The XSB System
Version 3.8.x
Volume 1: Programmer’s Manual

xsb

Theresa Swift David S. Warren

Konstantinos Sagonas
Juliana Freire
Prasad Rao
Baogiu Cut
Ernie Johnson
Luis de Castro
Rui F. Marques
Diptikalyan Saha
Steve Dawson
Michael Kifer

October 29, 2017

Credits

Day-to-day care and feeding of XSB including bug fixes, ports, and con-
figuration management is currently done by David Warren and Theresa
Swift with the help of Michael Kifer and others. In the past Kostis Sag-
onas, Prasad Rao, Steve Dawson, Juliana Freire, Ernie Johnson, Baoqiu
Cui, Bart Demoen and Luis F. Castro have provided tremendous help.

In Version 3.8, the core engine development of the SLG-WAM has been
mainly implemented by Theresa Swift, David Warren, Kostis Sagonas,
Prasad Rao, Juliana Freire, Ernie Johnson, Luis Castro and Rui Marques.
The breakdown, very roughly, was that Theresa Swift wrote the initial
tabling engine, the SLG-WAM, and its built-ins; and leads the current
development of the tabling subsystem. Prasad Rao reimplemented the
engine’s tabling subsystem to use tries for variant-based table access and
Ernie Johnson extended and refactored these routines in a number of ways,
including adding call subsumption. Kostis Sagonas implemented most of
tabled negation. Juliana Freire revised the table scheduling mechanism
starting from Version 1.5.0 to create the batched and local scheduling that
is currently used. Baoqiu Cui revised the data structures used to main-
tain delay lists, and added attributed variables to the engine. Luis Castro
rewrote the emulator to use jump tables and wrote a heap-garbage collec-
tor for the SLG-WAM. Rui Marques was responsible for the concurrency
control algorithms used for shared tables, and mainly responsible for mak-
ing the XSB engine multi-threaded. The incremental table maintenance
subsystem was designed and first implemented by Diptikalyan Saha, and
its design and development has been continued by Theresa Swift. Answer
subsumption was written by David Warren and Theresa Swift. David
Warren implemented hash-consed, or “interned” tables. Call abstraction
and answer abstraction (restraint) were written by Theresa Swift.

Other engine work includes the following. Memory expansion code for
WAM stacks was written by Ernie Johnson, Bart Demoen and David S.
Warren. Heap garbage collection was written by Luis de Castro, Kostis
Sagonas and Bart Demoen. Atom space garbage collection was written
by David Warren; table garbage collection was written by Theresa Swift
based in part on space reclamation code written by Prasad Rao. Rui Mar-
ques rewrote much of the engine to make it compliant with 64-bit architec-
tures. Assert and retract code was based on code written by Jiyang Xu; it
significantly revised by David S. Warren, who added alternative, multiple,
and star indexing and by Theresa Swift who implemented dynamic clause

garbage collection. Trie assert/retract code, and trie interning code was
written by Prasad Rao. Neng-fa Zhou, Theresa Swift and David War-
ren upgraded XSB from ASCII to the character sets UTF-8, C1253, and
LATIN-1. The current version of findall/3 was re-written from scratch
by Bart Demoen, as was XSB’s original throw and catch mechanism. 64-
bit floats were added by Charles Rojo. The interface from C to Prolog
and DLL interface were implemented by David Warren and extended to
multi-threading by Theresa Swift; the interface from Prolog to C (foreign
language interface) was developed by Jiyang Xu, Kostis Sagonas, Steve
Dawson and David Warren.

In terms of core system Prolog code, Kostis Sagonas was responsible for
HiLog compilation and associated built-ins as well as coding or revising
many standard predicates. Steve Dawson implemented Unification Fac-
toring. The revision of XSB’s I/O into ISO-compatible streams was done
by Michael Kifer and Theresa Swift. The auto_table and suppl_table
directives were written by Kostis Sagonas. The DCG expansion mod-
ule was written by Kostis Sagonas for non-tabled code and by Baoqiu
Cui, David Warren and Theresa Swift for tabled code. The handling of
the multifile directive was written by Baoqiu Cui and David Warren.
C.R. Ramakrishnan wrote the mode analyzer for XSB. Michael Kifer im-
plemented the storage module. The multi-threaded API was written
by Theresa Swift and Rui Marques. Walter Wilson has written several
of XSB’s library predicates for tabling. Paulo Moura has added several
predicates to make XSB more consistent with other Prologs.

Michael Kifer has been in charge of XSB’s installation procedures, rewrit-
ing parts of the XSB code to make XSB configurable with GNU’s Au-
toconf, implementing XSB’s package system, and integrated GPP with
XSB’s compiler. GPP, the source code preprocessor used by XSB, was
written by Denis Auroux, who also wrote the GPP manual reproduced in
Appendix A.

The starting point of XSB (in 1990) was PSB-Prolog 2.0 by Jiyang Xu and
David Warren. PSB-Prolog in its turn was based on SB-Prolog, primarily
designed and written by Saumya Debray, David S. Warren, and Jiyang
Xu. Thanks are also due to Weidong Chen for his work on Prolog clause
indexing for SB-Prolog, to Richard O’Keefe, who contributed the Prolog
code for the Prolog reader and the C code for the tokenizer, to Ciao Prolog
whose write_term/[2,3] we use, and to SWI Prolog for their CLP(R)
package.

ii

... Now what did I forget this time ?

1ii

Contents

1.1

2.1

2.2

2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4

Introduction

Using This Manual 0

Getting Started with XSB

Installing XSB under UNIX
2.1.1 Possible Installation Problems
Installing XSB under Windows
2.2.1 Using Cygwin32 and Cygwin64
2.2.2 Using Microsoft Visual C++
Invoking XSB
Compiling XSB programs L.
Sample XSB Programs oo
Exiting XSB

System Description

Entering and Exiting XSB from the Command Line
The System and its Directories
How XSB Finds Files: Source File Designators
The Module System of XSB
3.4.1 How the Compiler Determines the Module of a Term
3.4.2 Atoms and 0-Ary Structure Symbols
3.4.3 Dynamic Loading and How XSB Finds Code Files

v

12
13
13
14
16
17
17
19

CONTENTS v

3.4.4 Consulting a Module 30
3.4.5 Usage Inference and the Module System 31
3.4.6 Using Import to Load Usermod Source Files 31
3.4.7 Parameterized Modules in XSB 33

3.5 Standard Predicates in XSB o000 35
3.6 The Dynamic Loader and its Search Path 36
3.6.1 Changing the Default Search Path and the Packaging System 36
3.6.2 Dynamically loading predicates in the interpreter 39

3.7 Command Line Arguments 40
3.7.1 Command-line Options 42
3.7.2 General Flags 42
3.7.3 Memory Management Flags 45

3.8 Memory Management oL 45
3.9 Compiling, Consulting, and Loading 47
3.9.1 StaticCode 47
3.9.2 Dynamic Code oo 49
3.9.3 The multifile directive 50

3.10 The Compiler 50
3.10.1 Invoking the Compiler 50
3.10.2 Compiler Options 52
3.10.3 Specialization o 60
3.10.4 Compiler Directives 62
3.10.5 Conditional Compilation 64
3.10.6 Inline Predicates 71

3.11 A Note on ISO Compatibility 71
4 Syntax 73
4.1 Terms 73

4.1.1 Integers 73

CONTENTS vi

4.1.2 Floating-point Numbers 75
4.1.3 Atoms 75
4.1.4 Variables. 7
4.1.5 Compound Terms 7
4.1.6 Listso 79
4.2 From HiLog to Prolog 80
4.3 Operators 82
5 Using Tabling in XSB: A Tutorial Introduction 86
5.1 Tabling in the Context of a Prolog System 87
5.2 Definite Programs L 87
5.2.1 Call Variance vs. Call Subsumption 91
5.2.2 Tabling with Interned Terms 94
5.2.3 Table Scheduling Strategies 95
5.2.4 Interaction Between Prolog Constructs and Tabling 97
5.2.5 Potential Pitfalls in Tabling 100
5.3 Normal Programs 102
5.3.1 Stratified Normal Programs 102
5.3.2 Non-stratified Programs 106
5.3.3 On Beyond Zebra: Implementing Other Semantics for Non-stratified Programs110
5.4 Answer Subsumption L 113
5.4.1 Types of Answer Subsumption 113
5.4.2 Examples of Answer Subsumption 115
54.3 Term-Sets 118
5.5 Tabling for Termination 122
5.5.1 Term Size Abstractionin XSB 124
5.5.2 Subgoal Abstraction L. 125
5.5.3 XSB’s Approach to Bounded Rationality 126

5.6 Incremental Table Maintenance 130

CONTENTS vii

5.6.1 Transparent Incremental Tabling 131
5.6.2 Updating in a Three-Valued Logic 133
5.6.3 Incremental Tabling using Interned Tries 135
5.6.4 Abstracting the IDG for Better Performance 136
5.6.5 Summary and Implementation Status 138
5.6.6 Predicates for Incremental Table Maintenance 138

5.7 Compatibility of Tabling Modes and Predicate Attributes 144
5.8 A Weaker Semantics for Tabling 144
6 Standard and General Predicates 148
6.1 Input and Output 148
6.1.1 I/O Streamsin XSB 148
6.1.2 Character Setsin XSB 151
6.1.3 Predicates for ISO Streams 151
6.1.4 DEC-IO Style File Handling 158
6.1.5 Character I/O o 161
6.1.6 Term I/O 167
6.1.7 Special I/O 176

6.2 Interactions with the Operating System 182
6.2.1 The path_sysop/2 interface 186

6.3 Evaluating Arithmetic Expressions through is/2 188
6.3.1 Evaluable Functors for Arithmetic Expressions 189

6.4 Convenience 193
6.5 Negation and Control 193
6.6 Unification and Comparison of Terms 198
6.6.1 Sorting of Terms L. 203

6.7 Meta-Logical 205
6.8 Cyclic Terms 220

6.8.1 Unification with and without Occurs Check 220

CONTENTS viii

6.8.2 Cyclic Terms 221
6.9 Manipulation of Atomic Terms. 223
6.10 All Solutions and Aggregate Predicates 236
6.11 Meta-Predicates o 241
6.11.1 Timed Calls and Co-routining 246
6.12 Information about the System State 252
6.13 Execution State oo 271
6.14 Asserting, Retracting, and Other Database Modifications 281
6.14.1 Reading Dynamic Code from Files 292
6.14.2 The storage Module: Associative Arrays and Backtrackable Updates296
6.15 Tabling Declarations and Builtins 299
6.15.1 Declaring and Modifying Tabled Predicates 300
6.15.2 Predicates for Table Inspection 302
6.15.3 Predicates for Table Inspection: Lower-level 309
6.15.4 Abolishing Tables and Table Components 314
6.15.5 Indexing using Tables. 324
7 Multi-Threaded Programming in XSB 326
7.1 Getting Started with Multi-Threading 326
7.2 Communication among Threads 328
7.3 Thread Statuses: Joinable and Detached Threads 331
7.4 Prolog Message Queues 333
7.5 Thread Cancellation and Signalling 335
7.6 Performance and other Considerations 337
7.7 Examples of Multi-Threaded Programs in XSB. 337
7.8 Configuring the Multi-threaded Engine under Windows 338
7.9 Predicates for Multi-Threading 341

7.9.1 Predicates for Thread Synchronization and Communication . . 348

CONTENTS

8 Storing Facts in Tries
8.1 Examples of Using Tries
8.2 Space Management for Tries
8.3 Predicates for Tries
8.4 Low-level Trie Manipulation Utilities

8.4.1 A Low-Level API for Interned Tries

9 Hooks
9.1 Adding and Removing Hooks . . .
9.2 Hooks Supported by XSB

10 Debugging and Profiling
10.1 Prolog-style Tracing and Debugging

10.1.1 Control of Prolog-Style Tracing and Debugging

10.2 Trace-based Execution Analysis through Forest Logging

10.2.1 Tracing a tabled evaluation through forest logging

10.2.2 Analyzing the log; seeing the

10.2.3 Discussion

10.2.4 Predicates for Forest Logging
10.3 Inspecting a Tabled Derivation . .

forest through the trees

10.3.1 Inspecting Tables with table dump

10.3.2 Inspection Predicates for Dep

endency Graphs

10.3.3 Summary: Inspection Predicates.

10.3.4 Setting Tripwires on Tabled Derivations

11 Definite Clause Grammars

11.1 General Description

11.2 Translation of Definite Clause Grammar rules

11.2.1 Definite Clause Grammars an

11.3 Definite Clause Grammar predicates

d Tabling

X

356
358
359
360
367
367

371
371
372

374
374
379
380
381
387
394
394
395
396
399
412
413

CONTENTS

11.4 Two differences with other Prologs

12 Exception Handling
12.1 The Mechanics of Exception Handling
12.1.1 Exception Handling in Non-Tabled Evaluations
12.1.2 Exception Handling in Tabled Evaluation.
12.2 XSB’s Standard Format for Errors
12.2.1 Error Tags o
12.2.2 XSB-Specific Information in Error Terms
12.3 Predicates to Throw and Handle Errors
12.3.1 Predicates to Throw Errors
12.3.2 Predicates used in Handling Errors
12.4 Convenience Predicates L.

12.5 Backtraces

13 Foreign Language Interface

13.1 Foreign Language Modules

13.2 Lower-Level Foreign Language Interface.
13.2.1 Context Parameters
13.2.2 Exchanging Basic Data Types
13.2.3 Exchanging Complex Data Types

13.3 Foreign Modules That Call XSB Predicates.

13.4 Foreign Modules That Link Dynamically with Other Libraries

13.5 Higher-Level Foreign Language Interface
13.5.1 Declaration of high level foreign predicates

13.6 Compiling Foreign Modules on Windows and under Cygwin

13.7 Functions for Use in Foreign Code

14 Embedding XSB in a Process
14.1 Calling XSB from C

432

434
434
434
439
441
442
443
444
444
446
447
449

451
452
453
457
458
459
470
471
473
473
476
AT

480

CONTENTS xi

14.2 Examples of Calling XSB. 482
14.2.1 The XSB API for the Sequential Engine Only 482
14.2.2 The General XSB API 486
14.2.3 Managing Multiple XSB Threads through the APT 490
14.2.4 Calling Multiple XSB Threads using Multiple C Threads . . . 492

143 ACAPIfor XSB o 494
14.3.1 Initializing and Closing XSB 494
14.3.2 Passing Commands to XSB 496
14.3.3 Querying XSB. 497
14.3.4 Obtaining Information about Errors. 502
14.3.5 Thread Management from Calling Programs 503

14.4 The Variable-length String Data Type 504

14.5 Passing Data into an XSB Module 506

14.6 Creating an XSB Module that Can be Called from C 507

15 Library Utilities 509

15.1 List Processing 209
15.1.1 Processing Comma Lists 512

15.2 Attributed Variables o oL 512
15.2.1 Low-level Interface 513

15.3 constraintLib: a library for CLP 517

15.4 Formatted Output 519

15.5 Low-level Atom Manipulation Predicates 522

15.6 Script Writing Utilities oL 524
15.6.1 Communication with Subprocesses 525

15.7 Socket I/O . . oo oo 533

15.8 Arrays 540

15.9 The Profiling Library 541

15.10Gensymo 544

CONTENTS xii

15.11Random Number Generator 544
15.12Loading Delimiter-Separated Files 546
15.13Scanning in Prologo 547
15.14XSB Lint Lo 548
15.15%“Pure” Meta-programming in XSB with prolog db.P 551
15.16Range Trees 552
15.17Miscellaneous Predicates 556
A GPP - Generic Preprocessor 558
A1 Description 558
A2 Syntaxo 559
A3 Options e 559
A4 Syntax Specification oo 563
A5 Evaluation Rules 567
A6 Meta-macros. 568
A7 Examples 573
A8 Advanced Examples. D78

A9 Author 580

Chapter 1

Introduction

XSB is a research-oriented, commercial-grade Logic Programming system for Unix
and Windows-based platforms. In addition to providing nearly all functionality of
ISO-Prolog, XSB includes the following features:

e Evaluation of queries according to the Well-Founded Semantics [38] through full
SLG resolution (tabling with negation). XSB’s tabling implementation supports
incremental tabling, as well as call and answer subsumption.

e A fully multi-threaded engine with thread-shared static code, and that allows
dynamic code and tables to be thread-shared or thread-private. This engine
fully supports the draft ISO standard for multi-threading [39].

e Constraint handling for tabled programs based on an engine-level implementa-
tion of annotated variables and various costraint packages, including clpqr for
handling real constraints, and bounds a simple finite domain constraint library.

e A package for Constraint Handling Rules [32] which can be used to implement
user-written constraint libraries.

e A variety of indexing techniques for asserted code including variable-depth in-
dexing on several alternate arguments, fixed-depth indexing on combined argu-
ments, trie-indexing.

o A set of mature packages, to extend XSB to evaluate F-logic [13] through the
FLORA-2 package (distributed separately from XSB), to model check concur-
rent systems through the XM system, to manage ontologies through the Cold

CHAPTER 1. INTRODUCTION 2

Dead Fish package, to support literate programming through the xsbdoc pack-
age, and to support answer set programming through the XASP package among
other features.

e A number of interfaces to other software systems, such a C, Java, Perl, ODBC,
SModels [60], and Oracle.

e Fast loading of large files by the load_dync predicate, and by other means.
e A compiled HiLog implementation;

e Backtrackable updates through XSB’s storage module that support the se-
mantics of transaction logic [6].

e Extensive pattern matching packages, and interfaces to 1ibwww routines, all of
which are especially useful for Web applications.

e A novel transformation technique called unification factoring that can improve
program speed and indexing for compiled code;

e Macro substitution for Prolog files via the xpp preprocessor (included with the
XSB distribution).

e Preprocessors and Interpreters so that XSB can be used to evaluate programs
that are based on advanced formalisms, such as extended logic programs (ac-
cording to the Well-Founded Semantics [2]); Generalized Annotated Programs

[44].

e Source code availability for portability and extensibility under the GNU General
Public Library License.

Though XSB can be used as a Prolog system, we avoid referring to XSB as such,
because of the availability of SLG resolution and the handling of HiLog terms. These
facilities, while seemingly simple, significantly extend its capabilities beyond those of
a typical Prolog system. We feel that these capabilities justify viewing XSB as a new
paradigm for Logic Programming. We briefly discuss some of these features; others
are discussed in Volumes 1 and 2 of the XSB manual, as well as the manuals for
various XSB packages such as FLORA, XMC, Cold Dead Fish, xsbdoc, and XASP.

CHAPTER 1. INTRODUCTION 3

Well-Founded Semantics To understand the implications of SLG resolution [10],
recall that Prolog is based on a depth-first search through trees that are built using
program clause resolution (SLD). As such, Prolog is susceptible to getting lost in an
infinite branch of a search tree, where it may loop infinitely. SLG evaluation, available
in XSB, can correctly evaluate many such logic programs. To take the simplest of
examples, any query to the program:

:— table ancestor/2.

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).
ancestor(X,Y) :- parent(X,Y).

will terminate in XSB, since ancestor/2 is compiled as a tabled predicate; Prolog
systems, however, would go into an infinite loop. The user can declare that SLG
resolution is to be used for a predicate by using table declarations, as here. Alter-
nately, an auto_table compiler directive can be used to direct the system to invoke
a simple static analysis to decide what predicates to table (see Section 3.10.5). This
power to solve recursive queries has proven very useful in a number of areas, including
deductive databases, language processing [15, 16], program analysis [22, 17, 7], model
checking [03] and diagnosis [33]. For efficiency, we have implemented SLG at the
abstract machine level so that tabled predicates will be executed with the speed of
compiled Prolog. We finally note that for definite programs SLG resolution is similar
to other tabling methods such as OLDT resolution [86] (see Chapter 5 for details).

Example 1.0.1 The use of tabling also makes possible the evaluation of programs
with non-stratified negation through its implementation of the well-founded semantics
[88]. When logic programming rules have negation, paradozes become possible. As
an example consider one of Russell’s paradozes — the barber in a town shaves every
person who does not shave himself — written as a logic program.

:— table shaves/2.

shaves (barber,Person) : - person(Person), tnot(shaves(Person,Person)).
person(barber) .
person(mayor) .

Logically speaking, the meaning of this program should be that the barber shaves the
mayor, but the case of the barber is trickier. If we conclude that the barber does not
shave himself our meaning does not refiect the first rule in the program. If we conclude
that the barber does shave himself, we have reached that conclusion using information

CHAPTER 1. INTRODUCTION 4

beyond what is provided in the program. The well-founded semantics, does not treat
shaves (barber,barber) as either true or false, but as undefined. Prolog, of course,
would enter an infinite loop. XSB’s treatment of negation s discussed further in
Chapter 5.

Multi-threading From Version 3.0 onward, XSB has been thoroughly revised to
support multi-threading using POSIX or Windows threads. Detached XSB threads
can be created to execute specific tasks, and these threads will exit when the query
succeeds (or fails, or throws an exception) and all thread memory reclaimed. While
a thread’s execution state is, of course, private, it shares many resources with other
threads, such as static code and [/O streams. Dynamic code and tables can be either
thread-shared or thread-private by default or by explicit declaration.

Constraint Support XSB supports logic-based constraint handling at a low level
through attributed variables and associated packages (e.g. setarg/3). In addition,
constraints may be handled through Constraint Handling Rules. Constraint logic
programs that use attributed variables may be tabled; those that use Constraint
Handling Rules may be efficiently tabled if the CHRd package is used. Constraint
programming in XSB is mainly covered in Volume 2.

Indexing Methods Data oriented applications may require indices other than Pro-
log’s first argument indexing. XSB offers a variety of indexing techniques for asserted
code. Clauses can be indexed on a group of arguments or on alternative arguments.
For instance, the executable directive index(p/4, [3,2+1]) specifies indexes on the
(outer functor symbol of) the third argument or on a combination of (the outer func-
tion symbol of) the second and first arguments. If data is expected to be structured
within function symbols and is in unit clauses, the directive index(p/4,trie) con-
structs an indexing trie of the p/4 clauses using a depth-first, left-to-right traversal
through each clause. Representing data in this way allows discrimination of informa-
tion nested arbitrarily deep within clauses. Advantages of both kinds of indexing can
be combined via star-indexing. Star-indexing indicates that up to the first 5 fields in
an argument will be used for indexing (the ordering of the fields is via a depth-first
traversal). For instance, index(p/4, [*(4),3,2+1]) acts as above, but looks within
4th argument of p/4 before examining the outer functor of argument 3 (and finally
examining the outer functors of arguments 2 and 1 together. Using such indexing,
XSB routinely performs efficiently intensive analyses of in-memory knowledge bases
with millions of highly structured facts. Indexing techniques for asserted code are
covered in Section 6.14.

CHAPTER 1. INTRODUCTION)

Interfaces A number of interfaces are available to link XSB to other systems. In
UNIX systems XSB can be directly linked into C programs; in Windows-based system
XSB can be linked into C programs through a DLL interface. On either class of
operating system, C functions can be made callable from XSB either directly within
a process, or using a socket library. XSB can also inter-communicate with Java
through the InterProlog interface ' or using YJXSB. Within InterProlog, XSB and
Java can be linked either through Java’s JNI interface, or through sockets. XSB
can access external data in a variety of ways: through an ODBC interface, through
an Oracle interface, or through a variety of mechanisms to read data from flat files.
These interfaces are all described in Volume 2 of this manual.

Fast Loading of Code A further goal of XSB is to provide in implementation
engine for both logic programming and for data-oriented applications such as in-
memory deductive database queries and data mining [69]. One prerequisite for this
functionality is the ability to load a large amount of data very quickly. We have
taken care to code in C a compiler for asserted clauses. The result is that the speed
of asserting and retracting code is faster in XSB than in any other Prolog system
of which we are aware, even when some of the sophisticated indexing mechanisms
described above are employed. At the same time, because asserted code is compiled
into SLG-WAM code, the speed of executing asserted code in XSB is faster than
that of many other Prologs as well. We note however, that XSB does not follow the
ISO-semantics of assert [51].

HiLog XSB also supports HiLog programming [14, 72]. HiLog allows a form of
higher-order programming, in which predicate “symbols” can be variable or struc-
tured. For example, definition and execution of generic predicates like this generic
transitive closure relation are allowed:

closure(R) (X,Y) :- R(X,Y).
closure(R) (X,Y) :- R(X,Z), closure(R)(Z,Y).

where closure(R)/2 is (syntactically) a second-order predicate which, given any
relation R, returns its transitive closure relation closure(R). XSB supports reading
and writing of HiLog terms, converting them to or from internal format as necessary
(see Section 4.2). Special meta-logical standard predicates (see Section 6.7) are also
provided for inspection and handling of HiL.og terms. Unlike earlier versions of XSB
(prior to version 1.3.1) the current version automatically provides full compilation of
HiLog predicates. As a result, most uses of Hilog execute at essentially the speed

InterProlog is available at www.declarativa.com/InterProlog/default.htm.

www.declarativa.com/InterProlog/default.htm

CHAPTER 1. INTRODUCTION 6

of compiled Prolog. For more information about the compilation scheme for HiLog
employed in XSB see [72].

HiLog can also be used with tabling, so that the program above can also be written
as:

:— hilog closure.
:— table apply/3.

closure(R) (X,Y) :- R(X,Y).
closure(R) (X,Y) :- closure(R) (X,Z), R(Z,Y).

as long as the underlying relations (the predicate symbols to which R will be unified)
are also declared as Hilog. For example, if a/2 were a binary relation to which the
closure predicate would be applied, then the declaration :- hilog a. would also
need to be included.

Unification Factoring For compiled code, XSB offers unification factoring, which
extends clause indexing methods found in functional programming into the logic
programming framework. Briefly, unification factoring can offer not only complete
indexing through non-deterministic indexing automata, but can also factor elemen-
tary unification operations. The general technique is described in [21], and the XSB
directives needed to use it are covered in Section 3.10.

XSB Packages Based on these features, a number of sophisticated packages have
been implemented using XSB. For instance, XSB supports a sophisticated object-
oriented interface called Flora. Flora (http://flora.sourceforge.net) is available
as an XSB package and is described in its own manual, available from the same site
from which XSB was downloaded. Another package, XMC http://www.cs.sunnysb.edu/~1mc
depends on XSB to perform sophisticated model-checking of concurrent systems.
Within the XSB project, the Cold Dead Fish package supports maintenance of, and
reasoning over ontologies; xsbdoc supports literate programming in XSB, and XASP
provides an interface to Smodels to support Answer Set programming. XSB packages
also support Perl-style pattern matching and POSIX-style pattern matching. In ad-
dition, experimental preprocessing libraries currently supported are Extended logic
programs (under the well-founded semantics), and Annotated Logic Programs. These
latter libraries are described in Volume 2 of this manual.

http://flora.sourceforge.net
http://www.cs.sunnysb.edu/~lmc

CHAPTER 1. INTRODUCTION 7

1.1 Using This Manual

We adopt some standard notational conventions, such as the name/arity convention
for describing predicates and functors, + to denote input arguments, - to denote
output arguments, 7 for arguments that may be either input or output and # for
arguments that are both input and output (can be changed by the procedure). See
Section 3.10.5 for more details. . Also, the manual uses UNIX syntax for files and
directories except when it specifically addresses other operating systems such as Win-
dows.

Finally, we note that XSB is under continuous development, and this document
—intended to be the user manual— reflects the current status (Version 3.8) of our
system. While we have taken great effort to create a robust and efficient system, we
would like to emphasize that XSB is also a research system and is to some degree
experimental. When the research features of XSB — tabling, HiLog, and Indexing
Techniques — are discussed in this manual, we also cite documents where they are
fully explained. All of these documents can be found without difficulty on the web.

While some of Version 3.8 is subject to change in future releases, we will try to
be as upward-compatible as possible. We would also like to hear from experienced
users of our system about features they would like us to include. We do try to
accommodate serious users of XSB whenever we can. Finally, we must mention that
the use of undocumented features is not supported, and at the user’s own risk.

Chapter 2

Getting Started with XSB

This section describes the steps needed to install XSB under UNIX and under Win-
dows.

2.1 Installing XSB under UNIX

If you are installing on a UNIX platform, the version of XSB that you received may
not include all the object code files so that an installation will be necessary. The
easiest way to install XSB is to use the following procedure.

1. Decide in which directory in your file system you want to install XSB and copy
or move XSB there.

2. Make sure that after you have obtained XSB, you have uncompressed it by
following the instructions found in the file README.

3. Note that after you uncompress and untar the XSB tar file, a subdirectory
XSB will be created in the current directory. All XSB files will be located in
that subdirectory. In the rest of this manual, we use $XSB_DIR to refer to this
subdirectory. Note the original directory structure of XSB must be maintained,
namely, the directory $XSB_DIR should contain all the subdirectories and files
that came with the distribution. In particular, the following directories are
required for XSB to work: emu, syslib, cmplib, 1ib, packages, build, and
etc.

4. Change directory to $XSB_DIR/build and then run these commands:

CHAPTER 2. GETTING STARTED WITH XSB 9

configure
makexsb

This is it!
In addition, it is now possible to install XSB in a shared directory (e.g., /usr/local)

for everyone to use. In this situation, you should use the following sequence of
commands:

configure -prefix=$SHARED_ XSB
makexsb
makexsb install

where $SHARED XSB denotes the shared directory where XSB is installed. In all
cases, XSB can be run using the script

$XSB_DIR/bin/xsb
However, if XSB is installed in a central location, the script for general use is:

<central-installation-directory>/<xsb-version>/bin/xsb

Important: The XSB executable determines the location of the libraries it needs
based on the full path name by which it was invoked. The “smart script” bin/xsb
also uses its full path name to determine the location of the various scripts that it
needs in order to figure out the configuration of your machine. Therefore, there are
certain limitations on how XSB can be invoked.

Here are some legal ways to invoke XSB:

1. invoking the smart script bin/xsb or the XSB executable using their absolute
or relative path name.

2. using an alias for bin/xsb or the executable.

3. creating a new shell script that invokes either bin/xsb or the XSB executable
using their full path names.

Here are some ways that are guaranteed to not work in some or all cases:

1. creating a hard link to either bin/xsb or the executable and using it to invoke

XSB. (Symbolic links should be ok.)

CHAPTER 2. GETTING STARTED WITH XSB 10

2. changing the relative position of either bin/xsb or the XSB executable with
respect to the rest of the XSB directory tree.

The configuration script allows many different options to be specified. A full
listing can be obtained by typing $XSB_DIR/build/configure -help.

Type of Machine. The configuration script automatically detects your machine
and OS type, and builds XSB accordingly. On 64-bit platforms, the default
compilation of XSB will reflect the default for the C compiler (e.g. gcc) on
that platform. Moreover, you can build XSB for different architectures while
using the same tree and the same installation directory provided, of course, that
these machines are sharing this directory, say using NFS or Samba. All you will
have to do is to login to a different machine with a different architecture or OS
type, and repeat the above sequence of commands — or configure with different
parameters.

The configuration files for different architectures reside in different directories,
and there is no danger of an architecture conflict. In fact, you can keep using
the same ./bin/xsb script regardless of the architecture. It will detect your
configuration and will use the right files for the right architecture!

If XSB is being built on a Windows machine in which Cygwin is installed,
Cygwin and Windows are treated as separate operating systems, as their APIs
are completely different. On such a machine, XSB can be built either for Cygwin
or Windows.

Choice of the C Compiler and compiler-related options On Unix systems, XSB
is developed and tested mainly using gcc. Accordingly, the configure script
will attempt to use gcc, if it is available. Otherwise, it will revert to cc or acc.
Some versions of gcc are broken for particular platforms or gcc may not have
been installed; in which case you would have to give configure an additional
directive ~with-cc (or -with-acc). If you must use some special compiler, use
-with-cc=your-own-compiler. You can also use the -with-optimization op-
tion to change the default C compiler optimization level. (or -disable-optimization
to disable all compiler optimizations). -enable-debug is mainly a devlopment
option that allows XSB to be debugged using gdb — there are many other
compiler-based options options. Type configure -help to see them all. Also
see the file $XSB_DIR/INSTALL for more details.

Word Size XSB’s configuration script checks whether the default compilation mode
of a platform is 32- or 64-bits, and will build a version of XSB accoringly. Some
platforms, however, support both 32-bit and 64-bit compilation. On such a

CHAPTER 2. GETTING STARTED WITH XSB 11

platform, a user can explicitly specify the type of compilation using the options
with-bits32 and with-bits64.

XSB and Site-specific Information Using the option -prefix=PREFIX installs
architecture-independent files in the directory PREFIX, e.g. /usr/local, which
can be useful if XSB is to be shared at a site. Using the option -site-prefix=DIR
installs site-specific libraries in DIR/site. Other options indicate directories in
which to search for site-specific static and dynamic libraries, and for include
files.

Multi-threading Version 3.0 of XSB was the first version that supports multi-
threading. On some platforms, the multi-threaded engine is slightly slower
than the single-threaded engine, mostly due to its need for concurrency control.
To obtain the benefits of multiple threads on a platform that supports either
POSIX or Windows threads (i.e. mnearly all platforms) users must configure
XSB with the directive enable-mt (see Section 7.8 for instructions specific to
Windows. The multi-threaded engine works with other configuration options,
multi-threading can be compiled with batched or local scheduling, with the
ODBC or InterProlog interfaces, and so on.

Interfaces Certain interfaces must be designated at configuration time, including
those to Oracle, ODBC, Smodels, Tck/Tk, and Libwww. However, the XSB-
calling-C interface interface does not need to be specified at configuration time.
If you wish to use the InterProlog Java interface that is based on JNI, you must
specify this at configuration time; otherwise if you wish to use the sockets-based
InterProlog interface, it does not need to be specified at configuration time. See
Volume 2 and the InterProlog site www.declarativa.com for details of specific
interfaces

While the XSB configuration mechanism can detect most include and library
paths, use of certain interfaces may require information about particular directo-
ries. In particular the -with-static-libraries option might be needed if com-
piling with support for statically linked packages (such as Oracle) or if your stan-
dard C libraries are in odd places. Alternately, dynamic libraries on odd places
may need to be specified at configuration time using the ~-with-dynamic-libraries
option. and finally, the ~-with-includes option might be needed if your stan-
dard header files (or your jni.h file) are in odd places, or if XSB is compiled
with ODBC support. Type configure -help for more details.

Type of Scheduling Strategy. The ordering of operations within a tabled eval-
uation can drastically affect its performance. XSB provides two scheduling
strategies: Batched Evaluation and Local Evaluation. Local Evaluation ensures

CHAPTER 2. GETTING STARTED WITH XSB 12

that, whenever possible, subgoals are fully evaluated before there answers are
returned, and provides superior behavior for programs in which tabled negation
is used. Batched Evaluation evaluates queries to reduce the time to the first an-
swer of a query. Both evaluation methods can be useful for different programs.
Since Version 2.4, Local Evaluation has been the default evaluation method for
XSB. Batched Evaluation can be chosen via the ~enable-batched-scheduling
configure option. Detailed explanations of the scheduling strategies can be found

in [30], and further experimentation in [12].

Other options are of interest to advanced users who wish to experiment with XSB,
or to use XSB for large-scale projects. In general, however users need not concern
themselves with these options.

2.1.1 Possible Installation Problems

Lack of Space for Optimized Compilation of C Code When making the op-
timized version of the emulator, the temporary space available to the C compiler for
intermediate files is sometimes not sufficient. For example on one of our SPARC-
stations that had very little /tmp space the "-04" option could not be used for the
compilation of files emuloop.c, and tries.c, without changing the default tmp di-
rectory and increasing the swap space. Depending on your C compiler, the amount
and nature of /tmp and swap space of your machine you may or may not encounter
problems. If you are using the SUN C compiler, and have disk space in one of your
directories, say dir, add the following option to the entries of any files that cannot
be compiled:

-temp=dir

If you are using the GNU C compiler, consult its manual pages to find out how you
can change the default tmp directory or how you can use pipes to avoid the use of
temporary space during compiling. Usually changing the default directory can be
done by declaring/modifying the TMPDIR environment variable as follows:

setenv TMPDIR dir

Missing XSB Object Files When an object (*.xwam) file is missing from the 1ib
directories you can normally run the make command in that directory to restore it
(instructions for doing so are given in Chapter 2). However, to restore an object file
in the directories syslib and cmplib, one needs to have a separate Prolog compiler
accessible (such as a separate copy of XSB), because the XSB compiler uses most of

CHAPTER 2. GETTING STARTED WITH XSB 13

the files in these two directories and hence will not function when some of them are
missing. For this reason, distributed versions normally include all the object files in
syslib and cmplib.

XSB on 64-bit platforms XSB has been fully tested on 64-bit Debian Linux, 64-
bit and Mac OS X. However, the sockets library may have problems in Version 3.8. If
this limitation prove a problem, please contact xsb-development@lists.sourceforge.net '.

Typically, if the 64-bit system generates 32-bit code by default, XSB will run
just as in 32-bit mode (including 64-bit floats). 64-bit compilation can be forced for
XSB by configuring with the option -with-bits64, and in a similar manner 32-bit
compilation can be forced with the option -with-bits32. Users who employ either
option should be aware of issues that may arise when linking XSB to external C code.

e When XSB calls C code the C file must have been compiled with the same
memory option as XSB. This is done automatically if the C file is compiled via
a call from XSB’s compiler, but must be handled by the user otherwise. For
instance, if XSB were configured -with-bits32 on a 64-bit machine defaulting
to 64-bits, then C files called by XSB require the -m32 option in gcc (if not
compiled by XSB).

e The appropriate memory option must be used when embedding XSB into a C or
Java process. For instance, if a XSB is to be linked into a 32-bit application on
a 64-bit platform defaulting to 64-bits, XSB must be configured -with-bits32,
and the linking of xsb.o/so to the calling program must specify -m32.

2.2 Installing XSB under Windows

2.2.1 Using Cygwin32 and Cygwin64

This is easy: just follow the Unix instructions. XSB can be built under CygWin64
or CygWin32, but in the latter case CygWin32 must be installed on a 32 bit version
of Windows. XSB cannot be built under CygWin32 if the latter is installed on a 64
bit Windows.

Note: XSB is not fully functional under Cygwin—external C modules cannot be
linked and so several packages will not work.

164-bit XSB was broken in a recent releases prior to Version 3.1 because for a time the developers
did not have access to a 64-bit machine.

CHAPTER 2. GETTING STARTED WITH XSB 14

2.2.2 Using Microsoft Visual C++

1. Check XSB out from SVN:
svn checkout svn://svn.code.sf.net/p/xsb/src/trunk xsb-src

2. Compile XSB as described below. This requires that Microsoft Visual Studio is
installed.

3. After compiling XSB, it is OK to move it to some other place, if needed. How-
ever, make sure that the entire directory tree is moved — the XSB executable
looks for the files it needs relatively to its current position in the file system.

The first thing is to ensure that Microsoft Visual Studio that includes a C++
compiler, so download the free of charge Microsoft Visual Studio, Community Edition
from

https://www.visualstudio.com/vs/community/

Make sure you select the C++ compiler as one of the additional components to include
(e.g., choose “Desktop development with C++"). The installer will place the studio
in C:\Program Files\Microsoft Visual Studio).

One way to compile XSB under Windows is to use the automatic installer:

cd $XSB DIR
java -jar InstallXSB. jar

where $XSB_DIR is the XSB’s instalation directory, and follow the prompts. The
trickiest of these prompts will ask you to provide the full file name of the stu-
dio’s settings batch file. For Visual Studio 2017, Community Edition, that file is
vcvarsx86_amd64.bat (for 64 bit apps) or vevars32.bat (for 32 bit apps), located
in the directory

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build

In other versions of the studio, that file is elsewhere and can be found using the
Windows search widget. For instance, in the 2015 version of the studio, that direc-
tory is C:\Program Files (x86)\Microsoft Visual Studio 2015\VC\bin

If the automatic method just described does not work or if one needs customized
installation, one has to compile XSB the “hard way,” as described below.

svn://svn.code.sf.net/p/xsb/src/trunk

CHAPTER 2. GETTING STARTED WITH XSB 15

1. Find the settings file, which you need to execute in a command window in order
to set the compilation environment, as described above.

2. Open a Windows command prompt window and drag the appropriate batch file
(vcvarsx86_amd64.bat or vcvars32.bat) into it. Type <Enter> to execute
that batch file.

3. cd $XSB_DIR\build

4. To compile XSB as a 64 bit application, use the following command, where the
items in square brackets are optional and usually can be dropped:
makexsb64 ["CFG=opt"] ["ORACLE=yes"] ["MY_LIBRARY DIRS=1libs"] ["MY_INCLUDE_DIRS=opts"]

e The options for CFG are: release (default) or debug. The latter is used
when you want to compile XSB with debugging enabled.

e The ORACLE parameter (default is “no”) compiles XSB with native sup-
port for Oracle DBMS. If ORACLE is specified, you must also specify the
necessary Oracle libraries using the parameter SITE_LIBS. Native Oracle
support is rarely used and ODBC is the recommended way to connect to
databases.

e MY LIBRARY DIRS is used to specify the external libraries and 1ibs there
has the form /LIBPATH:"libdir1" /LIBPATH:"libdir2"

e MY INCLUDE_DIRS is used to specify additional directories for included files.
Here opts has the form /I"incdirl" /I"incdir2"

Instead of specifying the options on command line, it might be more convenient
(and more general) to create the file

XSB\build\windows64\custom_settings.mak
and put the required options there. For instance,

XSB_INTERPROLOG=yes

MY_INCLUDE DIRS=/I"C:\Program Files\Java\jdk1.8.0_131\include" \
/I"C:\Program Files\Java\jdk1l.8.0_131\include\win32"

MY _LIBRARY DIRS=/LIBPATH:"C:\pthreads\pthreadVC1.1lib" /libpath:"C:\oracle"

ORACLE=yes

Make sure you do not misspell the name of that file or else none of the specified
options will take effect!

CHAPTER 2. GETTING STARTED WITH XSB 16

5. The above command will compile XSB as requested and will put the XSB
executable and its DLL in:

$XSB_DIR\config\x64-pc-windows\bin\xsb.exe
$XSB_DIR\config\x64-pc-windows\bin\xsb.d1l

6. To compile XSB as a 32 bit application (not recommended), use makexsb in-
stead of makexsb64. The compiled code will be installed in

$XSB_DIR\config\x86-pc-windows\bin\xsb.exe
$XSB_ DIR\config\x86-pc-windows\bin\xsb.d11l

The custom_settings.mak file must then be in
XSB\build\windows\custom_settings.mak

Note: if you compiled XSB with one set of parameters and then want to recompile
with a different set, it is recommended that you run

makexsb64 clean

in between the compilations (or makexsb clean in the 32-bit case). This also applies
to recompilations for 64/32 bits.

2.3 Invoking XSB

Under Unix, XSB can be invoked by the command:
$XSB_DIR/bin/xsb

if you have installed XSB in your private directory. If XSB is installed in a shared
directory (e.g., $SHARED_XSB for the entire site (UNIX only), then you should use

$SHARED_XSB/bin/xsb

In both cases, you will find yourself in the top level interpreter. As mentioned above,
this script automatically detects the system configuration you are running on and will
use the right files and executables. (Of course, XSB should have been built for that
architecture earlier.)

CHAPTER 2. GETTING STARTED WITH XSB 17

Under Windows, you should invoke XSB by typing:
$XSB_DIR\bin\xsb

This script tries to find the XSB executable and invoke it. If, for some reason, it fails
to do so, the user should call the executable directly.

$XSB_DIR\config\x86-pc-windows\bin\xsb.exe

You may want to make an alias such as xsb to the above commands, for conve-
nience, or you might want to put the directory where the XSB command is found in
the $PATH environment variable. However, you should not make hard links to this
script or to the XSB executable. If you invoke XSB via such a hard link, XSB will
likely be confused and will not find its libraries. That said, you can create other
scripts and call the above script from there.

[SO“standard” Prolog predicates are supported by XSB, in addition to many other
predicates: so those of you who consider yourselves champion entomologists, can try
to test them for bugs now. Details are in Chapter 6.

2.4 Compiling XSB programs

One way to compile a program from a file, such as myfile.P in the current directory
and load it into memory, is to type the query:

[my_file].

where my_file is the name of the file. Chapter 3 contains a full discussion of the
compiling and consulting.

If you are eccentric (or you don’t know how to use an editor) you can also compile
and load predicates input directly from the terminal by using the command:

[user].

A CTRL-d or the atom end_of file followed by a period terminates the input stream.

2.5 Sample XSB Programs

There are several sample XSB source programs in the directory: $XSB_DIR/examples
illustrating a number of standard features, as well as a number of non-standardized

CHAPTER 2. GETTING STARTED WITH XSB 18

or XSB-specific features including plain tabling, incremental tabling, tabling with
negation, attributed variables, annotated programs, constraint handling rules, XSB
embedded in a C program, XSB calling C functions, sockets, and various semantic
web appliation

Hence, a sample session might look like (the actual times shown below may vary
and some extra information is given using comments after the % character):

my_favourite_prompt> cd $XSB_DIR/examples

my_favourite_prompt> $XSB_DIR/bin/xsb

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word size: 32]
| ?- [queens].

[queens loaded]

yes
| ?- demo.

/A output from queens program
Time used: 0.4810 sec

yes
| ?- statistics.

memory (total) 1906488 bytes: 203452 in use, 1703036 free
permanent space 202552 bytes
glob/loc space 786432 bytes: 432 in use, 786000 free
global 240 bytes
local 192 bytes
trail/cp space 786432 bytes: 468 in use, 785964 free
trail 132 bytes
choice point 336 bytes
SLG subgoal space 0 bytes: 0 in use, 0 free
SLG unific. space 65536 bytes: 0 in use, 65536 free
SLG completion 65536 bytes: 0 in use, 65536 free
SLG trie space 0 bytes: 0 in use, 0 free
(call+ret. trie 0 bytes, trie hash tables 0 bytes)

0 subgoals currently in tables
0 subgoal check/insert attempts inserted 0 subgoals in the tables
0 answer check/insert attempts inserted 0 answers in the tables

Time: 0.610 sec. cputime, 18.048 sec. elapsetime

yes
| ?- halt. % I had enough !!!

CHAPTER 2. GETTING STARTED WITH XSB 19

End XSB (cputime 1.19 secs, elapsetime 270.25 secs)
my_favourite_prompt>

2.6 Exiting XSB

If you want to exit XSB, issue the command halt. or simply type CTRL-d at the
XSB prompt. To exit XSB while it is executing queries, strike CTRL-c a number of
times.

Chapter 3

System Description

Throughout this chapter, we use $XSB_DIR to refer to the directory in which XSB
was installed.

3.1 Entering and Exiting XSB from the Command
Line

After the system has been installed, the emulator’s executable code appears in the

file:
$XSB_DIR/bin/xsb

If, after being built, XSB is later installed at a central location, $SHARED_ XSB, the
emulators executable code appears in

$SHARED XSB/bin/xsb

Either of these commands invokes XSB’s top-level interpreter, which is the most
common way of using XSB.

XSB can also directly execute object code files from the command line interface.
Suppose you have a top-level routine go in a file foo.P that you would like to run
from the UNIX or Windows command line. As long as foo.P contains a directive,
e.g. 1= go., and foo.P has been compiled to an object file (foo.xwam), then

$XSB_DIR/bin/xsb foo

20

CHAPTER 3. SYSTEM DESCRIPTION 21

will execute go (and any other directives), loading the appropriate files as needed .
In fact the command $XSB_DIR/bin/xsb is equivalent to the command:

$XSB_DIR/bin/xsb -B $XSB_DIR/syslib/loader.xwam

There is one other way to execute XSB from a command line. Using the —e command-
line option any goal can be can be executed, up to 1024 characters. For instance

$XSB _DIR/bin/xsb -e "writeln(’hello world’),halt."

writes “hello world” and exits XSB. Within the 1024 character limit, any query or
command can be executed, including consulting files, so this method is actually quite
general footnoteVarious options can suppress XSB’s startup and end messages, as
discussed below..

There are several ways to exit XSB. A user may issue the command halt. or
end _of file., or simply type CTRL-d at the XSB prompt. To interrupt XSB while
it is executing a query, strike CTRL-c.

3.2 The System and its Directories

When installed, the XSB system resides in a single directory that contains several
subdirectories. For completeness, we review the information in all subdirectories.
Normally, only the documentation and files in the Prolog subdirectories, particularly
examples, 1lib, and packages will be of interest to users.

1. bin contains scripts that call XSB executables for various configurations.

2. build contains XSB configuration scripts. You may already be familiar with
the build directory, which is used to build XSB.

3. config contains executables and other files specific to particular configurations.

4. docs contains the user manuals and other documentation, including the tech-
nical documentation manual for developers.

In XSB, all extensions except pl” and ’prolog’ — (default P’ "H’, "xwam’, *D’ (output by
mode inferencing), and A’ (assembly dump) — are defined in C and Prolog code using macros in
$XSB_DIR/emu/extensions_xsb.h and can be changed by a user if desired. Of course, such a step
should not be taken lightly, as it can cause severe compatibility problems.

CHAPTER 3. SYSTEM DESCRIPTION 22

5. emu contains the C source code for the XSB emulator, for I/O and for various
interfaces.

6. etc contains miscellaneous files used by XSB.

7. examples contains some examples for Prolog, tabling, Hil.og and various inter-
faces.

8. cmplib contains Prolog source and object code for the compiler.
9. gpp contains a copy of the Gnu pre-processor used to preprocess Prolog files.
10. 1ib contains Prolog source and object code for extended libraries.

11. packages The directory packages contains the various applications, such as
FLORA, the XMC model checker and many others. These applications are
written in XSB and can be quite useful, but are not part of the XSB system
per se.

12. Prolog_includes contains include files for the Prolog libraries, which are pre-
processed using GPP.

13. syslib contains Prolog source and object code for core XSB libraries.

All Prolog source programs are written in XSB, and all object (byte code) files contain
SLG-WAM instructions that can be executed by the emulator. These byte-coded
instructions are machine-independent, so usually no installation procedure is needed
for the byte code files.

If you are distributing an application based on XSB and need to cut down space,
the packages, examples and docs directories are not usually needed (unless of course
you are using one of the packages in your application). 1ib may not be needed,
(most core system files are in syslib) nor are Prolog source files necessary. Unless
your application needs to rebuild XSB, the emu and build directories do not need to
be distributed.

3.3 How XSB Finds Files: Source File Designators

Three files are associated with Prolog source code in XSB 2.

20ther types of files may be associated with foreign code — see Volume 2.

CHAPTER 3. SYSTEM DESCRIPTION 23

e A single source file, whose name is the base file name plus an optional extension
suffix .P, .pl, or .prolog.

e An object (byte-code) file, whose name consists of the base file name plus the
suffix .xwam.

e An optional header file, whose name is the base file name plus the suffix “.H”.
When used, the header file normally contains file-level declarations and direc-
tives while the source file usually contains the actual definitions of the predicates
defined in that module. However, such information can be equivalently put into
the .P (.pl, or .prolog) file.

Most of the XSB system predicates for compiling, consulting, and loading code, such
as consult/[1,2], compile/[1,2], load_dyn/1 and others are somewhat flexible
in how they designate the file of interest. Each of these predicates take as input a
source file designator which can be a base file name, a source file name; or the relative
or absolute paths to a base or source file name. Unfortunately, the exact semantics
of a file designator differs among system predicates in Version 3.8, as well as among
platforms.

In general, however, when given a source file designator, system predicates perform
name resolution. There are two steps to name resolution: determining the proper
directory prefix and determining the proper file extension. When FileName is absolute
(i.e. it contains a path from the file to the root of the file system) determining the
proper directory prefix is straightforward. If FileName is relative, i.e. it contains
a ’/’ in Unix or ’/’ in Windows, FileName is expanded to a directory prefix in
an OS-dependent way, resolving symbols like >.? >..”> and ’~’ when applicable.
However, the user may also enter a name without any directory prefix. In this case,
XSB tries to determine the directory prefix using a set of directories it knows about:
those directories in the dynamic loader path (see Section 3.6). As it searches through
directory prefixes, different forms of the file name may be checked. If the source file
designator has no extension the loader first checks for a file in the directory with
the .P extension, (or .c for foreign modules) before searching for a file without the
extension, and finally for a file with a .pl or .prolog extension. Note that since
directories in the dynamic loader path are searched in a predetermined order (see
Section 3.6), if the same file name appears in more than one of these directories, the
first one encountered will be used.

CHAPTER 3. SYSTEM DESCRIPTION 24

3.4 The Module System of XSB

XSB has been designed as a module-oriented Prolog system. Modules provide a
step towards logic programming “in the large” that facilitates the construction of
large programs or projects from components that are developed, compiled and tested
separately. Also, module systems support the principle of information hiding and
can provide a basis for data abstraction. And modules form the basis for XSB’s
implementation of its standard predicates.

The module system of XSB is file based — one module per file — and flat — modules
cannot be nested. In addition, XSB’s module system is essentially atom-based (or
structure-symbol-based), where any symbol in a module can be imported, exported
or be a local symbol, as opposed to a predicate-based one where this can be done
only for predicate symbols . Every structure symbol (and thus structured term) is
associated with a module, and structure symbols with the same name but in different
modules are different symbols and thus do not unify. As we will discuss, this leads to
certain differences of XSB’s module system from those of some other Prologs, and to
certain incompatibilities with the (proposed) ISO standard for modules (which is not
supported by most Prologs). At the same time, XSB’s module system has enough
commonalities with those of other Prologs to be able to support the Prolog Commons
libraries.

In XSB (as in all Prolog systems) predicate definitions (aka Clauses) are associated
with structure symbols. A predicate is a structure symbol with an associated defini-
tion. Predicates are either static or dynamic. Static predicates get their definitions
from source code files that are compiled and loaded into memory. Dynamic predicates
get their definitions from the execution of the builtin meta-predicate assert/1 (and
friends).

