GEORGE

A semi-translation programming scheme
for DEUCE

h |
" IA and IT
|
7

PROGRAMMING AND OPERATION MANUAL

GEORGE, or the General Order Generator, is
a program for DEUCE permitting mathematical problems to be
presented to the machine in a simple "addressless" instruction
language, here called "G-code". To use this code the-
programmer must learn a special method of writing mathematical
formulae, known as "reverse Polish" notation. Once this is

mastered, however, programming is considerably easier and
quicker than by other methods.

Automatic partial translation of G-code into
DEUCE instructions secures a higher speed of operation than

is usual with interpretive schemes. Calculations are in

gloating—point arithmetic to an accuracy of about six decimal
igits. .

Prepared by:
C. L. Hamblin

University of New South Wales

(1)

GEORGE TIA and IT

General Description

GHORGE TA and GEORGE II are alternative versions
of a scheme to simplify the programming of DEUCE for routine
mathematical problems. In either case, a basic program is
read into the machine and stored in the magnetic drum. So
long as one of thege programs is in the machine, programs for
the solution of particular problems may be read in in "G-code",
which is a highly simplified and condensed instruction language.
A program in G-code in fact resembles a mat%ematical formula for
the result required more than it does an orthodox machine
program. In particular, the programmer never has to specify
any "addresses'" for numbers or instructions inside the machine.

As written, a program in G-code is a sequence
of mathematical symbols such as numerals, variables and
arithmetical and other special signs; and the symbols are
transcribed to cards in a numerical code. Broadly, each
symbol may be regarded as an individual "instruction" of the
program.,

It is not in general necessary for the programmer
to be familiar with details of the operation procedure, unless
he wishes to follow a program through step-by-step for checking
purposes. Given reasonable care in program preparation, errors
should be rare.

GEORGE TA and GEORGE II accept the same programs
and differ only in details of internal operation. GEORGE IA
is a "semi-translation" scheme, and the program goes through
two phases: (i) translation into "keywords", which are DEUCE
instructions leading to the stored routines required by the
program, and (ii) calculation, in which the keywords are taken
one at a time and the appropriate routines performed. The
first phase however takes at most a few seconds, and transition
to the second phase is automatic. GEORGE IT is a "pure inter-
pretive" scheme and is slower in operation but has considerably
more facilities for manual operation: it will be used principally
for the testing of programs for subsequent use on GEORGE IA.

The following description is divided 1nto two
sections, viz. (1) Programming and (2) Operation. The first
section applies indifferently to both versions of the scheme
and assumes no detailed knowledge of the operation of DEUCE.

(1D

Program input

!

Translator
]
__________ e I
|
' Mark
Instruetion 1iE%
store Control
Link
T list
1
W
Arithmetic
unit
Reader PMFCh Running accumulator
Fast storﬁ buffer
Store for Store for
jﬂ?ﬁ??fzgﬁ doubly- singly
yariablea suffixed suffixed
variables variables

Block diagram of the GEORGE pseudo-machine

(1)

1. PROGRAMMING

‘1.1 . "Reverse Polish" notation

T The majority of the 'symbols used in programming
are thosé normally used in mathematics, but the order in which
they occur is different from the usual order: formulae are
written in "reverse Polish" notation. This notation has a

- number of advantages which fit it for use with machine computatior

In this preliminary description let us take
for granted that we can use the letters Rl Hpmt el ss 88
ordinary algebraic variables. A mathematical formula is a
prescription for operating on the numbers such variables
represent. We can c¢lassify the operators involved as:-

(i) monadi¢c operators, or operabors on a single
number, such as The minus-sign in "-a", the modulus sign in
"lal ", and various functional operators such as "log", "exp",
"8in® ebC.q Bl S st oz

(ii) diadic operators, or operators on a pair of
numbers, such as the operators for addition, subtraction,
multiplieation, division and various others.

' _ In ordinary mabhematical notation, a monadic
operator is most frequently written in front of the variable
concerned, as in "-a", and a diadic operator between two
variables, as in "a + b". There are, however, common exceptions:
multiplication is indicated by simple Juxtaposition as in "ab";
the sign "-" is used indifferently for subtraction and as a
minus~sign (subtraction from zero); and brackets are needed

to distinguish, say, "-a + b" and "-(a + b)".

