing/0, 267
listing/1, 268
load_dyn/1, 292
load_dyn/2, 293
load_dync/1, 294
load_dync/2, 294
log/1, 192
log10/1, 192
max/2, 190
message_queue_create/2, 349
message_queue_destroy/1, 349
min/2, 190
mod/2, 191
module_property/2, 267
mutex_create/1, 352
mutex_destroy/1, 353
mutex_lock/1, 353
mutex_property/2, 355
mutex_trylock/1, 354
mutex_unlock/1, 354
mutex_unlock_all/0, 355
name/2, 225
nl/0, 166
nl/1, 166
nodebug/0, 377
nonvar/1, 206
nospy/1, 377
not/1, 193
not_exists/1, 194
notrace/0, 374
number/1, 207
number_chars/2, 227
number_codes/2, 224
number_digits/2, 228
once/1, 243
op/3, 84
open/3, 151
open/4, 152
otherwise/0, 193
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path_sysop/2, 186, 187
path_sysop/3, 186–188
peek_byte/1, 164, 165
peek_char/1, 163
peek_char/2, 163
peek_code/1, 164
peek_code/2, 164
phrase/2, 429
phrase/3, 429
pi/0, 192
predicate_property/2, 265
private_foreign_pred/0, 473
prompt/2, 273
proper_hilog/1, 210
put_char/1, 165
put_char/2, 165
put_code/1, 166
put_code/2, 165
read/1, 167
read/2, 167
read_canonical/1, 167
read_canonical/2, 168
read_term/2, 168
read_term/3, 168
real/1, 207
rem/2, 191
repeat/0, 197
retract/1, 283
retractall/1, 284
round/1, 192
see/1, 158
seeing/1, 159
seen/0, 159
set_dcg_style/1, 432
set_global_compiler_options/1, 52
set_input/1, 154
set_output/1, 154
set_prolog_flag/2, 262
set_stream_position/2, 156
set_timer/1, 539

setof/3, 236
shell/1, 182
shell/2, 183
shell_to_list/3, 183
shell_to_list/4, 183
sign/1, 192
sin/1, 192
sleep/1, 539
sort/2, 203
spy/1, 377
sqrt/1, 192
statistics/0, 273
statistics/1, 277
statistics/2, 278
storage_commit/1, 298
storage_delete_fact/3, 297
storage_delete_fact_bt/2, 298
storage_delete_keypair/3, 297
storage_delete_keypair_bt/3, 298
storage_find_fact/2, 297
storage_find_keypair/3, 297
storage_insert_fact/3, 297
storage_insert_fact_bt/2, 298
storage_insert_keypair/4, 297
storage_insert_keypair_bt/4, 298
storage_reclaim_space/1, 298
stream_property/2, 154
structure/1, 208
sub_atom/5 , 230
subsumes_term/2, 202
tab/1, 166
table/1, 88, 138, 139, 300
table_index/2, 324
table_once/1, 244
table_state/1, 307
table_state/4, 307
tan/1, 192
tell/1, 159
telling/1, 160
term_depth/2, 219
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term_expansion/2, 425, 430
term_size/2, 220
term_variables/2, 219
tfindall/3, 238
thread_cancel/1, 345
thread_create/1, 343
thread_create/2, 343
thread_create/3, 341
thread_detach/1, 344
thread_exit/1, 344
thread_get_message/1, 351
thread_get_message/2, 350
thread_join/2, 343
thread_peek_message/1, 351
thread_peek_message/2, 351
thread_property/2, 347
thread_self/1, 344
thread_send_message/2, 350
thread_signal/2, 346
thread_sleep/1, 348
thread_yield/0, 347
throw/1, 444
time/1, 281
timed_call/2, 247
timed_call_cancel/0, 251
timed_call_modify/1, 250
tmpfile_open/1, 158
tnot/1, 194

told/0, 160

tphrase/1, 429

tphrase_set_string/1, 431

trace/0, 374

trace/2, 376

true/0, 193

truncate/1, 192

unify_with_occurs_check/2, 199

url_decode/2, 161

url_encode/2, 160

var/1, 205

variant_get_residual/2, 305

with_mutex/2, 352

word/3, 428

write/1, 171

write/2, 171

write_canonical/1, 172

write_canonical/2, 173

write_prolog/1, 173

write_term/2, 169

write_term/3, 170

writeln/1, 173

writeln/2, 173

writeq/1, 172

writeq/2, 172

xor/2, 190

xsb_configuration/2, 269
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