In XSB every structure symbol is associated with a module. A term is said to be
in the module of its main structure symbol. Terms in different modules are different
terms and do not unify. So two terms whose main structure symbols (or any structure
symbols) have the same name but different modules, are different terms and do not
unify. So, for example, terms printed as p(a,b) and p(a,b) would not unify if the
first structure symbol named p/2 is in a different module from the second structure
symbol named p/2.

The “default” module is named usermod. Whenever a term is constructed, and a
module is not explicitly provided, usermod is the module used. For example, when
functor/3 (or univ/2) is used to construct a term, that term is put in usermod.

30perator symbols can be exported as any other symbols, but their precedence must be redeclared
in the importing module.

CHAPTER 3. SYSTEM DESCRIPTION 25

Any term that is read from a file (or at the top-level prompt) is put in usermod. All
(usual) XSB source files, when compiled and loaded, define predicates in usermod.

So how are terms that are not in usermod constructed? The most important use
of modules by far is to organize predicates (and thus their definitions.) So a module
is associated with a set of predicate definitions, which in XSB is a Prolog source file,
a file with .P extension. In XSB, a source file is compiled (to a .xwam file) and then
loaded into memory to provide definitions for the predicates with clauses in that file.
For “usual” XSB source files, all the defined predicates are in usermod. However
when a source file includes an export directive, such as:

:= export Pred/Arity.

the definitions in that source file will be interpreted as defining predicates in a module.
The name of the module is the name of the XSB source file (without the extension
.P). Predicates that have definitions in such a file will all be put in the module of
that name. A predicate that is exported must be defined in the source file and will
be made available for use in other source files, when imported. An import directive,
such as:

:= import Pred/Arity from Module.

in another source file allows its definitions to use that exported predicate. For exam-
ple, the file:

%% file: modl.P
:— export p/2.

p(a,b).
pX,Y) :- qX,Y).

q(b,c).

when compiled and loaded, defines a predicate p/2 in modl (i.e., p/2 terms that
define the facts have their main structure symbols put in module mod1, and the code
implementing those clauses are associated with that structure symbol in that module.)
It also defines a predicate q/2 in the same module. (And, of course, the call to q(X,Y)
in the body of the rule for p/2 is also put in that same module.) The predicate p/2
is exported and is thus available for use by other code.

For example, we can create another file (not a module in this case), which uses
the definition of p/2 above:

%% file: my_code.P

CHAPTER 3. SYSTEM DESCRIPTION 26

:— import p/2 from modl.
qX,Y) - pX,Y).

Here there is no export directive, so all definitions in this file will go into module
usermod. The clause here defines q/2 in usermod, which is a different predicate from
the q/2 defined above in the module modl. The import of p/2 in this file causes the
p(X,Y) term in the body of the rule for q/2 to be interpreted as being in module
modl. Thus, when this file is compiled and loaded, q/2 is defined in usermod and its
code calls p/2 in module mod1.

A module source file may want to access a predicate defined in usermod, which
can be done by explicitly importing the predicate from usermod.

There are situations in which a programmer wants to explicitly provide a module
name to “override” the module associated with a term. For example, one might want
to call the goal p(X,Y) to invoke the code associated with p/2 in module mod1 at the
top level, regardless of what module the p/2 structure symol is associated with. In
this case, one can write:

| 7- call(modl:p(X,Y)).

Here call will construct the term p (X,Y) with structure p/2 in module mod1 (ignoring
the module associated with the p/2 structure symbol) and then call that term, which
accesses the code of p/2 in module mod1. In this particular case the original term
mod1:p(X,Y) had the p/2 structure in usermod, since that’s where the top-level read
puts it. But call/1 interprets this term (with main structure symbol :/2) as a
coercion of the term p(X,Y) into the module mod1l. In XSB, in most contexts in
which a term is interpreted as a goal, the syntax of Mod:Goal is interpreted as a
coercion of term Goal into the module Mod. And in fact, the top-level goal:

| 7= modl:p(X,Y).
is equivalent to the goal above.

And instead of:
:= import pr/2 from mod3.
c.l.()‘(,Y) = ... prX,2),
one can directly write:

q(X,Y) :- ... mod3:pr(X,Z),

CHAPTER 3. SYSTEM DESCRIPTION 27

In general, the use of import is recommended, even though it may sometimes
be more verbose. The use of imort allows for better visibility and easier analysis of
module dependencies.

In XSB, the declaration:
:= module(filename, [symy, ..., sym;.]1).
is syntactic sugar for:
.- export symi, ..., sym;.

as long as the filename is the same as the name of the file in which it was contained.
Similarly,

:— use_module (module, [symy, ..., symy.]1).
is treated as semantically equivalent to
:= import symsy, ..., sym, from module.

Accordingly, use_module/2 and module/1 can be used interchangibly with import/2
and export/1. However the declaration

:— use_module (module) .

which is often used in other Prolog systems, is not equivalent to an XSB import
statement, as each XSB import statement must explicitly declare a list of predicates
that are used from each module. Such a declaration will raise a compilation error.

The declaration
:— import sym from module as sym’.

allows a predicate to be imported from a module, but renamed as sym’ within the
importing module. In this case the structure symbol sym’ is placed in the current
module and its code pointer is identified with that of the structure symbol sym in
module module. Such a feature is useful when porting a library written for another
Prolog (e.g. a constraint library) to XSB. It is also useful when one wants to import
two predicates with the same name from different modules. In that case (at least)
one of the names needs to be changed on import.

For modules, the base file name is stored in its byte code (.swam file, so that
renaming a byte-code file for a mule may cause problems, as the renaming will not
affect the information within the byte-code file. However, byte code files generated
for non-modules can be safely renamed.

CHAPTER 3. SYSTEM DESCRIPTION 28

3.4.1 How the Compiler Determines the Module of a Term

When XSB compiles a source code file, it must determine the module for every term
it encounters. For non-module source files (i.e., those with an export directive),
all terms are associated with usermod except for those whose structure symbols are
imported. Any occurrence of an imported structure symbol is associated with the
module from which it is imported.

For module source code files, i.e., those containing at least one export directive,
the process of determining the module of a structure symbol is more complicated. The
idea is that all terms in the source file that refer to predicates are placed in the module
of the file, and all terms that are record structures are by default placed in usermod.
All occurrences of the same structure symbol in a file are normally associated with
the same module” So if a structure symbol appears both as a predicate symbol (e.g.,
as a subgoal in the body of a rule) and as a record structure (perhaps to be passed
to some other predicate to later be called), both occurrences will be associated with
the current module. Of course, imported structure symbols are associated with the
module from which they are imported.

The compiler recognizes as predicate symbols any symbol that:

1. appears as the main structure symbol in the head of a rule,
2. appears as a subgoal in the body of a rule,

3. appears as the main structure symbol of terms passed to known meta-predicates,
such as assert/1 and retract,

4. is declared as dynamic.

Otherwise a structure symbol is associated with usermod.

Note that these rules imply that all structure symbols used just for record struc-
tures are placed by default in usermod. This is usually what a user wants. But there
are times a user might want a record structure to be associated with the current
module. This can be used to provide a measure of information hiding: Since no other
module (or usermod) will construct a term associated with this module, another mod-
ule can’t use unification to look at the subfields inside such a term. So in this way, a
module can return to a caller a complex term, and the caller can pass it around and
back to the module in a later call, and only the module code can manipulate that

“but see import .. as .. for an exception.

CHAPTER 3. SYSTEM DESCRIPTION 29

data structure.” The programmer can tell the compiler to place a particular structure
symbol in the current module by using the local directive:

:= local Sym/Arity.

which will force all uses of the indicated structure symbol to be associated with the
current module.

An XSB programmer can also export a structure symbol (that is not used as a
predicate), and others can import and use it as a structure symbol.

Standard predicates (those defined in the XSB environment) are actually defined
in system modules and the compiler implicitly provides the necessary imports to allow
the programmer to use them. Standard predicates are described in Section 3.5.

For clarity, we state a few consequences of these rules.

e The module for a particular symbol appearing in a module must be uniquely
determined. As a consequence, a symbol of a specific functor/arity cannot
be declared as both exported and local, or both exported and imported from
another module, or declared to be imported from more than one module, etc.
These types of environment conflicts are detected at compile-time and abort
the compilation.

e In Version 3.8, a module cannot export a predicate symbol that is directly
imported from another module, since this would require that symbol to be in
two modules. But one can import symbol; from a module as symbol; and then
export symboly. (And symbol; and symbol, are allowed to be the same symbol.)

e [f a module m1 imports a predicate p/n from a module m2, but m2 does not
export p/n, nothing is detected at the time of compilation. If p/n is defined in
m2, a runtime warning about an environment conflict will be issued. However,

if p/n is not defined in m2, a runtime existence error will be thrown °.

3.4.2 Atoms and 0-Ary Structure Symbols

XSB uses different internal representations for atoms and for 0-ary structure sym-
bols. Atoms cannot have definitions associated with them (i.e., cannot be predicates)

°The hiding is only partial, since other code can use functor/3 or univ/2 to look inside such
terms. Also the very low-level builtin term_new_mod/3 can be used to explicitly coerce a term into
an arbitrary module.

6This behavior can be altered through the Prolog flag unknown.

CHAPTER 3. SYSTEM DESCRIPTION 30

and are not associated with modules. But 0-ary predicates can and are. The system
automatically coerces atoms to O-ary structure symbols and vice versa as necessary.
But when coercing an atom to a 0-ary structure symbol, it always associates the
generated structure symbol with usermod. This can sometimes lead to unexpected
results. As long as the programmer explicitly exports and imports atoms (or 0-ary
predicate symbols), all works as expected. But passing an atom as an argument, and
then calling it will always call it in usermod.

3.4.3 Dynamic Loading and How XSB Finds Code Files

When export and import directives are used, XSB dynamically (compiles if necessary
and) loads the code on demand. When an imported predicate is called, if the code of
the module has not been loaded into memory, the system finds the code file, compiles
it if necessary, and loads the .xwam file into memory. Then it invokes the imported
predicate. See Section 3.6 for the details of how the system finds and processes the
appropriate XSB source files.

3.4.4 Consulting a Module

Normally all access to predicates defined in a module is by means of import dec-
larations. However, to debug a module it is often convenient just to consult it at
the top-level and then call the exported predicates with test parameters, which is
how non-modules are handled. However, note that the predicate to be called after a
module is loaded is in that loaded module, and not in usermod. To allow the pro-
grammer to call a predicate exported from the consulted module without having to
explicitly provide the module name, when a module is consulted, all exported predi-
cates are also defined in usermod with their same definitions. (In effect, for exported
p/2, XSB implements : - import p/2 from module as p/2. in usermod to provide
direct access to p/2’s code in module from the p/2 predicate in usermod.)

It is bad form to use this property and consult a module in an executing program
to get access to its exported predicates through usermod. One should always explicitly
import the predicates one wants to use and let the dynamic loader automatically load
the module code on demand.

CHAPTER 3. SYSTEM DESCRIPTION 31

3.4.5 Usage Inference and the Module System

The import and export statements of a module M are used by the compiler for infer-
ring usage of predicates. At compilation time, if a predicate P/N occurs as callable
in the body of a clause defined in M, but P is neither defined in M nor imported into
M from some other module, a warning is issued that P/N is undefined. Here “occurs
as callable” means that P/N is found as a literal in the body of a clause, or within
a system meta-predicate, such as assert/1, findall/3, etc. Currently, occurrences
of a term inside user-defined meta-predicates are not considered as callable by XSB’s
usage inference algorithm. Alternatively, if P/N is defined in M, it is used if P/N is
exported by M, or if P/N occurs as callable in a clause for a predicate that is used
in M. The compiler issues warnings about all unused predicates in a module. On the
other hand, since all modules are compiled separately, the usage inference algorithm
has no way of checking whether a predicate imported from a given module is actually
exported by that module.

Usage inference can be highly useful during code development for ensuring that all
predicates are defined within a set of files, for eliminating dead code, etc. In addition,
import and export declarations are used by the xsbdoc documentation system to
generate manuals for code.” For these reasons, it is sometimes the case that usage
inference is desired even in situations where a given file is not ready to be made into a
module, or it is not appropriate for the file to be a module for some other reason. In
such a case the directives document_export/1 and document_import/1 can be used,
and have the same syntax as export/1 and import/1, respectively. These directives
affect only usage inference and xsbdoc. A file is treated as a module if and only
if it includes an export/1 statement, and only import/1 statements affect dynamic
loading and name resolution for predicates.

3.4.6 Using Import to Load Usermod Source Files

When the module system is used to import predicates, code files for modules are
automatically found and dynamically (compiled and) loaded on first access. But
normally non-module source files must be explicitly consulted or ensure load-ed by
some executing program. To provide the convenience (and declarativity) of dynamic
loading to usermod source files, XSB supports a directive of the form:

:= import Pred/Arity from usermod(File) .

Here File must be the name of a file that contains XSB source code and is not

"Further information on xsbdoc can be found in $XSB_DIR/packages/xsbdoc.

CHAPTER 3. SYSTEM DESCRIPTION 32

a module, i.e., it defines its predicates in usermod. It must define the predicate
Pred/Arity. In this case, when a goal to Pred/Arity is called and does not yet have
a definition, the file File is (compiled and) loaded, and the goal is called. If Flile is
a base filename (without a slash), then the library_directory/1 paths are used to
find the correct file (as for normal modules.) If the predicate already has a definition,
that one is used.®

So this facility allows code in non-module files to be treated somewhat like module
files. But, as usual, it is the user’s responsibility to ensure that different imported
non-module files do not define the same predicate. This facility, when carefully used,
can eliminate the need for runtime consult/1 and ensure_loaded/1 commands. The
form usermod (F'ile) is called a pseudo-module reference, and can be used in place of
module references in import statements.

Note that:
:= document_import Pred/Arity from File.
can be replaced with
:= import Pred/Arity from usermod(File) .

XSB does not automatically treat the former as the latter, for backwards compat-
ibility. They can have differing effects if the given file does not define the given
predicate.

XSB also supports a similar import directive form, exemplified by the following:
:= import Pred/Arity from usermod(load_dyn(File)) .

This will cause the file File to be loaded dynamically on first use. It must, of course,
define Pred/Arity. The load_dyn in this example may be replaced by any file-loading
predicate whose first argument is the name of the file to load. For example, one might
also use:

:= import Pred/Arity from usermod(consult:load_dync(File,0)) .

to dynamically load a file whose contents are canonical terms to be asserted in reverse
order. In fact, one may use:

:= import Pred/Arity from usermod(proc_files:load_dsv(F'ile, Pred/Arity,[1)).

to load a comma-separated file with each line containing two fields to define the
predicate Pred/Arity. (See 15.12 for details.)

8If the existing definition can be determined to have come from a different file, a warning is
generated.

CHAPTER 3. SYSTEM DESCRIPTION 33

3.4.7 Parameterized Modules in XSB

The XSB module system now supports parameterized modules: A module can be
parameterized by other modules. A parameterized module is declared by including a
directive of the form:

:— module_parameters(atomy, ..., atom,).

in the module code file. The atoms, atomy, ..., atom,,, are formal module parameters;
when the module is loaded, those module names will be replaced by actual module
names passed to the load operation. Therefore, module names are now specified by
ground terms: the main structure symbol specifies the base name of the file containing
the module code (as before); the (optional) arguments of the module term indicate the
names of (the other modules that are) the actual parameters to the (parameterized)
module defined in this file. Note that the parameters to modules must be other
modules, and cannot be constants or any XSB term. Parameterized modules are a
conservative extension of the former unparameterized module system.

Parameterized modules support a form of higher-order programming which makes
it possible to program some tasks more declaratively. As a simple example, consider
a module that takes a graph, an initial node in the graph, and a set of final nodes
in the graph, and returns all final nodes reachable through the graph from the initial
node. A parameterized module for this task, named search, is:

%% file: search.P

:— module_parameters(example _mod) .
:— export reachable_final/1.
:— import initial/1, move/2, final/1 from example mod.

reachable final(F) :- reachable(F), final(F).

:— table reachable/1.
reachable(N) :- initial(N).
reachable(N) :- reachable(P), move(P,N).

This module, search, is parameterized by another module that defines and exports
(at least) 3 predicates: initial/1, move/2, and final/1. When this module is
loaded, a particular such module, exporting those predicates, must be provided to
the loader, and the formal parameter example mod will be replaced by that module
and the predicates imported from that module will be used here in the definitions of
reachable_final/1 and reachable/1. So assuming a (non-parameterized) module

CHAPTER 3. SYSTEM DESCRIPTION 34

named simple_ex exports those 3 predicates, both:

| ?- import reachable_final/1 from search(simple_ex) .
| ?- reachable final(ReachableFinalState).

and:
| ?- search(simple_ex) :reachable_final (ReachableFinalState).

will return the reachable final states for the problem defined by simple_ex.

This is second-order in the sense that a module parameter represents a set of
predicates. Note that this example is (in some sense) fully declarative, in that there
is no explicit procedural code necessary to load the code for a particular example. All
loading is handled by XSB’s existing dynamic loader. And this same search module
can be run with many different examples.

Parameterized modules are implemented in XSB as follows. When a parameterized
module is to be loaded into memory, the formal parameters are replaced by the actual
parameters and that code is loaded. (This is actually done by renaming symbols as
they are loaded, so there is minimal effect on loading time.) This implementation has
two consequences: 1) the performance of code in parameterized modules is ezactly
the same as if the user had explicitly written the module with the actual parameter
modules; and 2) every instance of a parameterized module has its own version of the
module code. So loading a thousand different instances of a parameterized module
will take a thousand times the space of a single instance. In most uses this is not a
significant problem, but it should be kept in mind.

One could load another instance of the above module to test the search algorithm
with a different example by:

| ?- search(hard_ex):reachable final(ReachableFinalState).

This would load another, different, instance of the search module, named search (hard_ex).
Both would be in memory and usable by the user and by other programs and modules.

So modules in XSB’s runtime system can now identified by module names that
are terms, not simply constants. Accordingly, anywhere a module name is required,
a parameterized module name, i.e., a module term, can be used. The module name
must be ground at the time it is required for use in order to load specific code; and all
structure symbols and atoms in the structured module identifier must identify actual
files that contain the appropriate module’s code; and finally those files must be able
to be found by the XSB loader.

CHAPTER 3. SYSTEM DESCRIPTION 35

To write well-structured and maintainable code, it is strongly recommended that
all uses of parameterized modules be done through use_module/2 or import directives
explicitly appearing in XSB code. The explicit form of using the " operator to
give a module name at runtime should be avoided. (The sole exception is when
the user types in such a goal on the top-level command line.) Using only explicit
import directives allows compile-time analysis of module dependencies which can be
critical in maintaining large XSB code bases. This also requires that the extension
of the 1ibrary_directory/1 predicate can be known at compile time, which implies
programmer discipline in changing that predicate as well.”.

While parameterized modules can be used in many ways, one of the most impor-
tant is in the construction of so-called “view systems.” A view (in the traditional
relational database sense) is a relational operator that takes a set of input relations
and views, and produces an output relation. By composing views one can build large
and complex systems of data transformations in a completely declarative way. With
such systems, one often receives base (i.e., input) data from a source, and then wants
to apply a view system to that data, generating the derived views for use in other
applications. One can do this declaratively by using parameterized modules. Each
module is a view definition, exporting the view it defines, and importing the base
and view relations it depends on. These input relations can be defined in base mod-
ules, and a view module is parameterized by the base modules it depends on. Then
the same view module can be applied to the particular input tables obtained from a
particular source.

3.5 Standard Predicates in XSB

Whenever XSB is invoked, a large set of standard predicates are defined and can be
called from the interpreter or other interface '°. These predicates include the various
ISO predicates [37], along with predicates for tabling, I/O, for interaction with the
operating system, for Hilog, and for much other functionality. Standard predicates
are listed in this manual under the index heading Standard predicates and at an
implementation level are declared in the file $XSB_DIR/syslib/std_xsb.P. If a user
wishes to redefine a standard predicate, she has several choices. First, the appropriate
fact in $XSB_DIR/syslib/std_xsb.P should be commented out. Once this is done, a
user may define the predicate as any other user predicate. Alternately, the compiler
option allow_redefinition can be used to allow the compiler to redefine a standard
predicate (Section 3.10.2). If a user wants to make a new definition or new predicate

9As may be obvious, this has been learned through much painful experience. -dsw
10Such predicates are sometimes called “built-ins” in other Prologs.

CHAPTER 3. SYSTEM DESCRIPTION 36

standard, the safest course is to put the predicate into a module in the 1ib directory,
and add or modify an associated fact in $XSB_DIR/syslib/std_xsb.P.

3.6 The Dynamic Loader and its Search Path

XSB differs from some other Prolog systems in its ability to dynamically load modules.
In XSB, the loading of user modules and Prolog libraries (such as the XSB compiler)
is delayed until predicates in them are actually needed, saving program space for large
Prolog applications. Dynamic loading is done by default, unlike other systems where
it is not the default for non-system libraries.

When a predicate imported from another module (see Section 3.4.7) is called
during execution, the dynamic loader is invoked automatically if the module is not
yet loaded into the system, The default action of the dynamic loader is to search for
the byte code file of the module first in the system library directories (in the order
lib, syslib, and then cmplib), and finally in the current working directory. If the
module is found in one of these directories, then it will be loaded (on a first-found
basis). Otherwise, an error message will be displayed on the current error stream
reporting that the module was not found. Because system modules are dynamically
loaded, the time it takes to compile a file is slightly longer the first time the compiler
is invoked in a session than for subsequent compilations.

3.6.1 Changing the Default Search Path and the Packaging
System

The default search path of the dynamic loader is based on the dynamic predicate
library_directory/1 so it can easily be changed. For instance, to make sure a
user’s home directory is loaded, the goal add_1ib_dir((’~/’)) needs to be executed
from the command line or from within a program (assuming this is not the current
working directory). If you always want XSB to search particular directories, the
easiest way is to have a file named .xsb/xsbrc.P in your home directory. User-
supplied library directories are searched by the dynamic loader before searching the
default library directories. The .xsb/xsbrc.P file, which is automatically consulted
by the XSB interpreter, might look like the following:

:— add_1lib_dir((C’~/?)).
:= add_lib_dir((’/usr/1lib/xsbprolog’)) .

add _1ib dir(+Directories)

CHAPTER 3. SYSTEM DESCRIPTION 37

add 1ib_dir (+Root,+Directories)
The standard predicate add_1ib_dir(Directories) adds the directories of
Directories to the system predicate library_directory/1. Directories
is either a single directory name or a comma-list of directory names. A direc-
tory name may be an atom or a simple structure of the form a(DirName) which
indicates that the directory DirName should be added as the first directory in
the library_directory/1 facts; otherwise it will be added as the last directory.

In the example above add_1ib_dir((’~/’)), note that the “extra parentheses”
are needed since add_1lib_dir/1 takes a single argument, here a comma-pair.
Also the trailing slash in a directory name is optional.

The standard predicate add_1ib_dir (+Root,+RelativeDirectories) concate-
nates the directory indicated by Root to each of the relative directory names in
(the comma-list) RelativeDirectories and adds them all to library_directory/1.

For example, to add two XSB library directories from a set of libraries stored
under a particular directory containing all XSB libraries, one might do:

:— add_lib_dir(’/usr/lib/xsb_libs’, (string_ lib,table_lib)).

(Note that the necessary slash-separators are automatically added if necessary.)

If Root is a term of the form ancestordir(DirFileName) where DirFileName
is an atom, the system will search up from the current directory to find a con-
taining directory named DirFileName, and the full pathname of that directory
will be considered as the Root directory. This can be used to help in making
XSB code less dependent at compile-time on the exact full filename of XSB
code files, and allowing directories of libraries to be moved.

A user’s configuration file: xsbrc.P

Returning to the previous example, executing the two directives causes the user’s
home directory to be searched first, then "/usr/1ib/xsbprolog/", and finally XSB’s
system library directories (1ib, syslib, cmplib), and finally the current working
directory. The directives themselves can be executed by expicitly loading an XSB file,
by executing the directives at the command line, or automatically using an xsbrc.P
file.

This file works as follows. Before the user’s .xsb/xsbrc.P is consulted, XSB
puts both the packages directory and the directory .xsb/config/$CONFIGURATION
on the library search path. The directory .xsb/config/$CONFIGURATION is used
to store user libraries that are machine or OS dependent. ($CONFIGURATION for a

CHAPTER 3. SYSTEM DESCRIPTION 38

machine is something that looks like sparc-sun-solaris2.6 or pc-linux-gnu, and
is selected by XSB automatically at run time). If a user wished, say, to search the
current working directory before her home directory, she could simply add

:— asserta(library_directory(’./’)).
or better
:- add_1lib dir(a(’./?)).

to her .xsb/xsbrc.P file (or anywhere else). The file .xsb/xsbrc.P is not limited to
setting the library search path. In fact, arbitrary Prolog code can go there so that
XSB can be initialized in any manner desired.

We emphasize that in the presence of a .xsb/xsbrc.P file it is the user’s responsi-
bility to avoid module name clashes with modules in XSB’s system library directories.
Such name clashes can cause unexpected behavior as system code may try to load a
user’s predicates. The list of module names in XSB’s system library directories can
be found by looking through the directories $XSB_DIR/{syslib,cmplib,lib}.

Packages Apart from the user libraries, XSB now has a simple packaging system.
A package is an application consisting of one or more files that are organized in
a subdirectory of one of the XSB system or user libraries. The system directory
$XSB_DIR/packages has a number examples of such packages, many of which are
documented in Volume 2 of this manual, or contain their own manuals. Packages are
convenient as a means of organizing large XSB applications, and for simplifying user
interaction with such applications. User-level packaging is implemented through the
predicate

bootstrap_userpackage(+LibraryDir, +PackageDir, +PackageName) .

which must be imported from the packaging module.

To illustrate, suppose you wanted to create a package, foobar, inside your own
library, my_1ib. Here is a sequence of steps you can follow:

1. Make sure that my_1ib is on the library search path by putting an appropriate
assert statement in your xsbrc.P.

2. Make a subdirectory ~/my_lib/foobar and organize all the package files there.
Designate one file, say, foo.P, as the entry point, i.e., the application file that
must be loaded first.

CHAPTER 3. SYSTEM DESCRIPTION 39

3. Create the interface program ~/my_lib/foobar.P with the following content:

:— bootstrap_userpackage(’~/my_lib’, ’foobar’, foobar), [foo].

The interface program and the package directory do not need to have the same
name, but it is convenient to follow the above naming schema.

4. Now, if you need to invoke the foobar application, you can simply type [foobar] .
at the XSB prompt. This is because both and ~/my_lib/foobar have already
been automatically added to the library search path.

5. If your application files export many predicates, you can simplify the use of your
package by having ~/my_lib/foobar.P import all these predicates, renaming
them, and then exporting them. This provides a uniform interface to the foobar
module, since all the package predicates are can now be imported from just one
module, foobar.

In addition to adding the appropriate directory to the library search path, the predi-
cate bootstrap_userpackage/3 also adds information to the predicate package configuration/3,
so that other applications could query the information about loaded packages.

Packages can also be unloaded using the predicate unload_package/1. For in-
stance,

:— unload_package (foobar) .

removes the directory ~/my_lib/foobar from the library search path and deletes the
associated information from package_configuration/3.

Finally, if you have developed and tested a package that you think is generally use-
ful and you would like to distribute it with XSB, please contact xsb-development@sourceforge.net.

3.6.2 Dynamically loading predicates in the interpreter

Modules are usually loaded into an environment when they are consulted (see Sec-
tion 3.9). Specific predicates from a module can also be imported into the run-time
environment through the standard predicate import PredList from Module. Here,
PredList can either be a Prolog list or a comma list. (The import/1 can also be
used as a directive in a source module (see Section 3.4.7).

CHAPTER 3. SYSTEM DESCRIPTION 40

We provide a sample session for compiling, dynamically loading, and query-
ing a user-defined module named quick_sort. For this example we assume that
quick_sort.P is a file in the current working directory, and contains the definitions
of the predicates concat/3 and gsort/2, both of which are exported.

| ?7- compile(quick_sort).
[Compiling ./quick_sort]
[quick_sort compiled, cpu time used: 1.439 seconds]

yes
| ?- import concat/3, gsort/2 from quick_sort.

yes
| ?- concat([1,3], [2], L), gsort(L, S).

L = [1,3,2]
S = [1,2,3]
yes.

The standard predicate import/1 does not load the module containing the im-
ported predicates, but simply informs the system where it can find the definition of
the predicate when (and if) the predicate is called.

3.7 Command Line Arguments

There are several command line options for the emulator. The general synopsis ob-
tained by the command $XSB_DIR/bin/xsb -help is:

xsb [flags] [-1]

xsb [flags] module

xsb [flags] -B boot_module [-D cmd_loop_driver] [-t]
xsb [flags] -B module.suffix -d

xsb [-h | -v | --help | --version]

module:
Module to execute after XSB starts up.
Module should have no suffixes, and either be an absolute pathname
the file module.xwam must be on the library search path.
boot_module:
This is a developer’s option.

CHAPTER 3. SYSTEM DESCRIPTION 41

The -B flags tells XSB which bootstrapping module to use instead
of the standard loader. The loader must be specified using its

full pathname, and boot_module.xwam must exist.
module_to_disassemble:

This is a developer’s option.

The -d flag tells XSB to act as a disassembler.

The -B flag specifies the module to disassemble.
cmd_loop_driver:

The top-level command loop driver to be used instead of the

standard one. Usually needed when XSB is run as a server.

-B : specify the boot module to use in lieu of the standard loader
-D : Sets top-level command loop driver to replace the default
-t : trace execution at the SLG-WAM instruction level
(for this to work, build XSB with the --debug option)
-d : disassemble the loader and exit

-v, —-version : print the version and configuration information about XSB
-h, --help : print this help message
Flags:
-e goal : evaluate goal when XSB starts up

-p : enable Prolog profiling through use of profile_call/1
-1 : the interpreter prints unbound variables using letters

--nobanner : don’t show the XSB banner on startup

--quietload : don’t show the ‘module loaded’ messages

—-noprompt : don’t show prompt (for non-interactive use)
-5 : set default tabling method to call-subsumption

--max_subgoal_size N :
--max_subgoal_action A :
--max_tries N :

--max_threads N

--max_mqueues N :
: make predicates thread-shared by default

--shared_predicates

set maximum tabled subgoal size to N (default is maximum integer)
set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)
allow up to N tries for interning terms

: maintain information for up to N threads (MT engine only)

allow up to N message queues (MT engine only)

-g gc_type : choose heap garbage collection ("indirection","none" or "copying")
-c¢ N [unit] initially allocate N units (default KB) for the trail/choice-point st:
-m N [unit] : initially allocate N units (default KB) for the local/global stack
-0 N [unit] initially allocate N units (default KB) for the SLG completion stack
-r : turn off automatic stack expansion
-T : print a trace of each called predicate

unit: k/K memory in kilobytes; m/M in megabytes; g/G in gigabytes

CHAPTER 3. SYSTEM DESCRIPTION 42

3.7.1 Command-line Options

These options tend to be most useful for developers.

-t Traces through code at SLG-WAM instruction level. This option is intended for
developers and is not fully supported. It is also not available when the system
is being used at the non-debug mode (see Section 10).

-D Tells XSB to use a top-level command loop driver specified here instead of the
standard XSB interpreter. This is most useful when XSB is used as a server.

-d Produces a disassembled dump of byte_code_file to stdout and exits.

3.7.2 General Flags

The order in which flags appear makes no difference.

-e goal Pass goal to XSB at startup. This goal is evaluated right before the first
prompt is issued. For instance, xsb -e "write(Hello!’), nl."” will print a heart-
warming message when XSB starts up.

-p Enables the engine to collect information that can be used for profiling. See
Volume 2 of this manual for details.

-1 Forces the interpreter to print unbound variables as letters, as opposed to the
default setting which prints variables as memory locations prefixed with an
underscore. For example, starting XSB’s interpreter with this option will print
the following:

| - Y =X, Z=3, W= —foo(X,2).

Y = A
X = A
Z =3
W = foo(A,3)

as opposed to something like the following:

| 7- Y =X, Z=3, W= foo(X,2).

CHAPTER 3. SYSTEM DESCRIPTION 43

Y = hi18

X = h118

Z =3

W = foo(_h118,3);

-nobanner Start XSB without showing the startup banner. Useful in batch scripts
and for interprocess communication (when XSB is launched as a subprocess).
For instance,

xsb -e "writeln(’hello world’) ,halt."
[xsb_configuration loaded]
[sysinitrc loaded]

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word si
Evaluating command line goal:

| ?- writeln(’hello world’) ,halt.

| ?- hello world

End XSB (cputime 0.02 secs, elapsetime 0.02 secs)

Prints out quite a bit of verbiage. Using the -nobanner option reduces this
verbiage somewhat.

xsb --nobanner -e "writeln(’hello world’) ,halt."
[xsb_configuration loaded]
[sysinitrc loaded]

Evaluating command line goal:
| ?- writeln(’hello world’) ,halt.

| ?- hello world
—-quietload Do not tell when a new module gets loaded. Again, is quseful in non-

interactive activities and for interprocess communication. Continuing our ex-
ample:

CHAPTER 3. SYSTEM DESCRIPTION 44

xsb --quietload --nobanner -e "writeln(’hello world’),halt."
| 7-

| ?- hello world

-noprompt Do not show the XSB prompt.

-nofeedback Do not print the feedback messages such as “yes” and “no” after queries.
This and the -noprompt options are useful only in batch mode and in interpro-
cess communication when you do not want the prompt to clutter the picture.
Putting all this together, we finally get:

xsb --noprompt --quietload --nobanner --nofeedback -e "writeln(hello),halt."

hello world

So that XSB can be used to write reasonable scripts.

-max_threads N Allows XSB to maintain information for up to N threads. This
means that XSB can currently run N threads that are active, or that are inactive,
non-detached, and not yet joined. Has no effect if the engine has been configured
without multi-threading.

-S Indicates that tabled predicates are to be evaluated using subsumption-based
tabling as a default for tabled predicates whose tabling method is not specified
by using table Predspec as subsumptive or table Predspec as variant(see
Section 6.15.1). If this option is not specified, variant-based tabling will be used
as the default tabling method by XSB.

-shared_predicates In the multi-threaded engine, makes all predicates thread-
shared by default; has no effect in the single-threaded engine.

-T Generates a trace at entry to each called predicate (both system and user-defined).
This option is available mainly for people who want to modify and/or extend
XSB, and it is not the normal way to trace XSB programs. For the latter, the
standard predicates trace/0 or debug/0 should be used (see Chapter 10). Note:
This option is not available when the system is being used at the non-tracing
mode (see Section 10).

-max_subgoal_size N : set maximum tabled subgoal size to N (default is maximum
integer). This flag sets the size of a tabled subgoal upon which an action may
be taken (such as throwing an error, abstracting, or issuing a warning.

-max_subgoal_action A : set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)

CHAPTER 3. SYSTEM DESCRIPTION 45

3.7.3 Memory Management Flags

-g gc_type Chooses the heap garbage collection strategy that is employed; choice
of the strategy is between the default indirection or none. See [l1] for a
description of the indirection garbage collector.

-c size [units] Allocates initial size units of space to the trail/choice-point stack
area. The trail stack grows upward from the bottom of the region, and the
choice point stack grows downward from the top of the region. If units is not
provided or is k or K, the size is allocated in kilobytes; if m or M in megabytes;
and if g or G in gigabytes. Because this region is expanded automatically, this
option is rarely needed. If this option is not specified a default initial size is
used; this size may differ for the single-threaded and multi-threaded engine.

-m size [units] Allocates initial size units of space to the local/global stack area.
The global stack grows upward from the bottom of the region, and the local
stack grows downward from the top of the region. If units is not provided or is
k or K, the size is allocated in kilobytes; if m or M in megabytes; and if g or G in
gigabytes. Because this region is expanded automatically, this option is rarely
needed. If this option is not specified a default initial size is used; this size may
differ for the single-threaded and multi-threaded engine.

-o size [units] Allocates initial size units of space to the completion stack area.
If units is not provided or is k or K, the size is allocated in kilobytes; if m or
M in megabytes; and if g or G in gigabytes. Because this region is expanded
automatically, this option is rarely needed. If this option is not specified a
default initial size is used; this size may differ for the single-threaded and multi-
threaded engine.

-r Turns off automatic stack expansion. This can occasionally be useful for isolating
memory management problems. (Usually when working with XSB developers.)

3.8 Memory Management

All execution stacks are automatically expanded in Version 3.8, including the local
stack /heap region, the trail/choice point region, and the completion stack region.
Execution stacks increase their size (usually by doubling) until it is not possible to
do so with available system memory. At that point XSB tries to find the maximal
amount of space that will still fit in system memory. For the main thread, each of
these regions begin with an initial value set by the user at the command-line or with

CHAPTER 3. SYSTEM DESCRIPTION 46

a default value (see Section 3.7). When a thread is created within an XSB process,
the size of the thread’s execution stacks may be set by thread create/3, otherwise
the default values indicated in Section 3.7 are used. Once XSB is running, these
default values may be modified using the appropriate Prolog flags (see Section 6.12).
In addition, whenever a thread exits, memory specific to that thread is reclaimed.

Heap garbage collection is automatically included in XSB [11, 25]. (To change the
algorithm used for heap garbage collection or to turn it off altogether, see the predicate
garbage collection/1 or Section 3.7 for command-line options). In Version 3.8
the default behavior is indirect garbage collection. Starting with Version 3.0, heap
garbage collection may automatically invokes garbage collection of XSB’s “string”
table, which stores Prolog’s atomic constants. Expansion and garbage collection of
execution stacks can occur when multiple threads are active; however atom garbage
collection will not be invoked if there is more than one active XSB thread.

The program area (the area into which XSB byte-code is loaded) is also dynam-
ically expanded as needed. For dynamic code (created using assert/1, or standard
predicates such as load_dyn/1 and load_dync/1) index size is also automatically
reconfigured. Space reclaimed for dynamic code depends on several factors. If there
is only one active thread, space is reclaimed for retracted clauses and abolished pred-
icates as long as (1) there are no choice points that may backtrack into the retracted
or abolished code, and (2) if the dynamic predicate is tabled, all of its tables are
completed. Otherwise, the code is marked for later garbage collection. If more than
one thread is active, private predicates behave as just described, however space recla-
mation for shared predicates will be delayed until there is a single active thread. See
Section 6.14 for details.

Space for tables is dynamically allocated as needed and reclaimed through use of
abolish_all tables/0, abolish table_pred/1, abolish_table_call/1 and other
predicates. As with dynamic code, space for tables may be reclaimed immediately or
marked for later garbage collection depending on whether choice points may back-
track into the abolished tables, on the number of active threads, etc. Tabling also
includes various stacks used to copy information into or out of tables, most of which
are dynamically allocated and expanded. These stacks may be thread-private or
shared among threads: space for thread-private stacks is reclaimed when a thread
exits. See Section 6.15.4 for details.

Perhaps more than a standard Prolog system, XSB is used to evaluate queries
in knowledge representation languages that have a higher level of declarativity than
Prolog and as a result may consume a great deal of space. If XSB needs memory
that is unobtainable from the operating sytsem, it will usually abort with a resource
error, and become ready for a new query from its command line or API. In such

CHAPTER 3. SYSTEM DESCRIPTION 47

a case, a user or program can use statistics/[0,1,2] to investigate whether and
how XSB is consuming memory. Other options to bounding memory include the
use of bounded_call/4 or the use of the max_memory flag. Use of the max_memory
flag is recommended in cases where XSB is embedded in a C program through the
C/XSB interface, or is embedded in or communicating with a java program through
InterProlog. In such a case, XSB will abort with a resource error whenever a memory
allocation would exceed the user-defined threshold .

3.9 Compiling, Consulting, and Loading

Like other Prologs, XSB provides for both statically compiled code and dynamically
asserted code. Static compiled code may be more optimized than asserted code, par-
ticularly for clauses that have large bodies, but certain types of indexing, such as trie
and star indexing are (currently) available only for dynamically asserted predicates
(see index/2).

3.9.1 Static Code

In XSB, there is no difference between compiled and consulted static code: “compil-
ing” in XSB means creation of a file containing SLG-WAM byte-code; “consulting”
means loading such a byte-code file, after compiling it (if the source file was altered
later than the object file).

consult (+Files,+0OptionList)
consult (+Files)

[+Files]
The standard predicate consult/[1,2] is the most convenient method for en-
tering static source code rules into XSB’s database 2. Files is either s source file
designator (see Section 3.3) or a list of source file designators, and Options is
a list of options to be passed to XSB’s compiler if the file needs to be compiled
(see Section 3.10). consult(Files) is defined as consult(Files, []), as is
[Files].

Consulting a file File (module) conceptually consists of the following five steps
which are described in detail in the following paragraphs.

1Tn rare cases, XSB will exit if the inability to allocate more memory will leave it in an inconsistent
state (e.g. if XSB cannot allocate needed memory during heap garbage collection).
12In XSB, reconsult/[1,2] is defined to have the same actions as consult/[1,2].

CHAPTER 3. SYSTEM DESCRIPTION 48

Name Resolution: determine the file that File designates, including direc-
tory and drive location and extension, as discussed in Section 3.3.

Compilation: if the source file or header has changed later than the object file
(or if there is no byte-code file) compile the file using compile/2 with the
options specified, creating a byte-code file. This strategy is used whether
the source file is Prolog, C, or C++.

Loading: load the byte-code file into memory.

Importing: if the file is a module, import any exported predicates of that
module to usermod.

Query Execution: execute any queries that the file may contain, i.e. any
terms with principal functor >?-’/1, or with the principal functor ’:-’/1
and that are not directives like the ones described in Section 3.10. The
queries are executed in the order in which they appear in the source file.

Error conditions for consult (+File,+0Options) are as follows:

e File is not instantiated
— instantiation error

File is not an atom

— type_error(atom,File)

File does not exist in the current set of library directories

— existence_error(file,File)

File has an object code extension (e.g. .xwam)

— permission_error(compile,file,File)

File has been loaded previously in the session and there is more than one
active thread.

— misc_error

Error conditions of compiler options are determined by compile/2 which consult/[1,2]
calls.

In addition, ensure_loaded/[1,2] acts much like consult/[1,2]

ensure_loaded(+FileName) ISO
This predicate checks to see whether the object file for FileName is newer than
the source code and header files for FileName, and compiles FileName if not. If

CHAPTER 3. SYSTEM DESCRIPTION 49

FileName is loaded into memory, ensure_loaded/1 does not reload it, unlike
consult/1 which will always reload. In addition, ensure_loaded/2 can be
used to load a file with dynamic code. It is fully documented in Section 6.14.1.

3.9.2 Dynamic Code

In XSB, most source code file can also be “consulted” dynamically via the predicates
load_dyn/[1,2], load_dync/[1,2] and ensure_loaded/2. These predicates act
as consult/2 in that if a given file File has already been dynamically loaded, old
versions of predicates defined in File will be retracted and their new definitions
made to correspond to those in File (except for predicates in which a multifile/1
declaration is present in File). Dynamic loading can be performed using XSB’s
reader of canonical terms (which does not include operators, but does allow list and
comma-list notation) via load_dync/2; dynamic loading using XSB’s general reader
for Hilog terms is performed via load_dyn/2.

The predicates mentioned above are described more fully in Chapter 6. Here, we
simply compare the tradeoffs of static and dynamic loading.

e Advantages for Dynamic Loading

— For large files, containing 10* — 107 clauses, dynamic loading is much faster
than XSB’s compiler, especially when the canonical reader is used.

— Dynamically loaded files have advantages of dynamic code including star-
, trie, compound, and alternate indexes, as well as being modifiable via
assert and retract.

e Advantages for Static Compilation

— Although dynamically loaded predicates are compiled into SLG-WAM code,
compiled static clauses are more optimized than dynamically predicates,
particularly when the clauses have large bodies or when arithmetic is used.
For facts and pure binary predicates (those containing a single literal in
their body) however, static and dynamic byte code is essentially the same.

— Dynamic loading does not allow module/export declarations, mode decla-
rations, or unification factoring. It does however, allow files to import pred-
icates, allows tabling and dynamic declarations (except for auto_table
and suppl_table, and operator declarations (when a canonical read is
not used).

CHAPTER 3. SYSTEM DESCRIPTION 50

3.9.3 The multifile directive

The default action upon loading a file or module is to delete all previous byte-code
for predicates defined in the file. If this is not the desired behavior, the user may add
to the file a declaration

:— multifile Predicate List .

where Predicate_List is a list of predicates in functor/arity form. The effect of
this declaration is to delete only those clauses of predicate/arity that were de-
fined in the file itself. If a predicate P is to be treated as multifile, the multifile/1
directive for P must appear in all files that contain clause definitions for P. If P is dy-
namic, this means that the multifile declaration for P must appear in files defining P
whether they are compiled and consulted, or dynamically loaded via load_dyn/[1,2]
or load_dync/[1,2].

3.10 The Compiler

The XSB compiler translates XSB source files into byte-code object files. It is
written entirely in Prolog. Both the sources and the byte code for the compiler
can be found in the XSB system directory cmplib. Prior to compiling, XSB
filters the programs through GPP, a preprocessor written by Denis Auroux (au-
roux@math.polytechnique.fr). This preprocessor maintains high degree of compat-
ibility with the C preprocessor, but is more suitable for processing Prolog programs.
The preprocessor is invoked with the compiler option xpp_on as described below. The
various features of GPP are described in Appendix A.

XSB also allows the programmer to use preprocessors other than GPP. However,
the modules that come with XSB distribution require GPP. This is explained below
(see xpp_on/1 compiler option).

The following sections describe the various aspects of the compiler in more detail.

3.10.1 Invoking the Compiler

In addition to invoking the compiler through consult/[1,2], the compiler can be in-
voked directly at the interpreter level (or in a program) through the Prolog predicates
compile/[1,2].

compile(+Files,+0OptionList)

CHAPTER 3. SYSTEM DESCRIPTION 51

compile(+Files)

compile/2 compiles all files specified, using the compiler options specified in
OptionList (see Section 3.10.2 below for the precise details.) Files is either an
absolute or relative filename, or a ground list of absolute or relative file names;
and OptionList is a ground list of compiler options. Since options can be set
globally via the predicate set_global_compiler_options/1, each option in
OptionsList can optionally be prefixed by + or -, indicating that the option is
to be turned on, or off, respectively. (No prefix turns the option on.)

| 7= compile(Files).
is just a notational shorthand for the query:
| 7= compile(Files, []).

For a given, File to be compiled, the source file name corresponding to File
is obtained by concatenating a directory prefix and the extension .P, .pl,
.prolog, or other filenames as discussed in Section 3.3. The directory pre-
fix must be in the dynamic loader path (see Section 3.6). Note that these
directories are searched in a predetermined order (see Section 3.6), so if a mod-
ule with the same name appears in more than one of the directories searched,
the compiler will compile the first one it encounters. In such a case, the user
can override the search order by providing an absolute path name. If File
contains no extension, an attempt is made to compile the file File.P, File.pl,
File.prolog, or other extensions before trying compiling the file with name
File.

We recommend use of the extension .P for Prolog source file to avoid ambiguity.
Optionally, users can also provide a header file for a module (denoted by the
module name suffixed by .H). In such a case, the XSB compiler will first read the
header file (if it exists), and then the source file. Currently the compiler makes
no special treatment of header files. They are simply included in the beginning
of the corresponding source files, and code can, in principle, be placed in either.

The result of the compilation (an SLG-WAM object code file) is stored in
({filename).xwam), but compile/[1,2] does not load the object file it cre-
ates. (The standard predicate consult/[1,2] loads the object file into the
system, after recompiling the source file if needed.) The object file created is
always written into the directory where the source file resides: the user must
therefore have write permission in that directory to avoid an error.

If desired, when compiling a module (file), clauses and directives can be trans-
formed as they are read. This is indeed the case for definite clause grammar
rules (see Chapter 11), but it can also be done for clauses of any form by pro-
viding a definition for predicate term_expansion/2 (see Section 11.3).

CHAPTER 3. SYSTEM DESCRIPTION 52

Predicates compile/[1,2] can also be used to compile foreign language mod-
ules. In this case, the names of the source files should have the extension .c
and a .P file must not exist. A header file (with extension .H) must be present
for a foreign language module (see the chapter Foreign Language Interface in
Volume 2).

Error Cases In the cases below, File refers to an element of Files if Files
is a list and otherwise refers to Files itself.
e Files is a variable, or a list containing a variable element.
— instantiation_error.
e File is a neither an atom nor a list of atoms.
— type_error(atom_or_list of atoms,File)
e File does not exist in the current set of library directories
— existence_error(file,File)
e File has an object code extension (e.g. .xwam)
— permission_error(compile,file,File)

e File has been loaded previously in the session and there is more than one
active thread.

— misc_error
e OptionList is a partial list or contains an option that is a variable
— instantiation_error
e OptionList is neither a list nor a partial list
— type_error(list,OptionsList)
e OptionList contains an option, Option not described in Section 3.10.2

— domain_error(xsb_compiler_option,Option)

3.10.2 Compiler Options

Compiler options can be set in three ways: from a global list of options (set_global_compiler_options/1)
from the compilation command (compile/2 and consult/2), and from a directive in
the file to be compiled (see compiler directive compiler_options/1).

set_global_compiler_options(+OptionsList)
OptionsList is a list of compiler options (described below). Each can optionally

CHAPTER 3. SYSTEM DESCRIPTION 23

be prefixed by + or -, indicating that the option is to be turned on, or off,
respectively. (No prefix turns the option on.) This evaluable predicate sets the
global compiler options in the way indicated. These options will be used in any
subsequent compilation, unless they are reset by another call to this predicate,
overridden by options provided in the compile invocation, or overridden by
options in the file to be compiled.

The following options are currently recognized by the compiler:

singleton_warnings_off Does not print out any warnings for singleton variables
during compilation. This option can be useful for compiling XSB programs
that have been generated by some other program.

optimize When specified, the compiler tries to optimize the object code. In Version
3.8, this option optimizes predicate calls, among other features, so execution
may be considerably faster for recursive loops. However, due to the nature of
the optimizations, the user may not be able to trace all calls to predicates in
the program. As expected, the compilation phase will also be slightly longer.
For these reasons, the use of the optimize option may not be suitable for the
development phase, but is recommended once the code has been debugged.

allow_redefinition By default the compiler refuses to compile a file that contains
clauses that would redefine a standard predicate (unless the sysmod option is
in effect.) By specifying this option, the user can direct the compiler to quietly
allow redefinition of standard predicates.

xpp_on Filter the program through a preprocessor before sending it to the XSB com-
piler. By default (and for the XSB code itself), XSB uses GPP, a preprocessor
developed by Denis Auroux (auroux@math.polytechnique.fr) that has high de-
gree of compatibility with the C preprocessor, but is more suitable for Prolog
syntax. In this case, the source code can include the usual C preprocessor di-
rectives, such as #define, #ifdef, and #include. This option can be specified
both as a parameter to compile/2 and as part of the compiler options/1
directive inside the source file. See Appendix A for more details on GPP.

When an #include "file" statement is encountered, XSB directs GPP to
search for the files to include in the directories $XSB_DIR/emu and $XSB_DIR/prolog_includes.
However, additional directories can be added to this search path by assert-
ing into the predicate gpp_include_dir/1, which must be imported from

CHAPTER 3. SYSTEM DESCRIPTION 54

module parse . For example if you want additional directories to be searched,
then the following statements must be executed:

:— import gpp_include_dir/1 from parse.
:— assert(gpp_include_dir(’some-other-dir’)).

Note that when compiling XSB programs, GPP searches the current directory
and the directory of the parent file that contains the include-directive last. If
you want Gpp to search directories in a different order, gpp_options/1 can be
used (see below).

Note: if you assert something into gpp_include_dir/1 then you must also
execute retractall (gpp_include_dir(_)) later on or else subsequent Prolog
compilations might not work correctly.

XSB predefines the constant XSB_PROLOG, which can be used for conditional
compilation. For instance, you can write portable program to run under XSB
and and other prologs that support C-style preprocessing and use conditional
compilation to account for the differences:

#ifdef XSB_PROLOG

XSB-specific stuff
#else

other Prolog’s stuff
#endif

common stuff

gpp_options This dynamic predicate must be imported from module parse. If some
atom is asserted into gpp_options then this atom is assumed to be the list of
command line options to be used by the preprocessor (only the first asserted
atom is ever considered). If this predicate is empty, then the default list of
options is used (which is >~P -m -nostdinc -nocurinc’, meaning: use Prolog
mode and do not search the standard C directories and the directory of the
parent file that contains the include-instruction).

As mentioned earlier, when XSB invokes Gpp, it uses the option -nocurinc
so that Gpp will not search the directory of the parent file. If a particular
application requires that the parent file directory must be searched, then this can
be accomplished by executing assert (gpp_options(’-P -m -nostdinc’)).

13For compatibility, XSB also supports the ISO predicate include/1 which also allows extra files
to be included during compilation.

CHAPTER 3. SYSTEM DESCRIPTION 95

Note: if you assert options into gpp_options/1 then do not forget to also exe-
cute retractall(gpp_options(_)) after that or else subsequent Prolog com-
pilations might not work correctly.

xpp_dump This causes XSB to dump the output from the GPP preprocessor into a
file. If the file being compiled is named file.P then the dump file is named
file.P_gpp. Thisoption can be included in the list of options in the compiler options/1
directive, but usually it is used for debugging, as part of the compile/2 pred-
icate. If xpp_dump is specified directly in the file using compiler options/1
directive, then it should not follow the gpp_on option in the list (or else it will
be ignored).