In referse Polish notation the operator-signs,
whether monadic or diadic, are written after the variables
concerned, as follows:- i

For o a+ b write ab +
" a =-D> L ab =
mn a‘b " a 'b X
" & "o a b
" =& noo~ a neg
9] lal " a mod

=== and so on. One result of this is that brackets are never
needed: ‘'any of the above expressions may be used directly and
without ambiguity as an element in a longer expression. For
example:

For : -(a +b) write a b+ neg
. : la + bl " a b + mod
" 1al + |b| " a mod b mod +
! a *:b-+ o " ab+c+
o h : ' {(ex a b c + +, etc.)
" (@' +b) xec o ab+c K
" | a + be " abec x+
a

" a.b+i5'- s M abxab==+

(2)

In understanding the use of this notation in
GEORGE it will be of assistance to have in mind a picture of
the internal logic of operation. The pseudo-machine into
»which DEUCE is converted by the basic GEORGE program can be
envisaged as equipped with a "running adcumulator":; - this is
a set of storage locations (known as "cells") arranged in a
linear order and operated on the "last-in-first-~out" principle.
When a variable occurs in a program its "value" (from an
~appropriate position in the main number-store) is placed in
‘the first vacant cell of the accumulator, i.e, in cell 1 if
this does not already contain a number, otherwise in cell 2
or ete.: and when an operator-symbol occurs, the specified
operation is carried out on the contents of the last occupied
cell or last two occupied cells, depending as the operator is
‘monadic or diadic. The operation of the formula "a b +" may
for example be pictured as follows:

(i) "a": nomber a transferred to cell 1.
r =
(ii) "b“&_.number b transferred to‘cell 2.
a b .
(iii) amg contehts of last two oébﬁﬁie& cells

added together; cells cleared and result replaced.

a+b

The result is exactly as if a single number, the sum of a and b,
had been specified. In consequence, this number is available
for further operations if required. For example, ‘to calculate

"(a + b) x ¢" we can write "a b + ¢ X". The first three
steps are as above, after which: .
(iv) "e": number c transferred to cell 2.
a+b -

(v) "x": contents of last two cells multiplied;
cells cleared and result replaced.

@+b)xe

-

Alternatively this calculation could have been carried out in
the form "¢ a b + X", In this case three cells would first
have been filled with numbers before any calculations were
carried out: the result of the addition would go into cell 2,

and the final resalt as before into cell 1.

Quite generally, the overall effect of any
calculation of a number is to place the number concepned in
the first vacant cell of thelaccumulator. (It may then be
punched out or transferred back to!the main number-store).

i 4 There are two specisl operators which, although
not strictly necessary, are frequently useful. These are:

(1) "dup": this+"duplicates" the contents of the
. last occupied cell in the next cell. For example:

For (a + b)° - write a b + dup x
~ (ii) ‘"rev": this "reverses" (i.e. interchanges) the

-3

contents of the last two occupied cells. TFor example:

For

write

a b + dup ¢ rev #+ +

Certain special functions such as "log", "exp",
"sin" etc. are available and are treated as monadic operations

a8 indicated in the table below.

In addition it is frequently

possible to write subroutines in G-code in such a way that the
symbol which calls in the subroutine may be treated as an

operator~symbol.
' WABLE OF OPERATIONS PROVIDED IN BASIC PROGRAN

Symbol Monadic or

diadic

+ diadic

- diadic

x diadic

+ diadic’
neg mopadic’
mod mqnadigff
max diadic
log ‘monadic”™
exp monadic
DPOWw diadic
rem diadic.

+ monadic
sin monadic
cos monadic
dup
rev

i~

. Example

Operation BT i
addition a + b
subtraction a->
multiplication ab
~division - £
‘minus sign -a
_mé&uius . lal

| maximum ' max(a, b)

natural

logarithm loge 2
exponential e®
power aP
remeinder . .rem. of a

_ on div. by b

square root N3

sine } angle iﬂ {sin a
cosine radians | cos a

-Wwrite:-
ab +

a b pow

(see

a b rem note)

a sin
a cos

-duplicates last occupied cell in next cell
interchanges last two occupied cells

~ Note: the "remainder of a on division by b" is defined as

‘a number x such that nb + x = a,
integers and O ¢

X ¢« b. Note that

positive fractional part of a.