Note: multiple occurrences of xpp_on and xpp_dump options are allowed, but
only the first one takes effect—all the rest are ignored!

xpp_on/N and xpp_dump/N
XSB also allows one to filter program files through a pipeline of external prepro-
cessors in addition to or instead of GPP. This can be specified with the N-ary
versions of xpp_on and xpp_dump:

xpp_on(specl, ... ,specN)
xpp_dump (specl, . ..,specN)
Each specl, ..., specN is a preprocessor specification of the form preprocessor_name

or preprocessor_name (options). Each preprocessor is applied in a pipeline
passing its output to the next preprocessor. The first preprocessor is applied
to the file being compiled. The preprocessor name is an atom or a function
symbol and options must be an atom. If preprocessor_name is gpp, then the
GPP preprocessor will be invoked. Note that gpp can appear anywhere in the
aforesaid sequence of specs (or not appear at all), so it is possible to preprocess
XSB files before and/or after (or instead of) GPP. Note that xpp_on(gpp) and
xpp_dump (gpp) are equivalent to the earlier O-ary compiler options xpp_on and
xpp_dump, respectively.

To use a preprocessor other than GPP two things must be done:

e A 4-ary Prolog predicate must be provided, which takes three input argu-
ments and produces in its 4th argument a syntactically correct shell (Unix
or Windows) command for invoking the preprocessor. The first preproces-
sor in the pipeline must be taking its input from a file, but the subsequent
preprocessors must expect their input from the standard input. All pre-
processors must send their results to the standard output. The arguments
to the 4-ary predicate in question are:

CHAPTER 3.

SYSTEM DESCRIPTION 26

File: this is the XSB input file to be processed. Usually this argument
is left unused (unbound), but might be useful for producing error mes-
sages or debugging.

Preprocessor name: this is the name under which the preprocessor is
registered (see below). It is the same as processor_name referred to
above. This name is up to the programmer; it is to be used to refer
to the preprocessor (it does not need to be related in any way to the
shell-command-producing predicate or to the OS’s pathname for the
preprocessor).

Options: these are the command-line options that the preprocessor
might need. If the preprocessor spec mentioned above is foo(bar)
then the preprocessor name (argument 2) would be bound to foo and
options (argument 3) to bar.

Shell command: this is the only output argument. It is supposed to
be the shell command to be used to invoke the preprocessor. The shell
command must not include the file name to be processed—that name
is added automatically as the last option to the shell command.

Special considerations for using XSB as a preprocessor. XSB can be
used as a preprocessor for XSB programs by constructing a shell com-
mand that invokes XSB. However, several conventions need to be ob-
served. First, the file to be preprocessed is automatically attached as
the last argument of the aforesaid shell command, but XSB does not
accept file names in that place as a command-line option (except with
special flags used by XSB developers only and for other purposes).
Therefore, the file name to be read and preprocessed by XSB must be
passed to XSB by some other means (e.g., using the -e "command"
option). In addition, the last command line option for that XSB-
based command must be —~ignore, which will cause XSB to ignore the
remaining options, including the aforesaid file name.

Also, if a preprocessor appears in the pipeline as the second prepro-
cessor or later (i.e., after the first argument in xpp_dump), that pre-
processor’s shell command line must expect to receive the output of
the preceding preprocessor on the standard input. Therefore, in order
to serve as the second or later preprocessor in the pipeline, XSB must
be invoked with the -e "see(userin)." option followed by a call to
the predicate that would actually do the preprocessing.

Here are a few examples. To invoke XSB as the first preprocessor in
the pipeline, one could construct the following shell command (shown

CHAPTER 3. SYSTEM DESCRIPTION 57

below as an atom of the kind that one needs to construct in the “Shell
command” argument being discussed):

>.../xsb options -e "preprocessPred(’’ MyFile’’) ,halt." --ignore’

Note that here the file to be preprocessed, MyFile, needs to be passed
to the preprocessing predicate as an argument. To use XSB as the sec-
ond and later preprocessor in the pipeline, the appropriate command
could be

>.../xsb options -e "see(userin) ,preprocessPred,halt."’

Here the file to be preprocessed will come on the standard input of
XSB. No need for the —ignore option here because no file names would
be attached at the end of this command (since the file is piped through
the standard input).
In both cases, the file passed to preprocessPred/1 or preprocessPred/0
could be processed using read/1 and write_canonical/1. The typ-
ical options that one would want to pass in both cases (to replace
options) are

--noprompt --quietload --nobanner --nofeedback

Note that other commands might need to be executed under the -e
option in order to bootstrap the preprocessor (e.g., additional XSB
files might need to be loaded).

e The preprocessor must be registered using the following query:

:— import register_xsb_preprocessor/2 from parse.
7- register_xsb_preprocessor(preproc_name,preproc_predicate(_, , ,)).

Here the argument preproc_name is the user-given name for the prepro-
cessor, while preproc_predicate is the 4-ary shell-command-producing
predicate described earlier.

The registration query must be executed before the start of the preprocess-
ing of the input XSB file. Clearly, this implies that the shell-command-
producing predicate must be in a different file than the one being prepro-
cessed.

Note: one cannot register the same preprocessor twice. The second time
the same name is used, it is ignored. However, it is possible to register
the same shell-command-producing predicate twice, if the user registers
the these shell-command-producing predicates under different preprocessor
names.

The difference between xpp_on/N and xpp_dump/N is that the latter also saves
the output of each preprocessing stage in a separate file. For instance, if

CHAPTER 3. SYSTEM DESCRIPTION o8

the XSB file to be preprocessed is abc.P and the xpp_dump/N option has the
form xpp_dump (foo,gpp,bar) then three files will be produced: abc.P_foo,
abc.P_gpp, abc.P_bar, each containing the result of the respective stage in
preprocessing.

Here is an example. Suppose that foobar.P includes the definition of the fol-
lowing predicate

make_append_cmd(_File, Name,Options,ResultingCmd) :-
fmt_write_string(ResultingCmd, ’"/bin/cat" "Ys"’, arg(Options)).

and also has the following registration query:

7- parse:register_xsb_preprocessor (appendfile,make append_cmd(_, , ,)).
Suppose that the file abc.P includes the following compiler directive:

:— compiler_options([xpp_on(appendfile(’data.P’),gpp)]l).

If the file foobar.P is loaded before compiling abc.P then the file data.P will
be first appended to abc.P and then the result will be processed by GPP. The
final result will be parsed and compiled by XSB.

Note that although the parameters _File and _Name are not used by make_append_cmd/4
in our example, when this predicate is called they will be bound to foobar.P and
appendfile, respectively, and could be used by the shell-command-producing
predicates for various purposes.

quit_on_error This causes XSB to exit if compilation of a program end with an
error. This option is useful when running XSB from a makefile, when it is nec-
essary to stop the build process after an error has been detected. For instance,
XSB uses this option during its own build process.

auto_table When specified as a compiler option, the effect is as described in Sec-
tion 3.10.5. Briefly, a static analysis is made to determine which predicates may
loop under Prolog’s SLD evaluation. These predicates are compiled as tabled
predicates, and SLG evaluation is used instead.

suppl_table The intention of this option is to direct the system to table for efficiency
rather than termination. When specified, the compiler uses tabling to ensure
that no predicate will depend on more than three tables or EDB facts (as
specified by the declaration edb of Section 3.10.5). The action of suppl_table

CHAPTER 3. SYSTEM DESCRIPTION 29

is independent of that of auto_table, in that a predicate tabled by one will not
necessarily be tabled by the other. During compilation, suppl_table occurs
after auto_table, and uses table declarations generated by it, if any.

spec_repr When specified, the compiler performs specialization of partially instan-
tiated calls by replacing their selected clauses with the representative of these
clauses, i.e. it performs folding whenever possible. In general specialization with
replacement is correct only under certain conditions. XSB’s compiler checks for
sufficient conditions that guarantee correctness, and if these conditions are not
met, specialization with replacement is not performed for the violating calls.

spec_off When specified, the compiler does not perform specialization of partially
instantiated calls.

unfold off When specified, singleton sets optimizations are not performed during
specialization. This option is necessary in Version 3.8 for the specialization of
table declarations that select only a single chain rule of the predicate.

spec_dump Generates a module.spec file, containing the result of specializing par-
tially instantiated calls to predicates defined in the module under compilation.
The result is in Prolog source code form.

ti_dump Generates a module.ti file containing the result of applying unification
factoring to predicates defined in the module under compilation. The result is
in Prolog source code form. See page 69 for more information on unification
factoring.

ti_long names Used in conjunction with ti_dump, generates names for predicates
created by unification factoring that reflect the clause head factoring done by
the transformation.

modeinfer This option is used to trigger mode analysis. For each module compiled,
the mode analyzer creates a module.D file that contains the mode information.

WARNING: Occasionally, the analysis itself may take a long time. As far as
we have seen, the analysis times are longer than the rest of the compilation
time only when the module contains recursive predicates of arity > 10. If the
analysis takes an unusually long time (say, more than 4 times as long as the
rest of the compilation) you may want to abort and restart compilation without
modeinfer.

mi_warn During mode analysis, the .D files corresponding to the imported modules
are read in. The option mi_warn is used to generate warning messages if these

CHAPTER 3. SYSTEM DESCRIPTION 60

.D files are outdated — i.e., older than the last modification time of the source
files.

mi_foreign This option is used only when mode analysis is performed on XSB system
modules. This option is needed when analyzing standard and machine in
syslib.

sysmod Mainly used by developers when compiling system modules and used for boot-
strapping. If specified, standard predicates (see /$XSB_DIR/syslib/std_xsb.P)
are automatically available for use only if they are primitive predicates (see the
file $XSB_DIR/syslib/machine.P for a current listing of primitive predicates.)
When compiling in this mode, non-primitive standard predicates must be ex-
plicitly imported from the appropriate system module. Also standard predicates
are permitted to be defined.

verbo Compiles the files (modules) specified in “verbose” mode, printing out infor-
mation about the progress of the compilation of each predicate.

profile This option is usually used when modifying the XSB compiler. When speci-
fied, the compiler prints out information about the time spent in certain phases
of the compilation process.

asm_dump, compile_off Generates a textual representation of the SLG-WAM as-
sembly code and writes it into the file module.A where module is the name of
the module (file) being compiled.

WARNING: This option was created for compiler debugging and is not intended
for general use. There might be cases where compiling a module with these
options may cause generation of an incorrect .A and .xwam file. In such cases,
the user can see the SLG-WAM instructions that are generated for a module by
compiling the module as usual and then using the -d module.xwam command-
line option of the XSB emulator (see Section 3.7).

index_off When specified, the compiler does not generate indices for the predicates
compiled.

3.10.3 Specialization

From Version 1.4.0 on, the XSB compiler automatically performs specialization of
partially instantiated calls. Specialization can be thought as a source-level program
transformation of a program to a residual program in which partially instantiated calls
to predicates in the original program are replaced with calls to specialized versions of

CHAPTER 3. SYSTEM DESCRIPTION 61

these predicates. The expectation from this process is that the calls in the residual
program can be executed more efficiently that their non-specialized counterparts.
This expectation is justified mainly because of the following two basic properties of
the specialization algorithm:

Compile-time Clause Selection The specialized calls of the residual program di-
rectly select (at compile time) a subset containing only the clauses that the
corresponding calls of the original program would otherwise have to examine
during their execution (at run time). By doing so, laying down unnecessary
choice points is at least partly avoided, and so is the need to select clauses
through some sort of indexing.

Factoring of Common Subterms Non-variable subterms of partially instantiated
calls that are common with subterms in the heads of the selected clauses are fac-
tored out from these terms during the specialization process. As a result, some
head unification (get_* or unify_x) and some argument register (put_*) WAM
instructions of the original program become unnecessary. These instructions are
eliminated from both the specialized calls as well as from the specialized versions
of the predicates.

Though these properties are sufficient to get the idea behind specialization, the ac-
tual specialization performed by the XSB compiler can be better understood by the
following example. The example shows the specialization of a predicate that checks
if a list of HiLog terms is ordered:

ordered([]).
ordered([X]).
ordered([X,Y|Z]) :-

d d .
ordered([]) X @=< Y, $ordered(Y, Z).

ordered([X]).
ordered([X,Y|Z]) :-

:— ind d d/2-2.
X @=< Y, ordered([Y|Z]). index _$ordered/

_$ordered (X, [1).
_$ordered(X, [YI|Z]) :-
X @=<Y, S$ordered(Y, Z).

The transformation (driven by the partially instantiated call ordered([Y|Z])) effec-
tively allows predicate ordered/2 to be completely deterministic (when used with a
proper list as its argument), and to not use any unnecessary heap-space for its execu-
tion. We note that appropriate :- index directives are automatically generated by
the XSB compiler for all specialized versions of predicates.

CHAPTER 3. SYSTEM DESCRIPTION 62

The default specialization of partially instantiated calls is without any folding
of the clauses that the calls select. Using the spec_repr compiler option (see Sec-
tion 3.10.2) specialization with replacement of the selected clauses with the represen-
tative of these clauses is performed. Using this compiler option, predicate ordered/2
above would be specialized as follows:

ordered([]).
ordered([X|Y]) :- _$ordered(X, Y).

:— index _$ordered/2-2.
_$ordered(X, [1).
_$ordered(X, [YI|Z]) :- X @=< Y, _S$ordered(Y, Z).

We note that in the presence of cuts or side-effects, the code replacement operation
is not always sound, i.e. there are cases when the original and the residual program
are not computationally equivalent (with respect to the answer substitution seman-
tics). The compiler checks for sufficient (but not necessary) conditions that guarantee
computational equivalence, and if these conditions are not met, specialization is not
performed for the violating calls.

The XSB compiler prints out messages whenever it specialises calls to some pred-
icate. For example, while compiling a file containing predicate ordered/1 above, the
compiler would print out the following message:

% Specialising partially instantiated calls to ordered/1

The user may examine the result of the specialization transformation by using the
spec_dump compiler option (see Section 3.10.2).

Finally, we have to mention that for technical reasons beyond the scope of this
document, specialization cannot be transparent to the user; predicates created by the
transformation do appear during tracing.

3.10.4 Compiler Directives
Consider a directive
:— foo(a).

That occurs in a file that is to be compiled. There are two logical interpretations of
such a directive.

CHAPTER 3. SYSTEM DESCRIPTION 63

1. foo(a) is to be executed upon loading the file; or

2. foo(a) provides information used by the compiler in compiling the file.

By default, the interpretation of a directive is as in case (1) except in the case of
the compiler directives listed in this section, which as their name implies, are taken
to provide information to the compiler. Some of the directives, such as the mode/1
directive, have no meaning as an executable directive, while others, such as import/2
do. In fact as an executable directive import/2 imports predicates into usermod. For
such a directive, a statement beginning with ?-, such as

7- import foo/1 from myfile.

indicates that the directive should be executed upon loading the file, and should have
no meaning to the compiler. On the other hand, the statement

:— import foo/1 from myfile.

Indicates that foo/1 terms in the file to be compiled are to be understood asmyfile:foo/1.
In other words, the statement is used by the compiler and will not be executed upon
loading. For non-compiler directives the use of 7- and :- has no effect — in both
cases the directive is executed upon loading the file.

The following compiler directives are recognized in Version 3.8 of XSB

Including Files in a Compilation

include (+FileName) ISO

The ISO directive

:— include(FileName)

Causes the compiler to act as if the code from FileName were contained at the
position where the directive was encountered. XSB’s preprocessor can perform
the same function via the command #include FileName and can support more
sophisticated substitutions, but include/1 should be used if code portability
is desired.

CHAPTER 3. SYSTEM DESCRIPTION 64

3.10.5 Conditional Compilation

Section 3.10.2 described a way of performing conditional compilation using XSB’s
interation with GPP. Conditional compilation can also be done through XSB’s com-
piler, using the directives :- if(+Condition), :- elseif(+Condition), :-
else, and :- endif. For instance the fragment

:— if (current_prolog flag(dialect,xsb)).

:— include(’file2.P’).

:— elseif (current_prolog flag(dialect,swi)).
:— include(’file3.P’).

:— endif.

allows different Prolog code to be included for XSB and for another Prolog. This
framework is very general: for instance, as long as if...elseif...endif blocks are
not nested, any Prolog code can be used in the consequents of the (else)if. The
condition of if/1 or elseif/1 can be any Prolog goal, although care should be used
in selecting Condition. For instance, the goal

:— if(file exists(’filel.P’)).

might be true during compilation, but if the object file produced by the compila-
tion is moved, the condition might no longer be true.

if (?Condition)
elseif (?Condition)
else

endif
Directives to invoke conditional compilation as described above. If Condition
is a “changeable” goal such as file_exists/1, a warning will be issued but no
error will be raised.

Mode Declarations

The XSB compiler accepts mode declarations of the form:

:— mode ModeAnnoty, ..., ModeAnnot, .

CHAPTER 3. SYSTEM DESCRIPTION 65

where each ModeAnnot is a mode annotation (a term indicator whose arguments are
elements of the set {+,-,#,7}). From Version 1.4.1 on, mode directives are used by
the compiler for tabling directives, a use which differs from the standard use of modes
in Prolog systems'*. See Section 3.10.5 for detailed examples.

Mode annotations have the following meaning:

+ This argument is an input to the predicate. In every invocation of the predicate,
the argument position must contain a non-variable term. This term may not
necessarily be ground, but the predicate is guaranteed not to alter this argu-
ment).

:— mode see(+), assert(+).

- This argument is an output of the predicate. In every invocation of the predicate
the argument position will always be a variable (as opposed to the # annotation
below). This variable is unified with the value returned by the predicate. We
note that Prolog does not enforce the requirement that output arguments should
be variables; however, output unification is not very common in practice.

:- mode cputime(-).
This argument is either:

e An output argument of the predicate for which a non-variable value may be
supplied for this argument position. If such a value is supplied, the result
in this position is unified with the supplied supplied value. The predicate
fails if this unification fails. If a variable term is supplied, the predicate
succeeds, and the output variable is unified with the return value.

:— mode =’ (#,#).
e An input/output argument position of a predicate that has only side-effects

(usually by further instantiating that argument). The # symbol is used to
denote the £+ symbol that cannot be entered from the keyboard.

? This argument does not fall into any of the above categories. Typical cases would
be the following:

e An argument that can be used both as input and as output (but usually
not with both uses at the same time).

:— mode functor(?,7,?).

4The most common uses of mode declarations in Prolog systems are to reduce the size of compiled
code, or to speed up a predicate’s execution.

CHAPTER 3. SYSTEM DESCRIPTION 66

e An input argument where the term supplied can be a variable (so that the
argument cannot be annotated as +), or is instantiated to a term which
itself contains uninstantiated variables, but the predicate is guaranteed not
to bind any of these variables.

:— mode var(?), write(?).

We try to follow these mode annotation conventions throughout this manual.

Finally, we warn the user that mode declarations can be error-prone, and since
errors in mode declarations do not show up while running the predicates interac-
tively, unexpected behavior may be witnessed in compiled code, optimized to take
modes into account (currently not performed by XSB). However, despite this dan-
ger, mode annotations can be a good source of documentation, since they express the
programmer’s intention of data flow in the program.

Tabling Directives

Memoization is often necessary to ensure that programs terminate, and can be useful
as an optimization strategy as well. The underlying engine of XSB is based on SLG,
a memoization strategy, which, in our version, maintains a table of calls and their
answers for each predicate declared as tabled. Predicates that are not declared as
tabled execute as in Prolog, eliminating the expense of tabling when it is unnecessary.

The simplest way to use tabling is to include the directive
:— auto_table.

anywhere in the source file. auto_table declares predicates tabled so that the pro-
gram will terminate.

To understand precisely how auto_table does this, it is necessary to mention
a few properties of SLG. For programs which have no function symbols, or where
function symbols always have a limited depth, SLG resolution ensures that any query
will terminate after it has found all correct answers. In the rest of this section, we
restrict consideration to such programs.

Obviously, not all predicates will need to be tabled for a program to terminate.
The auto_table compiler directive tables only those predicates of a module which
appear to static analysis to contain an infinite loop, or which are called directly
through tnot/1. It is perhaps more illuminating to demonstrate these conditions
through an example rather than explaining them. For instance, in the program.

:— auto_table.

CHAPTER 3. SYSTEM DESCRIPTION 67

pa) :- s(f(a)).
s(X) :- p(f(a)).
r(X) :- qX,w),r(Y).
m(X) :- tnot(£(X)).

:= mode apl(-,-,+).
apl1([HIT],L, [HIL1]) :- api(T,L,L1).

:— mode ap(+,+,-).
ap([],F,F).
ap([H|T],L, [HIL1]) :- ap(T,L,L1).

mem(H, [HIT]) .
mem(H, [|T]) :- mem(H,T).

The compiler prints out the messages

% Compiling predicate s/1 as a tabled predicate
/» Compiling predicate r/1 as a tabled predicate
% Compiling predicate m/1 as a tabled predicate
% Compiling predicate mem/2 as a tabled predicate

Terminating conditions were detected for ap1/3 and ap/3, but not for any of the
other predicates.

auto_table gives an approximation of tabled programs which we hope will be
useful for most programs. The minimal set of tabled predicates needed to ensure
termination for a given program is undecidable. It should be noted that the presence
of meta-predicates such as call/1 makes any static analysis useless, so that the
auto_table directive should not be used in such cases.

Predicates can be explicitly declared as tabled as well, through the table/1.
When table/1 is used, the directive takes the form

:— table(F/A).
where F is the functor of the predicate to be tabled, and A its arity.

Another use of tabling is to filter out redundant solutions for efficiency rather than
termination. In this case, suppose that the directive edb/1 were used to indicate that

CHAPTER 3. SYSTEM DESCRIPTION 68

certain predicates were likely to have a large number of clauses. Then the action of
the declaration :- suppl_table in the program:

edb(r1/2).
edb(r2/2).
edb(r3/2).

suppl_table.
join(X,Z):- r1(X,X1),r2(X1,X2),r3(X2,2).

would be to table join/2. The suppl_table directive is the XSB analogue to the de-
ductive database optimization, supplementary magic templates [5]. suppl_table/0 is
shorthand for suppl_table(2) which tables all predicates containing clauses with two
or more edb facts or tabled predicates. By specifying suppl_table(3) for instance,
only predicates containing clauses with three or more edb facts or tabled predicates
would be tabled. This flexibility can prove useful for certain data-intensive applica-
tions.

Indexing Directives

The XSB compiler by default generates an index on the principal functor of the first
argument of a predicate. Indexing on the appropriate argument of a predicate may
significantly speed up its execution time. In many cases the first argument of a
predicate may not be the most appropriate argument for indexing and changing the
order of arguments may seem unnatural. In these cases, the user may generate an
index on any other argument by means of an indexing directive. This is a directive
of the form:

:— index Functor/Arity-IndexArg.

indicating that an index should be created for predicate Functor /Arity on its IndexArg'"
argument. One may also use the form:

:= index(Functor/Arity, IndexArg, HashTableSize).

which allows further specification of the size of the hash table to use for indexing this
predicate if it is a dynamic (i.e., asserted) predicate. For predicates that are dynam-
ically loaded, this directive can be used to specify indexing on more than one argu-
ment, or indexing on a combination of arguments (see its description on page 286).
For a compiled predicate the size of the hash table is computed automatically, so
HashTableSize is ignored.

CHAPTER 3. SYSTEM DESCRIPTION 69

All of the values Functor, Arity, IndexArg (and possibly HashTableSize) should
be ground in the directive. More specifically, Functor should be an atom, Arity
an integer in the range 0..255, and IndexArg an integer between 0 and Arity. If
IndexArg is equal to 0, then no index is created for that predicate. An index directive
may be placed anywhere in the file containing the predicate it refers to.

As an example, if we wished to create an index on the third argument of predicate
foo/5, the compiler directive would be:

:— index foo/5-3.

Unification Factoring

When the clause heads of a predicate have portions of arguments common to several
clauses, indexing on the principal functor of one argument may not be sufficient.
Indexing may be improved in such cases by the use of unification factoring. Unification
Factoring is a program transformation that “factors out” common parts of clause
heads, allowing differing parts to be used for indexing, as illustrated by the following
example:

p(£(X),Y) :- _$pX,Y).
— _$p(a,X) :- qX).
_$p(b,X) - r(X).

p(f(a),X) :- qX).
p(f(0),X) :- r(X).

The transformation thus effectively allows p/2 to be indexed on atoms a/0 and b/0.
Unification Factoring is transparent to the user; predicates created by the transfor-
mation are internal to the system and do not appear during tracing.

The following compiler directives control the use of unification factoring '°:

:= ti(F/A) . Specifies that predicate F//A should be compiled with unification fac-
toring enabled.

:= ti_off (F/A). Specifies that predicate F'/A should be compiled with unification
factoring disabled.

:= ti_all. Specifies that all predicates defined in the file should be compiled with
unification factoring enabled.

15Unification factoring was once called transformational indexing, hence the abbreviation ti in
the compiler directives

CHAPTER 3. SYSTEM DESCRIPTION 70

:— ti_off all. Specifies that all predicates defined in the file should be compiled
with unification factoring disabled.

By default, higher-order predicates (more precisely, predicates named apply with
arity greater than 1) are compiled with unification factoring enabled. It can be
disabled using the ti_off directive. For all other predicates, unification factoring
must be enabled explicitly via the ti or ti_all directive. If both := ti(F/A). (:-
ti_all.) and :- ti_off(F/A). (:- ti_off_all.) are specified, :- ti_off (F/A).
(:- ti_off_all.) takes precedence. Note that unification factoring may have no ef-
fect when a predicate is well indexed to begin with. For example, unification factoring
has no effect on the following program:

p(a,c,X) - qX).
p(b,c,X) - r(X).

even though the two clauses have ¢/0 in common. The user may examine the results
of the transformation by using the ti_dump compiler option (see Section 3.10.2).

Other Directives

XSB has other directives not found in other Prolog systems.

:— hilog atomg,...,atom, .
Declares symbols atom; through atom,, as HiLog symbols. The hilog declara-
tion should appear before any use of the symbols. See Chapter 4 for a purpose
of this declaration.

:= ldoption(Options) .
This directive is only recognized in the header file (.H file) of a foreign module.
See the chapter Foreign Language Interface in Volume 2 for its explanation.

:— compiler_options(OptionsList) .
Indicates that the compiler options in the list OptionsList should be used to
compile this file. This must appear at the beginning of the file. These options
will override any others, including those given in the compilation command.
The options may be optionally prefixed with + or - to indicate that they should
be set on or off. (No prefix indicates the option should be set on.)

CHAPTER 3. SYSTEM DESCRIPTION 71

3.10.6 Inline Predicates

Inline predicates represent “primitive” operations in the (extended) WAM. Calls to
inline predicates are compiled into a sequence of WAM instructions in-line, i.e. with-
out actually making a call to the predicate. Thus, for example, relational predicates
(like >/2, >=/2, etc.) compile to, essentially, a subtraction followed by a conditional
branch. As a result, calls to inline predicates will not be trapped by the debugger,
and their evaluation will not be visible during a trace of program execution. Inline
predicates are expanded specially by the compiler and thus cannot be redefined by the
user without changing the compiler. The user does not need to import these predi-
cates from anywhere. There are available no matter what options are specified during
compiling.

Table 3.1 lists the inline predicates of XSB Version 3.8. Those predicates that start
with _$ are internal predicates that are also expanded in-line during compilation.

’=2/2 <2 /2 1=<"/2 >=2/2 2> /2
=:=7/2 '=\="/2 is/2 0<7 /2 7@=<"/2
0> /2 'e>=7/2 '=="/2 \=="/2 fail/0
true/0 var/1 nonvar/1 halt/0 ’!’/0
min/2 max/2 1>< /2 *% /2 sign/1

> $cutto’/1 ’_$savecp’/1 ’_$builtin’/1
Table 3.1: The Inline Predicates of XSB

We warn the user to be cautious when defining predicates whose functor starts with
_$ since the names of these predicates may interfere with some of XSB’s internal pred-
icates. The situation may be particularly severe for predicates like >_$builtin’/1
that are treated specially by the XSB compiler.

3.11 A Note on ISO Compatibility

In Version 3.8, an effort has been made to ensure compatibility with the core Prolog
ISO standard [37]. In this section, we summarize the differences with the ISO stan-
dard. XSB implements almost all ISO built-ins and evaluable functions, although
there are semantic differences between XSB’s implementation and that of the ISO
standard in certain cases.

The main difference of XSB from the ISO semantics is that XSB does not support
the logical update semantics for assert and retract, but instead supports an immediate
semantics. XSB does, however support an ISO-like semantics for incremental tables.

CHAPTER 3. SYSTEM DESCRIPTION 72

Version 3.8 of XSB mostly supports the full ISO syntax for Prolog, and its I/O sys-
tem is based on UTF-8 encoding, which includes ASCII as a subset of its characters.
Beyond XSB'’s support for Hilog, most differences between ISO syntax and XSB syn-
tax are fairly minor. However, as XSB supports only UTF-8, ISO predicates relating
to different character sets, such as char _conversion/2, current char conversion/2
and others are not supported.

A somewhat more minor difference involves XSB’s implementation of ISO streams.
XSB can create streams from several First class objects, including pipes, atoms, and
consoles in addition to files. However by default, XSB opens streams in binary mode,
rather than text mode in opposition to the ISO standard, which opens streams in
text mode. This makes no difference in UNIX or LINUX, for which text and binary
streams are identical, but does make a difference in Windows, where text files are
processed more than binary files.

As a final point, XSB currently throws an error/3 term in its error ball, rather
than an error/2 term.

Most other differences with the core standard are mentioned under portability
notes for the various predicates.

XSB supports most new features mentioned in the revisions to the core stan-
dard [38], including call_cleanup/2 and various library predicates such as subsumes/2,
numbervars/3 and so on. XSB also has strong support for the working multi-
threading Prolog standard [39], and XSB has been one of the first Prologs to support
this standard. However, because XSB has an atom-based module system it does not
support the ISO standard for Prolog modules.

Chapter 4

Syntax

The syntax of XSB is based on ISO Prolog [37], although it lacks a few of the ISO
standard’s somewhat arcane features. Beginning with Version 3.8, XSB supports
Unicode through UTF-8 atoms as described in Section 4.1.3. XSB’s reader also
contains extensions to support HiLog [14], which adds certain features of second-
order syntax to Prolog.

4.1 Terms

The data objects of the HiLog language are called terms. A HiLog term can be
constructed from any logical symbol or a term followed by any finite number of
arguments. In any case, a term is either a constant, a variable, or a compound term.

A constant is either a number (integer or floating-point) or an atom ' Constants
are definite elementary objects, and correspond to proper nouns in natural language.
4.1.1 Integers
ISO Integers

The printed form of an integer normally consists of a sequence of digits optionally
preceded by a minus sign (’-), interpreted, of course, as base 10 integers. It is also
possible to enter integers in other bases:

! This Prolog usage contradicts the usage of the word “atom” in logic as short for “atomic formula”.

73

CHAPTER 4. SYNTAX 74

e Obnnn represents an integer in base 2, e.g.,
| ?- X = 0b110.
X=6

e Oonnn represents an integer in base 8§, e.g.,
| ?7- X = 0ol10.
X =72

e Oxnnn represents an integer in base 16, e.g.,
| 7- X = 0x110.
X = 272

Character code constants are integers of the form 0’nnn, where nnn is the decimal
form of any UTF-8 codepoint. E.g.,

| 7= 0°A =X
X =65

Escape characters (cf. Section 4.1.3) can be written similarly (if this is ever needed):
| 7= 0’\n = X

X =10

Other Integer Representations

It is also possible to enter integers in bases 2 through 36; this can be done by preceding
the digit sequence by the base (in decimal) followed by an apostrophe (’). If a base
greater than 10 is used, the characters A-Z or a-z are used to stand for digits greater
than 9.

Using these rules, examples of valid integer representations in XSB are:

CHAPTER 4. SYNTAX 5

1 -3456 95359 9’888 16’ 1FA4 -12’A0 20’
representing respectively the following integers in decimal base:
1 -3456 95359 728 8100 -120 0
Note that the following:
+525 12°2CF4 37712 20°-23

are not valid integers of XSB.

Character code constants, mentioned above, can be seen as integers in “base zero”.

4.1.2 Floating-point Numbers

XSB supports ISO floating-point numbers, which consist of a sequence of digits with
an embedded decimal point, optionally preceded by a minus sign (’-?), and optionally
followed by an exponent consisting of uppercase or lowercase E’ and an optionally
signed base 10 integer.

Using these rules, examples of floating point numbers are:
1.0 -34.56 817.3E12 -0.0314e26 2.0E-1

Note that in any case there must be at least one digit before, and one digit after, the
decimal point.

4.1.3 Atoms

An atom consists of a sequence of characters that follow the following rules.
e Non-guoted Atoms begin with the ASCII character a-z and are followed by a
sequence of ISO alphanumeric characters: a-z, A-Z, 0-9, and underscore _.

e Quoted Atoms begin and end with the ASCII character > and may contain any
sequence of

— Printable UTF-8 characters

CHAPTER 4. SYNTAX 76

— Meta-escaped quotes. E.g.,

| 7= X = ’a’’b’.

X=2ab

(Unfortunately, the current version of XSB does not support escaped quotes
(*).)
— ISO escape characters and sequences
* \b the newline character (ASCII 7).
\b the newline character (ASCII 8).
\f the form feed character (ASCII 12).
\n the newline character (ASCII 10).
\r the carriage return character (ASCII 13).
\t a tab character (ASCII 9).
\v a vertical tab character (ASCII 11).

Octal escapes of the form \nnn\, where nnn is the octal number cor-
responding to an ASCII code. E.g.,

| ?- write(’\60\’).

0
* Hexidecimal escapes of the form \xnn, where nn is the hexidecimal
number corresponding to an ASCII code 2. . E.g.,

| 7- write(’\30\7).

0

*

O SR S R

— UTF-8 escape sequences have the form \unnnn where nnnn is the hexidec-
imal number corresponding to a UTF-8 codepoint.

e Operator-based Atoms are defined as any sequence from the following set of
characters (except of the sequence ’/*’, which begins a comment):

+-x /\ " <>="“~ . ?20#&

Examples of such atoms are:

~

2The current version of XSB differs from the ISO specification in that hexidecimal escapes do
not have a trailing slash.

CHAPTER 4. SYNTAX 7

e Special Atoms are

A NS

Note that the bracket pairs are special. While *[1’ and ’{}’ are atoms, * [’,
]2, 2{’ and ’}’ are not °.

4.1.4 Variables

Variables may be written as any sequence of (ASCII) ISO alphanumeric characters
beginning with either a capital letter or >_’. For example:

X Hilog Varl 3 _List

If a variable is referred to only once in a clause, it does not need to be named
and may be written as an anonymous variable, represented by a single underscore
character > _’. Any number of anonymous variables may appear in a clause; all of
these variables are read as distinct variables.

4.1.5 Compound Terms

Like in Prolog, the structured data objects of HilLog are compound terms (or struc-
tures). The external representation of a Hilog compound term comprises a functor
(called the principal functor or the name of the compound term) and a sequence of
one or more terms called arguments. Unlike Prolog where the functor of a term must
be an atom, in HiLog the functor of a compound term can be any valid HiLog term.
This includes numbers, atoms, variables or even compound terms. Thus, since in
HiLog a compound term is just a term followed by any finite number of arguments,
all the following are valid external representations of HiL.og compound terms:

foo(bar) prolog(a, X) hilog(X)
123(john, 500) X(kostis, sofia) XY, z, Y(W))
fla, (b(c))(d)) map (double) ([1, [1) h(map(P) (A, B)) (C)

3The form [X] is a special notation for lists (see Section 4.1.6), while the form {X} is just
“syntactic sugar” for the term >{}’ (X).

CHAPTER 4. SYNTAX 78

Like a functor in Prolog, a functor in HiL.og can be characterized by its name and
its arity which is the number of arguments this functor is applied to. For example,
the compound term whose principal functor is *map(P)’ of arity 2, and which has
arguments L1, and L2, is written as:

map (P) (L1, L2)

As in Prolog, when we need to refer explicitly to a functor we will normally denote
it by the form Name/Arity. Thus, in the previous example, the functor *map(P)’ of
arity 2 is denoted by:

map (P) /2

Note that a functor of arity 0 is represented as an atom.

In Prolog, a compound term of the form p(t1,ts,...,t;) is usually pictured as a
tree in which every node contains the name p of the functor of the term and has
exactly k children each one of which is the root of the tree of terms tq,t,, ..., .

For example, the compound term
s(np(kostis), vp(v(loves), np(sofia)))

would be pictured as the following tree:

| v np
| | |
kostis 1loves sofia
The principal functor of this term is s/2. Its two arguments are also compound terms.
In illustration, the principal functor of the second argument is vp/2.

Likewise, any external representation of a HiLog compound term ¢(tq, s, ..., 1)
can be pictured as a tree in which every node contains the tree representation of the
name t of the functor of the term and has exactly k children each one of which is the
root of the tree of terms ty,ts, ..., .

Sometimes it is convenient to write certain functors as operators. Binary func-
tors (that is, functors that are applied to two arguments) may be declared as infix
operators, and unary functors (that is, functors that are applied to one argument)

CHAPTER 4. SYNTAX 79

may be declared as either prefix or postfix operators. Thus, it is possible to write the
following;:

X+Y P;Q) X<Y +X P;

More about operators in HiLog can be found in section 4.3.

4.1.6 Lists

As in Prolog, lists form an important class of data structures in HilLog. They are
essentially the same as the lists of Lisp: a list is either the atom ’ []’, representing
the empty list, or else a compound term with functor ’.’ and two arguments which
are the head and tail of the list respectively, where the tail of a list is also a list. Thus
a list of the first three natural numbers is the structure:

/ \
1 .
/ \
2 .
/ \
3 I
which could be written using the standard syntax, as:
.(1,.02,.(63, 1))
but which is normally written in a special list notation, as:
[1,2,3]
Two examples of this list notation, as used when the tail of a list is a variable, are:
[Head|Taill [foo,bar|Taill]
which represent the structures:
/ \ / \
Head Tail foo .
/ \
bar Tail

CHAPTER 4. SYNTAX 80

respectively.

Note that the usual list notation [H|T] does not add any new power to the lan-
guage; it is simply a notational convenience and improves readability. The above
examples could have been written equally well as:

. (Head,Tail) . (foo, . (bar,Tail))

For convenience, a further notational variant is allowed for lists of integers that
correspond to UTF-8< character codes. Lists written in this notation are called
strings. For example,

"T am a Hilog string"
represents exactly the same list as:

(73,32,97,109,32,97,32,72,105,76,111,103,32,115,116,114,105,110,103]

4.2 From HiLog to Prolog

From the discussion about the syntax of HiLog terms, it is clear that the HiLog syntax
allows the incorporation of some higher-order constructs in a declarative way within
logic programs. As we will show in this section, HiLog does so while retaining a clean
first-order declarative semantics. The semantics of HiLog is first-order, because every
HiLog term (and formula) is automatically encoded (converted) in predicate calculus
in the way explained below.

Before we briefly explain the encoding of HiLog terms, let us note that the Hil.og
syntax is a simple (but notationally very convenient) encoding for Prolog terms, of
some special form. In the same way that in Prolog:

1+ 2
is just an (external) shorthand for the term:
+(1, 2)

in the presence of an infix operator declaration for + (see section 4.3), so:

X(a, b)

CHAPTER 4. SYNTAX 81

is just an (external) shorthand for the Prolog compound term:
apply (X, a, b)

Also, in the presence of a hilog declaration (see section 3.10.5) for h, the HiLog term
whose external representation is:

h(a, h, b)
is a notational shorthand for the term:
apply(h, a, h, b)

Notice that even though the two occurrences of h refer to the same symbol, only
the one where h appears in a functor position is encoded with the special functor
apply/n,n > 1.

The encoding of HiLog terms is performed based upon the existing declarations
of hilog symbols. These declarations (see section 3.10.5), determine whether an atom
that appears in a functor position of an external representation of a Hilog term,
denotes a functor or the first argument of a set of special functors apply. The actual
encoding is as follows:

e The encoding of any variable or parameter symbol (atom or number) that does
not appear in a functor position is the variable or the symbol itself.

e The encoding of any compound term t where the functor fis an atom that is
not one of the hilog symbols (as a result of a previous hilog declaration), is
the compound term that has fas functor and has as arguments the encoding of
the arguments of term £. Note that the arity of the compound term that results
from the encoding of ¢ is the same as that of ¢.

e The encoding of any compound term t where the functor f is either not an
atom, or is an atom that is a hilog symbol, is a compound term that has apply
as functor, has first argument the encoding of f and the rest of its arguments
are obtained by encoding of the arguments of term¢. Note that in this case the
arity of the compound term that results from the encoding of ¢ is one more than
the arity of .

Note that the encoding of HiL.og terms described above, implies that even though
the HiLog terms:

CHAPTER 4. SYNTAX 82

p(a, b)
h(a, b)

externally appear to have the same form, in the presence of a hilog declaration
for h but not for p, they are completely different. This is because these terms are
shorthands for the terms whose internal representation is:

p(a, b)
apply(h, a, b)

respectively. Furthermore, only h(a,b) is unifiable with the Hil.og term whose ex-
ternal representation is X(a, b).

We end this short discussion on the encoding of Hil.og terms with a small example
that illustrates the way the encoding described above is being done. Assuming that
the following declarations of parameter symbols have taken place,

:— hilog h.
:- hilog (hilog).

before the compound terms of page 77 were read by XSB, the encoding of these terms
in predicate calculus using the described transformation is as follows:

foo(bar) prolog(a,X)
apply(hilog,X) apply (123, john,500)
apply (X,kostis,sofia) apply (X,Y,Z,apply(Y,W))
f(a,apply(b(c),d)) apply (map(double), [1,[]1)

apply (apply(h,apply (map(P),A,B)),C)

4.3 Operators

From a theoretical point of view, operators in Prolog are simply a notational con-
venience and add absolutely nothing to the power of the language. For example, in
most Prologs ’+’ is an infix operator, so

2 +1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure:

CHAPTER 4. SYNTAX 83

+

/' \
2 1

and not the number 3. (The addition would only be performed if the structure were
passed as an argument to an appropriate procedure, such as is/2).

However, from a practical or a programmer’s point of view, the existence of oper-
ators is highly desirable, and clearly handy.

Prolog syntax allows operators of three kinds: infiz, prefir, and postfix. An infix
operator appears between its two arguments, while a prefix operator precedes its single
argument and a postfix operator follows its single argument.

Each operator has a precedence, which is an integer from 1 to 1200. The prece-
dence is used to disambiguate expressions in which the structure of the term denoted
is not made explicit through the use of parentheses. The general rule is that the op-
erator with the highest precedence is the principal functor. Thus if >+’ has a higher
precedence than ’/’, then the following

atb/c a+(b/c)

are equivalent, and both denote the same term +(a,/(b,c)). Note that in this
case, the infix form of the term /(+(a,b),c) must be written with explicit use of
parentheses, as in:

(atb)/c

If there are two operators in the expression having the same highest precedence,
the ambiguity must be resolved from the types (and the implied associativity) of the
operators. The possible types for an infix operator are

yix xfx xfy

Operators of type ’xfx’ are not associative. Thus, it is required that both of the
arguments of the operator must be subexpressions of lower precedence than the op-
erator itself; that is, the principal functor of each subexpression must be of lower
precedence, unless the subexpression is written in parentheses (which automatically
gives it zero precedence).

Operators of type ’xfy’ are right-associative: only the first (left-hand) subex-
pression must be of lower precedence; the right-hand subexpression can be of the

CHAPTER 4. SYNTAX 84

same precedence as the main operator. Left-associative operators (type ’yfx’) are
the other way around.

An atom named Name can be declared as an operator of type Type and precedence
Precedence by the command;

op(+Precedence, +Type, +Name) ISO

The same command can be used to redefine one of the predefined XSB operators
(obtainable via current_op/3). However, it is not allowed to alter the definition of
the comma (’,?) operator. An operator declaration can be cancelled by redeclaring
the Name with the same Type, but Precedence 0.

As a notational convenience, the argument Name can also be a list of names of
operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are
of different kinds: infix, prefix, or postfix. An operator of any kind may be redefined
by a new declaration of the same kind. For example, the built-in operators ’+’ and
>~ are as if they had been declared by the command:

:— op(600, yfx, [+,-1).
so that:
1-2+3
is valid syntax, and denotes the compound term:
(1-2)+3
or pictorially:

+
/ \
- 3
/ \

12

In XSB, the list functor ’.’/2 is one of the standard operators, that can be
thought as declared by the command:

CHAPTER 4. SYNTAX 85

:- op(661, xfy, .).
So, in XSB,
1.2.]

represents the structure

/ \
1 .
/ \
2 [
Contrasting this picture with the picture above for 1-2+3 shows the difference between
»yfx’ operators where the tree grows to the left, and *xfy’ operators where it grows

to the right. The tree cannot grow at all for *xfx’ type operators. It is simply illegal
to combine ’xfx’ operators having equal precedences in this way.

If these precedence and associativity rules seem rather complex, remember that
you can always use parentheses when in any doubt.

In Version 3.8 of XSB the possible types for prefix operators are:
fx fy hx hy
and the possible types for postfix operators are:
xf vyt
We end our discussion about operators by mentioning that prefix operators of

type hx and hy are proper HiLog operators. The discussion of proper HiL.og operators
and their properties is deferred for the manual of a future version. *

4As a known bug, XSB’s reader cannot properly read an operator defined as both a prefix
and an infix operator. For instance the declaration of both :- op(1200,xf,’<=’). and :-
op(1200,xfx,’<="). will lead to a syntax error.

Chapter 5

Using Tabling in XSB: A Tutorial
Introduction

XSB has two ways of evaluating predicates. The default is to use Prolog-style evalu-
ation, but by using various declarations a programmer can also use tabled resolution
which can provide a different, more declarative programming style than Prolog. In
this section we discuss various aspects of tabling and their implementation in XSB.
Our aim in this section is to provide a user with enough information to be able to
program productively with tables in XSB. It is best to read this tutorial with a copy
of XSB handy, since much of the information is presented through a series of exercises.

For the theoretically inclined, XSB uses SLG resolution which can compute queries
to non-floundering normal programs under the well-founded semantics [$8], and is
guaranteed to terminate when these programs have the bounded term-depth property.
This tutorial covers only enough of the theory of tabling to explain how to program
in XSB. For those interested, the web site contains papers covering in detail various
aspects of tabling (often through the links for individuals involved in XSB). An
overview of SLG resolution, and practical evaluation strategies for it, are provided
in [16, 78, 71, 31]. The engine of XSB, the SLG-WAM, is an extension of the WAM
(92, 1], and is described in [68, 64, 30, 70, 15, 24, 40, 19, 20, 12, 56, 81, 57, 84] as it
is implemented in Version 3.8 and its performance analyzed. Examples of large-scale
applications that use tabling are overviewed in [15, 46, 17, 22, 63, 7, 18, 33, 85].

)y =

86

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 87

5.1 Tabling in the Context of a Prolog System

Before describing how to program using tabling it is perhaps worthwhile to review
some of the goals of XSB’s implementation of tabling. Among them are:

1. To execute tabled predicates at the speed of compiled Prolog.

2. To ensure that the speed of compiled Prolog is not slowed significantly by adding
the option of tabling.

3. To ensure that the functionality of Prolog is not compromised by support for
tabling.

4. To provide Prolog functionality in tabled predicates and operators whenever it
is semantically sensible to do so.

5. To provide standard predicates to manipulate tables taken as data structures
in themselves.

Goals 1 and 2 are addressed by XSB’s engine, which in Version 3.8 is based on
a virtual machine called the SLG-WAM. The overhead for SLD resolution using
this machine is small, and usually less than 5%. Thus when XSB is used simply
as a Prolog system (i.e., no tabling is used), it is reasonably competitive with other
Prolog implementations based on a WAM emulator written in C or assembly. For
example, when compiled as a threaded interpreter (see Chapter 3) XSB Version 3.8
is about two times slower than Quintus 3.1.1 or emulated SICStus Prolog 3.1. Goals
3, 4 and 5 have been nearly met, but there are a few instances in which interaction of
tabling with a Prolog construct has not been accomplished, or is perhaps impossible.
Accordingly we discuss these instances throughout this chapter. XSB is still under
development however, so that future versions may support more transparent mixing
of Prolog and tabled code.

5.2 Definite Programs

Definite programs, also called Horn Clause Programs, are Prolog programs without
negation or aggregation. In XSB, this means without the \+/1, fail _if/1, not/1,
tnot/1, setof/3, bagof/3, tt findall/3 or other aggregation operators. Consider
the Prolog program

path(X,Y) :- path(X,Z), edge(Z,Y).
path(X,Y) :- edge(X,Y).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 88

together with the query 7- path(1,Y). This program has a simple, declarative mean-
ing: there is a path from X to Y if there is a path from X to some node Z and there is
an edge from Z to Y, or if there is an edge from X to Y. Prolog, however, enters into
an infinite loop when computing an answer to this query. The inability of Prolog to
answer such queries, which arise frequently, comprises one of its major limitations as
an implementation of logic.

A number of approaches have been developed to address this problem by reusing
partial answers to the query path(1,Y) [27, 86, 4, 89, 90]. The ideas behind these
algorithms can be described in the following manner. Calls to tabled predicates, such
as path(1,Y) in the above example, are stored in a searchable structure together with
their proven instances. This collection of tabled subgoals paired with their answers,
generally referred to as a table, is consulted whenever a new call, C, to a tabled
predicate is issued. If C is sufficiently similar to a tabled subgoal S, then the set
of answers, A, associated with S may be used to satisfy C'. In such instances, C' is
resolved against the answers in A, and hence we refer to the call C' as a consumer
of A (or S). If there is no such S, then C' is entered into the table and is resolved
against program clauses as in Prolog — i.e., using SLD resolution. As each answer
is derived during this process, it is inserted into the table entry associated with C'
if it contains information not already in \A. In this second case, we refer to C as a
generator, or producer, as resolution of C'in this manner produces the answers stored
in its table entry. If the answer is in fact added to this set, then it is additionally
scheduled to be returned to all consumers of C'. If instead it is rejected as redundant,
then the evaluation simply fails and backtracks to generate more answers.

Notice that since consuming subgoals resolve against unique answers rather than

repeatedly against program clauses, tabling will terminate whenever

1. a finite number of subgoals are encountered during query evaluation, and

2. each of these subgoals has a finite number of answers.

Indeed, it can be proven that for any program with the bounded term depth property —
roughly, where all terms generated in a program have a maximum depth — SLG
computation will terminate. These programs include the important class of Datalog
programs.

Predicates can be declared tabled in a variety of ways. A common form is the
compiler directive
:= table Py,...,P,.

where each P; is a predicate indicator or callable term. More generally

:— table Pi,..., P, as Options.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 89

allows a user to specify different types of tabling through Options along with other
properties of the designated predicates For static predicates, these directives must
be added to the file containing the clauses of the predicate(s) to be tabled, and the
directives cause the predicates to be compiled with tabling !. For dynamic predicates,
the executable directives

?7- table P,...P,.

and
?7- table Pi,..., P, as Options.

cause a P; to be tabled (with the appropriate options) if no clauses have been asserted
for P;.

Exercises Unless otherwise noted, the file $XSB_DIR/examples/table_examples.P
contains all the code for the running examples in this section. Invoke XSB with its
default settings (i.e., don’t supply additional options) when working through the fol-
lowing exercises.

Exercise 5.2.1 Consult $XSB_DIR/examples/table_examples.P into XSB and and
try the goal

7- path(1,X).

and continue typing ; KRETURN> until you have exhausted all answers. Now, try rewrit-
ing the path/2 predicate as it would be written in Prolog — and without a tabling
declaration. Will it now terminate for the provided edge/2 relation? (Remember, in
XSB you can always hit <ctrl>-C if you go into an infinite loop). a

The return of answers in tabling aids in filtering out redundant computations —
indeed it is this property which makes tabling terminate for many classes of pro-
grams. The same generation program furnishes a case of the usefulness of tabling
for optimizing a Prolog program.

Exercise 5.2.2 [f you arestill curious, load in the file cyl.P in the $XSB_DIR/examples
directory using the command.

?7- load_dync(cyl.P).

'In Version 3.8, tabling does not work together with multi-file predicates.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 90

and then type the query
7- same_generation(X,X),fail.

Now rewrite the same_generation/2 program so that it does not use tabling and retry
the same query. What happens? (Be patient — or use <ctrl>-C). O

Exercise 5.2.3 The file table_examples.P contains a set of facts

ordered_goal (one) .
ordered_goal (two) .
ordered_goal (three) .
ordered_goal (four) .

Clearly, the query 7= ordered_goal (X) will return the answers in the expected order.
table_examples.P also contains a predicate

:— table table_ordered_goal/1.
table_ordered_goal(X):- ordered_goal(X).

which simply calls ordered_goal/1 and tables its answers (tabling is unnecessary in
this case, and is only used for illustration). Call the query 7- table_ordered_goal (X)
and backtrack through the answers. In what order are the answers returned?

The examples stress two differences between tabling and SLD resolution beyond ter-
mination properties. First, that each solution to a tabled subgoal is returned only
once — a property that is helpful not only for path/2 but also for same_generation/2
which terminates in Prolog. Second, because answers are sometimes obtained using
program clauses and sometimes using the table, answers may be returned in an un-
accustomed order.

Tabling Dynamic Predicates Dynamic predicates may be tabled just as static
predicates, as the following exercise shows.

Exercise 5.2.4 For instance, restart XSB and at the prompt type the directive
?- table(dyn_path/2).

and

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 91

7- load_dyn(dyn_examples) .

Try the queries to path/2 of the previous examples. Note that it is important to
dynamically load dyn_examples.P — otherwise the code in the file will be compiled
without knowledge of the tabling declaration. a

In general, as long as the directive table/1 is executed before asserting (or dy-
namically loading) the predicates referred to in the directive, any dynamic predicate
can be tabled.

Letting XSB Decide What to Table Other tabling declarations are also pro-
vided. Often it is tedious to decide which predicates must be tabled. To address this,
XSB can automatically table predicates in files. The declaration auto_table chooses
predicates to table to assist in termination, while suppl_table chooses predicates to
table to optimize data-oriented queries. Both are explained in Section 3.10.2. 2.

5.2.1 Call Variance vs. Call Subsumption

The above description gives a general characterization of tabled evaluation for definite
programs but glosses over certain details. In particular, we have not specified the
criteria for

e Call Similarity — whereby a newly issued subgoal S is determined to be “suffi-
ciently similar” to a tabled subgoal S;,, so that S can use the answers from the
table of Sy, rather than re-deriving its own answers. In the first case where S
uses answers of a tabled subgoal it is termed a consumer; in the second case
when S produces its own answers it is called a generator or producer.

o Answer Similarity — whereby a derived answer to a tabled subgoal is determined
to contain information similar to that already in the set of answers for that
subgoal.

Different measures of similarity are possible. XSB’s engine supports two measures for
call similarity: variance and subsumption. XSB’s engine supports a variance-based
measure for answer similarity, but allows users to program other measures in certain
cases. We discuss call similarity here, but defer the discussion of answer similarity
until Section 5.4.

2The reader may have noted that table/1, is referred to as a directive, while auto_table/0 and

suppl_table/0 were referred to as declarations. The difference is that at the command line, user
can execute a directive but not a compiler declaration.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 92

Determining Call Similarity via Variance By default, XSB determines that a
subgoal S is similar to a tabled subgoal S, if S is a variant of Sy, that is if S and
S;ap are identical up to variable renaming ®. As an example p(X,Y,X) is a variant of
p(A,B,A), but not of p(X,Y,Y), or p(X,Y,Z). Under variance-based call similarity,
or call variance, when a tabled subgoal S is encountered, a search for a table entry
containing a variant subgoal S, is performed. Notice that if Sy, exists, then all
of its answers are also answers to S, and therefore will be resolved against it. Call
variance was used in the original formulation of SLG resolution [16] for the evaluation
of normal logic programs according to the well-founded semantics and interacts well
with many of Prolog’s extra-logical constructs.

Determining Call Similarity via Subsumption Call similarity can also be
based on call subsumption. A term T subsumes a term Ty if Ty is more specific
than T} *. Furthermore, we say that Ty properly subsumes T if Ty subsumes 7}, but
is not a variant of 77. Under call subsumption, when a tabled subgoal S is encoun-
tered, a search is performed for a table entry containing a subsuming subgoal Syu.
Notice that, if such an entry exists, then its answer set A logically contains all the
solutions to satisfy C'. The subset of answers A’ C A which unify with C' are said to
be relevant to C.

Notice that call subsumption permits greater reuse of computed results, thus
avoiding even more program resolution, and thereby can lead to time and space
performances superior to call variance. In addition, beginning with Version 3.2, call-
subsumption based tabling fully supports well-founded negation under the default
local scheduling strategy. However, there are downsides to this paradigm. First of all,
subsumptively tabled predicates do not interact well with certain Prolog constructs
with which variant-tabled predicates can (see Example 5.2.4 below). Second, call
subsumption does not yet support calls with tabled attributed variables or answer
subsumption °.

Example 5.2.1 The terms 77: p(£(Y),X,1) and 75: p(£(2),U,1) are variants as
one can be made to look like the other by a renaming of the variables. Therefore,
each subsumes the other.

3Formally, S and S, are variants if they have an mgu 6 such that the domain and range of 1
consists only of variables.

4Formally, T} subsumes T, if there is a substitution # whose domain consists only of variables
from T3 such that 7160 = T5.

5Beginning with Version 3.2, XSB supports attributed variables in answers under call subsump-
tion, although not in calls.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 93

The term t3: p(£(Y),X,1) subsumes the term t4: p(£(Z),Z,1). However, they are
not variants. Hence t3 properly subsumes ty. O

The above examples show how a variant-based tabled evaluation can reduce cer-
tain redundant subcomputations over SLD. However, even more redundancy can be
eliminated, as the following example shows.

Exercise 5.2.5 Begin by abolishing all tables in XSB, and then type the following
query

?7- abolish all tables.
7- path(X,Y), fail.

Notice that only a single table entry is created during the evaluation of this query.
You can check that this is the case by invoking the following query

7- get_calls_for_table(path/2,Call).
Now evaluate the query

?7- path(1,5), fail.
and again check the subgoals in the table. Notice that two more have been added.
Further notice that these new subgoals are subsumed by that of the original entry.
Correspondingly, the answers derived for these newer subgoals are already present in

the original entry. You can check the answers contained in a table entry by invoking
get_returns_for_call/2 on a tabled subgoal. For example:

7- get_returns_for_call(p(l,_),Answer).

Compare these answers to those of p(X,Y) and p(1,5). Notice that the same answer
can, and in this case does, appear in multiple table entries.

Now, let’s again abolish all the tables and change the evaluation strategy of path/2
to use subsumption.

?7- abolish_all tables.
7- table path/2 as subsumptive.

And re-perform the first few queries:

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 94

7- path(X,Y),fail.
7- get_calls_for_table(path/2,Call).
?7- path(1,5).
7- get_calls_for_table(path/2,Call).

Notice that this time the table has not changed! Only a single entry is present, that
for the original query p(X,Y).

When using call subsumption, XSB is able to recognize a greater range of “redundant”
queries and thereby make greater use of previously computed answers. The result
is that less program resolution is performed and less redundancy is present in the
table. However, subsumption is not a panacea. The elimination of redundant answers
depends upon the presence of a subsuming subgoal in the table when the call to
p(1,5) is made. If the order of these queries were reversed, one would find that the
same entries would be present in this table as the one constructed under variant-based
evaluation.

Declarations for Call Variance and Call Subsumption By default tabled
predicate use call variance. However, call subsumption can be made the default
by giving XSB the -S option at invocation (refer to Section 3.7). More versatile
constructs are provided by XSB so that the tabling method can be selected on a per
predicate basis. Use of the directive

table p/n as subsumptive
or
table p/n as variant

described in Section 6.15.1, ensures that a tabled predicate is evaluated using the
desired strategy regardless of the default tabling strategy.

5.2.2 Tabling with Interned Terms

XSB supports, on request, a special representation of ground terms, known as in-
terned terms (see intern_term/2.) This representation is also sometimes known as
a “hash-consing” representation. All interned terms are stored in a global area and
each such term is stored only once, with all instances of a given interned (sub-)term
pointing to that one stored representation. This can allow for a much more succinct
representation of sets of ground terms that share subterms. Importantly interned
ground terms, in principle, do not need to be copied into and out of tables.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 95

To take advantage of this possibility, a table must be declared as intern. As an
example of a possible use of this mechanism, consider a simple DCG that recognizes
all strings of a’s starting with a single b:

:— table bas/2 as intern.

bas --> [b].
bas -—> bas, [a].

This predicate must be tabled in order to terminate, since the grammar is left-
recursive. If we use the usual list representation of an input string and use variant
tabling, every call to bas/2 and every return will copy the remaining list into the
table, and recognition will be quadratic. (For example on my laptop, recognizing a
list of one b followed by 10,000 a’s takes about 1.84 seconds, and 20,000 a’s about
7.285 seconds.) If we table bas/2 as intern, the initial ground input list will be
interned (copied to intern space) on the first call, and after that every subsequent
call of bas/2 will be given an interned term, which need not be copied into (or out
of) the table. In this case the complexity will be linear. (For example on my laptop,
recognizing a list of one b and 1,000,000 a’s takes less than a second.)

When a table is declared as intern, at the time of a call, all arguments are
automatically interned (with intern_term/2) before the call is looked up in the table,
and on return, every answer is interned before being added to the table. Copying an
interned subterm into or out of a table requires just a pointer copy, which takes, of
course, constant time.

Because an interned term is treated just like a atom (with no indexing done on its
structure), tabling as intern always uses variant tabling, and thus cannot be combined
with subsumptive tabling. Also it cannot be combined with answer subsumption
tabling.

For more information on tabling as intern, see [93].

5.2.3 Table Scheduling Strategies

Recall that SLD resolution works by selecting a goal from a list of goals to be proved,
and selecting a program clause C' to resolve against that goal. During resolution of
a top level goal G, if the list of unresolved goals becomes empty, G succeeds, while if
there is no program clause to resolve against the selected goal from the list resolution
against G fails. In Prolog clauses are selected in the order they are asserted, while
literals are selected in a left-to-right selection strategy. Other strategies are possible

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 96

for SLD, and in fact completeness of SLD for definite programs depends on a non-
fixed literal selection strategy. This is why Prolog, which has a fixed literal selection
strategy is not complete for definite programs, even when they have bounded term-

depth.

Because tabling uses program clause resolution, the two parameters of clause selec-
tion and literal selection also apply to tabling. Tabling makes use of a dynamic literal
selection strategy for certain non-stratified programs (via the delaying mechanism
described in Section 5.3.2), but uses the same left-to-right literal selection strategy
as Prolog for definite programs. However, in tabling there is also a choice of when
to return derived answers to subgoals that consume these answers. While full discus-
sion of scheduling strategies for tabling is not covered here (see [30]) we discuss two
scheduling strategies that have been implemented for XSB Version 3.8 ©.

e Local Scheduling Local Scheduling depends on the notion of a subgoal dependency
graph. For the state of a tabled evaluation, a non-completed tabled subgoal Sy
directly depends on a non-completed subgoal Sy when S5 is in the SLG tree for
Sy — that is when S is called by S; without any intervening tabled predicate.
The edges of the subgoal dependency graph are then these direct dependency
relations, so that the subgoal dependency graph is directed. As mentioned, the
subgoal dependency graph reflects a given state of a tabled evaluation and so
may changed as the evaluation proceeds, as new tabled subgoals are encoun-
tered, or encountered in different contexts, as tables complete, and so on. As
with any directed graph, the subgoal dependency graph can be divided up into
strongly connected components, consisting of tabled subgoals that depend on
one another. Local scheduling then fully evaluates each maximal SCC (a SCC
that does not depend on another SCC) before returning answers to any subgoal
outside of the SCC 7.

e Batched Scheduling Unlike Local Scheduling, Batched Scheduling allows answers
to be returned outside of a maximal SCC as they are derived, and thus resembles
Prolog’s tuple at a time scheduling.

Both Local and Batched Scheduling have their advantages, and we list points of
comparison.

6Many other scheduling strategies are possible. For instance, [29] describes a tabling strategy im-
plemented for the SLG-WAM that emulates magic sets under semi-naive evaluation. This scheduling
strategy, however, is not available in Version 3.8 of XSB.

TXSB’s implementation maintains a slight over-approximation of SCCs — see [30].

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 97

Time for left recursion Batched Scheduling is somewhat faster than Local Schedul-
ing for left recursion as Local Scheduling imposes overhead to prevent answers
from being returned outside of a maximal SCC.

e Time to first answer Because Batched Scheduling returns answers out of an
SCC eagerly, it is faster to derive the first answer to a tabled predicate.

e Stack space Local evaluation generally requires less space than batched evalua-
tion as it fully explores a maximal SCC, completes the SCC’s subgoals, reclaims
space, and then moves on to a new SCC.

o [ntegration with cuts As discussed in Exercise 5.2.6 and throughout Section 5.2.4,
Local Scheduling integrates better with cuts, although this is partly because
tabled subgoals may be fully evaluated before the cut takes effect.

e Efficiency for call subsumption Because Local Evaluation completes tables ear-
lier than Batched Evaluation it may be faster for some uses of call subsumption,
as subsumed calls can make use of completed subsuming tables.

e Negation and tabled aggregation As will be shown below, Local Scheduling is
superior for tabled aggregation as only optimal answers are returned out of a
maximal SCC. Local Scheduling also can be more efficient for non-stratified
negation as it may allow delayed answers that are later simplified away to avoid
being propagated.

On the whole, advantages of Local Scheduling outweigh the advantages of Batched
Scheduling, and for this reason Local Scheduling is the default scheduling strategy
for Version 3.8 of XSB. XSB can be configured to use batched scheduling via the
configuration option -enable-batched-scheduling and remaking XSB. This will
not affect the default version of XSB, which will also remain available.

5.2.4 Interaction Between Prolog Constructs and Tabling

Tabling integrates well with most non-pure aspects of Prolog. Predicates with side-
effects like read/1 and write/1 can be used freely in tabled predicates as long as it
is remembered that only the first call to a goal will execute program clauses while the
rest will look up answers from a table. However, other extra-logical constructs like the
cut (1) pose greater difficulties. Tabling with call subsumption is also theoretically
precluded from correct interaction with certain meta-logical predicates.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 98

Cuts and Tabling The semantics for cuts in Prolog is largely operational, and
is usually defined based on an ordered traversal of an SLD search tree. Tabling, of
course, has a different operational semantics than Prolog — it uses SLG trees rather
than SLD trees, for instance — so it is not surprising that the interaction of tabling
with cuts is operational. In Prolog, the semantics for a cut can be expressed in the
following manner: a cut executed in the body of a predicate P frames from the top
(youngest end) of the choice point stack down to and including the call for P. In
XSB a cut is allowed to succeed as long as it does not cut over a choice point for a
non-completed tabled subgoal, otherwise, the computation aborts. This means, among
other matters, that the validity of a cut depends on the scheduling strategy used for
tabling, that is on the strategy used to determine when an answer is to be returned
to a consuming subgoal. Scheduling strategy was discussed Section 5.2.3: for now,
we assume that XSB’s default local scheduling is used in the examples for cuts.

Exercise 5.2.6 Consider the program

:— table cut_p/1, cut_qg/1, cut_r/0, cut_s/0.

cut_p(X) :- cut_q(X), cut_r.
cut_r :- cut_s.

cut_s :- cut_q().

cut_q(1). cut_q(2).

What solutions are derived for the goal 7-= cut_p(X) ? Suppose that cut_p/1 were
rewritten as

cut_p(X) :- cut_q(X), once(cut_r).

How should this cut over a table affect the answers generated for cut_p/1¢ What
happens if you rewrite cut_p/1 in this way and compile it in XSB? |

In Exercise 5.2.6, cut_p(1) and cut_p(2) should both be true. Thus, the cut in
the literal once (cut_r) must not inadvertently cut away solutions that are demanded
by cut_p/1. In the default local scheduling of XSB Version 3.8 tabled subgoals are
fully evaluated whenever possible before returning any of their answers. Thus the
first call cut_q(X) in the body of the clause for cut_p/1 is fully evaluated before
proceeding to the goal once(cut_r). Because of this any choice points for cut_q(X)
are to a completed table. For other scheduling strategies, such as batched scheduling,
non-completed choice points for cut_p/1 may be present on the choice point stack so
that the cut would be disallowed. In addition, it is also possible to construct examples
where a cut is allowed if call variance is used, but not if call subsumption is used.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 99

Example 5.2.2 A further example of using cuts in a tabled predicate is a tabled
meta-interpreter.

:— table demo/1.

demo (true) .
demo((A,B)) :— !, demo(A), demo(B).
demo(C) :- call(C).

More elaborate tabled meta-interpreters can be extremely useful, for instance to im-
plement various extensions of definite or normal programs. O

In XSB’s compilation, the cut above is compiled so that it is valid to use with
either local or batched (a non-default) evaluation. An example of a cut that is valid
neither in batched nor in local evaluation is as follows.

Example 5.2.3 Consider the program
:— table cut_a/1, cut_b/1.

cut_a(X):- cut_b(X).
cut_a(al).

cut_ b(X):- cut_a(X).
cut_b(bl).

For this program the goal 7- cut_a(X) produces two answers, as expected: al and
bl. However, replacing the first class of the above program with

cut_a(X):- once(cut b(X)).

will abort both in batched or in local evaluation. O

To summarize, the behavior of cuts with tables depends on dynamic operational
properties, and we have seen examples of programs in which a cut is valid in both
local and batched scheduling, in local but not batched scheduling, and in neither
batched nor local scheduling. In general, any program and goal that allows cuts in
batched scheduling will allow them in local scheduling as well, and there are programs
for which cuts are allowed in local scheduling but not in batched.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 100

Finally, we note that in Version 3.8 of XSB a “cut” over tables implicitly occurs
when the user makes a call to a tabled predicate from the interpreter level, but does
not generate all solutions. This commonly occurs in batched scheduling, but can also
occur in local scheduling if an exception occurs. In such a case, the user will see the
warning "Removing incomplete tables..." appear. Any complete tables will not
be removed. They can be abolished by using one of XSB’s predicates for abolishing
tables.

Call Subumption and Meta-Logical Predicates Meta-logical predicates like
var/1 can be used to filter the choices made during an evaluation. However, this is
dangerous when used in conjunction with call subsumption, since call subsumption
assumes that if a specific relation holds — e.g., p(a) — then a more general query —
e.g., p(X) — will also hold.

Example 5.2.4 Consider the following simple program
p(X) - var(X), X = a.
to which the queries

7- p(X).
7- p(a).

are posed. Let us compare the outcome of these queries when p/1 is (1) a Prolog
predicate, (2) a variant-tabled predicate, and (3) a subsumptive-tabled predicate.

Both Prolog and variant-based tabling yield the same solutions: X = a and no, re-
spectively. Under call subsumption, the query ?- p(X) . likewise results in the solution
X = a. However, the query 7- p(a) . is subsumed by the tabled subgoal p(X) — which
was entered into the table when that query was issued — resulting in the incorrect an-
swer yes. a

As this example shows, incorrect answers can result from using meta-logical with
subsumptive predicates in this way.

5.2.5 Potential Pitfalls in Tabling

Over-Tabling While the judicious use of tabling can make some programs faster,
its indiscriminate use can make other programs slower. Naively tabling append/3

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 101

append([],L,L).
append ([H|T],L, [H|T1]) :- append(T,L,T1).

is one such example. Doing so can, in the worst case, copy N sublists of the first and
third arguments into the table, transforming a linear algorithm into a quadratic one.

Exercise 5.2.7 If you need convincing that tabling can sometimes slow a query down,
type the query:

7- genlist(1000,L), prolog_append(L, [a],Out).
and then type the query

7- genlist(1000,L), table_append(L, [a],0ut).
append/3 is a particularly bad predicate to table. Type the query

7- table_append(L, [a],0ut).

leaving off the call to genlist/2, and backtrack through a few answers. Will table_append/3
ever succeed for this predicate? Why not?

Suppose DCG predicates (Section 11) are defined to be tabled. How is this similar
to tabling append? a

We note that XSB has special mechanisms for handling tabled DCGs. See Section 11
for details.

Tabled Predicates and Tracing Another issue to be aware of when using tabling
in XSB is tracing. XSB’s tracer is a standard 4-port tracer that interacts with the
engine at each call, exit, redo, and failure of a predicate (see Chapter 10). When
tabled predicates are traced, these events may occur in unexpected ways, as the
following example shows.

Exercise 5.2.8 Consider a tabled evaluation when the query ?- a(0,X) s given to
the following program

:— table mut_ret_a/2, mut_ret_b/2.
mut_ret_a(X,Y) :- mut _ret d(X,Y).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 102

mut ret a(X,Y) :- mut ret b(X,Z),mut ret c(Z,Y).

mut_ret b(X,Y) :- mut _ret c(X,Y).
mut_ret b(X,Y) :- mut ret a(X,Z),mut _ret d(Z,Y).

mut_ret_c(2,2). mut_ret c(3,3).

mut_ret d(0,1). mut_ret d(1,2). mut_ret d(2,3).

mut_ret_a(0,1) can be derived immediately from the first clause of mut_ret_a/2.
All other answers to the query depend on answers to the subgoal mut_ret _b(0,X)
which arises in the evaluation of the second clause of mut_ret_a/2. Fach answer
to mut_ret _b(0,X) in turn depends on an answer to mut_ret_a(0,X), so that the
evaluation switches back and forth between deriving answers formut_ret_a(0,X) and
mut_ret_b(0,X).

Try tracing this evaluation, using creep and skip. Do you find the behavior intuitive
or not? a

5.3 Normal Programs

Normal programs extend definite programs to include default negation, which posits
a fact as false if all attempts to prove it fail. As shown in Example 1.0.1, which
presented one of Russell’s paradoxes as a logic program, the addition of default nega-
tion allows logic programs to express contradictions. As a result, some assertions,
such as shaves(barber,barber) may be undefined, although other facts, such as
shaves (barber,mayor) may be true. Formally, the meaning of normal programs
may be given using the well-founded semantics and it is this semantics that XSB
adopts for negation (we note that in Version 3.8 the well-founded semantics is imple-
mented only for variant-based tabling).

5.3.1 Stratified Normal Programs

Before considering the full well-founded semantics, we discuss how XSB can be used
to evaluate programs with stratified negation. Intuitively, a program uses stratified
negation whenever there is no recursion through negation. Indeed, most programmers,
most of the time, use stratified negation.

Exercise 5.3.1 The program

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 103

win(X) :- move(X,Y) ,tnot (win(Y)).
is stratified when the move/2 relation is a binary tree. To see this, load the files
treelk.P and table_examples.P from the directory $XSB_DIR/examples and type
the query

?7- win(1).

win(1) calls win(2) through negation, win(2) calls win(4) through negation, and so
on, but no subgoal ever calls itself recursively through negation.

The previous example of win/1 over a binary tree is a simple instance of a stratified
program, but it does not even require tabling. A more complex example is presented
below.

Exercise 5.3.2 Consider the query 7= lrd_s to the following program

lrd p:- 1lrd_q,tnot(lrd_r),tnot(lrd_s).
lrd_q:- lrd_r,tnot(lrd_p).

lrd r:- 1lrd_p,tnot(lrd_q).

lrd_s:- tnot(lrd_p),tnot(lrd_q),tnot(lrd_r).

Should 1rd_s be true or false? Try it in XSB. Using the intuitive definition of
“stratified” as not using recursion through negation, is this program stratified? Would
the program still be stratified if the order of the literals in the body of clauses for
1lrd_p, 1rd_q, or 1rd_r were changed?

The rules for p, q and r are involved in a positive loop, and no answers are ever
produced. Each of these atoms can be failed, thereby proving s. Exercise 5.3.2
thus illustrates an instance of how tabling differs from Prolog in executing stratified

programs since Prolog would not fail finitely for this program ®.

Completely Evaluated Subgoals Knowing when a subgoal is completely eval-
uated can be useful when programming with tabling. Simply put, a subgoal S is

8LRD-stratifiedstratification may be reminiscent of the Subgoal Dependency Graphs of Sec-
tion 5.2.3 but differ in several respects, most notably in that stratification considers only cycles
through negative dependencies.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 104

completely evaluated if an evaluation can produce no more answers for S. The com-
putational strategy of XSB makes great use of complete evaluation so that under-
standing this concept and its implications can be of great help to a programmer.

Consider a simple approach to incorporating negation into tabling. Each time a
negative goal is called, a separate table is opened for the negative call. This evaluation
of the call is carried on to termination. If the evaluation terminates, its answers if
any, are used to determine the success of failure of the calling goal. This general
mechanism underlies early formulations for tabling stratified programs [12, 75]. Of
course this method may not be efficient. Every time a new negative goal is called, a
new table must be started, and run to termination. We would like to use information
already derived from the computation to answer a new query, if at all possible — just
as with definite programs.

XSB addresses this problem by keeping track of the state of each subgoal in the
table. A call can have a state of complete, incomplete or not_yet_called. Calls that
do have table entries may be either complete or incomplete. A subgoal in a table is
marked complete only after it is determined to be completely evaluated; otherwise
the subgoal is incomplete. If a tabled subgoal is not present in the table, it is termed
not_yet called. XSB contains predicates that allow a user to examine the state of a
given table (Section 6.15).

There are in fact two ways that a tabled subgoal S can be determined to be
completely evaluated. If S is part of an SCC S, (a mutually recorsive component),
then S can be completed once it is ensure that all resolution steps have been done to
all subgoals in §. Otherwise, if there is a derivation of an answer that is identical to
S, S can be completed before the rest of the subgoals in § since further evaluation
of §' itself will not produce useful information. In this case, we sometimes say that S
is early completed.

Using these concepts, we can overview how tabled negation is evaluated for strati-
fied programs. If a literal tnot (S) is called, where S is a tabled subgoal, the evaluation
checks the state of S. If S is complete the engine simply determines whether the table
contains an answer for S. Otherwise the engine suspends the computation path lead-
ing to tnot (S) until S is completed (and calls S if necessary). Whenever a suspended
subgoal tnot(S8) is completed with no answers, the engine resumes the evaluation
at the point where it had been suspended. We note that because of this behavior,
tracing programs that heavily use negation may produce behavior unexpected by the
user.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 105

tnot/1 vs. '\ +'/1 Subject to some semantic restrictions, an XSB programmer
can intermix the use of tabled negation (tnot/1) with Prolog’s negation ("\ +'/1, or
equivalently fail if/1 or not/1). These restrictions are discussed in detail below
— for now we focus on differences in behavior or these two predicates in stratified
programs. Recall that "\ +' (S) calls S and if S has a solution, Prolog executes a cut
over the subtree created by '\ +' (S), and fails. tnot/1 on the other hand, does not
execute a cut, so that all subgoals in the computation path begun by the negative
call will be completely evaluated. The major reason for not executing the cut is
to ensure that XSB evaluates ground queries to Datalog programs with negation
with polynomial data complexity. As seen [10], this property cannot be preserved if
negation “cuts” over tables.

There are other small differences between tnot/1 and '\ +'/1 illustrated in the
following exercise.

Exercise 5.3.3 In general, making a call to non-ground negative subgoal in Prolog
may be unsound (cf. [53]), but the following program illustrates a case in which
non-ground negation is sound.

ngr p:- \+ ngr p().
ngr_p(a).

One tabled analog is

:= table ngr_tp/1.
ngr_tp(a).

ngr_tp:- tnot(ngr_tp()).

Version 3.8 of XSB will flounder on the call to ngr_tp, but not on the call to ngr_p/0.
On the other hand if not_exists/1 is used

ngr_skp:- not_exists(ngr_tp()).
the non-ground semantics is allowed.
not_exists/1 works by asserting a new tabled subgoal, abstractly

:— table ’_$ngr_tp’
> $skolem _ngr tp’ :- ngr_tp().

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 106

to avoid the problem with variables. In addition, since not_exists/1 creates a new
tabled predicate, it can be used to call non-tabled predicates as well, ensuring tabling.

The description of tnot/1 in Section 6.5 describes other small differences between
"\ +'/1 and tnot/1 as implemented in XSB. Before leaving the subject of stratifi-
cation, we note that the concepts of stratification also underly XSB’s evaluation of
tabled findall: tfindall/3. Here, the idea is that a program is stratified if it con-
tains no loop through tabled findall (See the description of predicate tfindall/3 on
page 238).

5.3.2 Non-stratified Programs

As discussed above, in stratified programs, facts are either true or false, while in
non-stratified programs facts may also be undefined. XSB represents undefined facts
as conditional answers.

Conditional Answers
Exercise 5.3.4 Consider the behavior of the win/1 predicate from Exercise 5.53.1.
win(X) :— move(X,Y) ,tnot (win(Y)).

when the when the move/2 relation is a cycle. Load the file $XSB_DIR/examplescyclelk.P
into XSB and again type the query 7= win(1). Does the query succeed? Trytnot(win(1)).

Now query the table with the standard XSB predicate get_residual/2, e.g. 7-
get_residual(win(1),X). Can you guess what is happening with this non-stratified
program?

The predicate get_residual/2 (Section 6.15) unifies its first argument with a
tabled subgoal and its second argument with the (possibly empty) delay list of that
subgoal. The truth of the subgoal is taken to be conditional on the truth of the
elements in the delay list. Thus win(1) is conditional on tnot(win(2)), win(2) in
tnot (win(3)) and so on until win(1023) which is conditional on win(1).

From the perspective of the well-founded semantics, win(1) is undefined. In-
formally, true answers in the well-founded semantics are those that have a (tabled)
derivation. False answers are those for which all possible derivations fail — either
finitely as in Prolog or by failing positive loops. win(1) fits in neither of these cases
— there is no proof of win(1), yet it does not fail in the sense given above and is thus
undefined.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 107

However this explanation does not account for why undefined answers should be
represented as conditional answers, or why a query with a conditional answer and its
negation should both succeed. These features arise from the proof strategy of XSB,
which we now examine in more detail.

Exercise 5.3.5 Consider the program

:— table simpl_p/1,simpl_r/0,simpl_s/0.
simpl p(X):- tnot(simpl_s).

simpl s:- tnot(simpl_r).
simpl s:- simpl p(X).

simpl r:- tnot(simpl_s),simpl r.

Try the query ?7- simpl_p(X). If you have a copy of XSB defined using Batched
Scheduling load the examples program and query 7- simpl_p(X) - be sure to backtrack
through all possible answers. Now try the query again. What could possibly account
for the difference in behavior between Local and Batched Scheduling?

At this point, it is worthwhile to examine closely the evaluation of the program in
Exercise 5.3.5. The query simpl p(X) calls simpl_s and simpl_r and executes the
portion of the program shown below in bold:

simpl__p(X):- tnot(simpl_s).

simpl__s:- tnot(simpl_ r).
simpl__s:- simpl_ p(X).

simpl__r:- tnot(simpl__s),simpl_r.

Based on evaluating only the bold literals, the three atoms are all undefined since
they are neither proved true, nor fail. However if the evaluation could only look at
the literal in italics, simpl_r, it would discover that simpl r is involved in a positive
loop and, since there is only one clause for simpl r, the evaluation could conclude
that the atom was false. This is exactly what XSB does, it delays the evaluation of
tnot (simpl_s) in the clause for simpl_r and looks ahead to the next literal in the
body of that clause. This action of looking ahead of a negative literal is called delay-
ing. A delayed literal is moved into the delay list of a current path of computation.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 108

Whenever an answer is derived, the delay list of the current path of computation is
copied into the table. If the delay list is empty, the answer is unconditional; otherwise
it is conditional. Of course, for definite programs any answers will be unconditional
— we therefore omitted delay lists when discussing such programs.

In the above program, delaying occurs for the negative literals in clauses for
simpl_p(X), simpl_s, and simpl_r. In the first two cases, conditional answers can
be derived, while in the third, simpl_r will fail as mentioned above. Delayed literals
eventually become evaluated through simplification. Consider an answer of the form

simpl p(X):- tnot(simpl_s) |

where the | is used to represent the end of the delay list. If, after the answer is
copied into the table, simpl_s turns out to be false, (after being initially delayed),
the answer can become unconditional. If simpl_s turns out to be true, the answer
should be removed, it is false.

In fact, it is this last case that occurs in Exercise 5.3.5. The answer
simpl p(X):- tnot(simpl_s) |

is derived, and returned to the user (XSB does not currently print out the delay
list). The answer is then removed through simplification so that when the query is
re-executed, the answer does not appear.

We will examine in detail how to alter the XSB interface so that evaluation of
the well-founded semantics need not be confusing. It is worthwhile to note that the
behavior just described is uncommon.

Version 3.8 of XSB handles dynamically stratified programs through delaying neg-
ative literals when it becomes necessary to look to their right in a clause, and then
simplifying away the delayed literals when and if their truth value becomes known.
However, to ensure efficiency, literals are never delayed unless the engine determines
them to not to be stratified under the LRD-stratified evaluation method.

When Conditional Answers are Needed A good Prolog programmer uses the
order of literals in the body of a clause to make her program more efficient. However,
as seen in the previous section, delaying can break the order that literals are evaluated
within the body of a clause. It then becomes natural to ask if any guarantees can be
made that XSB is not delaying literals unnecessarily.

Such a guarantee can in fact be made, using the concept of dynamic stratification
[62]. Without going into the formalism of dynamic stratification, we note that a

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 109

program is dynamically stratified if and only if it has a two-valued model. It is also
known that computation of queries to dynamically stratified programs is not possible
under any fixed strategy for selecting literals within the body of a clause. In other
words, some mechanism for breaking the fixed-order literal selection strategy must
be used, such as delaying.

However, by redefining dynamic stratification to use an arbitrary fixed-order lit-
eral selection strategy (such as the left-to-right strategy of Prolog), a new kind of
stratification is characterized, called Left-to-Right Dynamic Stratification, or LRD-
stratification. LRD-stratified is not as powerful as dynamic stratification, but is more
powerful than other fixed-order stratification methods, and it can be shown that for
ground programs, XSB delays only when programs are not LRD-stratified. In the
language of [71] XSB is delay minimall.

Programming in the Well-founded Semantics XSB delays literals for non-
LRD-stratified programs and later simplifies them away. In Local Scheduling, all
simplification will be done before the first answer is returned to the user. In Batched
Scheduling it is usually better to make a top-level call for a predicate, p as follows:

?- p,fail ; p.

when the second p in this query is called, all simplification on p will have been
performed. However, this query will succeed if p is true or undefined.

Exercise 5.3.6 Write a predicate wfs_call(+Tpred,?Val) such that if Tpred is
a ground call to a tabled predicate, wfs_call(+Tpred,?Val) calls Tpred and uni-
fies Val with the truth value of Tpred under the well-founded semantics. Hint: use
get_residual/2.

How would you modify wfs_call(?Tpred,?Val) so that it properly handled cases
in which Tpred is non-ground.

Trouble in Paradise: Answer Completion The engine for XSB performs both
program clause and answer resolution, along with delay and simplification. What it
does not do is to perform an operation called answer completion which is needed in
certain (pathological?) programs.

Exercise 5.3.7 Consider the following program:

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 110

:— table ac_p/1l,ac_r/0,ac_s/0.
ac_p(X):- ac_pX).
ac_p(X):- tnot(ac_s).

ac_s:- tnot(ac_r).
ac_s:- ac_pX).

ac_r:- tnot(ac_s),ac_r.

Using either the predicate from Fxercise 5.3.6 or some other method, determine
the truth value of ac_p(X). What should the value be? (hint: what is the value of
ac_s/1%).

For certain programs, XSB will delay a literal (such as ac_p(X) that it will not
be able to later simplify away. In such a case, an operation, called answer completion
is needed to remove the clause

ac_p(X):- ac_pX) |

Without answer completion, XSB may consider some answers to be undefined rather
than false. It is thus is sound, but not complete for terminating programs to the well-
founded semantics. Answer completion is not available for Version 3.8 of XSB, as it
is expensive and the need for answer completion arises rarely in practice. However
answer completion will be included at some level in future versions of XSB.

5.3.3 On Beyond Zebra: Implementing Other Semantics for
Non-stratified Programs

The Well-founded semantics is not the only semantics for non-stratified programs.
XSB can be used to (help) implement other semantics that lie in one of two classes. 1)
Semantics that extend the well-founded semantics to include new program constructs;
or 2) semantics that contain the well-founded partial model as a submodel.

An example of a semantics of class 1) is (WFSX) [3], which adds explicit (or
provable) negation to the default negation used by the Well-founded semantics. The
addition of explicit negation in WFSX, can be useful for modeling problems in do-
mains such as diagnosis and hierarchical reasoning, or domains that require updates
[47], as logic programs. WFSX is embeddable into the well-founded semantics; and

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 111

this embedding gives rise to an XSB meta-interpreter, or, more efficiently, to the pre-
processor described in Section Extended Logic Programs in Volume 2. See [79] for an
overview of the process of implementing extensions of the well-founded semantics.

An example of a semantics of class 2) is the stable model semantics. Every stable
model of a program contains the well-founded partial model as a submodel. As a
result, the XSB can be used to evaluate stable model semantics through the residual
program, to which we now turn.

The Residual Program Given a program P and query @, the residual program
for @ and P consists of all (conditional and unconditional) answers created in the
complete evaluation of ().

Exercise 5.3.8 Consider the following program.

:— table ppgte_p/0,ppgte_q/0,ppgte_r/0,ppgte_s/0,
ppgte_t/0,ppgte_u/0,ppgte_v/0.

ppgte_p:- ppgte_qg. ppgte_p:- ppgte_r.
prgte_q:- ppgte_s. prgte_r:- ppgte_u.
ppgte_q:- ppgte_t. ppgte_r:- ppgte_v.
ppgte_s:— ppgte_w. ppgte_u:- undefined.
ppgte_t:- ppgte_x. ppgte_v:- undefined.
ppgte_w:- ppgte(1). ppgte_x:- ppgte(0).
ppgte_w:- undefined. ppgte_x:- undefined.
ppgte(0).

:— table undefined/O0.
undefined:- tnot(undefined).

Write a routine that uses get_residual/2 to print out the residual program for the
query 7- ppgte_p,fail. Try altering the tabling declarations, in particular by mak-
ing ppgte_q/0, ppgte_r/0, ppgte_s/0 and ppgte_t/0 non-tabled. What effect does
altering the tabling declarations have on the residual program?

When XSB returns a conditional answer to a literal L, it does not propagate the
delay list of the conditional answer, but rather delays L itself, even if L does not

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 112

occur in a negative loop. This has the advantage of ensuring that delayed literals are
not propagated exponentially through conditional answers.

Stable Models Stable models are one of the most popular semantics for non-
stratified programs. The intuition behind the stable model semantics for a ground
program P can be seen as follows. Each negative literal notL in P is treated as a
special kind of atom called an assumption. To compute the stable model, a guess is
made about whether each assumption is true or false, creating an assumption set, A.
Once an assumption set is given, negative literals do not need to be evaluated as in
the well-founded semantics; rather an evaluation treats a negative literal as an atom
that succeeds or fails depending on whether it is true or false in A.

Example 5.3.1 Consider the simple, non-stratified program

writes_manual (terry)-—writes_manual (kostis) ,has_time(terry).
writes_manual (kostis)-—writes_manual (terry) ,has_time(kostis).
has_time(terry).

has time(kostis).

there are two stable models of this program: in one writes_manual (terry) is true,
and in another writes_manual (kostis) is true. In the Well-Founded model, neither
of these literals is true. The residual program for the above program is

writes_manual (terry)-—writes_manual (kostis).
writes_manual (kostis)-—writes_manual (terry).
has_time(terry).

has time(kostis).

Computing stable models is an intractable problem, meaning that any algorithm
to evaluate stable models may have to fall back on generating possible assumption
sets, in pathological cases. For a ground program, if it is ensured that residual clauses
are produced for all atoms, using the residual program may bring a performance gain
since the search space of algorithms to compute stable models will be correspondingly
reduced. In fact, by using XSB in conjunction with a Stable Model generator, Smodels
[60], an efficient system has been devised for model checking of concurrent systems
that is 10-20 times faster than competing systems [52]. In addition, using the XASP
package (see the separate manual, [13] in XSB’s packages directory) a consistency
checker for description logics has also been created [30].

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 113

5.4 Answer Subsumption

By default XSB adds an answer A to a table T" only if A is not a variant of some other
answer already in 7', a technique termed answer variance. While answer variance is
sufficient to allow tabling to compute the well-founded semantics and to terminate
for programs with bounded term-depth, other choices of when and how to add an
answer can be made. Using partial order answer subsumption, A would be added
to T only if A is maximal with respect to other answers in 7" according to a given
partial order >o. Furthermore if A is added, any answers in 7" that A subsumes
(i.e., is greater than in >¢) are deleted. When using lattice answer subsumption, A
itself may not be added to T', rather the join is taken of A and another answer A’ in
T, with A’ being deleted. Despite its conceptual simplicity, answer subsumption can
be a powerful tool. Partial order answer subsumption allows a table to retain only
answers that are maximal according to a metric or to a preference relation; lattice
answer subsumption can form the basis of multi-valued logics, quantitative logics,
and of abstract interpretations for programs and process logics.

5.4.1 Types of Answer Subsumption
Partial Order Answer Subsumption.

We illustrate the use of partial order answer subsumption through a shortest-path
predicate (Figure 5.1) that counts the number of edges between two vertices.

sp(X,Y,1):- edge(X,Y).
sp(X,Z,N):- sp(X,Y,N1),edge(Y,Z),N is N1 + 1.

Figure 5.1: A Shortest Path Predicate

As mentioned above, partial-order answer subsumption retains in a table T" only
those answers that are maximal according to a given partial order >¢. In the case of
the shortest-path predicate of Figure 5.1, sp(Ay, Ay, A3) >0 sp(Bi, Bs, Bs) if, A; =
By, Ay = By, and A3z < Bs. Note that that minimal distances are maximal in <,
and that <o is undefined if As or Bz is non-numeric. In XSB, partial order answer
subsumption is specified for sp/3 using the declaration

1= table sp(_,_,po((<)/2)).

In a given state of computation, only those answers that are maximal according to >¢
are available for resolution. Thus, for a finite graph with cycles, sp/3 will terminate

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 114

using answer subsumption, but not with answer variance. Other partial orders beyond
distance metrics may be useful. For instance, >¢ may specify a preference ordering
between derived atoms so that answer subsumption provides an alternative to default-
based methods for computing preferences.

The treatment of variables in calls to partial order answer subsumptive tabled
predicates deserves mention. Variables in arguments not in the subsumption position
are treated as “group-by” variables: i.e., for each value such a variable can take, a
different aggregate is computed. So for example a call to sp(a,X,SD) will succeed for
each node reachable from a, binding X to that node and SD to the shortest distance
from a to that node. One can place a ~ in a non-subsumption position of table
declaration, e.g.,

:— table sp(_, ,po((<)/2)).

to indicate that values of that position should be aggegated over. For example, with
this table declaration, the call sp(a,X,SD) will find the distance to the closest node
reachable from a, (which, if a has any successors, will be 1, since a successor to a will
be a nearest reachable successor at distance 1 from a.)

Non-variables in the subsumption position in a call will be treated as selecting
what answers are included in the aggregation.

Lattice Answer Subsumption.

An upper semi-lattice is a partial order for which any two elements have a unique
least upper bound. Because the ordering for the third argument of sp/3 is total,
it also forms an upper semi-lattice, and so can be computed using lattice answer
subsumption. ?. In XSB lattice answer subsumption for sp/3 is declared as

:- table sp(_,_,lattice(min/3)).

with min/3 defined as min(X,Y,Z):- Z is min(X,Y). Operationally, this means
that whenever an answer sp(Aj, Ay, A3) is derived, if there is another answer sp(By, Bo, B3)
where A; = By and Ay = B the join J3 of A3 and By is taken, and only sp(A;, As, J3)

is available for resolution. As with a partial order, the join operation ensures termi-
nation for shortest path over a finite graph with cycles.

As the following proposition shows, lattice answer subsumption can be modeled
either starting with a lattice, or starting with a function with appropriate properties.

9The terminology lattice answer subsumption is employed even though only the join of the lattice
is used.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 115

Proposition 5.4.1 Let op be an associative, commutative, and idempotent binary
function. Then there is a partial order P, such that P is an upper semi-lattice with
join op.

Conversely, if a function does not have the above properties, it is not suitable for
lattice answer subsumption. Accordingly the aggregate functions count and sum
cannot be computed using lattice answer subsumption . Lattice answer subsumption
has a variety of applications. [$4] shows how it is used for social-network analysis and
Section 5.4.2 shows its use for an application of multi-valued logics, [79] describes how
a similar formalism can implement a quantitative logic, and [65, 66] describes how
XSB’s PITA package is based on answer subsumption (see Volume 2 of this manual).

Partial Order Answer Subsumption with Abstraction.

Computation over an abstract domain may require certain maximal answers to be
abstracted. In many cases, abstraction can be modeled by a join operation, but
in others the abstraction represents an implicit induction step in the following sense.
Given a set A of answers, it may be detected that the program computed does not have
a finite model. An abstraction operation then is applied so that A and its extensions
can be symbolically represented by a single answer A. Using answer subsumption,
this abstraction can be taken only if needed during program execution. Abstractly,
partial order answer subsumption with abstraction uses the declaration

:- table p(_,_,po(rel/2,abs/3)).

where rel/2 is a partial order, and abs/3 is the abstraction operation. Section 5.4.2
provides a detailed example of how such an approach is used to analyze a process
logic.

5.4.2 Examples of Answer Subsumption

Answer Subsumption and Abstract Interpretation

Net-style formalisms, such as Petri Nets, Workflow Nets, etc. have been used exten-
sively for process modeling. Reachability is a central problem in analyzing properties

10Since count and sum are not idempotent their semantics is based on multi-sets, rather than
sets. Incorporating these as tabling features requires modifying their semantics to be set-based, in
a manner similar to aggregation ASP systems.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 116

t1 s2 t3 s4

sl(?—» g—> s3—>@ t4

Figure 5.2: A PT-net and configuration with an infinite number of reachable config-
urations

of such nets, to which properties such as liveness, deadlock-freedom, and the ex-
istence of home states can be reduced. However, many interesting net formalisms
cannot guarantee a finite number of configurations in a given net, so abstraction
methods must be applied for their analysis.

For instance, the lack of finiteness is a problem in analyzing Place/Transition
(PT) Nets. PT nets have no guard conditions or after-effects, and do not distinguish
between token types. However, PT nets do allow a place to hold more than one token,
leading to a potentially infinite number of configurations. This can be seen in the
simple network of Figure 5.2 (from [26]) in which transitions are denoted by squares
and places by circles. Each transition removes one token from the places that are the
sources of its input edges and adds one token to each place at the target of each of its
output edges. Starting from the configuration in Figure 5.2, repeated application of
transition t1 leads to place s2 containing an unbounded number of tokens; repeated
application of the sequence t1,t2,t3,t4 leads to place s4 containing an unbounded
number of tokens.

Despite such examples, reachability in PT nets is decidable and can be determined
using an abstraction method called w-sequences, (see e.g. [20]). The main idea in
determining w sequences is to define a partial order >, on configurations as follows.
If configurations C; and C5 are both reachable, C'y and C5 have tokens in the same
set PL of places, ('] has at least as many tokens in each place as (5, and there exists
a non-empty PLg,, C PL, such that for each pl € Pl,,, C; has strictly more tokens
than Cs, then C7 >, C5. When evaluating reachability, if C5 is reached first, and
then C; was subsequently reached, C is abstracted by marking each place in P L,
with the special token w which is taken to be greater than any integer. If C; was
reached first and then Cs, () is treated as having already been seen.

Tabling combined with partial order answer subsumption requires slightly over
100 lines of code to model reachability in PT nets using w-sequences. Due to space
restrictions, the program cannot be fully described here, but the top-level reachability
predicate is shown in Figure 5.3. Despite its succinctness, it can evaluate reachability

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 117

:— table reachable(_,po(omega_gte/2,omega_abs/3)) .
reachable (InConf ,NewConf) : -
reachable(InConf ,NewConf),
hasTransition(Conf,NewConf) .
reachable(InConf ,NewConf) :— hasTransition(InConf ,NewConf) .

Figure 5.3: Top-level predicate for PT net reachability

in networks with millions of states in a few minutes. This use of tabling to determine
reachability in PT nets can be seen as a special case of tabling for abstract interpre-
tation (cf. [11] and other works). However the framework for answer subsumption
described here allows tabling to be used to efficiently perform abstract interpretation
within a general Prolog system

Scalability for multi-valued and quantitative logics

The technique of program justification (cf. e.g. [(1]) has been used for debugging
tabled programs that cannot be debugged by traditional means. Here, we consider
justification in the context of the Silk system, currently under development at Vulcan,
Inc. Silk is a commercial knowledge representation and rule system built on top of
Flora-2, which is implemented using XSB. One of the salient features of Silk is its
default reasoning, which is based on a parameterized argumentation theory evaluated
under the well-founded semantics [91]. One issue in using Silk is that knowledge
engineers must have a way of understanding the reasoning of the system, a task
complicated by the use of the well-founded semantics and the intricacies of the argu-
mentation theory. We describe an experimental approach to justification of Silk-style
argumentation theories using multi-valued logics.

As noted in [91], argumentation theories in Silk are usually extensions of the
default theories of Courteous Logic Programs (CLP) and are based on two user-
defined predicates: opposes/2 and overrides/2. Two atoms oppose each other if no
model of a program can contain both atoms: an atom and its explicit negation oppose
each other, but opposition can capture many other types of contradictions. Given
two opposing atoms, one atom may override the other, and so be given preference.
For atoms A; and A,, if A; and A, are both derivable and oppose each other but
neither overrides the other, A; and A, mutually rebut each other. If in addition Aq,
say, overrides A,, A; refutes Ay '*. Within Silk and Flora-2, the compilation of an
argumentation theory ensures that rebutted atoms have an undefined truth value, as

HTn [91] argumentation theories are built on named rules, here we base them on derived atoms.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 118

t

op
true Q default false
ally re
refuted true default refuted false
mutualT rebutted

bottom

Figure 5.4: A Truth Lattice for a Simplified Version of Courteous Argumentation
Theory

do atoms that refute themselves (i.e. if the overrides/2 predicate is cyclic). However,
for justification, it is meaningful to distinguish those facts that are undefined due to
a negative loop in the argumentation theory from those that are undefined due to
a negative loop in the program itself. In addition, it is meaningful to distinguish
an atom that is true because it overrides some other atom, from an atom whose
derivation does not depend on the argumentation theory. Similar distinctions can be
made for default false literals leading to the truth lattice shown in Figure 5.4.

5.4.3 Term-Sets

XSB provides support for a programming technique for representing sets of terms,
called term-sets. (While it is not closely related to answer subsumption, it is par-
tially implemented through tabling and a table declaration, and so this facility is
documented here.)

We begin in an example. We can represent a set of Prolog terms by using a
particular term of the form {Var:Goal} where Goal has (only) Var free in it. Then
we will use this set-term to represent the set of terms obtained by evaluating Goal
and taking the values of Var that are obtained. I.e., they would be the terms in the
list L returned by the Prolog call to setof (Var,Goal,L). For example, the set-term:

{X : member(X,[a,b,c])}

represents the set of terms {a,b,c}.

Now a term-set is a Prolog term that may contain set-terms as subterms. For
example,

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 119

m({X:member (X, [a,b,c])},g(d,{Y:member(Y, [e,f,g])}) ,h)

is a term-set, and it represents the set of terms obtained from it by replacing (re-
cursively) any embedded set-term by a term in that set-term. So the above term-set
represents the 9 terms:

m(a,g(d,e),h) m(a,g(d,f),h) m(a,g(d,g),h)
m(b,g(d,e),h) m(b,g(d,f),h) m(b,g(d,g) ,h)
m(c,g(d,e) ,h) m(c,g(d,f),h) m(c,g(d,g) ,h)

This example shows an advantage of this representation. Say a term-set has k sub-
set-terms each of which is of the member form in this example where each member has
a list of atoms of length n. To represent this set of terms explicitly takes O(n*) space,
whereas to represent them with the term-set takes only O(n x k) space. So a term-set
representation can take exponentially less space than an explicit representation.

It is relatively easy to write a predicate, member_ termset/2, which takes a variable
and a term-set and nondeterministically generates all concrete terms represented by
the term-set, called extensionalizing the term-set. Some care must be taken since a
call to goal to extensionalize a set-term may itself return a term-set. Also term-sets
can be self-recursive and thus represent infinitely many Prolog terms. For example,
consider the term-set:

{X : p(X)} where
p(a).
pEHX:pXOM)).

This term-set represents the terms for which p/1 is true. Now p(a) is true, so a is
in the term-set. Since a is in {X:p(X)}, then p(£f(a)) is true because of the second
fact for p/1, and so f(a) is in the term-set. And so on. So this term-set contains the
infinitely many terms:

a, f(a), £(f(a)), £(£(f(a))),

A particularly interesting use of term-sets is in conjunction with tabling. Consider
the term-set {X:p(1,2,X)} where p/3 is tabled. If p(1,2,_} has been called and so
its table is filled, then extensionalizing this term-set requires just a table lookup; in
some sense we can think of such a term-set as standing for a pointer into a table to a
set of terms. This can be elegantly used to solve an important problem in handling
parse trees in context-free parsing.

Consider the following DCG for the language a*:

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 120

:— table a/3.
a(a(P1,P2)) --> a(P1),a(P2).
a(a) ——> [a].

which recognizes a string of a’s and constructs its parse trees.

To generate all answers, this DCG will take time exponential in the length of the
input string; not surprising since there are exponentially many parses. But say we
give it an input string of n a’s followed by one b. In this case it will take exponential
time to fail, since it will construct all the exponentially many partial parse trees for
the initial £ a’s. We would like the parser in this case to fail in polynomial time. We
can do this by representing the parse trees as a term-set during the recognition of
the string. Then after the string is recognized, we extensionalize the set-term that
represents the parse trees. In this way we can get the behavior we want. The set-term
that represents the parse trees for any grammar will be constructed in polynomial
time; the extensionalization of that term-set will take exponential time only if there
are exponentially many parses.

We can cause XSB to automatically use the term-set representation for the gram-
mar by adding to the above program the declaration:

:— table a(termset, ,).

which tells XSB to use the term-set representation of the first argument of nonterminal
a/3.

With this declaration, the XSB compiler transforms the above program into the
following;:

:— table a/3.

a(a(P1,P2),80,S) :- ’_%$a’(P1,80,51),’_$a’(P2,51,9).
a(a,s0,S1) --> °C’(S80,a,S1).

:— table ’_$a’/3 as subsumptive.
’_$a’ ({X:’_%a’ (X,80,8)},80,8) :- a(_,sS0,S).