1.2 Numerals

where n and b are both
la 1 rem"

gives the

Data required in a calculation will normally be
read in separately from the program by means of special instruc-

tions.

It is frequently convenient, however, to include

numbers as part of the program itself. For this purpose the

symbols. 0--9 are provided, together with a symbol for decimal

point.

Seguences of these 'symbols (of not more than nine

digits in length) are treated as numbers in the usual way.
They are converted by the translator to floating-point binary
form (22 binary digit signed mantissa, 10 binary digit signed

eXpdneﬁf; ‘hence aEOutusix3dﬁ¢iﬂgl digitzgpcu;acqu
In opemation-thgzﬁgmbarpconoerned_ia placed

in the first vacant cell of the aceumulator. Herice constant
numbers may be included in -a formula in the same way as

variables. .. . Sl Al e : :
| For. v G3a 44b cwrite T U a3 XD A%+
LR, 1Y R - TPt S ‘a 33.8 4 (14 %
When two numbers must be written'consecutively
they should be separasted by a comma (special symbol, omitted

For" Tg—'_Lx' - write R T T (B SR

1.5 Variables

Variables represent storage locations. An
-."alphabet" of 32 letters is provided, comprising all:letters
of the Roman alphabet except "o", and certain Greek letters
(see coding table in Appendix.I).. There are three emtirely
separate ranges of storage locations as follows:-

(i) The "unsuffixed variable" storé: this is a
range of 32 loecations, one for'each’letter of the alphabet.
Tt is this store which is referred-to when letters are used
alone in the usual way. Rtk S = s]

: (ii) 'The "single:saffix! or "vector" store: this
has 32 X 32 = 1024 locations, ard is referred to by using
variables with single suffixes.. .Any of the.%2 letters may be
used with a suffix, and suffixes may range in value from O
to 31. (See section 1.9 below 'on'the uge of larger values).

. (iii). The "double suffix" or "matrix" store: this
has 32 x 32 x 4 = 4096 locations and is referred to by using
the letters a, b, ¢ and 4 with double suffixes. Either suffix
may range in value from O to 31. See section 1.9 below an
the use of larger values). Wit IR

L

Tpe-enﬁireﬁgambﬁrestore is "rapdom access”.

Hence the programming of @ mathematical problem ugually requires
little or no change in nomenclature.

A special notation is-however used for suffixes:
. these are writteg;:iraﬁﬁgand arg separated from the variable-
symbol by a bar sign "} (single __ggixesb or double-bar sign
"lII* (double suffixes).

For %1 write 1)a
*14 " mbx
. : Bl,l 2 n : ? ko l“a

) R S - ats 6, 3l

2k The advantage of this notation is that suffix=-
values are first treated in the ordinary way as numbers, and
are placed in. the: accumulator. This permits the uge of algebraic
ari thmetic ions in suffixes; the bar
sign simply takeg the number i the last occupied cell and
treats it as:a suffix of the letter which follows. ~(Similarly
the dguble-bar sign takes the numbers in the last two occupied
cells). *

For a write n] a

" a'j+n " . J o +l a

suffixes and of arithmetic oper

fkiret A i1

- (5)

For ort o - g write idlla
' '] y = " :
' 8y x4l ot - 4 x1+]|a
n S - S k | 3 | a
Jk- ~% S = o ’

Suffixed vériables may be used in formulae in
exactly the same way as simple variables:
For a; + by . write ilai]b+
s SN ; Facl s 2 " T i 4 { a 3 x
85 3% illadlxx

1.4 Names

When a number has been calculated in the accum-
ulator it may be put away in thé number store by using a "name"
symbol. This is equivalent to "naming" (or renaming) the
number with a certain letter or suffixed letter. A name-
symbol is written as the corresponding variable in brackets,
e.g. "(a)" (treated as a single symbol). Names may be suffixed
in the same way as variables, e.g. "1 | (a)", "i j| (a)" etc.
In all cases such a combination of symbols operates to transfer
the number in the last occupied cell to the appropriate location
in the number store.