A new predicate > _$a’/3 has been introduced, and all calls to the original predicate
a/3 are replaced by calls to the new one. It is defined to call the original a/3 but to
return the term-set instead of the concrete parse tree in the argument declared to be
a term-set.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 121

We can see that a call to a/3 in this new program will have exactly as many
answers as the corresponding call to a/2 in the original recognizing DCG, since given
values for SO and S, a call to ’_$a’/2 returns only one value in its first argument. So
a call to a/3 with have the polynomial complexity of the recognizer. So now when
this representation is used, one gets the concrete parse tree for a string by writing,
for example:

| ?- a(Pts,la,a,a,a,a,a,al,[]), member termset(Parse,Pts).

Here the term-set representing the parses for the sequence of a’s will be returned in the
variable Pts, and then member termset is used to extensionalize it to the produce the
actual explicit parse tree. With this way of handling parse trees in arbitrary context-
free grammars, the complexity of parsing to create the term-set is always polynomial,
and then extensionalizing the term-set may be exponential if all parses are desired
and there are exponentially many of them. (In fact, if the grammar contains a rule
such as A --> A, there may be infinitely many parses.) Of course, if the parsing call
to a/3 fails, then there is no extensionalization to do, and the process is polynomial.

Note that the transformation uses subsumptive tabling for the newly introduced
auxiliary predicate. This is important for this example, since the parsing calls to
> $a’/3 will normally have SO bound and S free, yet when extensionalizing the con-
structed term-set to obtain the parse trees, the calls will have both SO and S bound.
We do not want to recompute the parse during extensionalizion, which would happen
were we to use variant tabling, and so we use subsumptive tabling.

Problems in graph traversal provide another example of the effective use of term-
sets. For graph reachability, we have the very familiar:

:— table reach/2.
reach(X,Y) :- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).

which is linear in the number of edges in the graph. But say that we now want to
construct the path from X to Y when Y is reachable from X. One simple way to do
it (collecting the intermediate nodes in the path in reverse order) is:

:— table path/3.
path(X,Y,[]) :- edge(X,Y).
path(X,Y, [Z|Path]) :- path(X,Z,Path), edge(Z,Y).

For an acyclic edge graph, this works fine, but for a graph with cycles, this will go
into an infinite loop. Indeed, it must, since in a cyclic graph there are infinitely many

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 122

different paths between some nodes. However, we can use term-set to handle this
situation more flexibly. We modify the above program by adding:

:— table path(_,_ ,termset).

With this declaration, every call to path/3 (for a finite edge graph) will terminate
in time linear in the number of edges. And all the paths will be presented in the
term-set returned in the third argument. Here we have an advantage similar to the
one we had in the grammar example above: if there is no path from our source to our
target node, we will find that out in linear time. Without the term-set declaration,
this might take exponential time, while the program builds all the paths to all the
nodes that are reachable from our source node. Also, if we want only one possible
path from our source to our target, we can easily retrieve only one member of the
term-set during extensionalization, and the whole process is still linear.

Now consider what happens with when the graph has cycles. In this case, the
term-set may be recursive and represent the infinitely many paths between nodes. For
example, the term-set representing all paths from a to a in the graph with a single edge
from a to a will have the same structure as the example of an infinite term-set given at
the beginning of this subsection. Once the path term-set is constructed (in time linear
in the number of edges for a single source), producing paths reduces to processing the
term-set structure. For example to generate all paths between nodes which do not
contain repeated intermediate nodes, one could write an extensionalization predicate
that passes a list of term-sets in the process of being expanded, and refuse to re-
expand one currently being expanded. This is the technique often used in Prolog
without tabling to compute reachability in cyclic graphs.

All of these examples can be seen as special cases of constructing proof trees or
justifications of goals. Indeed, term-sets could be effectively used in the construction
of a justification or explanation system.

5.5 Tabling for Termination

As noted throughout this manual, tabling adds important termination properties to
programs and queries. In this section we state more precisely what these termination
properties are, and how the properties can be strengthened through declarations and
settings for subgoal abstraction and for sound bounded rationality through a type of
answer abstraction called radial restraint as well as by limiting the number of answers
to a subgoal through answer count restraint.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 123

Before proceeding, it is important to set the context for where issues of termi-
nation may arise. Consider first a pure normal program in which every predicate is
tabled. This means a program where rules may only call other rules, possibly through
negation (tnot/1, not_exists/1 or u_not/1 in XSB); but where there are no calls to
built-in all-solutions predicates, or other built-ins. If such a fully-tabled pure normal
program does not have function symbols, XSB will always terminate for any query.
For instance, XSB will terminate for fully tabled pure datalog programs — even if the
head of a rule is “unsafe” in that it contains variables that do not occur in the body
of that rule 2. Such programs are sometimes called datalog programs.

While datalog programs are useful for certain kinds of knowledge representation,
they are not powerful enough for general programming as they do not allow recursive
structures such as lists. Thus, for the rest of this section we consider pure programs
that may contain function symbols. Consider a pure definite program in which every
predicate is tabled. Such a program would create a table for each tabled subgoal
(up to variance) exactly once if call variance were used, and at most once if call
subsumption were used. In addition, tabling guarantees that each answer will be
returned to each call to a tabled subgoal at most once. This means that there are
two sources of non-termination. Either there can be an infinite number of subgoals,
or there can be an infinite number of answers.'?

An Infinite Number of Subgoals If a definite program produces an infinite
number of subgoals but has a finite number of answers, the program can be made to
terminate by abstracting the subgoal. For instance, consider the program fragment:

:— table p/1.
p(X) - p(£(X)).

The goal 7= p(1) can create an infinite number of tabled subgoals: p(£ (1)), p(£ (£(1))),
p(f(£(£(1)))) and so on. Note that since all of the subgoals are ground, none
subsume one another, so that call subsumption will not help here. (Although call
subsumption is extremely useful in other circumstances, and would help if the goal
were 7= p(X)).

Infinite Answers Of course, subgoal abstraction can’t handle cases where there
are an infinite number of answers, as in the program fragment:

12Evaluations that call non-ground negative literals will terminate through floundering, although
this can be avoided in most cases by using not_exists/1.
13Here, forest of trees model of tabling (cf. Section 10.2) is being implicitly used.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 124

p(£(X) - p(X).

when given the query 7- p(X).

We consider each case in turn.

5.5.1 Term Size Abstraction in XSB

Both subgoal and answer abstraction in XSB are based on limiting the size of any
argument of a term 7" that forms a subgoal or answer. The specific definition of size
used is slightly complicated, but offeres advantages discussed below. Each argument
T, of T is traversed as follows. The size of T} is initialized to 0, then 7, is traversed
from left to right. Each time a non-constant functor or list symbol is encountered,
the size of T; is incremented by 1 — regardless of the type of functor symbol that is
encountered. If the size of T, exceeds the associates size limit for 7' (as declared in
the next section), all further non-constant functor symbols encountered in 7; will be
abstracted (rewritten as free variables). Once T, has been fully traversed, further
arguments of 7" will be traversed in the exact same manner.

Example 5.5.1 Applying the above definition of size abstraction with limit 2 to the
term

p(d(e(1),a,f(c1)),b,glce), [c3, [ca,c5]1))
produces the term
p(d(e(X1),a,X2) ,b:g(CQ): [C4|X3])~

In the traversal, the size limit is reached once the e/1 functor is encountered. To the
right of /1, all non-constant functor symbols are abstracted when they occur at depth
greater than 0. This causes £/1 to be abstracted, as it occurs at depth 1; however g/1
in the third occurs at depth 0, and so is retained. Similarly in the fourth argument,
the outer list symbol and head is preserved, while the tail of the list is abstracted.

Example 5.5.1 indicates that the size abstraction used in XSB excludes symbols
of depth 0, and so is something of a hybrid approach, although we continue to call it
size abstraction.

Other metrics could be used, such as term depth, which would offer conceptual
clarity. However size-based abstraction allows finer-grained optimization than depth-
based abstraction and offers the following general advantages.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 125

e From the point of view of implementation, the abstraction can be perfomed
with manner that has minimal if any impact on the speed of XSB’s tabling
engine.

e By not abstracting functor symbols at depth 0 and by abstracting each argument
individually, both multi-argument indexing and star indexing of subgoals will
be often be preserved.

5.5.2 Subgoal Abstraction

In a nutshell, subgoal abstraction allows a goal like p(£ (£ (£(1)))) to be rewritten
as

p(£(£(X))),X = £(1).

If all subgoals that have a term size — or term depth — over a given finite threshold
are abstracted, any query can produce only a finite number of subgoals (since there
are a finite number of predicate, function and constant symbols in any program).
If a program has a finite well-founded model, it can be shown that any query to a
program will terminate if that program uses subgoal abstraction [67]. For normal
programs, the situation is not much different at a conceptual level. A goal such as
tnot (p(£(£(£(1))))) would execute as p(f(£(X))) and then ensure that none of
the answers to this goal have a binding for X that allows it to unify with £(1). Using
this intuition, it can be shown that if a program has a well-founded model with a
finite number of true or undefined answers it will terminate using tabling with subgoal
abstraction [66, 67].

Despite its theoretical power, subgoal abstraction can also cause problems if used
indiscriminately. For instance, if the second argument of the subgoal

?- member(e, [a,b,c,d,e])
is abstracted forming the goal
?- member (e, [a,b,c|X])

leading to an infinite number of answers. a goal that terminates without abstraction
will not terminate after abstraction. Note that any program containing member/2
and at least one constant does not have a finite model (although any given ground
query will have a finite number of answers). While an experienced programmer would
not usually table member/2, he well may want to table a grammar or other program
that performs recursion through a finite structure.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 126

Declaring Subgoal Abstraction

XSB can perform subgoal abstraction based on the size limit described above. It
will do so for goals called positively, but not for goals called negatively as this would
give rise to unsound negation. Thus a goal G inside a construct such as tnot/1 or
not_exists/1 will throw an exception (or suspend into break mode) if it surpasses
the specified term size. In addition, subgoal abstraction is only implemented for
call variance, and applies equally to all functors, whether they are lists or non-lists.
Despite these restrictions, a tabled evaluation can be still guaranteed to terminate
for queries to safe programs (cf. [66]).

Subgoal abstraction can be declared by setting a value for the maximum size of a
subgoal and for the action to take when a subgoal is encountered that reaches that
size.

e size The maximum size can be set to n for a set of predicates (PredSpec) by
including the specifier subgoal_abstract(n) as part of the tabling declaration

:~ table (PredSpec) as ...,subgoal_abstract(n),...

Specifying subgoal _abstract (0) turns abstraction off for predicates in (PredSpec).
The size can also be set globally by seting the flag max_table_subgoal size

to the desired maximal size. If the subgoal size has been set of a given predicate

via a tabling declaration the declared size will override the global size.

e action When a subgoal is encountered of maximum size, abstraction is enabled
if the Prolog flag max_table_subgoal action to abstract. Other possible
values for the action are error and suspend (cf. pg. 253 ff.).

Unless otherwise specified, XSB starts up with max_table_subgoal _action set to
error and max_table_subgoal_size set to 0, indicating it is turned off. Under
this default behavior, XSB will throw an error if a subgoal has size greater than
max_table_subgoal size. As an alternative to setting flags, subgoal abstraction
can be set by calling XSB with the command-line arguments -max_subgoal_action
a and -max_subgoal_size n with a the desired action and n the desired size limit.

5.5.3 XSB’s Approach to Bounded Rationality

Bounded rationality is a subfield of Artificial Intelligence that studies how the rea-
soning performed by a computation can be automatically bounded so that an agent

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 127

or other program can be guaranteed to arrive at a decision “quickly”. By bound-
ing reasoning, an agent may be used in a setting that requires reactivity or where a
simulation of human reasoning is needed.

Thus, the approximation that XSB computes is informationally sound in the sense
that no incorrect answer will be derived, although the truth value of some atoms won’t
be known that might have been if the size bound had been set higher.

XSB’s approach to bounded rationality computes a finite approximation to the
well-founded model that is informationally sound in the sense that no incorrect answer
will be derived, although the truth value of some atoms won’t be known. In other
words, if bounded rationality is employed, it can be guaranteed that only a finite
number of answers will be derived [34]. Furthermore, any true atom that XSB derives
is true in the well founded model of a program; and any goal that fails is false in the
well-founded model. However, by bounding rationality XSB’s search is restrained so
that it will not fully explore certain subderivations and so may consider as undefined
some atoms that are true or false in the well-founded model. We sometimes call
this approach to bounded rationality restraint. Currently XSB supports both radial
restraint and answer count restraint

Radial Restraint Through Answer Abstraction

Radial restraint resembles subgoal abstraction (Section 5.5.2) in certain ways, as can
be seen in the following example. If the query p(X) to the program

p(f(X)) :- p(X).
p(0).

were evaluated using radial restraint with a size limit of 3, the answers, p(0), p(£(0)),
p(£(£(0))) and p(f(£(£(X)))) would be generated; however, p(f(f(f(X))))
would have the truth value of undefined. Note that by abstracting in this way, both
of the goals p (£ (£ (£(0)))), and p(£f (£ (£(1)))) will unify with p(£ (£ (£(X)))) and
so will succeed with a truth value of undefined. Similarly tnot (p(£(£(£(0))))), and
tnot (p(£(£(£(1))))) will both succeed with a value of undefined (perhaps better
called unknown in this context). It can be seen that since all predicates and function
symbols have a maximum arity (256 in XSB) bounding the size of an answer ensures
that only a finite number of answers are returned *.

Y41f a program has a infinite number of true answers and a finite number of false answers, one
possible approach might be to “dualize” the program so that only false answers are computed. Note
that since most programs with function symbols have an infinite number of both true and false
answers, this approach won’t work in general.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 128

Semantically when radial restraint is used, XSB computes an approximation to
the three-valued well-founded model of a program, called a restrained model. To
see this, suppose the proof of a query) does not depend on negation. If () has a
derivation that does not require any answers whose size is greater than n, it is proven
as usual. Similarly, if @) is false in the well-founded model of a program, and none of
the subgoals explored in the derivation of () derive answers whose size is greater than
n, XSB will derive that () is false. The higher the size bound that is set, the better
the approximation. Due to undecidability, there is no way to know in general what
size to set for answer abstraction, or whether any bound needs to be set at all.

If a restrained model is derived, answers that are directly undefined through radial
restraint can be desinguished from answers that are undefined in the well-founded
model of a program, or for other reasons such as unsafe negation. If an answer A
was abstracted due to a size check, the query get_residual (A,Delay) would bind
Delay to a list containing the atom radial_ restraint, where radial_restraint/0
is simply a predicate defined as

radial restraint:- tnot(radial restraint)

Using Radial Restraint Radial restraint is currently implemented only for tabling
with call variance. However it works with most other tabling features, such as call
abstraction, and incremental tabling. Similarly to the use of subgal abstraction,
answer abstraction is the implementational basis of radial restraint. It is important
to note that the size limit applies to the answer substitution, not to the of the answer
itself.

Example 5.5.2 Suppose an answer size limit is set to 1, and consider the goal p(X).
The answer p(s(s(0))) has size 2 and so would be abstracted to p(s(X1)) as ex-
pected, as the corresponding abswer substitution is X = s(s(0)). However for the
goal p(s(X)) the answer substitution for the answer p(s(s(0))) is X = s(0) which
has a size of only 1 and so this answer would not be abstracted in the context of this
subgoal. Despite this difference in how the size metric is computed, the termination
and approzimation properties of radial restraint still hold.

Radial restraint can be declared by setting a value for the maximum size of an
answer and for the action to take when an answer is encountered that reaches that
size.

e size The maximum size can be set to n for a set of predicates via including the
specifier answer_abstract(n) as part of their tabling declaration

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 129

:- table < PredSpec > as ...,answer abstract(n),...

Specifying answer_abstract (0) turns answer abstraction off for predicates in
(PredSpec). The size can also be set globally by seting the flag max_table_answer_size
to the desired maximal size. If the answer size of a given predicate has been set

via a tabling declaration, the predicate-specific declared size will override the

global size.

e action When an answer is encountered of maximum size, abstraction is enabled
if the Prolog flag max_table_answer_action to bounded_rationality. Other
possible values for the action are error, suspend and fail (cf. Section 10.3.4
for further information).

Unless otherwise specified, XSB starts up with max_table_answer_size_action
set to error and max_table_answer_size set to 0.

Answer CountRestraint

As discussed above, finite termination can always be ensured through a mixture of
subgoal abstraction and radial restraint. Alternately, it can also be ensured through
subgoal abstraction and answer count() restraint.

Example 5.5.3 Consider the program

:— table p/4.
p(M,N,X,Y):- between(1,M,X) ,between(1,N,Y).

and query p(3,3,Y,Z2): it is easy to see that 9 answers will be produced. However,
if answer count restraint is used to restrict the maximal number of answers to each
subgoal to 5, the first 5 answers computed above will be returned, along with a new
answer:

p(3,3,Y,2)

whose truth value is undefined, with the atom answer count_restraint in its delay
list.

Using the arguments from the previous section, it is easy to see that answer
count restraint ensures sound finite termination when used with subgoal abstraction.
However Example 5.5.3 also illustrates on a small scale how answer count restraint
can be used to soundly complete a subgoal S once a minimal number of answers have
been derived, even if S has a large, but finite number of answers.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 130

Using Answer Count Restraint Answer count restraint is currently implemented
only for tabling with call variance. However it works with most other tabling features,
such as call abstraction, and incremental tabling.

Currently, answer count restraint can only be set by global flags as follows.

e size The size can be set globally via the flag max table answer size to the
desired maximal size. Setting the flag to 0 turns off answer count restraint.

e action When an answer is encountered of maximum size, abstraction is enabled
if the Prolog flag max_table_answer_action to bounded rationality. Other
possible values for the action are error and suspend (cf. Section 10.3.4 for
further information).

Justifying or Explaining Restraint

An atom affected directly by radial or answer count restraint has in its delay list ei-
ther the atom radial restraint or answer count_restraint. The indirect depen-
dency of an atom on a form of restraint can be obtained either thorugh the predicate
explain u_val/3, or get_residual_sccs/[3,5]. Both of these predicates traverse
the residual dependency graph to provide information about why a literal is undefined.

5.6 Incremental Table Maintenance

XSB allows the user to declare that the system should maintain the correctness of
a given table with respect to dynamically changing facts and rules through so-called
incremental tables [71, 73, 82]. After a database update or series of updates A, an
incremental table T' that depends on A is by default updated transparently: that is T’
and all tables upon which 7" depends are automatically updated (if needed) whenever
a future subgoal calls T'. In either case, incremental tabling brings XSB closer to the
functionality of deductive databases. If tables are thought of as materialized database
views (or snapshots), then the incremental table maintenance subsystem enables in-
cremental view maintenance; also as discussed below, if choice points are thought of

as database cursors then incremental tabling also provides view consistency °.

15Tn the current version of XSB, there are certain restrictions on how incremental tabling can be
used: cf. Section 5.7.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 131

5.6.1 Transparent Incremental Tabling

To demonstrate incremental table maintenance (informally called incremental tabling),
consider first the following simple program that does not use incremental tabling:

:— table p/2.
p(X,Y) :- q(X,Y),Y =< 5.

:= dynamic q/2.
qa,1). q(,3). q(c,5). q(d,7).

and the following queries and results:

| 72— p(X,Y),writeln([X,Y]),fail.
[c,5]
[b,3]
[a,1]

no
| 7- assert(q(d,4)).

yes

| 72— p(X,Y),writeln([X,Y]),fail.
[c,5]

(b, 3]

[a,1]

no

In this program, the table for p/2 depends on the contents of the dynamic predicate
q/2. We first evaluate a query, p(X,Y), which creates a table. Then we use assert/1
to add a fact to the q/2 predicate and re-evaluate the query. We see that the an-
swers haven’t changed, because the table is already created and the second query just
retrieves answers directly from that existing table. However the answers are incon-
sistent with the model of p/2 after the assert. I.e., if the table didn’t exist (e.g. if
p/2 weren’t tabled), the answer [d,4] would also be derived. Without incremental
table maintenance, the only solution to this problem is for the XSB programmer to
explicitly abolish a table whenever changing (with assert or retract) a predicate on
which the table depends. By declaring that the tables for p/2 should be incrementally
maintained, XSB automatically keeps the tables for p/2 correct.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 132

Consider a slight rewrite of the above program:

:— table p/2 as incremental.
pX,Y) :- q(X,Y),Y =< 5.

:— dynamic /2 as incremental.
q(a,1). q(b,3). q(c,5). q(d,7).

in which p/2 is declared to be incrementally tabled and q/2 is declared to be both
dynamic and incremental, meaning that an incremental table depends on it. Consider
the following goals and execution:

| ?- import incr_assert/1 from increval.
yes

| 7= p(X,Y),writeln([X,Y]), fail.

[c,5]

[b,3]

(a,1]

no
| ?- incr_assert(q(d,4)).

yes
| 72— p(X,Y),writeln([X,Y]),fail.
[d,4]
[c,5]
[b,3]
[a,1]

no

The transparent approach to incremental updating works as follows. When incr_assert/1
is called, it sparks an invalidation phase in which tables that depend on q(d,4) are
marked as invalid (i.e., possibly inconsistent with respect to underlying dynamic
code). An Incremental Dependency Graph (IDG) is used to obtain the right tables to
invalidate. However, if the invalidation phase finds an affected table that is incom-
plete, a permission error is thrown, since it is unclear whether sensible semantics can
be given to updating a subgoal that is incomplete. After the invalidation phase is
completed, when/if a subgoal calls an invalid table T" the engine interrupts itself to
recompute 7" and any tables upon which 7" depends. On the other hand, if no calls

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 133

are ever made to an invalid incremental table 7", T" will never incur the cost of an
update.

View Consistency

As described above, transparent incremental tablings’s use of lazy updating ensures
that a new query) will always be consistent with the state of the dynamic code at
the time @ is called. However, transparent incremental tabling enforces a stronger
property of view consistency similar to those of database systems: that answers to a
query () should be those derivable at the time () was called, and should not be affected
by any updates. Because XSB’s incremental tabling does not allow updates that affect
tables that are still being computed, supporting view consistency effectively means
ensuring consistency for choice points into completed incremental tables. As such
choice points correspond to database cursors, we term them Open Cursor Choice

Points, (OCCPs).

XSB’s support for view consistency is designed so that no perceptable overhead in
incurred if there are no OCCPs whose view needs to be maintained. Not surprisingly,
numerous long-lived OCCPs whose views need to be maintained across updates causes
an overhead for the engine, a situation that is in some sense similar to the cost of
maintaining views for cursors in database system.

5.6.2 Updating in a Three-Valued Logic

As discussed earlier in this chapter, answers that are undefined in the well-founded
semantics are represented as conditional answers. Beginning with version 3.3.7, in-
cremental updates work correctly with conditional answers . Nno special care needs
to be taken for updating in the well-founded semantics as the following example
illustrates.

:— dynamic data/l1 as incremental.

:— table opaque_undef/0 as opaque.
opaque_undef:- tnot(opaque_undef) .

:— table p/1 as incremental.
p(_X):- opaque_undef.

16Before Version 3.3.7, incremental updates only worked correctly on stratified tables: those with
only unconditional answers.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 134

p(X):- data(X).

Note that opaque_undef/1 upon which p/1 depends is explicitly declared as opaque 7.
When the above program is loaded, XSB will behave as follows.

| 7- p1(1).

undefined
| ?- incr_assert(data(1)).

yes
| 7- p1(1).

yes
| ?- incr_retract(data(l)).

yes
| 7- p1(1).
undefined

| 7- get_residual(p1(1),C).

C = [opaque_undef]

Declaring Predicates to be Incremental

In XSB, tables can have numerous properties: such as subsumptive, variant, in-
cremental, opaque, dynamic, private, and shared, and can use answer subsumption,
answer abstraction or call abstraction. XSB also has variations in forms of dynamic
predicates: tabled, incremental, private, and shared. XSB extends the table and
dynamic compiler and executable directives with modifiers that allow users to indi-
cate the kind of tabled or dynamic predicate they want. For example,

:— table p/3,s/1 as subsumptive,private.

:— table q/3 as incremental,variant.

"An opaque predicate P is tabled and is used in the definition of some incrementally tabled
predicate but should not be maintained incrementally. In this case the system assumes that the
programmer will abolish tables for P in such a way so that re-calling it will always give semantically
correct answers.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 135

:— dynamic r/2,t/1 as incremental.

In the current version of XSB, incremental tabling works with subgoal abstrac-
tion, answer abstraction, and well-founded negation. However several combinations
involving incremental tabling are not supported and will throw an error (cf. page
300 and page 289, respectively). Incremental tabling has not yet been ported to the

multi-threaded engine and it currently does mot works for predicates that use call
subsumption or answer subsumption.

5.6.3 Incremental Tabling using Interned Tries

Sometimes it is more convenient or efficient to maintain facts in interned tries rather

than as dynamically asserted facts (cf. Chapter 8). Tables based on interned tries

can be automatically updated when terms are interned or uninterned just as they can

be automatically updated when a fact is asserted or retracted. Consider the example

from Section 5.6.1 rewritten to use interned tries. As usual, an incrementally updated

table is declared as such:

:— table p/2 as incremental.

However, the declaration for dynamic data changes: rather than using the declaration
:— dynamic q/2 as incremental

a trie is specified as incremental in its creation.

trie create(Trie_handle, [incremental,alias(inctrie)])

As described in Chapter 8, the trie handle returned is an integer, but can be aliased
just as with any other trie. The trie may then be initially loaded:

trie_intern(q(a,1),inctrie),trie_intern(q(b,3),inctrie),
trie_intern(q(c,5),inctrie) ,trie_intern(q(d,7),inctrie).

At this stage a query to p/2 acts as before:

p(X,Y) :- trie_interned(q(X,Y),inctrie),Y =< 5.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 136

| 7= p(X,Y),writeln([X,Y]),fail.
[c,5]
[b,3]
[a,1]

The following sequence ensures that p/2 is incrementally updated as inctrie changes:
| ?- import incr_trie_intern/2.

yes
| ?- incr_trie_intern(inctrie,q(d,4)).

yes
| 72— p(X,Y),writeln([X,Y]),fail.
[d,4]
[c,5]
[b,3]
[a,1]

no

Given the proper directives to make a trie incremental, transparent incremental
tabling works for changes made to interned tries just as it does for regular dynamic
code and for trie-indexed dynamic code.

5.6.4 Abstracting the IDG for Better Performance

As mentioned above, incremental table mantenance makes use of an IDG. Specifically,
the nodes of the IDG are the incrementally tabled subgoals; and each such table
contains information about its incident edges: those subgoals upon which a node
directly depends or directly affects. While the IDG is a critical data structure to
efficiently update incremental tables, in certain situations constructing the IDG can
cause non-trivial overheads in query time and table space. These overheads can be
addressed in many cases by abstracting the IDG. When a tabled subgoal S is called,
rather than creating an edge between S and its nearest tabled ancestor S’ (if any),
one could abstract S, S” or both, potentially collapsing a large number of nodes and
edges of the IDG. If S is an incremental table, then performing subgoal abstraction
on S as introduced in Section 5.5, will abstract the IDG — rather than having n nodes
Si,..., S, and their associated links, the IDG will contain a single node abstract(sS).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 137

However, subgoal abstraction will not work to abstract the leaf nodes of the IDG,
which are subgoals to non-tabled dynamic incremental predicates.

In Version 3.8 of XSB, IDG nodes for dynamic incremental predicates may undergo
depth abstraction: given a subgoal S and integer k, subterms of S with depth k£ + 1
are replaced by unique new variables. For instance, abstracting q(f(1)) at level 1 gives
q(f(X1)); abstracting at level 0 gives ¢(X;). Figure 5.5 illustrates an important case
where abstracting dynamic incremental predicates can be critical to good performance
for incremental tabling. In the case of left-linear recursion, if no abstraction is used
a new node will be created for each call to edge/2 as shown on the left side of this
figure. If a large number of data elements are in fact reachable, the size of the IDG can
be very large. If calls to the edge/2 predicate make use of depth-0 abstraction, the
graph may be much smaller as seen on the right side of Fig. 5.5. Whether abstracting
a IDG in this manner is useful or not is application dependent; however, performance
results indicate that for left-linear recursion, abstraction greatly reduces both query
time and space.

:— table reach/2 as incremental.
:— dynamic edge/2 as incremental.
reach(X,Y):- edge(X,Y).

reach(X,Y) :- reach(X,Z),edge(Z,Y). ,/l\

edge(2,Y) edge(3,Y) edge(4,Y). ...
reac@

edge(X_1,Y)

reach(1,Y)

Figure 5.5: A left-linear program and schematic IDGs: Left without IDG abstraction;
Right: with IDG abstraction

Abstracting the edge/2 predicate has subtle differences from abstracting tabled
subgoals. As mentioned, the edge/2 predicate of Fig. 5.5 is not tabled. Furthermore,
the actual edge/2 subgoal itself should not be abstracted to depth 0 since losing
the first argument instantiation would prevent the use of indexing. Rather, only the
IDG’s representation of the subgoal should be abstracted. Abstraction of dynamic
code for the IDG can be specified via the declaration:

:—dynamic edge/2 as incremental, abstract(0).

In Version 3.8 dynamic incremental code can be abstracted, but incremental in-
terned tries (Section 5.6.3) cannot be. Also, currently only depth 0 abstraction is

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 138

supported.

5.6.5 Summary and Implementation Status

The main design choices of incremental tabling are as usual what to table, and
also what dynamic predicates or tries should be made incremental. In addition,
performance optimizations may be made through a mixture of subgoal abstraction
and dynamic predicate abstraction. This optimization can be informed by use of
statistics/0 which includes summary information about the IDG, or using the
IDG inspection predicates of Section 5.6.6 if more details are needed.

In the current version of XSB, incremental tabling has not yet been ported to
the multi-threaded engine. In addition, incremental tabling only works for predicates
that use both call and answer variance. However, incremental tabling does work
with for the full well-founded semantics, for trie indexed dynamic code (in addition
to regular dynamic code) and with interned tries as described in Section 5.6.3. The
space reclamation predicates abolish_all tables/0, abolish_table _call/[1,2]
and abolish table pred/[1,2] can be safely used with incremental tables.

5.6.6 Predicates for Incremental Table Maintenance

A Note on Terminology Suppose p/1 and q/1 are incrementally tabled, and that
there is a clause

p(X):- q(X).

In this case we say that p(X) depends__on q(X) and that q(X) affects p(X). A recursive
predicate both depends on and affects itself.

Declarations The following directives support incremental tabling based on changes
in dynamic code:

table +PredSpecs as incremental Tabling
is a executable predicate that indicates that each tabled predicate specified in
PredSpec is to have its tables maintained incrementally. PredSpec is a list of
skeletons, i.e. open terms, or Pred/Arity specifications *. The tables must
use call variance and answer variance and must be compiled and loaded into

18No explicit module references are allowed.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 139

the single-threaded engine. If a predicate is declared with tabling attributes
that are not supported with incremental tabling a permission error is thrown.
This predicate implies that its arguments are tabled predicates. See page 300
for further discussion of tabling options.

We also note that any tabled predicate that is called by a predicate tabled as
incremental must also be tabled as incremental or as opaque. On the other hand,
a dynamic predicate d/n that is called by a predicate tabled as incremental
may or may not need to be declared as incremental. However if d/n is not
declared incremental, then changes to it will not be propagated to incrementally
maintained tables.

dynamic +PredSpecs as incremental Tabling
is an executable predicate that indicates that each predicate in PredSpecs is
dynamic and used to define an incrementally tabled predicate and will be up-
dated using incr_assert/1 and/or incr_retractall/1 (or relatives.) Note
that dynamic incremental predicates cannot themselves be tabled. This predi-
cate implies that its arguments are dynamic predicates. See page 289 for further
discussion of dynamic options.

table +PredSpecs as opaque Tabling
is an executable predicate that indicates that each predicate P in PredSpecs
is tabled and is used in the definition of some incrementally tabled predicate
but should not be maintained incrementally. In this case the system assumes
that the programmer will abolish tables for P in such a way so that re-calling
it will always give semantically correct answers. In other words, instead of
maintaining information to support incremental table maintenance, the system
re-calls the opaque predicate whenever its results are required to recompute an
answer. One example of an appropriate use of opaque is for tabled predicates
in a DCG used to parse some string. Rather than incrementally maintain all
dependencies on all input strings, the user can declare these intermediate tables
as opaque and abolish them before any call to the DCG. This predicate implies
that its arguments are tabled predicates.

Basic Incremental Maintenance Predicates The following predicates are used
to manipulate incrementally maintained tables:

incr_assert(+Clause) module: increval
incr_assertz(+Clause) module: increval
incr_asserta(+Clause) module: increval

incr_retract(+Clause) module: increval

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 140

incr_retractall (+Term) module: increval
are versions of assert/1 and other standard Prolog predicates. They modify
dymamic code just as their Prolog counterparts, but they first invalidate all
incrementally maintained tables that depend on Clause.

Error Cases are the same as assert<a/z>/1, retract/1 and retractall/1
with the additional error conditions that relate to the semantics of incremental
tabling. Note that if these error conditions arise, the update will not occur.

e The head of the clause Clause or the Term refers to a predicate that is not
incremental and dynamic.

— type error(dynamic_incremental, Term)

e Clause affects an incremental table that is incomplete (and so is in the
course of being computed).

— permission_error

incr_invalidate_calls(+Goal) module: increval
Let 7 be the least set of all incrementally maintained tables whose goals that
unify with Goal, or whose tables are (transitively) affected by a goal in 7.
This predicate invalidats all tables in 7. Any subsequent call to a goal G
associated with 7 will be automatically be incrementally updated if necessary.
(As will any goals that G depends on that are in need of updating.) In a similar
manner, an invocation of incr_table_update/[0,1,2] will cause tables in T
to be updated.

Note that this predicate is needed for exceptional cases only. Calls to incr_assert/1
and similar predicates mentioned above perform invalidation automatically, as
does abolish table call/[1,2]. However, incr_invaldate calls/1 is use-

ful if a tabled predicate depends on some external data and not (only) on dy-
namic incremental predicates. For example, such a predicate might depend on a
relation stored in an external relational database (perhaps accessed through the
ODBC interface). Of course, in such a case, the application programmer must
know when the external relation changes and invoke incr_invaludate_calls/1

as necessary.

Error Cases

e Goal is tabled, but not incrementally tabled

— permission_error(invalidate,non-incremental predicate,Goal)

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 141

Incremental Maintenance using Interned Tries The following predicates are
used to modify incremental tries, and can be freely intermixed with predicates for
modifying incremental dynamic code, as well as with predicates for invalidating or
updating tables (Section 5.6.6).

incr_trie_intern(+TrielIdOrAlias,+Term) module: intern
is a version of trie_intern/2 for tries declared as incremental. A call to this
predicate interns Term in TrieIdOrAlias and then invalidates all incrementally
maintained tables that depend on this trie.

incr_trie_uninternall (+TrieIdOrAlias,+Term) module: intern
is a version of trie unintern/2 for tries declared as incremental. A call to this
predicate removes all terms unifying with Term in TrieIdOrAlias and then
invalidates all incrementally maintained tables that depend on this trie.

Inspecting the State of the Incremental Dependency Graph The predi-
cates in this section allow a user to inspect properties of IDG that can be useful in
debugging, profiling or optimizing a computation . In addition they provide infor-
mation about which subgoals in the IDG are invalid — i.e., which subgoals depend on
a dynamic code that has changed, but have not been updated.

As explained below, IDG nodes can be accessed via the predicate is_incremental _subgoal/1,
while IDG edges can be accessed via incr_directly_depends/2. The predicates
get_incr_scc/[1,2] and get_incr_scc_with_deps/[3,4] can be used to efficiently
materialize the dependency graph in Prolog, including SCC information. Similarly,
the predicates incr_invalid_subgoals/1 and incr_is_invalid/1 can be used to
determine which subgoals are invalid.

is_incremental_subgoal (?Subgoal) module: increval
This predicate non-deterministically unifies Subgoal with incrementally tabled
subgoals that are currently table entries.

incr_directly_depends(?Goal;,?Goals) module: increval
accesses the edges of the IDG: the incremental goals (Tables) that directly
depend on or directly affect one another. At least one of Goal; or Goal, must

be bound.

9The predicates for traversing the incremental dependency graph are somewhat analogous to
those for traversing the residual dependency graph (Section 6.15.2).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 142

e [f Goal; is bound, then this predicate will return in Goal, through back-
tracking the goals for all incrementally maintained tables on which Goal;
directly depends.

e [f Goals is bound, then it returns in Goal; through backtracking the goals
for all incrementally maintained tables that Goals directly affects —in other
words all goals that directly depend on Goals.

Error Cases

e Neither Goal; nor Goal, is bound
— instatiation_error
e Goal; and/or Goal, is bound, but is not incrementally tabled
— table_error
incr_trans_depends(?7Goal;, ?Goals) module: increval
is similar to incr_directly_depends/2 except that it returns goals according

to the transitive closure of the “directly depends” relation. Error conditions are
the same as incr_directly_depends/2.

get_incr_sccs(?SCCList) module: increval

get_incr_sccs_with_deps(?SCCList,?DepList) module: increval

get_incr_sccs(+Subgoallist,?SCCList) module: increval

get_incr_sccs_with_deps(+Subgoallist,?SCCList,7?DepList) module:
increval

Warning: these predicates may be obsolescent, cf. Section 10.3.2
for newer predicates that are more powerful.

Most linear algorithms for SCC detection over a graph use destructive assign-
ment on a stack to maintain information about the connecteness of a component;
as a result such algorithms are difficult to write efficiently in Prolog.

get_incr_sccs/1 unifies SCCList with SCC information for the incremental
dependency graph that is represented as a list whose elements are of the form

ret (Subgoal,SCC).

SCC is a numerical index for the SCCs of Subgoal. Two subgoals are in the same
SCC iff they have the same index, however no other dependency information
can be otherwise directly inferred from the index 2°.

29The actual number for each SCC index depends on how the incremental dependency graph
happens to be traversed; as a result it is best to rely on the index only as a “generated” name for

each SCC.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 143

If dependency information is also desired, get_incr_scc_with_dependencies/2
should be called. In addition to the SCC information as above, DepList is uni-
fied with a list of dependency terms of the form

depends (SCC1,SCC2)

for each pair SCC1 and SCC1 such that some subgoal with index SCC1 directly
depends on some subgoal with index SCC1. If it is necessary to know which sub-
goal(s) in SCC1 directly depends on which subgoal(s) in SCC2, the information
can be easily reconstructed using incr_directly_depends/2 above. Similarly,
incr_directly_depends/2 can be used to determine the actual edges within
a given SCC.

Ordinarily a user will want to see the entire dependency graph and in such
a case the predicates described above should be used. However, note that if
the dependency graph is the result of several indepdendent queries it may not
be connected. get_incr_scc/2 takes as input a list of incremental subgoals,
SubgoalList. For each Subgoal in SubgoalList, this predicate finds the set of
subgoals connected to Subgoal by any mixture of depends and affects relations,
unions these sets together, and finds the SCCs of all subgoals in the unioned
set.

SCC detection is implemented using Tarjan’s algorithm [87] in C working di-
rectly on XSB’s data structures. The algorithm is O(|V| + |E|) where |V] is the
number of vertices and |E| the number of edges in the dependency graph. As
a result, get_incr_sccs/[1,2] provides an efficient means to materialize the
high-level topography of the dependency graph 2'.

Error Cases

e Subgoallist is a variable
— instantiation_error
e SubgoallList is not a list
— type_error
e Subgoallist contains a predicate that is not tabled
— permission_error
incr_invalid_subgoals(-List) module: increval

This predicate unifies List with a sorted list of the incremental subgoals that
are currently invalid.

2LCurrently, the materialization of dependency information between SCCs is implemented in a
naive manner, so that get_incr_sccs_with_deps/[2,3] is O(|V|?).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 144

incr_is_invalid(+Subgoal) module: increval
Succeeds if Subgoal is an incrementally tabled subgoal that is invalid, and fails
otherwise.

5.7 Compatibility of Tabling Modes and Predicate
Attributes

As discussed in this chapter, there are several choices for how to table a predicate.
Either call subsumption or call variance may be used, incremental tabling might
or might not be used, and answer subsumption might or might not be used. Fur-
thermore, a tabled predicate, like any other predicate, may be static or dynamic and
thread shared or thread private. Together, there are 48 different combinations, not all
of which are supported in Version 3.8 of XSB. To analyze further, all combinations are
supported for call-variance and for thread private predicates. However, call subsump-
tion has not been fully integrated with dynamic code or thread shared predicates, and
cannot currently be combined with incremental tabling or with answer subumption.
Similarly incremental tabling is not yet supported in the multi-threaded engine (it
is supported for “thread private” computations only in the sequential engine). The
compatibilities are listed in Table 5.1. Further combinations will be supported in
future versions of XSB as resources allow.

The combinations in Table 5.1 allow full well-founded computation, constrained
variables in calls and answers (including the residual program), and safe space recla-
mation, with the following exceptions. Answer subsumption does support non lrd-
stratified programs; and call subsumption does not yet support attributed variables
in calls.

5.8 A Weaker Semantics for Tabling

Recall that the well-founded semantics (WFS) is weaker than, say, stable model
semantics. For instance a program like

p:—- not q. q:— not p.

has two stable models: {p} and {g}. On the other hand, WFS has a single model,
where both p and ¢ are undefined. This, of course, is characteristic of the way WFS
treats atoms whose only non-failed derivations are based on a “negative loop”.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 145

variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
variant
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive
subsumptive

static
static
static
static
static
static
static
static
static
static
static
static
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
static
static
static
static
static
static
static
static
static
static
static
static
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic
dynamic

private
private
private
private
private
private
shared
shared
shared
shared
shared
shared
private
private
private
private
private
private
shared
shared
shared
shared
shared
shared
private
private
private
private
private
private
shared
shared
shared
shared
shared
shared
private
private
private
private
private
private
shared
shared
shared
shared
shared
shared

nonincremental
nonincremental
opaque

opaque
incremental
incremental
nonincremental
nonincremental
opaque

opaque
incremental
incremental
nonincremental
nonincremental
opaque

opaque
incremental
incremental
nonincremental
nonincremental
opaque

opaque
incremental
incremental
nonincremental
nonincremental
opaque

opaque
incremental
incremental
nonincremental
nonincremental
opaque

opaque
incremental
incremental
nonincremental
nonincremental
opaque

opaque
incremental
incremental
nonincremental
nonincremental
opaque

opaque
incremental
incremental

no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption
no answer subsumption
answer subsumption

yes
yes
no
no
no
no
yes
yes
no
no
no
no
yes
yes
no
no
no
no
yes
yes
no
no
no
no
no
no
no
no
no
no
yes
yes
no
no
no
no
no
no
no
no
no

Table 5.1: Support for different tabling modes in XSB Version 3.8

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 146

However, an even weaker logic is possible where derivations based on positive
loops are also considered undefined. In other words the program

r:-r. r:- false.

would assign the truth value undefined to r, although both WFS and stable models
would assign r as false. But why use such a weak logic?

Consider a woman who asks her husband when he’ll clean the garage, and the
husband says:

I’ll get around to it when I get around to it.

The wife would probably consider it ambiguous not only when her husband might
clean the garage, but whether he would do so at all. The wife’s reasoning (slightly
simplified) could be rendered in logic as:

clean_the_garage:- clean the garage.

and we’d like to assign undefined or unknown to clean_the_garage.”?

Although this example is somewhat fanciful, it turns out that this interpretation
accords with the results of cognitive science experiments about human reasoning [76],
and is known in the logic programming community as the “completion semantics”
(CS). CS differs from WFS only in assigning the truth value undefined to derivations
that depend on a positive loop, and that are otherwise not satisfiable (cf. [53]).

So as useful as WFS and stable models are for programming, they don’t reflect
how human beings have been shown to reason in daily life. However, there is an-
other difference between WF'S and the sort of common-sense reasoning that humans
perform. WEFS has a strong closed-world assumption. Suppose a query ?- s were
made to a program where s were not defined. WFS would assign the value false to
s, but this is not always what humans do: rather humans would treat the unknown
predicate s as in fact unknown or undefined. More generally, if (sub-)goal G refers to
an undefined predcate,the weak completion semantics (WCS) also assigns undefined
to G, rather than false as WFS does, or throwing an error (as XSB also does by
default)z.

These features can be set globally either separately or together:

22 Actually, many wives would go ahead and assign false to this statement, but we are modeling
an optimistic wife.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 147

e Setting the ISO Prolog flag unknown to undefined makes calls to unknown
predicates return the truth value undefined. This flag can also be set to the
standard ISO values, fail. warning or error (the last of which is the default).

e Setting the Prolog flag alt_semantics to cs causes XSB to globally evaluate
the completion semantics.

e Setting the Prolog flag alt_semantics to wcs causes XSB to globally evaluate
the weak completion semantics, and is equivalent to setting the alt_semantics
flag to cs and the ISO flag unknown to undefined.

e Setting the Prolog flag alt_semantics to wfs turns causes XSB to behave in
its default mode. L.e., to globally evaluate queries according to the well-founded
semantics, and to throw an error when encountering an unknown predicate.

Examples As a simple example, consider the program:

simple_loop(X):- simple_loop(X). simple_loop(X):- p(X).
p(a).

The query ?7- simple_loop(X) returns two answers: X = a as true, and X unbound
as undefined.

For a more complex example, consider the program:

- tablem 1 1/1,m 1 2/1,m 1 3/1,m 1 4/1.

m11(X):-m 1 2(X). m11(a):-m 1 2(a).
m1l2X:-m1 3. m12@():-m1 3(a).
m 1 3(X):-m1 4(X),fail. m 1 3(a):-m 1 4(a).
m1l4X):-m 1 1(X). m14(a):-m 1 1(a).

The derivation of the query 7- m_1_1(X) creates a positive SCC with with numerous
interrelated positive cycles, but these cycles can be broken down into two groups. The
first group includes a dependency edge fromm_1 3(X) tom_1_4(X), while the other
set does not include this edge. Due to the first clause of m_1_3(X), all derivations
in the first group fails, although derivations that do not include this edge succeed.
Thus the only answer tom_1_1(X) has X = a with truth value undefined (and a single
delay list of [m_1 2(a)].

Chapter 6

Standard Predicates and
Predicates of General Use

This chapter mainly describes standard predicates, which are always available to the
Prolog interpreter, and do not need to be imported or loaded explicitly as do other
Prolog predicates. By default, it is a compiler error to redefine standard predicates.

In the description below, certain standard predicates depend on Hil.og semantics;
the description of such predicates have the token HiLog at the right of the page. Simi-
larly predicates that depend on SLG evaluation are marked as Tabling, and predicates
whose semantics is defined by the ISO standard (or whose implementation is reason-
ably close to that definition) are marked as IS0. Occasionally, however, we include in
this section predicates that are not standard. In such cases we denote their module
in text font towards the middle of the page.

6.1 Input and Output

6.1.1 I/O Streams in XSB

XSB’s I/0 is based on ISO-style streams, although it also supports older DEC-10
style file handling. The use of streams provides a unified interface to a number of
different classes of sources and sinks. Currently these classes include textual and
binary files, console input and output, pipes, and atoms; in the future sockets and
urls may be handled under the stream interface. When streams are opened, certain
actions may occur depending on the class of the source or sink and on the wishes
of the user. For instance when a file F is opened for output mode, an existing file

148

CHAPTER 6. STANDARD AND GENERAL PREDICATES 149

F may be truncated (in write mode) or not (in append mode). In addition, various
operations may or may not be valid depending on the class of stream. For instance,
repositioning is valid for an atom or file but not a pipe or console.

XSB provides several default 1/O streams, which make it easier for a user to
embed XSB in other applications. These streams include the default input and output
streams. They also include the standard error stream, to which XSB writes all error
messages. By default the standard error stream is the same as the standard output
stream, but it can be redirected either by UNIX shell-style 1/O redirection or by
the predicates file reopen/4 and file_clone/3. Similarly there is the standard
warning stream (to which all system warnings are written), the standard message
stream, the standard debugging stream (to which debugging information is written),
and the standard feedback stream (for interpreter prompts, yes/no answers, etc). All
of these streams are aliased by default to standard output, and can be redirected by
the predicates file_reopen/4 and file_clone/3. Such redirection can be useful for
logging, or other purposes.

Streams may also be aliased: the default input and output streams are denoted
by user_input and user_output and they refer to the standard input and standard
output streams of the process . Similarly, XSB’s error, warning and message streams
uses the aliases user_error, user_warning and user_message respectively.

Streams are distinguished by their class — whether they are file or atom, etc.; as
well as by various properties. These properties include whether a stream is position-
able or not and whether a (file) stream is textual or binary.

e Console: The default streams mentioned above are console streams, which are
textual and not repositionable.

e File: A file stream corresponds to an operating system file and is repositionable.
On Windows, binary files and textual files differ, while on UNIX they are the
same.

e Atom: XSB can read from an atom, just as it can from a file. Atoms are
considered to be textual and repositionable. Writing to atoms via streams is
not currently available in XSB, although the predicate term_to_atom/[2,3]
contains much of the functionality that such streams would provide.

e Pipe: XSB can also open pipes either directly, or as part of its ability to spawn
processes. When made into streams, pipes are textual and not repositionable.

'For backwards compatibility, the default input stream can also be aliased by user or userin,
and the default output stream by user or userout.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 150

I/O Stream Implementation

A user may notice that XSB’s I/O streams are small integers, but they should not be
confused with the file descriptors used by the OS. The OS file descriptors are objects
returned by the C open function; XSB I/O streams indices into the internal XSB
table of open files and associated information. The OS does not know about XSB
I/O streams, while XSB (obviously) does know about the OS file descriptors. An
OS file descriptor may be returned by certain predicates (e.g. pipe_open/2 or user-
defined 1/0). In the former case, a file descriptor can be promoted to XSB stream by
open/{3,4} and in the latter by using the predicate fd2iostream/2.

When it starts, XSB opens a number of standard I/O streams that it uses to
print results, errors, debugging info, etc. The descriptors are described in the file
prolog_includes/standard.h. This file provides the following symbolic definitions:

#define STDIN 0

#define STDOUT 1

#define STDERR 2

#define STDWARN 3 /* output stream for xsb warnings */

#define STDMSG 4 /* output for regular xsb messages */

#define STDDBG 5 /* output for debugging info */

#define STDFDBK 6 /* output for XSB feedback
(prompt/yes/no/Aborting/answers) */

#define AF_INET 0 /* XSB-side socket request for Internet domain */

#define AF_UNIX 1 /* XSB-side socket request for UNIX domain */

These definitions can be used in user programs, if the following is provided at the top
of the source file:

compiler options([xpp_on]).
#include "standard.h"

If this header is used, the various streams can be used as any other output stream —e.g.
?- write (STDWARN, ’watch it!’). (Note: the XSB preprocessor is not invoked on
clauses typed into an interactive XSB session, so the above applies only to programs
loaded from a file using consult and such.)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 151

6.1.2 Character Sets in XSB

Beginning in Version 3.5 of XSB, alternate character sets are supported.

e UTF-8 which on input atomatically interprets the sequence of bytes as UTF-8
byte sequences and decodes them to obtain the unicode code points; and on
output converts from the unicode code points to UTF-8 byte sequences.

e LATIN-1 which performs no transformation on byte sequences (i.e. treats each
byte directly as a unicode code point.)

e ('P1252 which implements Windows code page 1252 encoding, the default for
most Windows systems.

Other character sets, in particular, UTF-16, may be supported in the future.

In the current version of XSB, UTF-8 is the default character set when XSB is
configured on UNIX-style systems such as Linux and Mac OSX. CP1252 is the the
default character set on Windows-style systems. The character set may be changed
at any time via the Prolog flag character_set, whose value must be one of utf_8,
cpl252, or latin_1. The character set in effect at the time of opening a stream is
the character set that will be used to read (or write) the stream.

6.1.3 Predicates for ISO Streams

open(+SourceSink,+Mode,-Stream) ISO
open/1 creates a stream for the source or sink designated in SourceSink, and
binds Stream to a structure representing that stream.

e [f SourceSink is an atom, or the term file(File) where File is an atom,
the stream is a file stream. In this case Mode can be

— read to create an input stream. In Windows, whether the file is textual
or binary is determined by the file’s properties.

— write to create an output stream. Any previous file with a similar
path is removed and a (textual) file is created which becomes a record
of the output stream.

— write_binary to create an output stream. Any previous file with a
similar path is removed and a file is created which becomes a record
of the output stream. The file created is binary in Windows, while in
UNIX write_binary has the same effect as write.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 152

— append to create an output stream. In this case the output stream is
appended to the contents of the file, if it exists, and otherwise a new
file is created for (textual) output

— append_binary to create an output stream. In this case the output
stream is appended to the contents of the file, if it exists, and otherwise
a new file is created for (binary) output

e If SourceSinkis the term atom(Atom) where Atom is an atom, the stream is
an atom stream. In this case Mode currently can only be read. This stream
class, which reads from interned atoms, is analogous to C’s sscanf () func-
tion.

e [f SourceSink is the term pipe (FIleDescriptor) where FileDescriptor

is an integer, then a pipe stream is opened in the mode for FileDescriptor.

ISO Compatibility Note: This predicate extends the ISO definition of open/3
to include strings and pipes as well as the file modes write_binary and append_binary.

Error Cases

e SourceSink or Mode is not instantiated
— instantiation_error
e Mode is not a valid I/O mode
— domain_error (io_mode,Mode)
e SourceSink is a file and cannot be opened, or opened in the desired mode
— permission_error(open,file,SourceSink)
open(+File,+Mode,-Stream,+0ptions) ISO
open/4 behaves as does open/3, but allows a list of options to be given. The
current options are a subset of ISO options and are:
e alias(A) allows the stream to be aliased to an atom A.
e type(T) has no effect on file streams in UNIX, which are always textual,
but in Windows if T is binary a binary file is opened.
Error Cases Error cases are the same as open/3 but with the addition:
e Option_list contains an option O that is not a (currently implemented)
stream option.