A name does not, however, "cancel" the last
oceupied cell of the accumulator. For this purpose a snecial
symbol "3;" is used if mrequired.

For "Pt ¢ = a + b" write ab+ (e¢) ;
" "Put n = 6" " 6 (n) ;
¥ "Add 1 to x" ' B x 1+ (x) ;
" MPub bygo=ag St " i glladupx i) ;

1.5 Input and output

The symbol "R" represents an instruction to
read one number from a card and place it in the first vacant
cell of the accumulator.

The symbol "(P)" represents an instruction
to punch out the number in the last occupied cell of the
accumulator, It is written in brackets to indicate that it
operates like a name-symbol; i.e. that it does not "cancel"
the cell. ' E :

For "Read in the number x" write R (x) ;3
" "Punch out the number x" " x (P) ;
" ; "Punch out ‘the sum of a and b"

] write ab + (P) ;
i "Read two numbers and punch out their sum"
write R R + (P) ;

Provision is also made for input or output of
blocks of numbers directly ‘to or:'from the vector and matrix
stores, as in the following examples:-

_ "To read’ in a segugn?erofmnugbers gy Xopqs wee xb
write ab R (x)
To punch out the same sequence of numbers write

abPI'(k)') v

C))

To read in a matrix of numbers aij == S write
imJnRy (a)

To punch out this matrix write
imJn P (a)

A matrix is read or punched row by row, e.g. in the order

ai_d' ai'j.-[-l! e aln, ai+l,J 'i+l,.j+l1 s e al+l ny " etc.

Numbers are punched one per card, in floating
decimal. For details see section 2.2 below.

1.6 Repetitive operations

It is very frequently required that a calculatian
be performed repetitively on each of a sequence of numbers: e.g.
on each element of a vector. For this purpose a speclal
facility is provided in G-code; thus:

To perform an operation for each value of* x, in unit
steps, from a to b, write
abrep (X) veveve]

The program for the operation to be performed is inserted as

shown by the row of dots, "x" being used in it as a variable.
For example:

- To calculate the squares of the natural numbers from 1
to 20, punching them out as calculated, write
1, 20 rep (J) 3 3 x (®) 3]
To put -aJ = bJ for each value of j from 1 to n, write

1nrep (§) J)bdup x J| (a) i]

A frequent use of this facility will be for
repeated summation. For this purpose an accumulator cell
can first be marked out with zero, and then terms repeatedly
added to it. For example:

To calculate the sum of the squares of the natural numbers

1
from 1 to 100 (i.e. ﬁi’ -3 T

0, 1, 100 rep () § 3 % +]

Repeated products can be handled similarly, flrst marking
out a cell with the number 1:

To put a, = n! for all n from 1 to 15, write

1, 1, 15 rep (x) x x x| (a)]

Simple repetition a fixed number of times can
be effected using a "dummy" variable, i.e. one not required
in the calculation. For example:

To iterate five times from initial value unity using

the formulﬁ X(ne1) = %(x(n)'+ i%;)) write

1, 1, Srep (a) dup y rev + + 2 =]
(This is Newton's. method for the square root of y).

Repetltlve operations may be "nested" one

within another: i.e. the operation to be repeated may itself
be repetitive. For example;

(7)

To calculate the sum of squares of the natural numbers
from 1 fp n;_for_eﬁbh.value of n from 1 to 20, storing the
Fegults as a3 == 854, write

1, 20 rep (n) O, L n rep (x) x x X+] n| (a) 5]

(Here the "inner" repeat performs the operation "x x x +"
and the "outerd the operation "0, 1 n rep (x) x x x +] n| (a)

..Tq:put bi = ft

. -a:s.X, , for all i from 1 to n, write
-l.nrep (i)-0, 1 n rep (J) 1 Jlla j|x x +] il (v) ;]
T_o. calculate iil aijxixj wr:Fte