— domain_error(stream_option,0)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 153

e An element of OptionsList is alias(A) and A is already associated with
an existing thread, queue, mutex or stream

— permission_error(create,alias, A)
e An element of OptionsList is alias(A) and A is not an atom

— type_error(atom,A)

ISO Compatibility Note: The [SO option reposition(Boolean) currently
has no effect on streams, because whether or not the stream is repositionable
or not depends on the stream class. The ISO option eof action(Action)
currently has no effect on file streams. If these options are encountered in
Options, a warning is issued to STDWARN.

close(+Stream_or_alias,+OptionsList) ISO
close/2 closes the stream or alias Stream_or_alias. OptionsList allows the
user to declare whether a permission error will be raised in XSB upon a re-
source or system error from the closing function (e.g. fclose() or other system
function). If OptionsList is non-empty and contains only terms unifying with
force(true) then such an error will be ignored (possibly leading to unac-
knowledged loss of data). Otherwise, a permission error is thrown if fclose()
or other system function returns an error condition. If the stream class of
Stream_or_alias is an atom, then the only action taken is to close the stream
itself — the interned atom itself is not affected.

Error Cases

e Stream_or_alias is a variable

— instantiation_error

Stream_or_alias is neither a variable, nor a stream term nor an alias.

— domain_error(stream or alias,Stream or_alias)

Stream_or_alias is not associated with an open stream

— existence_error(stream,Stream or_alias)

OptionList contains an option 0 that is not a closing option.

— domain_error(close_option,0)

OptionList contains conflicting options

— domain_error(close_option,OptionList)

Closing the stream produces an error (and OptionsList is a non-empty
list containing terms of the form force(true)).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 154

— permission_error(close,file,Stream_or_alias)

close(+Stream_or_alias) ISO
close/1 closes the stream or alias Stream_or_alias.
Behaves as close(Stream_or_alias, [force(false)]).

set_input (+Stream_or_alias) ISO
Makes file Stream_or_alias the current input stream.

Error Cases

e Stream_or_alias is a variable
— instantiation_error
e Stream_or_alias is neither a variable, nor a a stream term nor an alias.
— domain_error(stream_or_alias,Stream or_alias)
e Stream or_alias is not an open input stream
— existence_error(stream,Stream or_alias)
set_output (+Stream_or_alias) ISO
Makes file Stream_or_alias the current output stream.

Error Cases

e Stream or_alias is a variable
— instantiation error
e Stream or_alias is neither a variable, nor a a stream term nor an alias.
— domain_error(stream_or_alias,Stream_or_alias)
e Stream_or_alias is not associated with an open output stream
— existence_error(stream,Stream_or_alias)
stream_property(?Stream, 7Property) ISO

This predicate backtracks through the various stream properties that unify with
Property for the stream Stream. Currently, the following properties are defined.

e stream_class(C) gives the stream class for a file: i.e. file, atom, console
or pipe.

e file name(F) is a property of Stream, if Stream is a file stream and F
is the file name associate with Stream. The full operating system path is
used.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 155

e type(T) is a property of Stream, if Stream is a file stream and T is the file
type of Stream: text or binary.

e mode (M) is a property of Stream, if M represents the I/O mode with which
Stream was opened: i.e. read, write, append, write_binary, etc., as
appropriate for the class of Stream.

e alias(A) is a property of Stream, if Stream was opened with alias A.

e input is a property of Stream, if Stream was opened in the I/O mode:
read.

e output is a property of Stream, if Stream was opened in the I/O mode:
write, append, write_binary, or append_binary.

e reposition(Bool) is true, if Stream is repositionable, and false otherwise.

e end of stream(E) returns at if the end of stream condition for Stream is
true, and not otherwise.

e position(Pos) returns the current position of the stream as determined
by fseek or the byte-offset of the current stream within an atom. In
either case, if an end-of-stream condition occurs, the token end of file
is returned.

e cof _action(Action) is reposition if the stream class is console, eof code
if the stream class is file, and error is the stream class is pipe or atom.

flush_output(+Stream_or_alias) ISO
Any buffered data in Stream_or_alias gets flushed. If Stream is not buffered
(i.e. if it is of class atom), no action is taken.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable, nor a a stream term nor an alias.
— domain_error(Stream or_alias,Stream)
e Stream is not associated with an open output stream
— existence_error(Stream or_alias,Stream)
e Flushing (i.e. £flush()) returns an error.
— permission_error(flush,stream,Stream)

flush_output ISO
Any buffered data in the current output stream gets flushed.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 156

set_stream_position(+Stream_or_alias,+Position) ISO
If the stream associated with Stream_or_alias is repositionable (i.e. is a file or
atom), sets the stream position indicator for the next input or output operation.
Position is a positive integer, taken to be the number of bytes the stream is to
be placed from the origin.

Error Cases

e Stream or_alias is a variable

— instantiation_error

Stream_or_alias is neither a variable, nor a a stream term nor an alias.

— domain_error(stream or_alias,Stream or_alias)

e Position is not instantiated to a positive integer.
— domain_error(stream_position,Position)
e Stream or_alias is not associated with an open stream
— existence error(stream,Stream or alias)
e Stream_or_alias is not repositionable, or repositioning returns an error.
— permission_error(resposition,stream,Stream_or_alias)
at_end_of_stream(+Stream_or_alias) ISO

Succeeds if Stream or_alias has position at or past the end of stream.

Error Cases

e Stream_or_alias is a variable
— instantiation_error

e Stream or_alias is neither a variable, nor a a stream term nor an alias.
— domain_error(stream,Stream_or_ alias)

e Stream or_alias is not an open stream
— existence_error(stream,Stream or_alias)

at_end of stream ISO
Acts as at_end_of _stream/1 but using the current input stream.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 157

Other Predicates using ISO Streams

file_reopen(+FileName,+Mode,+Stream,-RetCode)
Takes an existing I/O stream, closes it, then opens it and attaches it to a file.
This can be used to redirect I/O from any of the standard streams to a file. For
instance,

| ?- file reopen(’/dev/null’, w, 3, Error).

redirects all warnings to the Unix black hole.

On success, RetCode is 0; on error, the return code is negative.

file clone(+SrcStream, ?DestStream,-RetCode)
This is yet another way to redirect 1/O. It is a Prolog interface to the C dup
and dup?2 system calls. If DestStream is a variable, then this call creates a new
XSB I/O stream that is a clone of SrcStream. This means that 1/O sent to
either stream goes to the same place. If DestStream is not a variable, then it
must be a number corresponding to a valid I/O stream. In this case, XSB closes
DestStream and makes it into a clone of SrcStream.

For instance, suppose that 10 is a I/O Stream that is currently open for writing
to file foo.bar. Then

| ?7- file clone(10,3,).

causes all messages sent to XSB standard warnings stream to go to file foo.bar.
While this could be also done with file_reopen, there are things that only
file_clone can do:

| ?- file clone(1,10,).

This means that I/O stream 10 now becomes clone of standard output. So, all
subsequent I/O will now go to standard output instead of foo.bar.

On success, RetCode is 0; on error, the return code is negative.
file_truncate(+Stream, +Length, -Return) module: file_io

The regular file referenced by the StreamStream is chopped to have the size of
Length bytes. Upon successful completion Return is set to zero.

Portability Note: Under Windows (including Cygwin) file_truncate/2 is
implemented using _chsize (), while on Unix ftruncate() is used. There are

CHAPTER 6. STANDARD AND GENERAL PREDICATES 158

minor semantic differences between these two system calls, which are reflected
by the behavior of file truncate/2 on different platforms.

Error Cases

e Stream or_alias is a variable

— instantiation_error

Stream_or_alias is neither a variable, nor a a stream term nor an alias.
— domain_error(stream_or_alias,Stream_or_alias)
e Stream or_alias is not associated with an open stream

— existence_error(stream,Stream or_alias)

Length is a variable

— instantiation error

Length is neither a variable nor an integer

— type_error(integer,Length)

tmpfile_open(-Stream)
Opens a temporary file with a unique filename. The file is deleted when it is
closed or when the program terminates.

flush_all output_streams module: error_handler
Flushes output streams, both user and system STDOUT, STDERR, etc. This
convenience predicate is written as

flush_all_open_streams:-
stream_property(S,mode(X)), (X = append ; X = write),flush output(S),fail.
flush_all open_streams.

6.1.4 DEC-IO Style File Handling

see(+File or_stream)
Makes File or_stream the current input stream.

e [fthereis an open input stream associated with the file that has File or stream
as its file name, and that stream was opened previously, then it is made
the current input stream.

e Otherwise, the specified file is opened for input and made the current input
stream. If the file does not exist, see/1 throws a permission error.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 159

Note that see/1 is incompatible with ISO aliases — calling see(Alias) with
an ISO alias will try to open a file named Alias rather than using the alias.
Also note that different file names (that is, names which do not unify) represent

different input streams (even if these different file names correspond to the same
file).

Error Cases

e File or_stream is a variable
— instantiation_error

e File or_stream is neither a variable nor an atomic file identifier nor a
stream identifier.

— domain_error(stream_or_path,F)
e File File or_strean is directory or file is not readable.
— permission_error(open,file,F)
e File File or_stream does not exist.
— existence_error(stream_or_path,F)
seeing(?7F)
F is unified with the name of the current input stream. This is exactly the

same with predicate current_input/1 described in Section 6.12; and it is only
provided for upwards compatibility reasons.

seen
Closes the current input stream. Current input reverts to "userin" (the stan-
dard input stream).

tell (+F)
Makes file F the current output stream.

e If there is an open output stream associated with F and that was opened
previously by tell/1, then that stream is made the current output stream.

e Otherwise, the specified file is opened for output and made the current
output stream. If the file does not exist, it is created.

Also note that different file names (that is, names which do not unify) represent
different output streams (even if these different file names correspond to the
same file).

The implementation of the ISO predicate set_output/1, is essentially that of
tell/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 160

Error Cases

e File or_stream is a variable
— instantiation error

e File or_stream is neither a variable nor an atomic file identifier nor a
stream identifier.

— domain_error(stream_or_path,F)
e File File or_streanm is directory or file is not readable.
— permission_error(open,file,F)
e File File or_stream does not exist.
— existence_error(stream_or_path,F)
telling(?7F)
F is unified with the name of the current output stream. This predicate is

exactly the same with predicate current_output/1 described in Section 6.12,
and it is only provided for upwards compatibility reasons.

told
Closes the current output stream. Current output stream reverts to “userout”

(the standard output stream).

file exists(+F)
Succeeds if file F exists. F must be instantiated to an atom at the time of the
call, or an error message is displayed on the standard error stream and the

predicate aborts.

Error Cases
instantiation_error F is uninstantiated.

url encode(+Filename,-EncodedFilename)
This predicate is useful when one needs to create a file whose name contains
forbidden characters, such as >, <, and the like. It takes a string and encodes
any forbidden character using an appropriate %-sequence of characters that is
acceptable as a file name in any OS: Unix, Windows, or Mac. For instance,

| ?- url_encode(’http://foo’’>$’,X).

X = httph3ak2fl2ffook27%3e%24

CHAPTER 6. STANDARD AND GENERAL PREDICATES 161

url decode(+Filename,-EncodedFilename)
This predicate performs the inverse operation with respect to url_encode/2.

For instance,
| ?- url decode(’http%3a%2fl2ffo0%27%3e%24’ ,X) .

X = http://foo’>$

6.1.5 Character I/0

Beginning with Version 3.8, XSB supports Unicode in the form of UTF-8 characters.
Due to this change, we recommend using ISO-compliant character I/O predicates,
rather than older predicates such as get/1, get0/1, put/1 and so on. As the use of
these older predicates may sometines give unexpected answers when used with non-
ASCII characters, they are deprecated, athough they are still available for backward

compatibility.

get_char(+Stream_or_alias,?Char) ISO
Unifies Char with the next UTF-8 character from Stream_or_alias, advancing
the position of the stream. Char is unified with the atom end of file if an
end of file condition is detected.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or alias)
e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)
e Char is not a variable or character.
— domain_error(character or_variable,Char)
get_char(?Char) ISO
Behaves as get_char/2, but reads from the current input stream.

Error Cases

CHAPTER 6. STANDARD AND GENERAL PREDICATES 162

e Char is not a variable or character.
— domain_error(character_or_variable,Char)
get_code(+Stream_or_alias,?Code) ISO
Code unifies with the UTF-8 code of the next character from Stream_or_alias.

The position of the stream is advanced. Char is unified with -1 if an end of file
condition is detected.

Error Cases

e Stream or_alias is a variable
— instantiation error
e Stream_or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream_or_alias)
e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)
e Code is not a variable or character code
— domain_error(character_code_or_variable,Code)
get_code(?Code) ISO
Behaves as get_code/2, but reads from the current input stream 2.

Error Cases

e Code is not a variable or character code
— domain_error(character code or_variable,Code)
get_byte(+Stream_or_alias, ?Byte) ISO
Byte unifies with the value of the the next byte from Stream or_alias. The
position of the stream is advanced. Char is unified with -1 if an end of file
condition is detected. If reading from ASCII text, get_byte/2 will have the

same behavior as get_code/2, but in general get_code/2 may return multi-
byte characters

Error Cases

e Stream or_alias is a variable
— instantiation error

e Stream_or_alias is neither a variable nor a stream term nor an alias.

2The obsolescent predicate get0/1 is defined as get_code/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 163

— domain_error(stream or alias,Stream or alias)

e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)

e Code is not a variable or character code

— domain_error(character code or_ variable,Code)

get_byte/1 ISO
Behaves as get_byte/2, but reads from the current input stream *.v

Error Cases

e Code is not a variable or Code is not a proper value for a byte
— domain_error(byte_code_or_variable,Code)
peek_char (+Stream_or_alias,7Char) ISO
Unifies Char with the next UTF-8 character from Stream or_alias. The

position in Stream or_ alias is unchanged. Char is unified with the atom
end_of file if an end of file condition is detected.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or alias)
e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)
e Char is not a variable or character.
— domain_error(character or_variable,Char)
peek_char (?Char) ISO
Behaves as peek_char/2, but the current input stream is used.

Error Cases

e Char is not a variable or character.

— domain_error(character_ or_variable,Char)

3The obsolescent predicate get0/1 is defined using get_byte/1, but returns the next byte that
does not match an ASCII whitespace character.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 164

peek_code(+Stream_or_alias,?7Code) ISO
Unifies Code with the next UTF-8 code from Stream_or_alias. The position
in Stream_or_alias is unchanged. Code is unified with -1 if an end of file
condition is detected.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream_or_alias)
e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)
e Code is not a variable or character.
— domain_error(character code or variable,Code)
peek_code (?Code) ISO
Behaves as peek_code/2, but the current input stream is used.

Error Cases

e Char is not a variable or character.
— domain_error(character code or variable,Code)
peek_byte(7Byte) ISO
Unifies Byte with the next byte from Stream or_alias. The position in

Stream or_alias is unchanged. Code is unified with -1 if an end of file condi-
tion is detected.

Error Cases

e Stream or_alias is a variable
— instantiation_error

e Stream_or_alias is neither a variable nor a stream term nor an alias.
— domain error(stream or alias,Stream or alias)

e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream_or_alias)

e Code is not a variable or character.

— domain_error(byte_code_or_variable,Code)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 165

peek_byte(?Byte) ISO
Behaves as peek_byte/2, but the current input stream is used.

Error Cases

e Char is not a variable or character.
— domain_error(byte_code_or_variable,Code)
put_char (+Stream_or_alias,+Char) ISO
Writes a UTF-8 character Char to Stream_or_alias.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or_alias,Stream or_alias)
e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)
e Char is a not a character
— type_error(character,Char)
put_char (+Char) ISO
Puts a UTF-8 character Char to the current output stream.

Error Cases

e Code is a not a character.
— type_error(character,Char)
put_code (+Stream,+Code) ISO
Puts the character for the UTF-8 code Code to Stream_or_alias.

Error Cases

e Stream or_alias is a variable
— instantiation error

e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or alias)

e Stream_or_alias is not associated with an open input stream

CHAPTER 6. STANDARD AND GENERAL PREDICATES 166

— existence error(stream,Stream or alias)
e Code is a not a character code
— type_error(character_code,Code)
put_code (+Code) ISO
Puts the character for the UTF-8 code Code to the current output stream *.

Error Cases

e Code is a not a character code.
— type_error(character_code,Code)

nl ISO

A new line character is sent to the current output stream.
nl (+Stream or alias) ISO
A new line character is sent to the designated output stream.

Error Cases

e Stream or_alias is a variable
— instantiation error

e Stream _or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream or_alias)

e Stream_or_alias is not associated with an open stream
— existence_error(stream,Stream or_alias)

tab (+N)
Puts N spaces to the current output stream.

Error Cases

e Code is a not a positivelnteger

— domain_error(positivelInteger,Code)

4The obsolescent predicate put/1 is defined as put_code/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 167

6.1.6 Term I/0

Beginning with Version 3.8, XSB automatically supports Unicode in the form of
UTF-8 characters for reading and writing.

read (?Term) ISO
HiLog term is read from the current or designated input stream, and unified
with Term according to the operator declarations in force. (See Section 4.1 for
the definition and syntax of HiLog terms). The term must be delimited by a full
stop (i.e. a “” followed by a carriage-return, space or tab). Predicate read/1
does not return until a valid HiLog term is successfully read; that is, in the
presence of syntax errors read/1 does not fail but continues reading terms until
a term with no syntax errors is encountered. If a call to read(Term) causes
the end of the current input stream to be reached, variable Term is unified with
the term end_of file. In that case, further calls to read/1 for the same input
stream will cause an error failure.

In Version 3.8, read/[1,2] are non ISO-compliant in how they handle syntax

errors or their behavior when encountering an end of file indicator.

read(+Stream_or_alias, 7Term) ISO
read/2 has the same behavior as read/1 but the input stream is explicitly
designated by Stream or_alias.

Error Cases

e Stream or_alias is a variable
— instantiation error
e Stream_or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream_or_alias)
e Stream_or_alias is not associated with an open stream
— existence_error(stream,Stream_or_alias)
read_canonical (-Term)
Reads a term that is in canonical format from the current input stream and
returns it in Term. On end-of-file, it returns the atom end of file. If it
encounters an error, it prints an error message on STDERR and returns the

atom read_canonical error. This is significantly faster than read/1, but
requires the input to be in canonical form.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 168

read canonical (+Stream or alias),-Term)
Behaves as read_canonical/1, but reads from Stream or_alias.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or_alias,Stream or_alias)
e Stream or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)
read_term(?Term,?0OptionsList) ISO
A term is read from the current input stream as in read/1; but OptionsList is

a (possibly empty) list of read options that specifies additional behavior. The
read options include

e variables(Vars): once a term has been read, Vars is a list of the variables
in the term, in left-to-right order.

e variable names(VN_List): once a term has been read VN_List is a list
of non-anonymous variables in the term. The elements of the list have the
form A = V where V is a non-anonymous variable of the term, and A is the
string used to denote the variable in the input stream.

e singletons(VS_List): once a term has been read VN_List is a list of the
non-anonymous singleton variables in the term. The elements of the list
have the form A = V where V is a non-anonymous variable of the term, and
A is the string used to denote the variable in the input stream.

Error Cases

e OptionsList is a variable, or is a list containing a variable element.
— instantiation error
e OptionsList contains a non-variable element 0 that is not a read option.
— domain_error(read_option,0)
read_term(+Stream or_alias, ?Term,?OptionsList) ISO

read_term/3 has the same behavior as read term/2 but the input stream is
explicitly designated using the first argument.

Error Cases are the same as read_term/2, but with the additional errors that
may arise in stream checking.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 169

Stream_or_alias is a variable
— instantiation error

Stream_or_alias is neither a variable nor a stream term nor an alias.
— domain error(stream or alias,Stream or alias)

Stream_or_ alias is not associated with an open stream

— existence_error(stream,Stream or_alias)

write_term(?Term,+Options) ISO
Outputs +Term to the current output stream. Stream (write_term/3) accord-
ing to the list of write options, Options. The current set of write options which
form a superset of the ISO-standard write options, are as follows:

quoted(+Bool). If Bool = true, then atoms and functors that can’t be
read back by read/1 are quoted, if Bool = false, each atom and functor
is written as its unquoted name. Default value is false.

ignore_ops(+Bool). If Bool = true each compound term is output in
functional notation; curly brackets and list braces are ignored, as are all
explicitly defined operators. If Bool = false, curly bracketed notation
and list notation is enabled when outputting compound terms, and all
other operator notation is enabled. Default value is false.

numbervars (+Bool). If Bool = true, a term of the form ’$VAR’ (N)
where N is an integer, is output as a variable name consisting of a capital
letter possibly followed by an integer. A term of the form >$VAR’ (Atom)
where Atom is an atom, is output as itself (without quotes). Finally, a term
of the form *$VAR’ (String) where String is a character string, is output
as the atom corresponding to this character string. If bool is false this
cases are not treated in any special way. Default value is false.

max_depth(+Depth). Depth is a positive integer or zero. If positive, it
denotes the depth limit on printing compound terms. If Depth is zero,
there is no limit. Default value is 0 (no limit).

priority(+Prio) Prio is an integer between 1 and 1200. If the term to
be printed has higher priority than Prio, it will be printed parenthesized.
Default value is 1200 (no term parenthesized).

From the following examples it can be seen that write_term/[2,3] can dupli-
cate the behavior of a number of other I/O predicates such as write/[1,2],
writeq/[1,2], write_canonical/[1,2], etc.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 170

| 7- write_term(£f(1+2,’A’,"string",’$VAR’(3),’$VAR’ (’Temp’), (multifile foo)),[]).
f(1 + 2,A,"string",$VAR(3) ,$VAR(Temp) , (multifile foo))
yes

| 7- write_term(f(1+2,’A’ ,"string",’$VAR’ (3),’$VAR’ (’Temp’), (multifile foo)),
[quoted(true)]).

f(1 + 2,’A”,"string",’$VAR’ (3),’$VAR’ (*Temp’) , (multifile foo))

yes

| 7- write_term(f(1+2,’A’ ,"string",’$VAR’(3),’$VAR’ (’Temp’), (multifile foo)),
[quoted(true) ,ignore_ops(true) ,numbervars(true)]).
f(+(1,2),°A°,°.°(115,>.°(116,7.°(114,°.°(105,°.°(110,°.7(103,[1)))))) ,D,Temp, (multifile f

9 .

yes

| ?7- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’ ("Temp’), (multifile foo)),
[quoted(true) ,ignore_ops(true) ,numbervars(true) ,priority(1000)]).
f(+(1,2),’A°,7.7(115,7 .7 (116, .7 (114, .°(105,7.7(110,7.°(103,[1)))))) ,D,Temp,multifile(fo

5 .

yes

Error Cases

e Options is a variable
— instantiation_error
e Options neither a variable nor a list
— type_error(list,Options)
e Options contains a variable element, 0
— instantiation_error
e Options contains an element 0 that is neither a variable nor a write option.
— domain_error(write_option,0)

ISO Compatibility Note: In Version 3.8, write_term/[2,3] do not properly
handle operators.

write_term(+Stream_or_alias,?Term,+0Options) ISO
Behaves as write_term/2, but writes to Stream_or_alias.

Error Cases are the same as write_ term/2 but with these additions.

e Stream or_alias is a variable

CHAPTER 6. STANDARD AND GENERAL PREDICATES 171

— instantiation error

e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or_alias,Stream or_alias)

e Stream or_alias is not associated with an open output stream

— existence_error(stream,Stream or_alias)

write(?Term) ISO
Semantically, write/1 behaves as if write_term/1 were invoked using quoted (false),
ignore_ops(false), and numbervars(false). Attributed variables are writ-
ten according to the value of the Prolog flag write_attributes (cf. current_prolog_flag/2).

The HiLog term Term is written to the current output stream, according to
the operator declarations in force. Any uninstantiated subterm of term Term is
written as an anonymous variable (an underscore followed by a token).

All proper HilLog terms (HiLog terms which are not also Prolog terms) are
not written in their internal Prolog representation. write/1 always succeeds
without producing an error.

HiLog (or Prolog) terms that are output by write/1 cannot in general be read
back using read/1. This happens for two reasons:

e The atoms appearing in term Term are not quoted. In that case the user
must use writeq/1 or write_canonical/1 described below, which quote
around atoms whenever necessary.

e The output of write/1 is not terminated by a full-stop; therefore, if the
user wants the term to be accepted as input to read/1, the terminating
full-stop must be explicitly sent to the current output stream.

write/1 treats terms of the form ’$VAR’ (N), which may be generated by
numbervars/ [1,3] specially: it writes ?A’ if N=0, *B’ if N=1, ..., *Z’ if N=25,
*A1 if N=26, etc. *$VAR’ (-1) is written as the anonymous variable > _7.

write(+Stream_or_alias, 7Term) ISO
write/2 has the same behavior as write/1 but the output stream is explicitly
designated using the first argument.

Error Cases are the same as read_term/2, but with the additional errors that
may arise in stream checking.
e Stream or_alias is a variable

— instantiation_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 172

e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or alias)
e Stream or_alias is not associated with an open output stream

— existence error(stream,Stream or alias)

writeq(?Term) ISO
Acts aswrite_term/1 when defined with the options quoted (true), numbervars (true),
and ignore_ops(false). In other words, atoms and functors are quoted when-
ever necessary to make the result acceptable as input to read/1 writeq/1 also
treats terms of the form >\VAR’ (N) specially, writing A if N= 0, etc., and output
is in accordance with current operator definitions. writeq/1 always succeeds
without producing an error.

writeq(+Stream_or_alias, ?Term) ISO
writeq/2 has the same behavior as writeq/1 but the output stream is explicitly
designated using the first argument.

Error Cases

e Stream or_alias is a variable
— instantiation_error

e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or_alias)

e Stream or_alias is not associated with an open output stream

— existence_error(stream,Stream or_alias)

write_canonical (?Term) ISO
This predicate is provided so that the HiLog term Term, if written to a file,
can be read back using read canonical/[1,2] or read/[1,2] regardless of
special characters appearing in Term or prevailing operator declarations. Like
write_prolog/1, write_canonical/1 writes all proper HiLog terms to the
current output stream using the standard Prolog syntax (see Section 4.1 on the
standard syntax of HiLog terms). write_canonical/1 also quotes atoms and
functors as writeq/1 does, to make them acceptable as input of read/1. Except
for list-notation ([1) and infix comma-list notation, operator declarations are
not taken into consideration, so that apart from these exceptions compound
terms are written in the form:

(predicate name)({arg,), ..., {(argy,))

CHAPTER 6. STANDARD AND GENERAL PREDICATES 173

Unlike writeq/1, write_canonical/1 does not treat terms of the form > $VAR’ (N)
specially. It writes square bracket lists using ’.’/2 and [] (that is, [foo, bar]
is written as ’ .’ (foo,’.’ (bar, [1))).

Finally, write canonical/2 writes attributed variables as simple variables.

ISO Compatibility Note: In XSB, list notation and infix comma-list nota-
tion are considered canonical both for reading and writing. We find that this
improves readability, and that these operators are so standard that there is little
likelihood that they will not be in effect by any Prolog reader. We therefore
deviate from the ISO standard definition of canonical in these cases.

write_canonical (+Stream_or_alias, ?Term) ISO
write canonical/2 has the same behavior as write_canonical/1 but the
output stream is explicitly designated using the first argument.

Error Cases

e Stream or_alias is a variable
— instantiation error

e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or_alias)

e Stream or_alias is not associated with an open output stream
— existence_error(stream,Stream_or_alias)

writeln(?Term)
writeln(Term) can be defined as write(Term), nl.

writeln(+Stream, ?Term)
writeln(Term) can be defined as write(Stream,Term), nl(Stream).

write_prolog(?Term) HiLog

write_prolog(+Stream or_alias,?Term) HiLog
write_prolog/1 acts as write/1 except that any proper HilLog term Term is
written using Prolog syntax — i.e. as a term whose outer functor is apply.
write_prolog/1 outputs Term according to the operator declarations in force.
Because of this, it differs from write canonical/1 described above, despite
the fact that both predicates write HiLog terms as Prolog terms.

write_prolog/2 has the same behavior as write_prolog/1 but the output
stream is explicitly designated using the first argument. Error Cases for write_prolog/2
are the same as for write/2.

Examples:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 174

| 7- write_prolog(X(a,1+2)).
apply(_h120,a,1 + 2)

yes
| 7- write(X(a,1+2)).
_h120(a,1 + 2)

yes
| ?- write_canonical(X(a,1+2)).
apply(_h120,a,+(1,2))

yes

numbervars (+Term, +FirstN,?LastN,+0ptions) module: num_vars
This predicate provides a mechanism for grounding a (HiLog) term so that it
may be analyzed. Each variable in the (HiLog) term Term is instantiated to
a term of the form ’>$VAR’ (N), where N is an integer starting from FirstN.
FirstN is used as the value of N for the first variable in Term (starting from the
left). The second distinct variable in Term is given a value of N satisfying "N is
FirstN + 1" and so on. The last variable in Term has the value LastN-1.

In numbervars/4, Options can be used to indicate the action to take upon
encountering an attributed variable. Currently, Options must be either be the
empty list, or the list [attvar(Action)] or the term attvar(Action), where
Action is

e error Throw a type error if an attributed variable is encountered.

e bind Bind attributed variables by unifying them with terms of the form
>$VAR’ (N).

e skip Skip over attributed variables, performing no action on these vari-
ables.

Error Cases

e Options is a variable
— instantiation error

e Options is not an empty list, the list [attvar(Action)] or the term
attvar(Action) where Action is one of bind, error or skip:

— domain_error

numbervars (+Term, +FirstN, ?7LastN) module: num_vars
Acts as numbervars (+Term, +FirstN, 7LastN,attvar(error)).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 175

numbervars (+Term) module: num_vars
This predicate is defined as: numbervars(Term, 0,). It is included solely
for convenience.

unnumbervars (+Term, +FirstN, 7Copy) module: num_vars
This predicate is a partial inverse of predicate numbervars/3. It creates a
copy of Term in which all subterms of the form >$VAR’ (<int>) where <int>
is not less than FirstN are uniformly replaced by variables. ’>$VAR’’ sub-
terms with the same integer are replaced by the same variable. Also a version
unnumbervars/2 is provided which calls unnumbervars/3 with the second pa-
rameter set to 0.

Term Writing to Designated I/O Streams

While XSB has standard I/O streams for errors, warnings, messages, and feedback (cf.
Section 6.1.1), the predicates above write to STDOUT which is the standard output for
the process. Most of the time there is no issue with this as these streams are aliased
to STDOUT. However in a number of circumstances, STDOUT may be redirected: a user
may have invoked tell/1, XSB may be invoked through C or interprolog, etc. In such
cases, it may be useful to ensure that output goes to one of the other I/O streams.

error_write(?Message) module: standard

error_writeln(?Message) module: standard
These predicates output Message to XSB’s STDERR stream, rather than to XSB’s
STDOUT stream, as does write/1 and writeln/1. In addition, if Message is a
list or comma list, the elements in the comma list are output as if they were
concatenated together. Each of these predicates must be imported from the
module standard.

console_write(7Message) module: standard
console_writeln(?Message) module: standard
As above, but writes to STDFDBK, the console feedback stream.

warning(?Message) module: standard
By default, this predicate outputs Message to XSB’s STDWARN stream, rather
than to XSB’s STDOUT stream, as does write/1 and writeln/1. In addition, if
Message is a list or comma list, the elements in the comma list are output as
if they were concatenated together. Each of these predicates must be imported
from the module standard.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 176

The default behavior for warnings can be altered by setting the value of the
Prolog flag warning action to either silent_warning which performs no ac-
tion when warning/1 is called. or error_warning which throws a miscellaneous
exception when warning/1 is called (WARNING: this includes compiler warn-
ings). The default behavior can be restored by setting warning action to
print_warning.

message (?Message) module: standard
messageln(7Message) module: standard

As above, but writes to STDMSG the standard stream for messages.

6.1.7 Special I/0O

fmt read(+Fmt,-Term,-Ret)

fmt _read(+Stream,+Fmt,-Term,-Ret)

These predicates provides a routine for reading data from the current input
file (which must have been already opened by using see/1) according to a C
format, as used in the C function scanf. Fmt must be a string of characters
(enclosed in ") representing the format that will be passed to the C call to
scanf. See the C documentation for scanf for the meaning of this string. The
usual alphabetical C escape characters (e.g., \n) are recognized, but not the
octal or the hexadecimal ones. Another difference with C is that, unlike most
C compilers, XSB insists that a single % in the format string signifies format
conversion specification. (Some C compilers might output % if it is not followed
by a valid type conversion spec.) So, to output % you must type %%. Format
can also be an atom enclosed in single quotes. However, in that case, escape
sequences are not recognized and are printed as is.

Ternm is a term (e.g., args(X,Y,Z)) whose arguments will be unified with the
field values read in. (The functor symbol of Term is ignored.) Special syntactic
sugar is provided for the case when the format string contains only one format
specifier: If Term is a variable, X, then the predicate behaves as if Term were
arg(X).

If the number of arguments exceeds the number of format specifiers, a warning
is produced and the extra arguments remain uninstantiated. If the number of
format specifiers exceeds the number of arguments, then the remainder of the
format string (after the last matching specifier) is ignored.

Note that floats do not unify with anything. Ret must be a variable and it will
be assigned a return value by the predicate: a negative integer if end-of-file is
encountered; otherwise the number of fields read (as returned by scanf.)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 177

fmt_read cannot read strings (that correspond to the %s format specifier) that
are longer than 16K. Attempting to read longer strings will cause buffer overflow.
It is therefore recommended that one should use size modifiers in format strings
(e.g., %2000s), if such long strings might occur in the input.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or_alias,Stream or_alias)
e Stream or_alias is not associated with an open output stream
— existence error(stream,Stream or alias)
If the number of arguments in Term is greater than the number of conversion
specifiers in Fmt no error is thrown, but a warning is issued.
fmt write(+Fmt,+Term)

fmt write(+Stream or_ alias,+Fmt,+Term)
These predicates provide routines for writing formatted data to a given output
stream (fmt_write/3) or the current output stream (fmt_write/2).

Fmt should be a Prolog character list (string) or atom. A Prolog character
list is preferred, as space can be more easily reclaimed for character lists than
for atoms. Term is a Prolog term (e.g., args(X,Y,Z)) whose arguments will
be output. The number of arguments in Term should equal the number of
conversion specifiers in Fmt. The functor symbol of Term is ignored °.

Allowable syntaxes for Fmt reflect the syntax of the C function printf() on a
given platform, with the following exceptions

e The usual alphabetical C escape characters (e.g., \n) are recognized, but
not the octal or the hexadecimal ones.

e 7S is supported, in addition to the usual C conversion specifiers. The
corresponding argument can be any Prolog term. This provides an easy
way to print the values of Prolog variables, etc.

e /! is supported and indicates that the corresponding argument is to be
ignored and will generate nothing in the output.

5In the case where Fmt contains only a single conversion specifier, Term may be a string, integer
or a float, and is considered to be equivalent to specifying arg(Term).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 178

e A single % in the format string must be followed by a conversion operator
(e.g. d, s, etc.). (Some C compilers output % if the percentage character
is not followed by a valid type conversion spec.) However, to output %,
fmt_write must contain %%.

Example

| 7- fmt_write("%d %f %s %S \n",args(1,3.14159,ready,hello(world))).
1 3.141590 ready hello(world)

yes

XSB also offers an alternate version of formatted output in the format library
described in volume 2. While not as efficient as fmt_write/[2,3], the format
library is more compatible with the formatted output found in other Prologs.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or alias)
e Stream or_alias is not associated with an open output stream
— existence_error(stream,Stream or_alias)
e Fmt is uninstantiated or not a character string or atom
— type_error(’character string or atom’,Fmt)

e A format specifier in Fmt and its corresponding argument in Term are of
incompatible types.

— misc_error

e Term contains fewer arguments than Fmt has format specifiers or Term is
uninstantiated

— misc_error
If the number of arguments in Term is greater than the number of conversion
specifiers in Fmt no error is thrown, but a warning is issued.

Caution for 64-bit Platforms As discussed, fmt_write/[2,3] calls printf ()
and inherits the flexibility of that function, but also its “features”. Omne of

CHAPTER 6. STANDARD AND GENERAL PREDICATES 179

these features is that in most 64-bit platforms, large integers that behave per-
fectly well otherwise are not printed out properly by printf() with the %d
format — rather another format string needs to be used (such as %1d on Linux).
fmt_write/[1,2] recognizes the %1d option and passes it onto fprintf (), but
the proper format string for 64-bit integers may be different on other platforms.

fmt_write_string(-String,+Fmt,+Term)
This predicate works like the C function sprintf. It takes the format string
and substitutes the values from the arguments of Term (e.g., args(X,Y,Z))
for the formatting instructions %s, %d, etc. Additional syntactic sugar, as in
fmt_write, is recognized. The result is available in String. Fmt is a string or
an atom that represents the format, as in fmt_write.

If the number of format specifiers is greater than the number of arguments to
be printed, an error is issued. If the number of arguments is greater, then a
warning is issued.

fmt_write_string requires that the printed size of each argument (e.g., X,Y,and
Z above) must be less than 16K. Longer arguments are cut to that size, so some
loss of information is possible. However, there is no limit on the total size of
the output (apart from the maximum atom size imposed by XSB).

file read line list(-String)
A line read from the current input stream is converted into a list of character
codes. This predicate avoids interning an atom as does file_read_line_atom/3,
and so is recommended when speed is important. This predicate fails on reach-
ing the end of file.

file read line list(Stream_or_alias,-CharList)
Acts as does file read line list, but uses Stream or_atom.

Error Cases

e Stream or_alias is a variable
— instantiation_error
e Stream_or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream or_alias)
e Stream_or_alias is not associated with an open input stream
— existence_error(stream,Stream or_alias)
file read line atom(-Atom)

Reads a line from the current (textual) input stream, returning it as Atom. This
predicate fails on reaching the end of file.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 180

file_read_line_atom(+Stream_or_alias,-Atom)
Like file_read_line_atom/1 but reads from Stream or_alias. Error Cases
e Stream or_alias is a variable
— instantiation error
e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream_or_alias)
e Stream_or_alias is not associated with an open input stream
— existence_error(stream,Stream_or_alias)
file write_line(+String, +0ffset) module: file io
file write_line(+Stream_or_alias, +String, +0ffset) module: file _io
These predicates write String beginning with character 0ffset to the current
output stream. String can be an atom or a list of UTF-8 character codes.
This does not put the newline character at the end of the string (unless String

already had this character). Note that escape sequences, like \n, are recognized
if String is a character list, but are output as is if String is an atom.

Error Cases

e Stream or_alias is a variable
— instantiation_error

e Stream_or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream_or_alias)

e Stream_or_alias is not associated with an open input stream
— existence_error(stream,Stream_or_alias)

e String is neither a Prolog character list not an atom

— misc_error

file_getbuf_ list(+Stream_or_alias, +BytesRequested, -CharList, -BytesRead)
module: file io
Read BytesRequested bytes from file represented by Stream_or_alias (which
must already be open for reading) into variable String as a list of character
codes. This is analogous to fread in C. This predicate always succeeds. It does
not distinguish between a file error and end of file. You can determine if either of
these conditions has happened by verifying that BytesRead < BytesRequested.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 181

file_getbuf_list(+BytesRequested, -String, -BytesRead) module: file_io
Like file_getbuf_1ist/3, but reads from the currently open input stream
(i.e., with see/1).

file_getbuf_atom(+Stream_or_alias, +BytesRequested, -String, -BytesRead)
module: file io

Read BytesRequested bytes from file represented by Stream_or_alias (which
must already be open for reading) into variable String. This is analogous to
fread in C. This predicate always succeeds. It does not distinguish between a
file error and end of file. You can determine if either of these conditions has
happened by verifying that BytesRead < BytesRequested.

Note: although XSB has an atom table garbage collector, this predicate is
inefficent to read large files. It is usually best to use read_getbuf_list or
another predicate in such a case.

Error Cases

e Stream or_alias is a variable
— instantiation_error

e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream_or_alias,Stream or_alias)

e Stream_or_alias is not associated with an open input stream
— existence error(stream,Stream or alias)

file_getbuf_atom(+BytesRequested, -String, -BytesRead) module: file_io
Like file_getbuf atom/4, but reads from the currently open input stream.

file_putbuf (+Stream_or_alias, +BytesRequested, +String, +0ffset, -BytesWritten)
module: file io

Write BytesRequested bytes into file represented by I/O port Stream_or_alias
(which must already be open for writing) from variable String at position
Offset. This is analogous to C fwrite. The value of String can be an atom
or a list of UTF-8 characters.

Error Cases

e Stream or_alias is a variable

— instantiation_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 182

e Stream or_alias is neither a variable nor a stream term nor an alias.
— domain_error(stream or alias,Stream or alias)
e Stream or_alias is not associated with an open input stream

— existence error(stream,Stream or alias)

file_putbuf (+BytesRequested, +String, +0ffset, -BytesWritten) module:
file io
Like file_putbuf/3, but output goes to the currently open output stream.

6.2 Interactions with the Operating System

XSB provides a number of facilities for interacting with the UNIX and Windows
operating systems. This section describes basic facilities for invoking shell commands
and file manipulation. Chapter 1 of Volume 2 discusses more advanced commands
for process spawning and control, along with interprocess communication.

shell (+SystemCall)
Calls the operating system with the atom SystemCall as argument, using the
libc function system(). The predicate succeeds if SystemCall is executed
successfully; otherwise it fails. As a convenience, the user can also supply
SystemCall either as an atom or as a list of atoms. If a list of atoms is used,
elements of the list will be concatenated together to form the system call.

For example, the call:
| 7= shell(’echo $HOME’).

will output in the current output stream of XSB the name of the user’s home
directory; while the call:

| 7- File = ’test.c’, shell([’cc -c ’, Filel).
will call the C compiler to compile the file test.c.

Note that in UNIX systems, since system() (and shell/1) executes by forking
off a shell process. Thus it cannot be used, for example, to change the working
directory of the program. For that reason the standard predicate cd/1 described
below should be used.

Error Cases

e SystemCall is a variable

CHAPTER 6. STANDARD AND GENERAL PREDICATES 183

— instantiation error
e SystemCall is neither an atom nor a list
— type_error(atom_or_list,SystemCall)

e SystemCall is longer than the maximum command length allowed by
shell/1

— resource_error (memory)
shell (+SystemCall, -Result)
As with shell/1, this predicate calls the operating system with the atom
SystemCall as argument, using the libc function system() using the same
forms of input. shell/2 always succeeds instantiating Result to the exit code

of system(). Thus Result will be 0 if SystemCall executed properly, and non-0
otherwise: the specific return values of system() may be platform-dependent.

Error Cases

e SystemCall is a variable

— instantiation_error
e SystemCall is neither an atom nor a list

— type_error(atom_or_list,SystemCall)
e Result is not a variable

— type_error(variable,Result)

e SystemCall is longer than the maximum command length allowed by
shell/2

— resource_error (memory)

shell to_list(+SystemCall,-StdOut,-ErrQOut,-Result)

shell to_list(+SystemCall,-StdOut,-Result)
Behaves as shell/2 in its lst and 4th arguments, and like shell/2 always
succeeds. Both StdOut and ErrQut are lists of lists: each element of the outer
list corresponds to a line of output from SystemCall, while each element of an
inner list corresponds to a token in that line. shell to_1list/3 is thus a sort
of Prolog analog of the shell command designated by SystemCall.

Examples (from OSx):

?7- shell to list(sw_vers,Stdout,Ret).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 184

Stdout = [[ProductName:,Mac,0S,X], [ProductVersion:,10.4.9], [BuildVersion:,8P2137]
Ret = 0

?7- shell to_lists(’gcc -c nofile.c’,StdOut,StdErr,Ret).

Stdout = []
StdErr = [[i686-apple-darwin8-gcc-4.0.1:,nofile.c:,No,such,file,or,directoryl]]
Ret = 256

Error cases are as with shell/2

datime(?Date) module: standard
Unifies Date to the current UTC date, returned as a Prolog term, suitable for
term comparison. Note that datime/1 must be explicitly imported from the
module standard.

Example:

> date

Mon Aug 9 16:19:44 EDT 2004

> xsb

XSB Version 2.6 (Duff) of June 24, 2003

[i686-pc-cygwin; mode: optimal; engine: slg-wam; gc: indirection; scheduling: loce

| ?- import datime/1 from standard

yes
| ?- datime(F).
F = datime(2004,8,9,20,20,23)

yes

local _datime(7Date) module: standard
Acts as datime/1, but returns the local, rather than the UTC date.

epoch_seconds (-Seconds) module: machine

epoch_milliseconds(-Seconds,-Milliseconds) module: machine
Returns the number of seconds since the beginning of the POSIX/UNIX epoch
(January 1, 1970) . May cause overflow on 32-bit platforms. epoch_milliseconds/2
returns both the number of seconds and the number of additional milliseconds
since the last whole second.

6Uses the Posix call time(0), so the number of seconds will be returned on non-Unix platforms,
such as Microsoft.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 185

sleep(+Seconds) module: shell
Put XSB to sleep for a given number of seconds.

Error Cases

e Seconds is a variable
— instantiation error.
e Seconds is not an integer
— type_error(integer, Seconds).
cd(+Dir)
Under UNIX and Windows, this predicate changes the interpreter’s working
directory to Dir. If the directory specified does not exist or is not a directory,

or the user does not have execute permission for that directory, predicate cd/1
simply fails raising a permission error.

Error Cases

instantiation_error Dir is not instantiated at the time of call.
type_error Dir is not an atom.
getenv(+VarName,-VarVal) module: machine

Unifies VarVal with the value of VarName in the current shell. If VarName is not
an environment varible, the predicate fails.

Ezample:

:— import getenv/2 from machine.

yes
| 7- getenv(’HOSTTYPE’,F).

F = intel-pc

putenv(+String) module: machine
If String is of the form VarName=Value, inserts or resets the environment vari-
able VarName. If VarName does not exist, it is inserted with VarVal. If the
VarName does exist, it is reset to VarVal. putenv/2 always succeeds.

Exceptions:

instantiation_error String is not instantiated at the time of call.

type_error VarName or VarVal is not an atom or a list of atoms.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 186

6.2.1 The path_sysop/2 interface

In addition, XSB provides the following unified interface to the operations on files.
All these calls succeed iff the corresponding system call succeeds. These calls work
on both Windows and Unixes unless otherwise noted.

path_sysop(isplain, +Path)
Succeeds, if Path is a plain file.

path_sysop(isdir, +Path)
Succeeds, if Path is a directory.

path_sysop(rename, +0l1dPath, +NewPath)
Renames 01dPath into NewPath.

path_sysop(copy, +FromPath, +ToPath)
Copies FromPath into ToPath.

path_sysop(rm, +Path)
Removes the plain file Path.

path_sysop(rmdir, +Path)
Deletes the directory Path, succeeding only if the directory is empty.

path_sysop(rmdir_rec, +Path)
Deletes the directory Path along with any of its contents.

path_sysop(link, +SrsPath, +DestPath)
Creates a hard link from SrsPath to DestPath. UNIX only.

path_sysop(cwd, -Path)
Binds Path to the current working directory.

path_sysop(chdir, +Path)
Changes the current working directory to Path.

path_sysop(mkdir, +Path)
Creates a new directory, Path.

path_sysop(exists, +Path)
Succeeds if the file Path exists.

path_sysop(readable, +Path)
Succeeds if Path is a readable file.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 187

path_sysop(writable, +Path)
Succeeds if Path is a writable file.

path_sysop(executable, +Path)
Succeeds if Path is an executable file.

path_sysop(modtime, +Path, -Time)
Returns a list that represents the last modification time of the file. Succeeds if
file exists. In this case, Time is bound to a list [high,low] where low is the
least significant 24 bits of the modification time and high is the most significant
bits (25th) and up. Time represents the last modification time of the file. The
actual value is thus high * 22* + low, which represents the number of seconds
elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC).

path_sysop(newerthan, +Pathl, +Path2)
Succeeds is the last modification time of Pathl is higher than that of Path2.
Also succeeds if Pathl exists but Path2 does not.

path_sysop(size, +Path, -Size)
Returns a list that represents the byte size of Path. Succeeds if the file exists.
In this case Size is bound to the list of the form [high,low] where low is the
least significant 24 bits of the byte-size and high is the most significant bits
(25th) and up. The actual value is thus high * 22* + low.

path_sysop(tmpfilename, -Name)
Returns the name of a new temporary file. This is useful when the application
needs to open a completely new temporary file.

path_sysop(extension, +Name, -Ext)
Returns file name extension.

path_sysop(basename, +Name, -Base)
Returns the base name of the file name (i.e., the name sans the directory and
the extension).

path_sysop(dirname, +Name, -Dir)
Returns the directory portion of the filename. The directory is slash or backslash
terminated.

path_sysop(isabsolute, +Name)
Succeeds if Name is an absolute path name. File does not need to exist.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 188

path_sysop(expand, +Name, -ExpandedName)
Binds ExpandedName to the expanded absolute path name of Name. The file
does not need to exist. Duplicate slashes, references to the current and parent
directories are factored out.

6.3 Evaluating Arithmetic Expressions through is/2

Before describing is/2 and the expressions that it can evaluate, we note that in
Version 3.8 of XSB, integers in XSB are represented using a single word of 32 or 64
bits, depending on the machine architecture. Floating point values are, by default,
stored as word-sized references to double precision values, regardless of the target
machine. Direct (non-referenced, tagged) single precision floats can be activated for
speed purposes by passing the option —enable-fast-floats to the configure script at
configuration time. This option is not recommended when any sort of precision is
desired, as there may be as little as 28 bits available to represent a given number
value under a tagged architecture.

All of the evaluable functors described below throw an instantiation error if one
of their evaluated inputs is a variable, and an evaluation(undefined) error if one
of their evaluated inputs is instantiated but non-numeric. With this in mind, we
describe below only their behavior on correctly typed input.

ISO Compatibility Note: In addition, evaluation of arithmetic expressions
through is/2 does not check for overflow or underflow. As a result, XSB’s float-
ing point operations do not conform to IEEE floating point standards, and deviates
in this regard from the ISO Prolog standard (see [37] Section 9) We hope to fix these

problems in a future release ”.

is(7Result,+Expression) ISO
is(Result,Expression) is true iff the result of evaluating Expression as a
sequence of evaluable functors unifies with Result. As mentioned in Sec-
tion 3.10.6, is/2 is an inline predicate, so calls to is/2 within compiled code
will not be visible during a trace of program execution.

Error Cases

instantiation_error Expression contains an uninstantiated value

"We also note that the ISO Prolog evaluable functorsfloat_integer_part/1 (which can be ob-
tained via truncate/1), float_fractional_part/1 (which can be obtained via X - truncate(X)),
and bitwise complement (which is implementation dependent in the ISO standard) are not imple-
mented in Version 3.8.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 189

domain_error (< function >, < value > Expression contains a function ap-
plied to value, but value is not part of the domain of function.

For is/2 the action for the above error cases can be altered so that the is/2
literal is treated as having a truth value of undefined in the well-founded se-
mantics. This is done via the Prolog flag exception_action.

6.3.1 Evaluable Functors for Arithmetic Expressions

+(+Exprl,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1
+ Number?2, performing any necessary type conversions.

- (+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1
- Number2, performing any necessary type conversions.

* (+Exprl,+Expr2) Evaluable Functor (1SO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1
* Number?2 (i.e. multiplies them), performing any necessary type conversions.

/ (+Expr1,Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1
/ Number?2 (i.e. divides them), performing any necessary type conversions.

div(+Exprl,Expr2) ISO

// (+Exprl,Expr2) Evaluable Functor
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1
// Number?2 (i.e. integer division), performing any necessary type conversions,
and rounding to 0 if necessary.

Example:
| 7- X is 3/2.
X = 1.5000

yes
| 7- X is 3 // 2.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 190

| 7- X is -3 // 2.

X =-1
yes
- (+Exprl) Evaluable Functor (ISO)
If +Expr evaluates to Number, returns -Number1, performing any necessary type
conversions.
"N’ (+Exprl,+Expr2) Evaluable Functor (1SO)

If +Exprl evaluates to Numberl, and Expr2 evaluates to Number?2, returns the
bitwise conjunction of Number1 and Number?2.

'\’ (+Exprl, +Expr2) Evaluable Functor (1SO)

If +Exprl evaluates to Numberl, and Expr2 evaluates to Number?2, returns the
bitwise disjunction Number1 and Number?2.

’»? (+Exprl,+Expr2) Evaluable Functor (ISO)
If +Exprl evaluates to Numberl, and Expr2 evaluates to Number2, returns the
logical shift right of Number1, Number?2 places.

'« (+Exprl,+Expr2) Evaluable Functor (ISO)
If +Exprl evaluates to Numberl, and Expr2 evaluates to Number2, returns the
logical shift left of Number1, Number?2 places.

xor (+Exprl,+Expr2) ISO

’><? (+Exprl,+Expr2) Evaluable Functor
If +Exprl evaluates to Numberl, and Expr2 evaluates to Number2, returns the
bitwise exclusive or of Number1 and Number?2.

min (+Exprl,+Expr2) Evaluable Functor (I1SO)
If +Exprl evaluates to Numberl, and Expr2 evaluates to Number2, returns the
minimum of the two.

max (+Expr1,+Expr2) Evaluable Functor (I1SO)
If +Exprl evaluates to Numberl, and Expr2 evaluates to Number2, returns the
maximum of the two.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 191

ceiling(+Expr) Evaluable Functor (I1SO)
If +Expr evaluates to Number, ceiling(Number) returns the integer ceiling of
Number if Number is a float, and Number itself if Number is an integer.

float (+Expr) Evaluable Functor (I1SO)
If +Expr evaluates to Number, float(Number) converts Number to a float if
Number is an integer, and returns Number itself if Number is a float.

floor (+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, floor (Number) returns the integer floor of Number
if Number is a float, and Number itself if Number is an integer.

mod (+Expr1,+Expr2) Evaluable Functor (I1SO)
If +Expr1 evaluates to Numberl and Expr2 evaluates to Number2 where Number?2
is not 0, mod (Number1,Number2) returns

Numberl — (| (Numberl/Number2)|) x Number2)

rem(+Exprl,+Expr2) Evaluable Functor (1SO)
If +Expr1 evaluates to Number1 and Expr2 evaluates to Number2 where Number2
is not 0, rem(Number1,Number2) returns

Numberl — (Numberl//Number2) x Number2)

Example:

| 7= X is 5 mod 2.

| 7= X is 5 rem 2.

| ?7- X is 5 mod -2.

| ?7- X is 5 rem -2.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 192

round (+Expr) Evaluable Functor (I1SO)
If +Expr evaluates to Number, round(Number) returns the nearest integer to
Number if Number is a float, and Number itself if Number is an integer.

~/2 Evaluable Functor (ISO)
If Exprl and Expr2 both evaluate to numbers, the infix function ~/2 raises
Exprl to the Expr2 power. If Exprl and Expr2 both evaluate to integers, an
integer is returned; otherwise a float is returned.

x%? (+Exprl,+Expr2) Evaluable Functor (ISO)
If Exprl and Expr2 both evaluate to numbers, the infix function **/2 raises
Exprl to the Expr2 power. A floating-point number is always returned.

sqrt (+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sqrt (Number) returns the square root of Number.

truncate (+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, truncate (Number) truncates Number if Number
is a float, and returns Number itself if Number is an integer.

sign(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sign(Number) returns 1 if Number is greater than
0, 0 if Number is equal to 0, and -1 if Number is less than 0.

pi Evaluable Functor (ISO)
Evaluates to m within an arithmetic expression.

e Evaluable Functor
Evaluates to e, the base of the natural logarithm, within an arithmetic expres-
sion. (Use exp(1) for ISO compatibility.)

epsilon Evaluable Functor
Evaluates to epsilon, the difference between the float 1.0 and the first larger
floating point number.

Mathematical Functions from math.h

XSB also allows as evaluable functors, many of the functions from the C library
math.h. Functions included in XSB Version 3.8 are cos/1 (ISO), sin/1 (ISO), tan/1
(ISO), acos/1 (ISO), asin/1 (ISO), atan/1 (ISO), log/1 (natural logarithm) (ISO),
log10/1, and atan/2 (ISO) (also available as atan2/2). For their semantics, see
documentation to math.h.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 193

6.4 Convenience

These predicates are standard and often self-explanatory, so they are described only
briefly.

true ISO
Always succeeds.

otherwise
Same as true/O0.

fail ISO
Always fails.

false ISO
Same as fail/O0.

6.5 Negation and Control

712/0 ISO
Cut (discard) all choice points made since the parent goal started execution.
Cuts across tabled predicates are not valid. The compiler checks for such cuts,
although whether the scope of a cut includes a tabled predicate is undecidable
in the presence of meta-predicates like call/1. Further discussion of conditions
allowing cuts and of their actions can be found in Section 5.1.

\+ +P ISO
If the goal P has a solution, fails, otherwise it succeeds. Equivalently, it is true
iff call(P) (see Section 6.11) is false. Argument P must be ground for sound
negation as failure, although no runtime checks are made.

Error Cases

instantiation_error P is not instantiated.

type_error(callable,P) P is not callable.

fail if (+P)

not +P
Like \+/1 and provided for compatibility with legacy code. Compilation of
\+/1 and fail_if/1 is optimized by XSB’s compiler, while that of not/1 is not

CHAPTER 6. STANDARD AND GENERAL PREDICATES 194

— therefore the first two syntactical forms are preferred in terms of efficiency,
while \+/1 is preferred in terms of portability.

All error cases are the same as call/1 (see Section 6.11).

tnot (+P) Tabling
The semantics of tnot/1 allows for correct execution of programs with accord-
ing to the well-founded semantics. P must be a tabled predicate, For a detailed

description of the actions of tabled negation for in XSB Version 3.8 see [68, 70].
Chapter 5 contains further discussion of the functionality of tnot/1.

Error Cases

e P is not ground (floundering occurs)
— instantiation_error

e P is not callable
— type_error(callable,P)

e P is not a call to a tabled predicate

— table _error

not_exists(+P) Tabling
If +P is a tabled predicate, not_exists/1 acts as tnot/1 but permits variables
in its subgoal argument The semantics in the case of unbound variables is as
follows:

:= ..., not_exists(p(X)),
is equivalent to

... = ..., tnot(pp),
pp - p(X).

where pp is a new proposition. Thus, the unbound variable X is treated as
tnot(IX(p(X))).

If +P is a non-tabled predicate not_exists/1 ensures that +P is ground and
called via a tabled predicate so that not_exists/1 can be used with non-tabled
predicates as well, regardless of whether +P is ground or not ®.

not_exists/1 uses an auxiliary tabled predicate, tunnumcall/1 in its exe-
cution. Therefore to reclaim space at the predicate or call level (e.g. using

81n previous versions of XSB, not_exists/1 was called sk_not/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 195

abolish_table_pred/1 or similar predicates), tunnumcall/1 must be explic-
itly abolished.

Error Cases

e P is not instantiated
— instantiation error
e P is not callable

— type_error(callable,P)

u_not (+P) module: tables
If P is ground (or cyclic), u_not (P) is equivalent to tnot (P); but u_not/1 pro-
vides a different semantics than tnot/1 or not_exists/1 if P is non-ground. In
this latter case, u_not (P) applies SLG delay to the goal P, explicitly indicating
that the default negation of P is floundered. This action is safe because any an-
swer that relies on not P will be undefined, rather than true or false. A current
limitation of u_not/1 is that while floundering correctly causes a literal to be
delayed, no simplification is ever performed if the delayed literal ever becomes
ground (see the example below). u_not/1 thus provides an informationally
sound but incomplete semantics for floundering.

Thus, the use of tnot/1, not_exists/1, or u_not/1 depends on two conditions.
not_exists/1 is the only one of these predicates that allows P to be a non-
tabled predicate. However as mentioned, their main difference is in handling
non-ground negative subgoals. If an error should be thrown for a non-ground
negative subgoal, tnot/1 should be used; if it is semantically correct to skolem-
ize if P is not ground, not_exists/1 should be used; if it is semantically correct
to treat the truth value of the negative subgoal as undefined, u_not/1 should
be used. From the perspective of performance, tnot/1 is fastest followed by
u_not/1 and then not_exists/1.

The following examples should clarify the behavior of u_not/1. For the program
fragment:

:- table p/1,q/1.
p(1):- u_not(q(X)).
q(1).

the goal p(V) returns

V = 1 undefined

CHAPTER 6. STANDARD AND GENERAL PREDICATES 196

Examining this answer shows the following:
| 7- get_residual(p(1l),Res).

Res = [floundered(q(_h258))].

The program fragment

:— table r/1,q/1.

r(1):- u_not(q(X)),s(X).

q(1).

s(1).

shows a limitation in the current implementation of u_not/1. The goal r(V)
returns

V = 1 undefined

as before. However, examining the answer shows

| 7- get_residual(r(l),Res

Res = [floundered(q(1))]

Note that the binding X=1 is propagated to the delayed literal after the resu-

lution of s(X). However, the call tnot(q(1)) is not made once X is bound, so
that the delayed literal does not fail.

Error Cases are the same as for tnot/1.

Q; R ISO
Analogous to if P then Q else R, i.e. defined as if by

(P->Q ;R :-P, I, Q.

(P->Q ; R) :-R.
Q ISO

When occurring other than as one of the alternatives of a disjunction, is equiv-
alent to:

P->Q ; fail.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 197

repeat
Generates an infinite sequence of choice points (in other words it provides a
very convenient way of executing a loop). It is defined by the clauses:

repeat.
repeat :— repeat.

between(+L,+U,B) module: basics
For L and U integers, with L less than or equal to U, successive calls to between/3
unify B with all integers between L and U inclusively. If L is less than U the
predicate fails.

Error Cases:

e L (or U) is a not an integer

— type_error (integer,L)

(do_all +Goal)
Defines a failure driven loop, as if defined by:

(do_all Goal) :- (Goal, fail ; true).

The control operator, do_all/1 is defined as a prefix operator with precedence
1150.

(+CGoal do_all +Goal)
Defines a failure driven loop, as if defined by:

(CGoal do_all Goal) :-
common_vars (CGoal,Goal,CommonVars) ,
findall (CommonVars,CGoal,Vals),
sort(Vals,UniqueVals),
(basics:member (CommonVars,UniqueVals),
call(Goal),
fail

true

).

where common_vars/3 collects the variables that occur both in P and Q. The
control operator, do_all/2 is defined as an infix operator with precedence 1150.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 198

6.6 Unification and Comparison of Terms

The predicates described in this section allow unification and comparison of terms °.

Like most Prologs, default unification in XSB does not perform a so-called occurs
check — it does not handle situations where a variable X may be bound to a structure
containing X as a proper subterm. For instance, in the goal

X = £(X) % incorrect!

X is bound to f(X) creating a term that is either cyclic or infinite, depending on
one’s point of view. Prologs in general perform unification without occurs check since
without occurs check unification is linear in the size of the largest term to be unified,
while unification with occurs check may be exponential in the size of the largest
term to be unified. Most Prolog programmers will rarely, need to concern themselves
with cyclic terms or unification with occurs check. However, unification with occurs
check can be important for certain applications, in particular when Prolog is used
to implement theorem provers or sophisticated constraint handlers. As a result XSB
provides an [SO-style implementation of the predicate unify with_occurs_check/2
described below, as well as a Prolog flag unify_with_occurs_check that changes the
behavior of unification in XSB’s engine.

As opposed to unification predicates, term comparison predicates described below
take into account a standard total ordering of terms, which has as follows:

variables @ < floating point numbers Q < integers Q@ < atoms Q < compound terms

Within each one of the categories, the ordering is as follows:

e ordering of variables is based on their address within the SLG-WAM — the
order is not related to the names of variables. Thus note that two variables are
identical only if they share the same address — only if they have been unified or
are the same variable to begin with. As a corollary, note that two anonymous
variables will not have the same address and so will not be considered identical
terms. As with most WAM-based Prologs, the order of variables may change as
variables become bound to one another. If the order is expected to be invariant
across variable bindings, other mechanisms, such as attributed variables, should
be used.

e floating point numbers and integers are put in numeric order, from —oo to +oo.
Note that a floating point number is always less than an integer, regardless

9 Arithmetic comparison predicates that may evaluate terms before comparing them are described
in Section 6.3.1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 199

of their numerical values. If comparison is needed, a conversion should be
performed (e.g. through float/1).

e atoms are put in alphabetical (i.e. UTF-8) order;

e compound terms are ordered first by arity, then by the name of their principal
functor and then by their arguments (in a left-to-right order).

e lists are compared as ordinary compound terms having arity 2 and functor ’.’.

For example, here is a list of terms sorted in increasing standard order:

[X, 3.14, -9, fie, foe, fum(X), [X], X =Y, fie(0,2), fie(1,1)]
The basic predicates for unification and comparison of arbitrary terms are:

X=Y ISO
Unifies X and Y without occur check.

unify with_occurs_check(0One,Two)
Unifies One and Two using an occur check, and failing if One is a proper subterm
of Two or if Two is a proper subterm of One.

Example:
7- unify_with_occurs_check(f(1,X),f(1,a(X))).
no
| ?- unify_with_occurs_check(f(1,X),f(1,a(Y¥))).
X = a(_h165)
Y = hi165
yes
| ?- unify_with_occurs_check(£f(1,a(X)),f(1,a(X))).
X = _h165
yes
T1 == T2 ISO

Tests if the terms currently instantiating T1 and T2 are literally identical (in
particular, variables in equivalent positions in the two terms must be identical).
For example, the goal:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 200

| 7- X == Y.
fails (answers no) because X and Y are distinct variables. However, the question
| 7- X =Y, X =Y.
succeeds because the first goal unifies the two variables.
X\=Y ISO

Succeeds if X and Y are not unifiable, fails if X and Y are unifiable. It is thus
equivalent to \+(X = Y).

T1 \== T2 ISO
Succeeds if the terms currently instantiating T1 and T2 are not literally iden-
tical.

Terml 7= Term2
Succeeds if the equality of Term1 and Term2 can be compared safely, i.e. whether
the result of Terml = Term2 can change due to further instantiation of either
term. It is specified as by ?=(A,B) :- (A==B ; A B).

unifiable(X, Y, -Unifier) module: constraintLib
If X and Y can unify, succeeds unifying Unifier with a list of terms of the
form Var = Value representing a most general unifier of X and Y. unifiable/3
can handle cyclic terms. Attributed variables are handles as normal variables.
Associated hooks are not executed °.

T1 6< T2 ISO
Succeeds if term T1 is before term T2 in the standard order.

T1 6> T2 ISO
Succeeds if term T1 is after term T2 in the standard order.

Tl 0=< T2 ISO
Succeeds if term T1 is not after term T2 in the standard order.

T1 @>= T2 ISO
Succeeds if term T1 is not before term T2 in the standard order.

T1 6= T2
Succeeds if T1 and T2 are identical variables, or if the main structure symbols
of T1 and T2 are identical.

10Tn Version 3.8, unifiable/3 is written as a Prolog predicate and so is slower than many of the
predicates in this section.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 201

compare(70p, +T1, +T2) ISO
Succeeds if the result of comparing terms T1 and T2 is Op, where the possible
values for Op are:

‘=" if T1 is identical to T2,
‘<’ if T1 is before T2 in the standard order,
‘>’ if T1 is after T2 in the standard order.

Thus compare(=, T1, T2) is equivalent to T1==T2. Predicate compare/3 has
no associated error conditions.

ground (+X) ISO
Succeeds if X is currently instantiated to a term that is completely bound (has
no uninstantiated variables in it); otherwise it fails. While ground/1 has no
associated error conditions, it is not safe for cyclic terms: if cyclic terms may
be an issue use ground_or_cyclic/1.

ground_and_acyclic(+X)

ground_or_cyclic(+X)
ground_or_cyclic/1 succeeds if X is currently instantiated to a term that is
completely bound (has no uninstantiated variables in it) or is a cyclic term;
otherwise it fails. Alternately, ground_and_acyclic/1 succeeds if X is currently
instantiated to an acyclic term that is completely bound (has no uninstantiated
variables in it). Neither predicate has no associated error conditions.

Both predicates are written to be as efficient as possible, and each requres a
single traversal of a term, regardless of whether the term is ground, nonground
or cyclic. However, due to the nature of checking for cyclicity, these predicates
are somewhat slower than the unsafe ground/1.

subsumes (?Terml, +Term2) module: subsumes
Term subsumption is a sort of one-way unification. Term Terml and Term?2
unify if they have a common instance, and unification in Prolog instantiates
both terms to that (most general) common instance. Terml subsumes Term2 if
Term?2 is already an instance of Term1. For our purposes, Term2 is an instance of
Terml if there is a substitution that leaves Term2 unchanged and makes Term1
identical to Term2. Predicate subsumes/2 does not work as described if Term1
and Term2 share common variables.

subsumes_chk(+Terml, +Term2) module: subsumes

CHAPTER 6. STANDARD AND GENERAL PREDICATES 202

subsumes term(+Terml, +Term2) ISO
The subsumes_chk/2 predicate is true when Terml subsumes Term2; that is,
when Term2 is already an instance of Terml. This predicate simply checks for
subsumption and does not bind any variables either in Term1 or in Term2. Term1
and Term2 should not share any variables.

Examples:
| ?- subsumes_chk(a(X,f,Y,X),a(U,V,b,S)).
no
| ?- subsumes_chk(a(X,Y,X),a(b,b,b)).
X = 595884
Y = _595624
variant (?Terml, ?Term?2) module: subsumes

This predicate is true when Terml and Term2 are alphabetic variants. That is,
you could imagine that variant/2 as being defined like:

variant (Terml, Term2) :-
subsumes_chk(Terml, Term2),
subsumes chk(Term2, Terml).

but the actual implementation of variant/2 is considerably more efficient.
However, in general, it does not work for terms that share variables; an as-
sumption that holds for most (reasonable) uses of variant/2.

check_variant(?Terml) module: tables
check_variant (+Terml,+DontCares) module: tables
check variant/[1,2] provide efficient means of checking whether the variant
of a term has been asserted to a trie indexed predicate. A call 7- check_variant(Term)
thus succeeds if a variant of Term has been trie indexed and asseerted, and fails
otherwise; the check performs no unification, and no backtracking is possible.

check _variant/2 allows the user to specify that the last n arguments of Term
are not to be checked for variance. This check variant (Term,N) succeeds of
there is a trie indexed term whose first arity —n arguments are variants of those
in term.

These predicates exploit the trie data structure to obtain their efficiency; as a
result our implementation does not allow don’t care arguments apart from the

CHAPTER 6. STANDARD AND GENERAL PREDICATES 203

final n arguments. More importantly, for efficiency, no check is made
to determine whether a predicate has been trie-indexed. If unsure, the
user should call current_index/2.

Example 6.6.1 7- import check_variant/1 from tables.

yes
7- index(cmp/3, trie).

yes
| ?7- assert(cmp(a,b,c)),assertcmp(d,e,f)).

yes
| ?- check_variant(cmp(a,b,c)).

yes
| ?- check_variant(cmp(a,b,1)).

no
| ?- check_variant(cmp(a,b,X)).

no
| ?- check_variant(cmp(a,b,X),1).

X = _hi183

Error Cases

type_error Argument 1 of check_variant/[1,2] is not a callable structure.

type_error Argument 2 of check_variant/[2] is not an integer

6.6.1 Sorting of Terms

Sorting routines compare and order terms without instantiating them. Users should
be careful when comparing the value of uninstantiated variables. The actual order
of uninstantiated variables may change in the course of program evaluation due to
variable aliasing, garbage collection, or other reasons.

sort(+L1, ?7L2) ISO
The elements of the list L1 are sorted into the standard order, and any identical

CHAPTER 6. STANDARD AND GENERAL PREDICATES 204

(i.e. ‘==") elements are merged, yielding the list L2. The time to perform the
sorting is O(nlogn) where n is the length of list L1.

Examples:

| ?- sort([3.14,X,a(X),a,2,a,X,al, L).
L = [X,3.14,2,a,a(X)];

no

Exceptions:

instantiation_error Argument 1 of sort/2 is a variable or is not a proper
list.

type_error Argument 1 of sort/2 is a non-variable, non-list term.

keysort (+L1, 7L2) ISO
The list L1 must consist of elements of the form Key-Value. These elements
are sorted into order according to the value of Key, yielding the list L2. The
elements of list L1 are scanned from left to right. Unlike sort/2, in keysort/2
no merging of multiple occurring elements takes place. The time to perform the
sorting is O(nlogn) where n is the length of list L1. Note that the elements
of L1 are sorted only according to the value of Key, not according to the value
of Value. The sorting of elements in L1 is not guaranteed to be stable in the
presence of uninstantiated variables..

Example:
| 7- keysort([3-a,1-b,2-c,1-a,3-al, L).
L = [1-b,1-a,2-c,3-a,3-a]

yes

Error Cases:

instantiation_error L1 is a variable or is not a proper list.
type_error L1 is a non-variable, non-list term.

domain_error(key_value_pair,Element) L1 containsan element Element that
is not of the form Key-Value.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 205

parsort(+L1, +SortSpec, +ElimDupl, ?L2) module: machine
parsort/4 is a very general sorting routine. The list L1 may consist of elements
of any form. SortSpec is the atom asc, the atom desc, or a list of terms of
the form asc(I) or desc(I) where I is an integer indicating a sort argument
position. The elements of list L1 are sorted into order according to the sort
specification. asc indicates ascending order based on the entire term; desc
indicates descending order. For a sort specification that is a list, the individual
elements indicate subfields of the source terms on which to sort. For example, a
specification of [asc(1)] sorts the list in ascending order on the first subfields
of the terms in the list. [desc(1),asc(2)] sorts into descending order on
the first subfield and within equal first subfields into ascending order on the
second subfield. The order is determined by the standard predicate compare. If
ElimDupl is nonzero, merging of multiple occurring elements takes place (i.e.,
duplicate (whole) terms are eliminated in the output). If ELimDupl is zero, then
no merging takes place. A SortSpec of [] is equivalent to “asc”. The time to
perform the sorting is O(nlogn) where n is the length of list L1. The sorting
of elements in L1 is not guaranteed to be stable. parsort/4 must be imported
from module machine.

Example:

| ?7- parsort([£(3,1),£(3,2),£(2,1),£(2,2),£(1,3),f(1,4),£(3,1)],
[asc(1),desc(2)],1,L).

L = [f(1,4),£(1,3),£(2,2),f(2,1),£(3,2),£(3,1)];

no

Error Cases:

instantiation_error L1 is a variable or not a proper list.

6.7 Meta-Logical

To facilitate manipulation of terms as objects in themselves, XSB provides a number
meta-logical predicates. These predicates include the standard meta-logical predicates
of Prolog, along with their usual semantics. In addition are provided predicates which
provide special operations on Hilog terms. For a full discussion of Prolog and HilL.og
terms see Section 4.1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 206

var (7X) ISO
Succeeds if X is currently uninstantiated (i.e. is still a variable); otherwise it
fails.

Term X is uninstantiated if it has not been bound to anything, except possibly
another uninstantiated variable. Note in particular, that the HiLog term X(Y,Z)
is considered to be instantiated. There is no distinction between a Prolog and
a HiLog variable.

Examples:

| ?7- var(X).
yes
| ?- var([X]).
no
| 7- var(X(Y,Z)).
no
| 7- var((X)).
yes
[7= var((X)(Y)).
no

nonvar (?X) ISO

Succeeds if X is currently instantiated to a non-variable term; otherwise it fails.
This has exactly the opposite behaviour of var/1.

atom(7X) ISO
Succeeds only if the X is currently instantiated to an atom, that is to a Prolog
or HiLog non-numeric constant.

Examples:

| ?- atom(HiLog) .

no
| ?- atom(10).

no

| 7- atom(’HiLog’).
yes

| ?- atom(X(a,b)).
no

| ?- atom(h).

yes

| 7- atom(+).

yes

| ?- atom([]).

yes

CHAPTER 6. STANDARD AND GENERAL PREDICATES 207

integer (7X) ISO
Succeeds if X is currently instantiated to an integer; otherwise it fails.

float (7X) ISO
float/1 Same as real/1. Succeeds if X is currently instantiated to a floating
point number; otherwise it fails.

real (7X)
Succeeds if X is currently instantiated to a floating point number; otherwise it
fails. This predicate is included for compatibility with earlier versions of XSB.

number (7X) ISO
Succeeds if X is currently instantiated to either an integer or a floating point
number (real); otherwise it fails.

atomic (7X) ISO
Succeeds if X is currently instantiated to an atom or a number; otherwise it
fails.
Examples:

| ?- atomic(10).

yes
| 7- atomic(p).
yes
| ?7- atomic(h).
yes
| ?7- atomic(h(X)).
no
| ?- atomic("foo").
no
| ?- atomic(’foo’).
yes
| ?7- atomic(X).
no
| ?- atomic(X((Y))).
no
compound (7X) ISO

Succeeds if X is currently instantiated to a compound term (with arity greater
that zero), i.e. to a non-variable term that is not atomic; otherwise it fails.

Examples:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 208

| ?7- compound(1).
no

| ?- compound(foo(1,2,3)).
yes
| 7- compound([foo, bar]).
yes
| ?- compound("foo").
yes
| ?- compound(’foo’).
no
| ?- compound(X(a,b)).
yes
| ?- compound((a,b)).
yes
structure (7X)
Same as compound/1. Its existence is only for compatibility with previous ver-
S1011S.

is_1ist(?X)
Succeeds if X is a proper list. In other words if it is either the atom [] or [H|T]
where H is any Prolog or HiLog term and T is a proper list; otherwise it fails.

Examples:

| 7- is_list([p(a,b,c), h(a,b)]).

yes
| ?- is_1list([_,_1).
yes

| ?- is_list([a,blX]).
no

| ?- is_list([alb]).
no

is_charlist(+X)
Succeeds if X is a Prolog string, i.e., a list of characters. Examples:

| ?- is_charlist("abc").
yes

| ?7- is_charlist(abc).
no

is_charlist(+X,-Size)
Works as above, but also returns the length of that string in the second argu-
ment, which must be a variable.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 209

is_attv(+Term)
Succeeds is Term is an attributed variable, and fails otherwise.

is_most_general term(7X)
Succeeds if X is compound term with all distinct variables as arguments, or if X

is an atom. (It fails if X is a cons node.)

| 7- is_most_general_term(f(_,_,_,_)).
yes

| ?- is_most_general_term(abc).

yes

| 7- is_most_general_term(f(X,Y,Z,X)).
no

| 7- is_most_general_term(f(X,Y,Z,a)).
no

| 7- is_most_general_term([_|_]).
no

is_number atom(?7X)

Succeeds if X is an atom (e.g. ’123’) (as opposed to a number 123) which
can be converted to a numeric atom (integer or float) and fails otherwise. In
particular, if is_number_atom(X) succeeds, then

| ?- atom_codes(X,Codes) ,number_codes(N,Codes) .

will succeed.

callable(?7X) ISO
Succeeds if X is currently instantiated to a term that standard predicate call/1
could take as an argument and not give an instantiation or type error. Note
that it only checks for errors of predicate call/1. In other words it succeeds if
X is an atom or a compound term; otherwise it fails. Predicate callable/1 has
no associated error conditions.

Examples:

| 7- callable(p).

yes

| ?- callable(p(1,2,3)).
yes

| ?- callable([_,_1).
yes

CHAPTER 6. STANDARD AND GENERAL PREDICATES 210

| ?7- callable(_(a)).
yes
| ?- callable(3.14).
no

proper_hilog(7X) HiLog
Succeeds if X is a proper HiLog term — i.e. a HiLog term that is not a Prolog
term; otherwise the predicate fails.

Examples: (In this example and the rest of the examples of this section we
assume that h is the only parameter symbol that has been declared a HiLog
symbol).

| ?- proper_hilog(X).

no

| ?- proper_hilog(foo(a,f(b),[A])).
no

| 7- proper_hilog(X(a,b,c)).

yes

| 7- proper_hilog(3.6(2,4)).

yes

| ?- proper_hilog(h).

no

| ?- proper_hilog(la, [d, e, X(a)], cl).
yes

| ?- proper_hilog(a(a(X(a)))).

yes

functor(?Term, ?Functor, 7Arity) ISO
Succeeds if the functor of the Prolog term Term is Functor and the arity (number
of arguments) of Term is Arity. Functor can be used in either the following
two ways:

1. If Term is initially instantiated, then
e [f Term is a compound term, Functor and Arity are unified with the
name and arity of its principal functor, respectively.
e If Term is an atom or a number, Functor is unified with Term, and
Arity is unified with 0.

2. If Term is initially uninstantiated, then either both Functor and Arity
must be instantiated, or Functor is instantiated to a number, and

CHAPTER 6. STANDARD AND GENERAL PREDICATES 211

e If Arity is an integer in the range 1..255, then Term becomes instan-
tiated to the most general Prolog term having the specified Functor
and Arity as principal functor and number of arguments, respectively.
The variables appearing as arguments of Term are all distinct.

e If Arity is 0, then Functor must be either an atom or a number and
it is unified with Term.

e If Arity is anything else, then functor/3 aborts.
Error Cases

atom_or_variable Functor is not an atom or variable.

instantiation_error Both Term, and either Functor, or Arity are uninstan-
tiated.

Examples:

| 7= funCtOr(p(f(a):b9t): F, A)
F=p
A=3

| ?- functor(T, foo, 3).
foo(_595708, 595712, _595716)

—
1]

| ?- functor(T, 1.3, A).

T=1.3

A=0

| ?- functor(foo, F, 0).
F = foo

| ?- functor("foo", F, A).
A =2

| ?- functor([l, [1, A).
A=0

| ?- functor([2,3,4], F, A).
A =2
| ?- functor(a+b, F, A).

F =+
A=2

CHAPTER 6. STANDARD AND GENERAL PREDICATES 212

| ?- functor(f(a,b,c), F, A).
F=1f
A=3

| ?- functor(X(a,b,c), F, A).

F = apply

A =4

| ?- functor(map(P)(a,b), F, A).
F = apply

A =3

| ?- functor(T, foo(a), 1).
++Error: Wrong type in argument 2 of functor/3
Aborting. ..

| ?- functor(T, F, 3).
++Error: Uninstantiated argument 2 of functor/3
Aborting. ..

| ?- functor(T, foo, A).
++Error: Uninstantiated argument 3 of functor/3
Aborting. ..

hilog functor(?Term, ?F, 7Arity) HiLog
The XSB standard predicate hilog_functor/3 succeeds

e when Term is a Prolog term and the principal function symbol (functor) of
Term is F and the arity (number of arguments) of Term is Arity, or

e when Term is a HiLog term, having name F and the number of arguments
F is applied to, in the HiLog term, is Arity.

The first of these cases corresponds to the “usual” behaviour of Prolog’s functor/3,
while the second is the extension of functor/3 to handle HiLog terms. Like
the Prolog’s functor/3 predicate, hilog functor/3 can be used in either of
the following two ways:

1. If Term is initially instantiated, then
e [f Term is a Prolog compound term, F and Arity are unified with the
name and arity of its principal functor, respectively.

e If Term is an atom or a number, F is unified with Term, and Arity is
unified with 0.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 213

e If Term is any other HiLog term, F and Arity are unified with the
name and the number of arguments that F is applied to. Note that in
this case F may still be uninstantiated.

2. If Term is initially uninstantiated, then at least Arity must be instantiated,
and

e [f Arity is an integer in the range 1..255, then Term becomes instanti-
ated to the most general Prolog or HiLog term having the specified F
and Arity as name and number of arguments F is applied to, respec-
tively. The variables appearing as arguments are all unique.

e If Arity is 0, then F must be a Prolog or HiLog constant, and it is
unified with Term. Note that in this case F cannot be a compound
term.

e [f Arity is anything else, then hilog functor/3 aborts.

In other words, the standard predicate hilog_functor/3 either decomposes a
given HiLog term into its name and arity, or given an arity —and possibly a
name— constructs the corresponding Hil.og term creating new uninstantiated
variables for its arguments. As happens with functor/3 all constants can be
their own principal function symbols.

Examples:

| ?- hilog_functor(f(a,b,c), F, A).
F=1
=3

=

?- hilog_functor(X(a,b,c), F, A).
= 595836

= 595836

=3

= T o< —

?- hilog_functor (map(P) (a,b), F, A).
595828

map (_595828)

2

= T U —
I

| ?- hilog_functor(T, p, 2).
T = p(_595708,_595712)

| ?- hilog_functor(T, h, 2).
T = apply(h,_595712,_595716)

| ?- hilog_functor(T, X, 3).
= apply(_595592, 595736, 595740, 595744)

-

CHAPTER 6. STANDARD AND GENERAL PREDICATES 214

X = _595592

| ?- hilog_functor(T, p(f(a)), 2).
T = apply(p(£(a)),_ 595792, 595796)

| ?- hilog_functor(T, h(p(a))(L1,L2), 1).

T = apply(apply(apply(h,p(a)),_595984, 595776), 596128)
_595984

_595776

[
N =
nn

| ?- hilog_functor(T, a+b, 3).
T = apply(a+b,_595820,_595824,_595828)

arg(+Index, +Term, 7Argument) ISO
Unifies Argument with the Index® argument of Term, where the index is taken
to start at 1. In accordance with ISO semantics, Index must be instantiated
to a non-negative integer, and Term to a compound term, otherwise an error is
thrown as described below. If Index is O or a number greater than the arity of
Term, the predicate quietly fails.

Examples:

| ?7- arg(2, p(a,b), A).
A=bD

-~

- arg(2, h(a,b), A).
A=a

-~

- arg(0, foo, A).

no

| ?7- arg(2, [a,b,c], A).
A = [b,c]

| 7- arg(2, "HilLog", A).
A = [105,108,111,103]

-~

- arg(2, atb+c, A).
A =c

- arg(3, X(a,b,c), A).
595820
A=bD»

54—
[IEEN]

-~

- arg(2, map(f)(a,b), A).
A =a

CHAPTER 6. STANDARD AND GENERAL PREDICATES 215

| ?- arg(l, map(f)(a,b), A).
map (£)

=
I

| 7- arg(1, (at+b) (foo,bar), A).
A = atb

Error Cases

e Index is a variable

— instantiation error

Index neither a variable nor an integer
— type_error(integer, Index)

Index is less than O

— domain_error(not_less_than_zero,Index)
e Term is a variable

— instantiation_error

Term neither a variable nor a compound term

— type_error(integer, Index)

arg0(+Index, +Term, 7Argument)
Unifies Argument with the Index® argument of Term if Index > 0, or with the
functor of Term if Index = 0.

hilog arg(+Index, +Term, 7Argument) HiLog
If Term is a Prolog term, it has the same behaviour as arg/3, but if Term is
a proper Hilog term, hilog_arg/3 unifies Argument with the (Index + 1)
argument of the Prolog representation of Term. Semantically, Argument is the
Index! argument to which the HiLog functor of Term is applied. The arguments
of the Term are numbered from 1 upwards. An atomic term is taken to have 0
arguments.

Initially, Index must be instantiated to a positive integer and Term to any non-
variable Prolog or HiLog term. If the initial conditions are not satisfied or I is
out of range, the call quietly fails. Note that like arg/3 this predicate does not
succeed for Index=0.

Examples:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 216

| ?- hilog_arg(2, p(a,b), A).
A=0b

| ?- hilog_arg(2, h(a,b), A).
A=0D»

| ?- hilog_arg(3, X(a,b,c), A).
X = _595820
A=c

| ?- hilog_arg(l, map(f)(a,b), A).
A=a

| ?- hilog_arg(2, map(f)(a,b), A).
A=0D»

| ?- hilog_arg(l, (atb) (foo,bar), A).
A = foo

| ?- hilog_arg(l, apply(foo), A).
A = foo

| ?- hilog_arg(l, apply(foo,bar), A).
A = bar

Note the difference between the last two examples. The difference is due to the
fact that apply/1 is a Prolog term, while apply/2 is a proper HiLog term.

?Term =.. 7List ISO
Given proper instantiation of the arguments, =. . /2 (pronounced univ) succeeds
when (1) Term unifies with a compound Prolog or HiLog term and List unifies
with a list whose head is the functor of Term and whose tail is a list of the
arguments of Term; or (2) when Term unifies with an atomic term and List
unifies with a list whose only element is Term. More precisely,

e If initially Term is uninstantiated, then List must be instantiated either
to a proper list (list of determinate length) whose head is an atom, or to a
list of length 1 whose head is a number.

e If the arguments of =../2 are both uninstantiated, or if either of them is
not what is expected, =. ./2 throws the appropriate error message.

Examples:

| 7= X -1=.. L.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 217

X = _hi12
L = [-,_h112,1]

| ?- p(a,b,c) =.. L.
L = [p,a,b,c]

| ?- h(a,b,c) =.. L.
L = [apply,h,a,b,c]

| 7- map(p)(a,b) =.. L.
L = [apply,map(p),a,b]

| 2= T =.. [foo].
T = foo
| - T =.. [apply,X,a,b].

T = apply(X,a,b)

| - T =.. [1,2].
++Error [XSB/Runtime/P]: [Type (1 in place of atomic)] in arg 2 of predicate =../2

| 7= T =.. [a+b,2].
++Error [XSB/Runtime/P]: [Type (a + b in place of atomic)] in arg 2 of predicate =../2

| 7= X =.. [foolY].
++Error [XSB/Runtime/P]: [Instantiation] in arg 2 of predicate =../2

Error Cases
e Term is a variable and List is a variable, a partial list, a or a list whose
head is a variable
— instantiation_error
e List is neither a variable nor a non-empty list
— type_error(list, H)

e List is a list whose head H is neither an atom nor a variable, and whose
tail is not the empty list

— type_error(atomic, H)

e Term is a variable and the tail of List has a length greater than XSB’s
maximum arity for terms (65535)

— representation_error(max_arity)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 218

?Term "=.. [?F |7ArgList] HiLog
When Term is a Prolog term, this predicate behaves exactly like the Prolog
=../2. However when Term is a proper HiLog term, ~=. . /2 succeeds unifying F
to its HiLog functor and ArgList to the list of the arguments to which this HiLog
functor is applied. Like =../2, the use of “=../2 can nearly always be avoided
by using the more efficient predicates hilog_functor/3 and hilog_arg/3. The
behaviour of “=../2, on HiLog terms is as follows:

e If initially Term is uninstantiated, then the list in the second argument of
~=../2 must be instantiated to a proper list (list of determinate length)
whose head can be any Prolog or HiLog term.

e [f the arguments of “=../2 are both uninstantiated, or if the second of
them is not what is expected, ~=../2 aborts, producing an appropriate
error message.

Examples:

| ?- p(a,b,c) "=.. L.
L = [P:a,b:c]

| ?- h(a,b,c) ~=.. L.
L = [h,a,b,c]

| ?- map(p)(a,b) ~=.. L.
L = [map(p),a,b]

| 2- T ~=.. [X,a,b].
T = apply(X,a,b)

| - T ~=.. [2,2].
T = apply(2,2)

| 7= T ~=.. [a+b,2].
T = apply(atb,2)

| 2= T ~=.. [3IX].
++Error: Argument 2 of “=../2 is not a proper list
Aborting. ..

Error Cases

instantiation_error Argument 2 of “=../2 is not a proper list.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 219

copy_term(+Term, -Copy) ISO
Makes a Copy of Term in which all variables have been replaced by brand new
variables which occur nowhere else. Variable attributes are also copied. It
can be very handy when writing (meta-)interpreters for logic-based languages.
The version of copy_term/2 provided is space efficient in the sense that it
never copies ground terms. Predicate copy_term/2 has no associated errors or

exceptions.

Examples:
| ?- copy_term(X, Y).
X = _598948
Y = _598904
| ?- copy_term(f(a,X), Y).
X = _598892
Y = £(a,_599112)

copy_term_nat(+Term, -Copy) module: basics

Behaves as copy_term/2, however it replaces attributed variables with non-
attributed variables in the copy.'*

term_variables(+Term,-Variableust) ISO
Collects the variables in Term into the list VariableList. The variables are in
the order of their first occurrences in a depth-first traversal of Term.

term_depth(+Term, -Depth)
term_depth/2 provides an efficient way to find the maximal depth of a term.
Term depth is defined recursively as follows:

e The depth of a structure is defined as 1 + the maximal depth of any
argument of that structure.

e The depth of an attributed variable is the depth of the attribute structure
associated with that variable.

e The depth of a list [H|T] is defined as 1 + the maximal depth of H and T.
e The depth of any other element is 1.

The name of this predicate was chosen for comsistency with SWI Prolog, and stands for
copy__term no attributes.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 220

Note that according to this definition, the depth of the list [a,b] is 3, since the
list is equivalent to the structure . (a, . (b, [1)) whose depth is 3.

term_depth/2 does not check for cyclic structures, so it must be ensured that
Term is acyclic.

term size(+Term, -Size)
term_size/2 provides an efficient way to find the total number of constituents
of a term. Term size is defined recursively as follows:

e The size of an attributed variable is 1 (the variable size) + the size of the
attribute structure.

e The size of a non-compound term is 1.

e The size of a compound term is defined as 1 + the sum of the sizes of all
arguments of that term.

e The size of a list [H|T] is defined as the size of the term .’ (H,T).

term_size/2 does not check for cyclic structures, so it must be ensured that
Ternm is acyclic.

intern_term(+Term,-InternedTerm) module: machine

intern_term makes an “interned” version of its first argument and returns

that term in its second argument. The terms are equal terms (i.e., Term ==

InternedTerm would succeed.) The interned term has all its ground subterms

represented (uniquely) in a global space. Subterms that contain variables are not

copied but remain on the heap. The interned representation of ground terms

can save space and/or time in some situations. Note that already interned
subterms or Term do not need to be traversed in this operation.

6.8 Cyclic Terms

6.8.1 Unification with and without Occurs Check

Cyclic terms are created when Prolog unifies two terms whose variables have not been
standardized apart: for instance
X = f(X)

will produce the cyclic term f(f(f(f(f(f(...)))))) — in other words, a term with an
“infinite” depth. Note that according to the mathematical definition of unification,

CHAPTER 6. STANDARD AND GENERAL PREDICATES 221

X should not unify with a term containing itself. There are two reasons why XSB
(along with virtually all other Prologs) has this default behavior.

e The default unification algorithm, when it unifies a variable V with a term 7T,
does not check for the occurrence of Vin T, in other words it does not perform
an occurs check. Unification without an occurs check is linear in the size of the
smaller of the terms to be unified. Unification with occurs check is (essentially)
linear in the size of the larger term. Since unification is often used to assign a
value to a variable, it is important in a programming language that assignment
be constant time, and not linear in the size of the term being assigned.

e Some programs purposefully construct cyclic terms: this occurs with various
constraint libraries such as CHR. These libraries do not perform as expected
when a mathematically correct unification algorithm is used.

XSB provides two mechanisms for overriding this default behavior for unification.

e First, there is a Prolog flag unify_with_occurs_check which when set to on
ensures that all unification is mathematically correct. Care should be taken
when using this flag, for the above two reasons.

e For more detailed usages, the ISO predicate unify_with_occurs_check/2 can
be used syntactically rather than Prolog’s default unification operator =/2.

6.8.2 Cyclic Terms

Fortunately, the creation of cyclic terms is uncommon for most types of program-
ming; even when cyclic terms arise they can often be avoided by the proper use of
copy_term/2 or other predicates. Nevertheless cyclic terms do arise when XSB is
used for meta-programming or if XSB is used as the basis of a high-level knowledge
representation language such as Flora-2 or Silk. It is important that XSB’s behav-
ior be cycle-safe in the sense that the creation of cyclic terms per se will not create
infinite loops in XSB’s tabling or XSB’s built-ins. Like some other Prologs, XSB
supports unification of cyclic terms. In addition, most predicates like functor/3, or
=../2 that either take non-compound terms or that do not require term traversal
are cycle-safe. A few built-ins that require term-traversal are “safe” for cyclic terms.
For instance writing in XSB is subject to a depth check, which terminates for cyclic
terms. Most importantly, the XSB heap garbage collector is guarenteed to be safe for
cyclic terms.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 222

Variant tabling can also handle cyclic terms if the proper flags are set. These flags
are max_table_subgoal depth which determines the maximal “reasonable” depth
of a subgoal; and max_table_answer_depth, max_table_answer_list_depth which
determine the maximal “reasonable” depth for non-list terms or lists (respectively)
in answers. These last two flags also determine a “reasonable” depth for interned tries.
Each of these depth flags have an associated answer flag: max_table_subgoal_action,
max_table_answer_action and max_table answer list_action respectively. The
actions can be of three types: error which throws an error if a term with a certain
depth is encountered as a tabled subgoal or answer (regardless of whether that term
is tabled); failure which causes failure for these cases; and fail_on_cycles which
fails on cyclic terms, and otherwise throws an error for a term of a certain depth '2.

While the above operations cycle-safe, cyclic terms can cause problems in XSB for
built-ins or predicates that require term traversal. For instance the library predicates
length/2 and append/2 currently go into infinite loops with cyclic terms; unless
otherwise specified it is the user’s responsibility to check library predicates (as opposed
to standard built-ins) for acyclicity using is_acyclic/1 or is_cyclic/1. In addition
the following XSB built-ins are not cycle-safe:

e bagof/3, copy_term/2, ground/1 numbervars/[1,3,4], setof/3, subsumes/2,
subsumes_chk/2, term_depth/2, term_size/2, term_to_atom/[2,3], term_to_codes/[2,3],
term variables/2, unifiable/2 and variant/2 3.

e Various table inspection built-ins based on get_call/2 or similar routines (in-
cluding get_residual/2).

Arguably, programs should not intentionally create cyclic terms, and the above
flags, as well as the following predicates, can help debug when cyclic terms are created.

is_cyclic(7X)
Succeeds if X is a cyclic term.

is_acyclic(7X)

acyclic_term(7X) ISO
Succeeds if X is not a cyclic term.

12We hope to efficiently integrate cycle checking into XSB’s subsumptive tabling in the reasonably
near future.
13The predicate ground_or_cyclic/1 is safe for cyclic terms.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 223

6.9 Manipulation of Atomic Terms

This section lists some of XSB’s standard predicates for manipulating atomic terms.
See also in Volume 2, Section 1.5 for other library predicates. Section 7 for wildcard
matching, and Section 8 for an interfae to the PCRE library.

atom_codes(7Atom, ?7CharCodelList) ISO
The standard predicate atom_codes/2 performs the conversion between an
atom and its character list representation. If Atom is supplied (and is an atom),
CharList is unified with a list of UTF-8 codes representing the “name” of that
atom. In that case, CharList is exactly the list of UTF-8 character codes that
appear in the printed representation of Atom. If on the other hand Atom is a
variable, then CharList must be a proper list of UTF-8 character codes. In
that case, Atom is instantiated to an atom containing exactly those characters,
even if the characters look like the printed representation of a number.

Examples:

| ?- atom_codes(’Foo’, L).
[70,111,111]

—
I

| ?- atom_codes([], L).
[91,93]

=
]

| ?- atom_codes(X, [102,111,111]).
X = foo

| ?- atom_codes(X, [1).
X =

| ?- atom_codes(X, "Foo").
X = ’Foo’

| ?- atom_codes(X, [52,51,49]).
X ’431°

| ?- atom_codes(X, [52,51,49]), integer(X).
no

| ?- atom_codes(X, [52,Y,49]).
++Error [XSB/Runtime/P]: [Instantiation] in arg 2 of predicate atom_codes/2
Forward Continuation...

| ?- atom_codes(431, L).
++Error [XSB/Runtime/P]: [Type (431 in place of atom)] in arg 1 of predicate

CHAPTER 6. STANDARD AND GENERAL PREDICATES 224

atom_codes/2
Forward Continuation...

| ?- atom_codes(X, [52,300,49]).

[Representation (300 is not character code)] in arg 2 of predicate
atom_codes/2

Forward Continuation...

Error Cases

e Atom is a variable and CharCodeList is a partial list or a list with an
element which is a variable

— instantiation error

e Atom is neither a variable nor an atom
— type_error(atom, Atom)

e Atom is a variable and CharCodeList is neither a list nor a partial list
— type_error(list, CharCodeList)

e Atom is a variable and an element E of CharCodeList is neither a variable
nor a character code

— representation_error(character_code, E)

number_codes (?Number, ?CharCodelList) ISO
The standard predicate number codes/2 performs the conversion between a
number and its character list representation. If Number is supplied (and is a
number), CharList is unified with a list of UTF-8 (= ASCII) codes comprising
the printed representation of that Number. If on the other hand Number is
a variable, then CharList must be a proper list of UTF-8 (ASCII) character
codes that corresponds to the correct syntax of a number (either integer or float)
In that case, Number is instantiated to that number, otherwise number codes/2
will simply fail.
Examples:

| ?- number_codes(123, L).
[49,50,51];

—
I

| ?- number_codes (N, [49,50,51]), integer (N).
123

=
I

| ?- number_codes(31.4e+10, L).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 225

L

[51,46,49,51,57,57,57,55,69,43,49,48]

| ?- number_codes(N, "314e+8").
N 3.14e+10

| ?- number_codes(foo, L).

++Error [XSB/Runtime/P]: [Type (foo in place of
number)] in arg 1 of predicate

number_codes

Forward Continuation...

Error Cases

e Number is a variable and CharCodeList is a partial list or a list with an
element which is a variable

— instantiation error

e Number is neither a variable nor a number
— type_error (number, Number)

e Number is a variable and CharCodeList is neither a list nor a partial list
— type_error(list, CharCodeList)

e Number is a variable and an element E of CharCodeList is neither a variable
nor a character code

— representation_error(character_code, E)

name (7?Constant, ?CharList)

The standard predicate name/2 performs the conversion between a constant
and its character list representation. If Constant is supplied (and is any atom
or number), CharList is unified with a list of UTF-8 codes representing the
“name” of the constant. In that case, CharList is exactly the list of UTF-8
character codes that appear in the printed representation of Constant. If on
the other hand Constant is a variable, then CharList must be a proper list
of UTF-8 character codes. In that case, name/2 will convert a list of UTF-8
characters that can represent a number to a number rather than to a character
string. As a consequence of this, there are some atoms (for example *18”) which
cannot be constructed by using name/2. If conversion to an atom is preferred in
these cases, the standard predicate atom codes/2 should be used instead. The
syntax for numbers that is accepted by name/2 is exactly the one which read/1
accepts.

Examples:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 226

| ?- name(’Foo’, L).
L = [70,111,111]

| ?- name([], L).
L = [91,93]

| ?- name(431, L).
L = [52,51,49]

| ?- name(X, [102,111,111]).
X = foo

| ?- name(X, []).
X = 7

| ?- name(X, "Foo").
X = ’Foo’

-~

- name(X, [52,51,49]).

X = 431
| ?- name(X, [45,48,50,49,51]), integer(X).
X = -213

| ?- name(3.14, L).
++Error [XSB/Runtime/P]: [Miscellaneous] Predicate name/2 for reals is not imple
Aborting. ..

e Constant is a variable and CharCodeList is a partial list or a list with an
element which is a variable

— instantiation_error

e Constant is neither a variable nor atomic
— type_error(atomic, Constant)

e Constant is a variable and CharCodeList is neither a list nor a partial list
— type_error(list, CharCodelList)

e Constant is a variable and an element E of CharCodeList is neither a
variable nor a character code

— representation_error(character_code, E)

atom_ chars(?Number, ?CharList) ISO
Like atom_codes/2, but the list returned (or input) is a list of characters as

CHAPTER 6. STANDARD AND GENERAL PREDICATES 227

atoms rather than UTF-8 codes. For instance, atom chars(abc,X) binds X to
the list [a,b,c] Instead of [97,98,99].

Error Cases
e Atom is a variable and CharList is a partial list or a list with an element
which is a variable
— instantiation error
e Atom is neither a variable nor an atom
— type_error(atom, Atom)
e Atom is a variable and CharList is neither a list nor a partial list
— type_error(list, CharList)
e An element E of CharList is not a single-character atom
— type_error(character, E)

e Atom is a variable and an element E of CharCodeList is not a single-
character atom

— representation_error(character, E)
number_chars (?Number, 7CharList) ISO
Like number_codes/2, but the list returned (or input) is a list of characters as

atoms rather than codes. For instance, number chars(123,X) binds X to the
list [?1°,°27,°3°] instead of [49,50,51].

Error Cases
e Number is a variable and CharList is a partial list or a list with an element
which is a variable
— instantiation error
e Number is neither a variable nor a number
— type_error (number, Number)
e Number is a variable and CharList is neither a list nor a partial list
— type_error(list, CharList)
e An element E of CharList is not a single-character atom
— type_error(character, E)

e CharList is a list of single-character atoms but is not parsable as a number

(by XSB)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 228

— syntax_error(CharList)

number_digits(?Number, 7DigitList)
Like number_codes/2, but the list returned (or input) is a list of digits as
numbers rather than UTF-8 codes (for floats, the atom "7, '+’ or -, and ’e’ will
also be present in the list). For instance, number_digits(123,X) binds X to the
list [1,2,3] instead of [?71°,°27,°3’], and number_digits(123.45,X) binds
Xto [1,.,2,3,4,5,0,0,e,+,0,2].

Error cases are the same as number_chars/2.
char_code(?Character, 7Code) ISO

The standard predicate char_code/2 is true if Code is the current code for
Character. In XSB it is defined as atom_codes(Character, [Code]).

atom_length(+Atoml,?Length) ISO
This standard predicate succeeds if Length unifies with the length of (the name
of) Atom.
Example

|?7- atom_length(trilobyte,L).
L=29

Error Cases

e Atom is a variable
— instantiation_error
e Atom is neither a variable nor an atom
— type_error(atom,Atom)
e Length is neither a variable nor an integer
— type_error(integer,Length)
concat_atom(+AtomList,?Atom) module: string
If Atom is a variable, then AtomList must be a list structure containing atoms,
integers and/or floats. This predicate flattens AtomList and concatenates the

atoms and integers into a single atom, returned in Atom. Integers and floats are
converted to character strings using number codes/2.

If Atom is an atom, then AtomList must be a list containing atoms, and/or
variables. In this case atom_codes binds the variables in the list to atoms in

CHAPTER 6. STANDARD AND GENERAL PREDICATES 229

such a way that the atoms of AtomList concatenate to the atom Atom. For
example, concat_atom([X,abb,Y,cc],aabbabbdefcc) will succeed twice, first
binding X to a and Y to abbdef, and then binding X to aabb and Y to def.

This is a somewhat more general predicate than the ISO atom_concat/2 de-
scribed below, and can be more efficient if numerous atoms are to be concate-
nated together.

concat_atom(+AtomList,+Sep, 7Atom) module: string

AtomList must be a list containing atoms, integers and /or floats, and Sep must
be an atom. This predicate concatenates the atoms and integers into a single
atom, separating each by Sep, return the resulting atom in Atom. Integers and
floats are converted to character strings using number_codes/2.

This is a somewhat more general predicate than the ISO atom_concat/2 de-
scribed below, and can be more efficient if numerous atoms are to be concate-
nated together.

atom_concat (Atoml,Atom2,Atom3) ISO

e Usage: atom concat(?Atom, ?Atom,+Atom)
e Usage: atom_concat (+Atom,+Atom,-Atom)

Succeeds if Atom12 is the concatenation of Atoml and Atom?2.

Examples

| ?- atom_concat(hello,world,F).

F = hello world

| ?- atom_concat(X,Y,’hello world’).
X=

Y = hello world;

X=h

Y = ello world

The last query will re-succeed for all combinations of atoms that produce hello
world.

Error Cases

CHAPTER 6. STANDARD AND GENERAL PREDICATES 230

Atoml and Atom3 are both variables

— instantiation error

Atom2 and Atom3 are both variables

— instantiation error

Atoml is neither a variable nor an atom

— type_error(atom,Atoml)

Atom?2 is neither a variable nor an atom

— type_error(atom,Atom2)

Atom3 is neither a variable nor an atom

— type_error (atom,Atom3)

sub_atom(+Atom, ?LeftLength, ?CenterLength, 7RightLength, ?CenterAtom SO
Succeeds if Atom can be broken into three pieces: A left atom of length LeftLength,
a center atom CenterAtom of length CenterLength and a right atom of length
RightLength. If sufficient arguments are uninstantiated to produce CenterAtom
in non-deterministic starting positions, the predicate will backtrack through all
center atoms for which the left atom length is the smallest , up to those whose
left atom length is greatest (see examples below).

Examples
| ?- sub_atom(trilobyte,5,4,RL,CA).

RL =0
CA = byte
| ?- sub_atom(trilobyte,1,CL,2,CA).

CL 6
CA = riloby
| ?- sub_atom(trilobyte,LL,6,RL,riloby).

IL =1
RL = 2
| ?- sub_atom(trilobyte,RL,4,LL,CA).

RL =0
LL =5
CA = tril,;

CHAPTER 6. STANDARD AND GENERAL PREDICATES 231

RL =1
LL = 4
CA = rilo;
RL = 2
CL =3
CA = ilob

| ?- sub_atom(trilobyte,LL,CL,RL,CA).

LL =
CL =
RL =
CA = ;

© O O

LL =
CL =
RL =
CA =

¢ 0 = O

LL =
CL =
RL =
CA = tr;

~N N O

: /* after more backtracking */

LL =0
CL =9
RL =0

CA = trilobyte;

LL =1
CL=0
RL = 8
CA = ;

L1 =
CL =
RL =
CA =

H N~ =

Error Cases

CHAPTER 6. STANDARD AND GENERAL PREDICATES 232

e Atom is a variable
— instantiation error
e Atom is neither a variable nor an atom
— type_error(atom, Atom)
e CenterAtom is neither a variable nor an atom
— type_error(atom, CenterAtom)
e LeftLength is neither a variable nor an integer
— type_error(integer, LeftLength)
e CenterLength is neither a variable nor an integer
— type_error(integer, CenterLength)
e RightLength is neither a variable nor an integer
— type_error(integer, RightLength)
e LeftLength is an integer that is less than zero
— domain_error(not_less_than zero, LeftLength)
e CenterLength is an integer that is less than zero
— domain_error(not_less_than zero, CenterLength)
e RightLength is an integer that is less than zero
— domain_error(not_less_than_zero, RightLength)

string_substitute(+InpStr, +SubstrList, +SubstitutionList, -OutStr) module:
string

InputStr can an atom or a list of characters. SubstrList must be a list of
terms of the form s(BegOffset, EndOffset), where the name of the functor
is immaterial. The meaning of the offsets is the same as for substring/4. (In
particular, negative offsets represent offsets from the first character past the
end of String.) Each such term specifies a substring (between BegOffset and
EndOffset; negative EndOffset stands for the end of string) to be replaced.
SubstitutionList must be a list of atoms or character lists.

Offsets start from 0, as in C/Java.

This predicate replaces the substrings specified in SubstrList with the corre-
sponding strings from SubstitutionList. The result is returned in OQutStr.
OutStr is a list of characters, if so is InputStr; otherwise, it is an atom.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 233

If SubstitutionList is shorter than SubstrList then the last string in SubstitutionList
is used for substituting the extra substrings specified in SubstitutionList. As

a special case, this makes it possible to replace all specified substrings with a

single string.

As in the case of re_substring/4, if OutStr is an atom, it is not interned.
The user should either intern this string or convert it into a list, as explained
previously.

The string_substitute/4 predicate always succeeds.

Here are some examples:

| ?- string substitute(’qaddf’, [s(2,4)], [’123’] ,L).

L = qal23f
| ?- string_substitute(’qaddf’, [s(2,-1)], [’123’] ,L).
L = qal23
| ?- string_substitute("abcdefg", [s(4,-1)], ["123"],L).
L = [97,98,99,100,49,50,51]
| ?- string_substitute(’1234567890123’, [f(1,5),f(5,7),£(9,-2)], ["pppp", 111],X).
X = 1ppppll1189111
| 7- string_substitute(’1234567890123°, [f(1,5),f(6,7),£(9,-2)]1, ['---"1,X).
X=1---6---89---
term_to_atom(+Term,-Atom,+0Options) module: string

Converts +Term to an atomic form according to a list of write options, Options,
that are similar to those used by write_term/[2,3]. The various options of
term_to_atom/[2,3] are especially useful for the interface from C to XSB (see
Calling XSB from C'in Volume 2 of this manual).

e quoted(+Bool). If Bool = true, then atoms and functors that can’t be
read back by read/1 are quoted, if Bool = false, each atom and functor
is written as its unquoted name. Default value is false.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 234

e ignore_ops(+Bool). If Bool = true each compound term is output in
functional notation; list braces are ignored, as are all explicitly defined
operators. If Bool = canonical, bracketed list notation is used. Default
value is canonical. The corresponding value of false, that would enable
operator precedence, is not yet implemented.

e numbervars(+Bool). If Bool = true, a term of the form ’$VAR’ (N)
where N is an integer, is output as a variable name consisting of a capital
letter possibly followed by an integer. A term of the form >$VAR’ (Atom)
where Atom is an atom, is output as itself (without quotes). Finally, a term
of the form ’$VAR’ (String) where String is a character string, is output
as the atom corresponding to this character string. If bool is false this
cases are not treated in any special way. Default value is false.

Error Cases

e Options is a variable
— instantiation_error
e Options neither a variable nor a list
— type_error(list,Options)
e Options contains a variable element, 0
— instantiation_error
e Options contains an element 0 that is neither a variable nor a write option.
— domain_error(write_option,0)

Examples:

| 7- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’ ("Foo")]),F,[1).

X = _hi131
F = f£(a,1,_h0, [3cpio,d(3),$VAR([70,111,1111)1)

yes
| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’ ("Foo")]) ,F, [numbervars(true)]).

X = _hi31
F = f(a,1,_hO, [3cpio,d(3),Foo])

yes
| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’ ("Foo")]) ,F, [numbervars (true),quoted(true)]).

X = _hi131

CHAPTER 6. STANDARD AND GENERAL PREDICATES 235

F = f(a,1,_h0,[’3cpio’,d(3),Fool)

yes
| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’ ("Foo")]),F, [numbervars(true) ,quoted(true),ignore_oy

X = _hi131
F = f(a,1,_h0,’.’>(?3cpio’,’.’(d(3),”.’ (Foo, [1))))
yes
term to_atom(+Term,-Atom) module: string

This predicate converts an arbitrary Prolog term Term into an atom, putting
the result in Atom. It is defined using the default options for term_to_atom/3,
e.g. ignore_ops(canonical), quoted(false), and numbervars(false).

term_to_codes(+Term,-CodelList,+0ptionList) module: string
This predicate is used in the definition of term_to_atom/3 but only converts a
term into a list of UTF-8 codes, and does not intern the list as an atom. Allowed
values for OptionList and error cases are the same as in term_to_atm/3.

term_to_codes(+Term,-CodeList) module: string
This predicate converts a term to a list of UTF-8 codes. It is defined us-
ing the default options for term_to_atom/3, e.g. ignore_ops(canonical),
quoted(false), and numbervars(false).

gc_atoms

Explicitly invokes the garbage collector for atoms that are created, but no longer
needed. By default, gc_atoms/1 is called automatically, unless the Prolog flag
atom_garbage collection is set to false, or if more than one thread is active.
However there are reasons why a user may need to invoke atom table garbage
collection. First, in Version 3.8, if atom table garbage collection is invoked
automatically, it occurs periodically on heap garbage collection, or if numerous
asserts and retracts have taken place. These heuristics overlook certain cases
where numerous atoms may be created without invoking the garbage collector
— e.g. through repeated uses of format_write_string/3. In addition if user-
defined C code contains pointers to XSB’s atom table, atom table garbage
collection will be unsafe, as Version 3.8 of XSB does not detect such pointers in
external code. In such cases, atom table garbage collection should be turned off
via the Prolog flag atom_garbage collection, and reinvoked at a point where
the external pointers are no longer used.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 236

6.10 All Solutions and Aggregate Predicates

Often there are many solutions to a problem and it is necessary somehow to compare
these solutions with one another. The most general way of doing this is to collect
all the solutions into a list, which may then be processed in any way desired. So
XSB provides ISO-standard predicates such as setof/3, bagof/3, and findall/3 to
collect solutions into lists. Sometimes however, one wants simply to perform some
aggregate operation over the set of solutions, for example to find the maximum or
minimum of the set of solutions. XSB uses answer subsumption to produce a powerful
aggregation facility as discussed in Section 5.4

setof (?Template, +Goal, 7Set) ISO
This predicate may be read as “Set is the set of all instances of Template such
that Goal is provable”. If Goal is not provable, setof/3 fails. The term Goal
specifies a goal or goals as in call(Goal). Set is a set of terms represented
as a list of those terms, without duplicates, in the standard order for terms
(see Section 6.6). If there are uninstantiated variables in Goal which do not
also appear in Template, then a call to this evaluable predicate may backtrack,
generating alternative values for Set corresponding to different instantiations
of the free variables of Goal. Variables occurring in Goal will not be treated as
free if they are explicitly bound within Goal by an existential quantifier. An
existential quantification can be specified as:

Y G
meaning there exists a Y such that G is true, where Y is some Prolog term
(usually, a variable).

Error cases are the same as predicate call/1 (see Section 6.11).

Example: Consider the following predicate:

p(red,high,1).
p(green,low,2).
p(blue,high,3).
p(black,low,4).
p(black,high,5).

The goal ?7- setof (Color,Height~Val“p(Color,Height,Val),List) returns
a single solution:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 237

Color = _h73
Height = _h87
Val = _hi101

L = [black,blue,green,red]

If Height is removed from the sequence of existential variables, so that the goal
becomes:

7- setof (Color,Val™p(Color,Height,Val),List)
the first solution is:

Color = _h73

Val = h87

Height = high

L = [black,blue,red];

upon backtracking, a second solution is produced:

Color = _h73
Val = _h87
Height = low

L = [black,green]

bagof (?Template, +Goal, 7Bag) ISO
This predicate has the same semantics as setof/3 except that the third argu-
ment returns an unsorted list that may contain duplicates.

Error Cases are the same as predicate call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
7- bagof (Color,Height~Val~p(Color,Height,Val),L) returns the single so-

lution:
Color = _h73
Height = _h87
Val = _h101

L = [red,green,blue,black,black];

If Height is removed from the sequence of existential variables, so that the
goal becomes: 7- bagof(Color,Val™p(Color,Height,Val),List), the first
solution is:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 238

Color = _h73

Val = h87

Height = high

L = [red,blue,black];

upon backtracking, a second solution is produced:

Color = _h73

Val = _h87

Height = low

L = [green,black];

findall(?Template, +Goal, 7List) SO
Similar to predicate bagof/3, except that variables in Goal that do not oc-
cur in Template are treated as existential, and alternative lists are not re-
turned for different bindings of such variables. Note that this means that Goal
should not contain existential variables. This makes findall/3 determinis-
tic (non-backtrackable). Unlike setof/3 and bagof/3, if Goal is unsatisfiable,
findall/3 succeeds binding List to the empty list.

Error cases are the same as call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
findall(Color,p(Color,Height,Val),L) returns a single solution:

Color = _h73
Height = _h107
Val = _h121

F = [red,green,blue,black,black]
findall(?Template, +Goal, ?List,?Tail)
Acts as findall/3, but returns the result as the difference-list Bag-Tail. In
fact, the 3-argument version is defined in terms of the 4-argument version:

findall(Templ, Goal, Bag) :- findall(Templ, Goal, Bag, [])

Error cases are the same as findall/3 (or call/1).

tfindall(?Template, +Goal, ?List) Tabling

CHAPTER 6. STANDARD AND GENERAL PREDICATES 239

Like findall/3, tfindall/3 treats all variables in Goal that do not occur in
Template as existential. However, in tfindall/3, the Goal must be a call to a
single tabled predicate.

tfindall/3 allows findall functionality to be used safely with tabling by
throwing an error if it is called recursively. Its use can be seen by considering
the following series of programs.

pl(X):- findall(Y,p1(Y),X).

When executing the goal p(X), XSB will throw an error when it reaches the
maximum number of recursive invocations of findall.

Next, consider the program

:— table t/1.
t(X):- findall(Y,t(Y),X).
t(a).

The query t (X) will terminate without error, but will return two answers: X =
[] and X = a. These answers are hard to defend semantically, since there is an
implicit domain closure axiom in findall-like predicates. On the other hand, for
the program

:— table t2/1.
t2(X) : - tfindall(Y,t2(Y),X).
t2(a).

the query t2(X) will throw a table error, indicating that a call to tfindall/3
is apparently non-stratified footnoteDetection of non-stratification is based on
the approximate detection of dependencies among subgoals maintained by XSB.
This approximation is quite close for local evaluation, but is less close for
batched evaluation.. Other behavior for tabled aggregation is provided by an-
swer subsumption as discussed in Section 5.4

Other differences between predicates findall/3 and tfindall/3 can be seen
from the following example:

| ?- [user].
[Compiling user]
:— table p/1.
p(a).

CHAPTER 6. STANDARD AND GENERAL PREDICATES

p().
[user compiled, cpu time used: 0.639 seconds]
[user loaded]

yes

X
Y
L

no

Error cases include those of findall/3 (see above), along with

?7- p(X), findall(Y, p(Y), L).

= a
922928
[al;

b
922820
[a,b];

?- abolish_all_tables.

?7- p(X), tfindall(Y, p(Y), L).

b
922820
[b,al;

= a
922820
[b,al;

240

table_error Upon execution Goal is not a subgoal of a tabled predicate.

table_error A call to tfindall/3 is apparently non-stratified

X © Goal

Within setof/3, bagof/3 and the like, the ~

an X such that Goal is true.

excess_vars(+Term, +ExistVarTerm, +AddVarList, -VarList)

ISO

/2 operator means there exists

module: setof

Returns in VarList the list of (free) variables found in Term concatenated to the
end of AddVarList. (In normal usage AddVarList is passed in as an empty list.)
ExistVarTerm is a term containing variables assumed to be quantified in Term

CHAPTER 6. STANDARD AND GENERAL PREDICATES 241

so none of these variables are returned in the resulting list (unless they are in
AddvarList.) Subterms of Term of the form (VarTerm "~ SubTerm) are treated
specially: all variables in VarTerm are assumed to be quantified in SubTerm, and
so no occurrence of these variables in SubTerm is collected into the resulting list.

Error Cases

type_error AddVarList is not a list of variables

memory Not enough memory to collect the variables.

find_n(+N,?Template, +Goal, 7List) module: setof

Acts as findall/3 but returns only the first N bindings of Template to List.

6.11 Meta-Predicates

call(#X) ISO

#X

If X is a non-variable term in the program text, then it is executed exactly as if
X appeared in the program text instead of call(X), e.g.

..., p@a), call((qX), r(YD)), sX), ...
is equivalent to
., pa), gX), r(v), sX), ...

However, if X is a variable in the program text, then if at runtime X is instan-
tiated to a term which would be acceptable as the body of a clause, the goal
call(X) is executed as if that term appeared textually in place of the call(X),
except that any cut (‘) occurring in X will remove only those choice points
in X. If X is not instantiated as described above, an error message is printed and
call/1 fails.

Error Cases

instantiation_error X is a variable

type_error(callable,X) X is not callable.

(where X is a variable) executes exactly the same as call(X). However, the
explicit use of call/1 is considered better programming practice. The use of a
top level variable subgoal elicits a warning from the compiler.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 242

call(Goal,Arg,...) ISO
call(Goal,Arg) where Goal is an N-ary callable term first constructs a new
N+1-ary term NewGoal with the same functor and first N arguments as Goal
and with Arg as its N4+1th argument, and then calls NewGoal. As an example,

call (member(X),[a,b,c])

is equivalent to call (member (X, [a,b,c]). Goal must be a callable term, but

can be prepended by a module name using the : /2 symbol. call(Goal,Argl,Arg2,...)
will act similarly. Note that Goal should usually be atomic — if the outer functor

of Goal is, say, ,/2, call/[2-10] will try to add the extra argument(s) to the
comma functor, which is generally not the intended behavior.

While meta calls are generally fast in XSB, the extra term manipulation of
call/[2-10] makes it somewhat slower than call/1.

call tv(#Goal,-TV)
Calls Goal just as with call/1, and if Goal does not fail, instantiates TV with
either true or undefined, depending on the truth value of Goal at the current
stage of the evaluation. Goal need not be tabled itself. Note that Goal
might succeed with truth value undefined before succeeding with truth value
true.

Since call_tv/2 is a meta-preducate that actually calls Goal, call tv/2 will
have the same truth value as Goal. In other words, if Goal fails, call tv/2 will
fail; if Goal succeeds unconditionally (is true in the well-founded semantics),
call_tv/2 will succeed unconditionally; and if Goal succeeds conditionally (is
neither true nor false in the well-founded semantics) call_tv/2 will itself suc-
ceed conditionally. An alternative approach is provided by truth_value/2.

Examples

The following example shows that call tv/2 propagates the truth value of
Goal:

| ?- call_tv(undefined,_TV),writeln(has_value(_TV)).
has_value(undefined)

undefined

The second example shows that call_tv/2 shows the truth value of Goal alone,
regardless of where in larger derivation Goal is called.

call_tv(undefined,_TV1) ,writeln(calll(_TV1)),call_tv(true,_TV2),writeln(call2(_TV2)).
calll(undefined)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 243

call2(true)

undefined << top-level conjunctive query is undefined.

Error cases are the same as call/1.

truth_value (#Goal,?TruthValue) module: tables
truth _value(Goal,TruthValue) succeeds only if TruthValue is the truth value
of Goal in the well-founded model of the program. The predicate acts as follows.

1. Goal is executed;

(a) If Goal is incomplete a permission error is thrown.
(b) Otherwise if Goal is complete
i. If Goal has no answers, TruthValue is unified with false.

ii. Otherwise, truth_value/2 backtracks through all answers for Goal,
setting TruthValue to true or undefined as appropriate.

Examples Consider the program

:— table p/2. :— table p/1.
p(a,b). p(F):- truth_value(p(),F).
p(a,c):- undefined.

The goal 7- truth_value(p(X,Y),TV) will succeed twice, setting TV once to

true and once to undefined. On the other hand, the goal ?- truth_value(p(c,Y),TV)
will set TV to false since the goal p(c,Y) has no answers of any kind. The

goal ?- truth_value(p(Y),TV) will throw a permission error, since proving

the goal relies on a call to truth_value(p(Y),).

Error Cases Error cases are the same as those for call/1 with the addition

e Goal is incomplete after being called.

— permission_error(obtain _models_truth_value,incomplete_subgoal,Goal)

once (#X) ISO
once/1 is defined as once(X) :- call(X),!. once/1 should be used with care
in tabled programs. The compiler can not determine whether a tabled predicate
is called in the scope of once/1, and such a call may lead to runtime errors. If a
tabled predicate may occur in the scope of once/1, use table_once/1 instead.

Error cases are the same as call/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 244

forall (Generate,Test)
forall(Generate, Test) is true iff for all possible bindings of Generate, the
goal Test is true. Procedurally, abstracting error checking, the predicate shall
behave as being defined by \+ (call(Generator), \+ call(Test)).

Error cases are the same as call/1.

table_once (#X) Tabling
table once/1 is a weaker form of once/1, suitable for situations in which a sin-
gle solution is desired for a subcomputation that may involve a call to a tabled
predicate. table_once(?Pred) succeeds only once even if there are many solu-
tions to the subgoal Pred. However, it does not “cut over” the subcomputation
started by the subgoal Pred, thereby ensuring the correct evaluation of tabled
subgoals.

call cleanup(#Goal,#Handler)
call cleanup(Goal, Cleanup) calls Goal just as if it were called via call/1,
but it is ensures that Handler will be called after Goal finishes execution.
call_cleanup/2 is thus useful when Goal uses a resource, (such as a stream,
mutex, database cursor, etc.) that should be released when Goal finishes exe-
cution.

More precisely, Goal finishes execution either 1) by failure, 2) by determining
that the success of Goal is deterministic, 3) when an error is thrown and not
handled by Goal or one of its subgoals; or 4) when Goal is cut over. In all of
these cases, Handler will be called and will succeed non-deterministically. We
illustrate these cases through examples.

e Failure of Goal:
?7- call cleanup(fail,writeln(failed(Goal))).

In this case, Goal has no solutions, and the handler is invoked when the
engine backtracks out of Goal.

e Deterministic success of Goal. Assume that p(1) and p(2) have been
asserted. Then

7- call_cleanup((p(X) ,writeln(got(p(X)))) ,writeln(handled(p(X)))).
got (p(1))

X=1;
got (p(2))
handled(p(2))

CHAPTER 6. STANDARD AND GENERAL PREDICATES 245

no

Note that Handler is called only after the last solution of the goal p(X)
has been obtained. XSB decides to call Handler only when it can be
determined that the success of Goal has left no choice points. In such a
case, the final solution has been obtained for Goal. Of course, it may be
that a solution S to Goal leaves a choice point but the choice point will
produce no further solutions for Goal. XSB will not call Handler in this
case, rather it will wait until there are no choice points left for Goal.

e An uncaught error E is thrown out of Goal. In this case, Handler will
be called, and then, if E is uncaught, E will be rethrown. This is il-
lustrated in the following example (Error handling is discussed further in
Section 12.3.2):

7- catch(call_cleanup(throw(my_error) ,writeln(invoking handler)),
Ball,
write(Ball)).

invoking handler

my_error

yes

Of course, Handler itself can be wrapped in a catch/3 so that any errors
will be caught by call_cleanup/2.

e Choice points for Goal are removed via a cut. Consider an example in
which p/1 has the same extension as above (p(1),p(2):

call cleanup(p(X),writeln(handled 1)),'.
handled 1
X=1

yes

The handler is invoked immediately when the choice point laid down by
p(X) is cut over — before returning to the command line. If a cut cuts over
more than goal to be cleaned, more than one handler will be executed:

?7-call_cleanup(p(X),writeln(handled 4 1)),
call_cleanup(p(Y),writeln(handled 4_2)),

CHAPTER 6. STANDARD AND GENERAL PREDICATES 246

call_cleanup(p(Z),writeln(handled 4_3)),
.

handled 4 3

handled 4 2

handled_4_1

X=1
Y=1
Z=1

call cleanup/2 is thus an extremely powerful and flexible mechanism when
used in a simple manner. While Handler is “guaranteed” to be invoked when-
ever Goal finishes execution ', it may be difficult to predict when Handler will
be invoked, as Handler may be invoked because of deeply non-local cuts over
Goal, and even when such cuts are not present, the invocation depends on XSB
determining when the last solution for Goal has been obtained. Baroque usages,
such as invoking call_cleanup/2 and cuts in the handler are supported, but
may lead to code that is difficult to debug, since handlers may be invoked based
on the state of XSB’s choice point stack.

Error Cases

Goal is a variable
e instantiation error
Goal is neither a variable nor a callable term
e type error(callable, Goal)
Handler is a variable
e instantiation error
Handler is neither a variable nor a callable term

e type error(callable, Handler)

6.11.1 Timed Calls and Co-routining

When XSB is used in multi-threaded mode, one XSB thread ¢; may send a signal
goal G to another thread t,, which causes ¢y to interrupt its computation, execute
G, and then resume its computation. (Section 7). timed_call/2 and related predi-
cates provide similar functionality within the single-threaded engine, a useful addition

41n fact we don’t guarantee anything, see XSB’s license.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 247

since not all of tabling features are currently available in the multi-threaded engine.
timed call/2 invokes a base goal which is interrupted either once or repeatedly at
specified time intervals; when interrupted the engine invokes a handler that can im-
plement a fairly general co-routine. In this way, monitors, logs, specialized debuggers
— even adaptive behavior — can be implemented for large and complex tabled evalu-
ations.

Within the timed call paradigm, it is important that the execution of the handler
be independent of the base goal. For instance, any tables called by the handler
should not depend on incomplete tables called by the base goal. On the other hand,
the handler may inspect and analyze the evaluation state of the base goal through
XSB’s growing set of inspection routines (Section 10.3).

Interpreter Indicess

One use of timed calls is to have the handler suspend the base computation, and then
start an interpreter that can be used to execute queries about the base computation.
In the classic command-line interpreter of XSB, this is done by break/0. However,
XSB can be called in a variety of ways other than the command-line-interpreter. It
can be invoked as an executable via its —e option, called from a socket, called directly
from C, or called from Java via Interprolog or some other bridge. To represent
the generality of the interpreters that may be used, we make use of the notion of
interpreter indices in this section and in Section 10.3, which discusses inspection
predicates. Conceptually, a computation starts at index 0 — even if XSB was not
invoked with a command-line interpreter. The handler executes at index 1, which
might or might not be associated with a new command-line interpreter. In principle,
an index N interpreter is invoked through the handler of a suspended goal that was
executed at level N — 1.

Timed Call and related predicates

timed_call (#Goal,#0ptions)
This predicate calls Goal and may interrupt Goal to call handlers as specified
in Options. In the case where a handler succeeds, the execution of Goal will be
continued; if the handler fails, Goal will fail; and if a handler throws an uncaught
exception the execution of Goal may be aborted. In these ways timed call/2
can be used to allow co-routining of Goal with a repetition handler and/or
timing Goal out with a (separate) handler.

Options is a list that may contain the following terms

CHAPTER 6. STANDARD AND GENERAL PREDICATES 248

e The term max(+MaxInterval,#MaxHandler) specifies that MaxHandler
will be called when it is determined that the total elapsed time to execute
Goal exceeds MaxInterval milliseconds. As a use case, if MaxHandler
throws an exception, Goal can be aborted; and if MaxHandler fails, Goal
will fail.

e The term repeating(+RepInterval,#RepHandler) specifies that RepHandler
will be repeatedly called whenever Goal has executed an additional RepInterval
milliseconds of elapsed time. The time taken to execute RepHandler is not
counted as part of RepInterval milliseconds (or that of MaxInterval, if
a maximum handler is also specified).

e The term nesting indicates that nested timed calls should be allowed
within the same interpreter index. In this case, the nested timed call is
simply treated as a call to Goal: in other words the interval(s) and handlers
for the nested call are ignored. Otherwise, if Options does not contain the
term nesting an attempt to nest calls will raise a permission exception.

Executing a timed call for Goal is more expensive than simply calling Goal, so
it should not be used for frequent calls to goals that whose derivation is simple.

timed call/2 is based on XSB’s internal interrupt mechanism, used for at-
tributed variable handlers and thread signalling. As such, the ability to execute
complex actions upon interrupt and then to resume Goal is very robust. How-
ever, checks for interrupts are only made whenever XSB’s SLG-WAM engine
is executing. Because of this, if XSB is suspended on I/O, calling a C or java
function, in a C-implemented built-in, or otherwise outside of its virtual ma-
chine, the interrupt will not be executed until computation returns to XSB’s
virtual machine.

timed_call/2 is integrated with XSB’s break levels with a different timed call
possible at each break level. In this way, a handler can call a break statement,
and the base computation inspected using one of XSB’s built-ins. As mentioned,
the time that is spent in a break level is not counted as part of the repetition
or maximum intervals associated with the base goal.

timed_call/3 is not implemented for the multi-threaded engine but its func-
tionality is easily duplicated using thread signalling (Section‘7.5).

Examples Consider the simple (and non-tabled) program fragment
loop :- loop.

which goes into an infinite loop on the query 7- loop. However, the query

CHAPTER 6. STANDARD AND GENERAL PREDICATES 249

timed_call(loop, [max(5000,abort)]) .

will interrupt loop and abort its computation after 5000 milliseconds. Alter-
nately, the query

timed_call(loop, [max(5000,fail)]).
will fail the query. Finally, the query
timed_call(loop, [repeating(500,statistics)]).

will interrupt the computation every 500 milliseconds, print out statistics, and
resume the computation where it left off.

These approaches can be combined:
timed_call(loop, [repeating(500,statistics) ,max(5000,break)]) .

will interrupt the computation every 500 milliconds to print statistics, and then
will enter a break after 5000 milliseconds, so that the state of computation can
be explored after 5000 milliseconds. Handlers can be quite complex, and can
support Ul-based monitors, and even analysis routines that may modify the
parameters of the computation when possible (e.g., by changing one form of
tabling to another, when permitted).

Error Cases Error cases are the same as call/1 for the first argument of
timed_call/3 and for handlers. In addition timed_call/1 also throws these
other errors.
Options is non-ground
e instantiation_error
Options is not a list
e type_error

Interval as contained in the first argument of max/2 or repeating/2 is not
a positive integer

e type_error
Options contains neither a term of the form max/2 nor of the form repeating/2

e misc_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 250

A call C to timed_call/3 is made within the scope of some other call to
timed call/3

e permission_error(nested_call,predicate,C)
timed_call/3 is called from the multi-threaded engine

e misc_error

current_timed_call(?Index,?DisplayOptions)
If there is an active timed call, invoked by timed_call(Goal,Options), at in-
terpreter index Index, this predicate returns information representing Options.
DisplayOptions differs from Options only in the following case. If Options
contains a term max(Interval,Handler), DisplayOptions will contain a cor-
responding term max(Used/Interval,Handler), indicating both the original
interval (in milliseconds) and the number of milliseconds used so far.

Example

As above, assume that the following goal is called from the command-line in-
terpreter:

7- timed_call(loop, [max(5000,abort)]).

After a few seconds, the user interrupts the goal with a Ctrl-C, sending XSB
into a break level. At that point the goal

1: 7- current_timed_call(Index,Options).

succeeds with Index = 0 and Options = [max(3539 / 5000,abort)].

timed_call modify (#NewOptions)
When called from interpreter index N > 1, this predicate modifies the behavior
of the suspended derivation.

e If current state is in the scope of the suspended goal timed_call(Goal,01d0ptions)
at interpreter index N — 1, Goal is made to behave as if it had been
called with timed_call(Goal,NewOptions). l.e., NewOptions rather than
01d0ptions takes effect as soon as the suspended goal is resumed. If
NewOptions is the empty list, this has the effect of removing any inter-
rupts that would be due to the timed call.

e [f the current suspended state is not in the scope of a timed call as described
above, the top-level goal G of interpreter level N — 1 is made to behave
as if it had been called as timed_call (G ,NewOptions).

Example This rather fanciful example shows the essential points about how
timed_call _modify/1 can be used in practice. Suppose a user sets up a mon-
itor for the infinite loop program (introduced above) using the goal:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 251

timed_call(loop, [repeating(500,writeln(interruption_interval(500)))]).
which produces the output

interruption_interval (500)
interruption_interval(500)
interruption_interval(500)

At this point, the user realizes that too much information is being printed out,
and decides to back off somewhat. The user obtains a break level by executing
Ctrl-C as before, and calls the goal:

1: 7- timed_call_modify([repeating(1000,writeln(new_interruption_interval(1000)))]).

When the break is exited, information is presented in an undoubtedly more
useful manner:

1: 7= [End break (level 1)]

new_interruption_interval(1000)
new_interruption_interval(1000)
new_interruption_interval(1000)

Additions and deletions of timed call parameters is done in a similar manner.

Error Cases Error cases are the same those for the options list of timed call/2
and for handlers. In addition timed call/1 also throws the following error.

e timed call modify/1 is called in the top-level interpreter.

— permissions_error

timed_call _cancel
When called at interpreter index N removes any handlers for a timed call in-
voked at level N — 1. That is, if Goal was called at interpreter level N via
timed call/2, cancelling will remove any repeating or maximum interrupts.
When interpreter level N — 1 is later resumed, Goal will continue execution as
if it were called via the normall calling mechanism. If there is no timed call
active at level N — 1, the predicate succeeds with no effects.

bounded_call (#Goal,+MaxMemory,+MaxCPU,#Handler) module: standard

CHAPTER 6. STANDARD AND GENERAL PREDICATES 252

bounded_call (#Goal,+MaxMemory , +MaxCPU) module: standard
These predicates call Goal and check once per second whether the total CPU
time to execute Goal is greater than MaxCPU seconds, and whether the total
memory taken by XSB is greater than MaxMemory bytes. Under bounded call/4
if either of these conditions arise, Handler is called; under bounded call/3 a
resource exception is thrown for memory or CPU time.

These predicates are implemented directly using timed_call/3 and inherit the
advantages and limitations of that predicate. As an advantage, the ability to
execute complex actions upon interrupt and to resume is very robust. How-
ever, checks for interrupts are only made whenever XSB’s SLG-WAM engine
is executing. Because of this, if XSB is suspended on I/O, calling a C or java
function, in a C-implemented built-in, or otherwise outside of its virtual ma-
chine, the interrupt will not be executed until computation is back within XSB’s
virtual machine.

Handler cannot cause timed_call/3 to be executed as a subgoal; but otherwise
Handler has no restrictions.

bounded call/[3,4] is not yet implemented for the multi-threaded engine but
its functionality is easily duplicated using thread signalling (Section‘7.5).

Error Cases Error cases are the same as in call/1 for the first argument of
bounded_call/3, and are the same as that of timed call for Handler.
MaxCPU or MaxMemory is not an integer
e type_error(integer)
MaxCPU or MaxMemory is not a positive integer

e domain_error(positive_integer)

6.12 Information about the System State

Various aspects of the state of an instance of XSB — information about what pred-
icates, modules, or dynamic clauses have been loaded, their object files, along with
other information can be inspected in ways similar to many Prolog systems. However,
because the atom-based module system of XSB may associate structures with partic-
ular modules, predicates are provided to inspect these elements as well. The following
descriptions of state predicates use the terms predicate indicator, term indicator and
current module to mean the following:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 253

e By predicate indicator we mean a compound term of the form M:F/A or simply
F/A. When the predicate indicator is fully instantiated, M and F are atoms
representing the module name and the functor of the predicate respectively and
A is a non negative integer representing its arity.

Example: usermod:append/3
e By term indicator we mean a predicate or function symbol of arity N followed
by a sequence of N variables (enclosed in parentheses if N is greater than zero).

A term indicator may optionally be prefixed by the module name, thus it can
be of the form M:Term.

Example: usermod:append(_, ,)
e A module M becomes a current (i.e. “known”) module as soon as it is loaded in

the system or when another module that is loaded in the system imports some
predicates from module M.

Note that due to the dynamic loading of XSB, a module can be current even
if it has not been loaded, and that some predicates of that module may not
be defined. In fact, a module can be current even if it does not exist. This
situation occurs when a predicate is improperly imported from a non-existent
module. Despite this, a module can never lose the property of being current.

current_input (?Stream) ISO
Succeeds iff stream Stream is the current input stream, or procedurally unifies
Stream with the current input stream.

Error Cases

e Stream is neither a variable nor a stream identifier
— domain_error(stream_or_ variable,Stream))
current_output (?Stream) ISO

current_ output/1 Succeeds iff stream Stream is the current output stream, or
procedurally unifies Stream with the current output stream.

Error Cases

e Stream is neither a variable nor a stream identifier

— domain_error(stream or variable,Stream))

ISO Compatibility Note: In XSB current_input/1 does not throw an error
if Stream is not a current input stream, but quietly fails instead.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 254

current_prolog_flag(?Flag Name, ?Value) ISO
current_prolog flag/2 allows the user to examine both dynamic aspects of
XSB along with certain non-changeable ISO flags and non-changeable Prolog-
commons flags. Calls to current_prolog_flag/2 will unify against ISO, Prolog-
commons, and XSB-specific flags.

ISO and Prolog-commons flags are as follows:

bounded Indicates whether integers in XSB are bounded. This flag always
has the value true

min_integer, max_integer The minimum and maximum integers avail-
able in the current XSB configuration (differs between 32- and 64-bits).

max_arity Indicates the maximum arity of terms in XSB. This flag always
has the value 65535 (26

integer_rounding function This flag always has the value toward_zero
debug Indicates whether trace or debugging is turned on or off

unknown Indicates the behavior to be taken when calling an unknown
predicate. The value can be set to error, fail, warning, unknown or
user_hook. The default setting is error.

The first three values respectively indicate that calls to unknown predicates
should throw an existence error, fail, or produce a warning message to the
user_warning stream and then throw an existence error.

The value is undefined then a call G to an unknown predicate succeeds
with value undefined, and the delay literal wcs_undefined(G) is added to
the delay list.*

The value is user_hook allows a hook to be user-specified. The hook must
be specified as follows. In usermod the fact

unknown_predicate_hook(Goal)

should be asserted, where Goal= Predicate(Arg). When handling a call
of the form Gy, where G| refers to an unknown predicate, Goal will be
unified with G; and then Goalf¢, will be called.

Example
Suppose the following code has been compiled during an XSB session.

:= import misc_error/1 from error_handler.

my_unknown_predicate_hook(Goal) :-

15This action is part of a semantics for Prolog sometimes called the Weak Completion Semantics.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 255

writeln(this_is_my_undefined warning_about(Goal)),
misc_error (unknown predicate).

and the following fact asserted into usermod.
unknown_predicate_hook(my_unknown predicate_hook(_X)

Then XSB will have the following behavior when calling the following
unknown predicate:

| 7= foo(X).

this_is my_ undefined warning about(foo(A))

++Error [XSB/Runtime/P]: [Miscellaneous] unknown_predicate
Forward Continuation...

e double_quotes Indicates that double-quoted terms in XSB represent lists
of character codes. Value is codes

e dialect indicates the implementation of Prolog that is running. Using
this flag, applications intended to run on more than one Prolog can take
actions that conditional on the executing Prolog. The value is xsb.

e version_data indicates the version of XSB that is running. Using this flag,
applications intended to run on more than one Prolog can take actions that
conditional on the executing Prolog. The value is

xsb((Major_version#), (Minor_version#), (Patch_version#), _).

ISO Compatibility Note: The ISO flags char_conversion is not available
— XSB does not use character conversion. XSB reads double quoted strings as
lists of character codes, so that the value of the flag double_quotes is always
codes, and this flag is not settable.

Non-standard flag names may be specific to XSB or may be common to XSB
and certain other Prolog. These flag names are:

e backtrace_on_error The flag is on iff system-handled errors automati-
cally print out the trace of the execution stack where the error arose, off
otherwise. Default is on. In the multi-threaded engine, this flag is thread-
specific and controls whether the backtrace for a current execution will be
printed to STDERR.

e dcg_style the DCG style currently used; xsb or standard (standard is
used in Quintus, SICSTUS, etc.). See Section 11.4 for more details. Default
is xsb. This flag affects all threads in the process.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 256

e heap_garbage_collection Values: indirection or none. Indicates the
heap garbage collection strategy that is currently being employed (see also
Section 3.7). Default is indirection. This flag is private to each thread.

e heap_margin Specifies the size in bytes of the margin used to determine
whether to perform heap garbage collection or reallocation of the envi-
ronment stack. The default is 8192 (8K) bytes for 32-bit platforms 16384
(16K) for 64-bit platforms. Setting this field to a large value (e.g. in the
megabyte range) can cause XSB to be more aggressive in terms of expand-
ing heap and local stack and to do fewer heap garbage collections than
with the default value. However heap_margin should never be set lower
than its default, as this may prevent XSB from properly creating large
terms on the heap.

e clause_garbage_collection Values: on if garbage collection for retracted
clauses is allowed, and off otherwise. Default is on. This flag is private to
each thread.

e atom_garbage _collection Values: on if garbage collection for atomic
constants is allowed, and off otherwise. Default is on. This flag is global
for all threads (currently, string garbage collection will only be invoked if
there is a single active thread.)

e table_gc_action Thesetting abolish_tables_transitively causes pred-
icates or subgoals that depend on a conditional answer of an abolished
table to be abolished automatically; the setting abolish_tables_singly
not does not cause this action. The distinction is important, since if table
T: depends on table Ty, and T is abolished but T} is not, then predicates
that introspect the dependencies of T3 could cause memory violations (e.g.,
get_residual/2). Default is abolish_tables_transitively. This flag
affects all threads in the process.

4

e goal The goal passed to XSB on command line with the ‘-e’ switch; or
‘true.’ if nothing is passed. This flag may be examined, but not set.

e tracing Values: on iff trace mode is on; off otherwise. This flag affects
all threads in the process.

e write_depth The depth to which a term is written by write-like predi-
cates. Default is 64. This flag affects all threads in the process.

e warning action The action to take on warnings: the default value print_warning
prints a warning message to the user_warning stream when warning/1 is
called; silent_warning silently succeeds when warning/1 is called; and
error_warning/1 throws a miscellaneous exception.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 257

e write_attributes Determines the action to take by write/1 when it
writes an attributed variable. By default write/1 portrays attributed vari-
ables using module-specific routines (cf. Volume 2 of this manual) as
Variable{ Module : PA_Qutput} where PA_Output is the output of the
portray_attrubutes/2 clause for Module. However the value ignore
causes an attributed variable to be written simply as a variable; and dots
causes Variable{< module_name >: ...} to be written. Finally, the value
write causes a variables attribute to be written as a term '°. The default
behavior is set to the value portray.

e unify with_occurs_check If set to on, perform all unification using an
occurs check, which makes unification mathematically correct, at the cost
of increasing its computational complexity. Without the occurs check, the
unification

X = f(X)

will produce a cyclic term X = £(£(£(£(...)))); with the occurs check
this unification will fail. Setting the flag to on may slow down pro-
grams, perhaps drastically, and may be incompatible with some constraint
libraries such as CHR. An alternate to this flag is the ISO predicate
unify with occurs_check/2: see Section 6.8 for further discussion. The
default for this flag is off.

e character_set If set to utf_8, interprets input/output byte sequences
as UTF-8 encodings of unicode code points; if set to cp1252 then inter-
prets bytes using the Windows Code Page 1252; if set to latin_1, then
input/output bytes are interpreted as directly representing unicode code
points. Default for UNIX-style systems is utf_8 and for Windows-style
systems is cp1252, but the flag (and character sets) may be changed at
any time. (See section “Character Sets in XSB” in XSB User Manual
Volume 2 for more details.)

e errors_with _position Ifset to on, then the Prolog read predicates, when
they encounter a syntax error in the term being read, will throw a syntax er-
ror which contains a pair ErrorMessage-ErrorPosition. ErrorPosition
is an integer indicating the position in the file at which the syntax error
was detected. If set to off, then the read predicates will simply throw the
syntax error message.

e exception_action If set to iso then ISO-style exceptions will be thrown
whenever an error condition arises. However, if exception_action is set

16When writing an attribute, any attributed variables in the attribute itself are written just as
variables with their attributes ignored.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 258

to undefined truth_value then certain goals will succeed with an un-
defined truth value rather than throwing an error. When this occurs, a
literal is added to the delay list of the current evaluation. Later, it can
be determined whether an undefined answer depends on an exceptional
condition through explain_u_val/[3.6], get_residual_sccs/[3,5] or
via a justification system that depends on these predicates. The default
for this flag is iso

e exception_pre_action If set to print_incomplete_tables, then the in-
complete subgoals are printed before throwing an exception. The execution
of this action causes the stack of incomplete tables to be printed to a tem-
porary file in $XSBDIR/etc. The file can be obtained via the predicate
get_scc_dumpfile/1; later, information in the file can be used to help
understand the context in which the exception arose. The file will be cre-
ated only if an exception is thrown over at least one incomplete table. The
default for this flag is off.

Use of this flag may be seen as an aid to analyzing tabling behavior when
XSB is part of a running system; for interactive analysis inspection predi-
cates may be more useful (cf. Section 10.3).

e max_tab_usage If set to on, maintains the maximal table usage (in bytes)
for display in statistics/[0,1]. This information can be useful if a
program performs various types of table abolishes. Setting this flag to on
may slightly slow down computation. Defailt is off.

Tripwire Flags The following flags that pertain to tripwires (cf. Setion 10.3.4)
are not currently implemented in the multi-threaded engine. Each tripwire has
one flag that sets a limit on some aspect of derivation along with an action of
what to do in such a case.

e max_table_subgoal_size A limit set on the size of a subgoal argument
that can be added to a table: if the limit is reached, an action is taken as
indicated in the following flag. To understand the use of this flag, consider
that if a predicate such as

p(X):- p(£(X)).
is tabled, it can create subgoals of unbounded size. When the limit is set
to 0, this tripwire is disabled. The default value is 0.

e max_table_subgoal_size_action The action to take whenever a tabled
subgoal of limit size is encountered. When the maximum subgoal size is
reached, XSB can

CHAPTER 6. STANDARD AND GENERAL PREDICATES 259

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Apply subgoal abstraction, using the value abstract.

3. Suspend the computation and throw it into a break-level CLI, using
the value suspend

e max_incomplete_subgoals A limit set on the maximum number of tabled
subgoals that can be incomplete at one time. If the limit is reached, an
action is taken as indicated in the following flag. Note that subgoals are
usually completed during the course of a derivation, so a large number
of incomplete subgoals may indicate unfounded recursion or some other
mis-specification in a program. When the limit is set to 0, this tripwire is
disabled. The default value is 0.

e max_incomplete_subgoals_action The action to take whenever the limit
number of incomplete subgoals is encountered. XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Suspend the computation and throw it into a break-level CLI, using
the value suspend.

e max_sccs_subgoals A limit set on the maximum number of incomplete
tabled subgoals that are mutually recursive. If the limit is reached, an ac-
tion is taken as indicated in the following flag. Note that a large number of
mutually recursive subgoals may indicate a mis-specification in a program,
such as an unintended expansion of the search space via meta-predicates
or HiLog. When the limit is set to 0, this tripwire is disabled. The default
value is 0.

e max_sccs_subgoals_action The action to take whenever the limit num-
ber of incomplete subgoals within a single SCC is encountered. XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Suspend the computation and throw it into a break-level CLI, using
the value suspend.

e max_table answer size A limit set on the size of an answer argument
that can be added to a table: if the limit is reached, an action is taken as
indicated in the following flag. To understand the use of this flag, consider
the program fragment:

:— table p/1.
p(f(X)):- p(X). p(a).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 260

is tabled, the model for the goal 7= p(X) is infinite, so that this program
will not terminate. When the size is set to 0, this this tripwire is disabled.
The default value is 0.

e max_table answer size action The action to take when a tabled an-
swer of maximum size is encountered. When the maximum answer size is
reached, XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Apply answer abstraction through radial restraint, using the value
abstract.

3. Suspend the computation and throw it into a break-level CLI, using
the value suspend

e max_answers_for_subgoal A limit set on the number of answers that
any single tabled subgoal should have: if the limit is reached, an action
is taken as indicated in the following flag. Note that in a program with
a large number of constant or functor symbols, it is possible to construct
many answers of a fixed size; and if too many such answers are added for
a given subgoal, it may indicate a program mis-specification. When the
size is set to 0, this tripwire is disabled. The default value is 0.

e max_answers_for_subgoal_action The action to take when a the number
of answers for a given subgoal exceeds the limit set in the previous flag.
XSB can

1. Throw a miscellaneous error, set using the value error. This is the
default action.

2. Suspend the computation and throw it into a break-level CLI, using
the value suspend

e max_memory The maximum amount of memory that an XSB thread (in the
single-threaded engine) or all XSB threads (in the multi threaded engine)
can use for their combined execution stacks, program space, tables, or any
other purpose. If a query exceeds this amount, XSB will abort the query
with a resource exception and then try to reclaim space used by the query.
As with other flags, this flag can be set during an XSB session.

The maximum amount can be set in two ways. If given a floating point
number F.0 < F' < 1, the maximum will be set to F' times the total
amount of RAM for the machine on which XSB is executing. If given
an integer I, the maximum will be set to I kilobytes. The value of 0
effectively disables the flag, allowing XSB to allocate as much memory as

CHAPTER 6. STANDARD AND GENERAL PREDICATES 261

the underlying OS will grant. The default value is 0, so that the flag is
disabled by default.

Flags Pertaining to Multi-Threading The following flags affect only the
multi-threaded engine.

thread_glsize In the multi-threaded engine, the initial size, in kbytes, of
the global and local stack area of a newly created thread if no such option is
explicitly passed. By default this is 768 (or 1536 for 64-bit configurations),
or whatever was passed in if the command-line option -m was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

thread_tcpsize In the multi-threaded engine, the initial size, in kbytes, of
the trail and choice point area of a newly created thread if no such option is
explicitly passed. By default this is 768 (or 1536 for 64-bit configurations),
or whatever was passed in if the command-line option -c was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

thread_complsize In the multi-threaded engine, the initial size, in kbytes,
of the completion stack area of a newly created thread if no such option is
explicitly passed. By default this is 64 (or 128 for 64-bit configurations),
or whatever was passed in if the command-line option -0 was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

thread_pdlsize In the multi-threaded engine, the initial size, in kbytes,
of the unification stack area of a newly created thread if no such option is
explicitly passed. By default this is 64 (or 128 for 64-bit configurations),
or whatever was passed in if the command-line option -m was used, but
that value may be modified at any time by resetting the flag. This flag
affects a thread created by any thread in the process.

thread_detached In the multi-threaded engine, this specifies whether
threads are to be created as detached or joinable if no explicit option
is passed. A value of true indicates that threads are to be created as
detached, and false as joinable. If this flag is not set, its default is false.

max_threads In the multi-threaded engine, the maximum number of valid
threads. By default this is 1024 and this value may not be reset at runtime,
but it may be set by the command-line option -max_threads. This option

CHAPTER 6. STANDARD AND GENERAL PREDICATES 262

is settable only by a command-line argument, and has no effect in the
single-threaded engine.

e max_queue_size In the multi-threaded engine, the default maximum num-
ber of terms a message queue contains before writes to the message queue
block. By default this is 1000. If set to 0, queues by default will be
unbounded. This option has no effect in the single-threaded engine.

e shared_predicates In the multi-threaded engine, indicates whether pred-
icates are considered thread-shared by default — that is, whether tables or
dynamic predicates are shared among threads. By default this is false, and
predicates are considered thread-private by default. This option is settable
only by a command-line argument, and has no effect in the single-threaded
engine.

. Note that the above non-ISO flags are used only for dynamic XSB settings,
i.e., settings that might change between sessions (via command line arguments)
or within the same session (via modifiable flags). For static configuration infor-
mation, the predicate xsb_configuration/2 should be used.

Error Cases

e Flag Name is neither a variable nor an atom.
— domain_error(atom_or_variable,Flag Name)
set_prolog_flag(?Flag_Name, ?Value) ISO
set_prolog_flag/2 allows the user to change settable prolog flags. Currently
the only settable ISO flag is the unknown flag. Setting the flag unknown to fail
results in calls to undefined predicates to quietly fail. Setting it to warning
causes calls to undefined predicates to generate a warning (to STDWARN) and

then fail. Setting it to error (the default) causes calls to undefined predicates
to throw an existence error.

Dynamic XSB settings can also be changed, as described in current_prolog_flag/2.

Error Cases

e Flag Name or Value is a variable.
— instantiation_error
e Flag Name is not the name of a recognized Prolog flag.

— domain_error(prolog flag,Flag Name)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 263

current_predicate(7?Predicate_Indicator) ISO
current_predicate/1 can be used to backtrack through indicators for loaded
user or system predicates. If Predicate_Indicator unifies with Module:F/A all
loaded predicates unifying with this indicator is returned. If Predicate_indicator
isF/A, current_predicate/1 behaves as if it were called with the form usermod:F/A.
Unlike current _functor/1 current_predicate/1 does not return indicators
for predicates that have been imported but not actually loaded into code space.
For more detailed analysis of predicate properties, the predicate predicate_property/2
can be used.

As an example to backtrack through all of the predicates defined and loaded in
module blah, regardless of whether blah is a system or a user defined module,
use:

| ?- current_predicate(blah:Predicate).
In this case Predicate will have the form: Functor/Arity.

To backtrack through all predicates defined and loaded in any current module,
use:

| ?- current_predicate(Module:Functor/Arity) .
This succeeds once for every predicate that is loaded in XSB’s database.
To find the predicates having arity 3 that are loaded in usermod, use:

| ?- current_predicate(usermod:Functor/3).

while to find all predicates loaded in the global modules of the system regardless
of their arity, use:

| ?- current_predicate(usermod:Predicate).

Error Cases

e Predicate_indicator is neither a variable nor a predicate indicator

— type_error(predicate_indicator,Predicate_indicator))

ISO Compatibility Note: In XSB, current_predicate will backtrack through
system predicates as well as user predicates.

current module(?Module)
The standard predicate current_module/1 allows the user to check whether
a given module is current or to generate (through backtracking) all currently
known modules. Succeeds iff Module is one of the modules in the database. This

CHAPTER 6. STANDARD AND GENERAL PREDICATES 264

includes both user modules and system modules. For more detailed analysis of
module properties, the predicate module_property/2 can be used.

Note that predicate current module/1 succeeds for a given module even if
that module does not export any predicates. There are no error conditions
associated with this predicate; if its argument does not unify with one of the
current modules, current_module/