O, 1nrep (i) 1 nwrep (§)1jfladilxj|xxxs+]]
(or for somewhat higher speed)
O, 1nrep (1) 0, L nrep (§) i jlla §|x x +] il x x +]

PROGRAM EXAMPLES

Many complete programs will need no other facil-
ities than those already introduced. It will be noticed that
these include the majority of problems handled by "tabular"
or "matrix" interpretive .schemes. Although GEORGE is not
intended as a competitor of these, it may in the case of
problems which are not too large campare in speed with them;
8ince a sequence of elementary operations may be performed
in a single "repetition", without intermediate access to the
number-store,

Example 1. A set of 20 numbers is to be read in,
and thedr mean and root mean square computed and punched out.
A complete program is as follows:-
1, 20 R| (a) . ; (read in data)
0,1, 20 rep (§) jla +] 20 = (p) ;
- (calculate and punch mean)

0, 1, 20 rep (j) J|adup x +] 20 = .5 pow (P) ;
: (calculate and punch root mean 5Q.)

Alternatively the mean and root mean square could
‘be calculated in a single repetition as follows:

1, 20 R, (a)
0, 0, 1, 20 rep (J) jla + rev j| a dup X + rev]
20 = (P) ; 20 = .5 pow (P) ;

Example 2, ' To repeat the above program n times
for different sets of data, where n is given on a first card,
prefix with "R (n) ; 1 n rep (x)" or "1 R rep (x)" and
add "]“ at end. . g

Examgle'g. To calculate the definite integral
: J. e'ﬁfa :

ax

M T % _e-ax

by Simpson's rule with 16 intervals of argument, for each of

five values of a, as given on cards.
Let -Bx, By, s 85 represent a "8impson vector"
0 1 16 ocnlle

" (8)

'i.e. with the values 1/48, 4/43, 2/48, 4/43, ... 1/48 : this
éan ‘be read in from cards with "0, 16 R (s)" or it can be
prepared by a preliminary section of program, €.g.:
.o, 48 0 (e) 16| (s) 2 %1, Zrep (3) J2 x| (s)]
2 %0, 7 ren (N g2xl+{(=)]
" Now the mein part of the pregram can be set out as
follows: - P
1, 5 R (a) (read in values aj, «++ 8g)
1, S¢vep (1):i|a (@) 3 .
(repeat as follows with a = &;, ... 85 in turn)
0, 0, 16 rep (J) ; -~) '
(mark acc. gpace with zero and repeat as follows
: ; o for j from O to 16)
j4+=1+ (%) : (calculate argument)

dup X 2 + neg exp X a8 X neg exp- 1 + —
o X ' (calculate integrand)

Jls %X +

| (multiply by Simpson coefficient and add;
end inner ‘repeat) J

i@ ;] (store result; end outer repeat)

1, E'P‘(r) (punch results)

1.9 Subroutines

Subroutines written in G-code may be simply
attached to the end of a program. BEach subroutine is intro-
duced by the symbol "#*" followed by a number, and terminated
by the bracket-symbol "]". A subroutine may be called in in
the main program by giving its number, followed by the symbol
",", When the subroutine is complete, the main program will
automatically be resumed from the point .of interruption.

. For example, a slibroutine (number 6) to
calculate the square root of the sum of squares of a pair
of numbers given in the last two occupied cells of the
accumulator -can by written as follows:;

* 6 dup X rev dup X + .E]pow‘]

If this subroutine is attached to a program, it may be called
in by means of the symbols "6 {". Thus for the square root
of the sum of squares of a and b write '

a b 6

(Note that "6 4" can be considered here simply as a diadic
operator).

The number of a subroutine, as written at the
beginning of the -subroutine itself, must be represented by
a single numeral symbol. (Besides the symbols O == 9 there

are however a%so symbols 10, II, ... 31: see coding table
in Appendix I). The main program may specify the gubroutine
number in any manner. - i

s Sometimes a subroutine will use locations in
the number store., In this case some care must be taken that
the locations. concerned. are not.also in use in the main program
when the subroutine is- called: It is generally convenient
to reserve Greek letters for use in subroutines.

Subroutines may themselves involve reference

1Amﬁ Addendum,

(9)

to other subroutines. TFor example, a subroutine (say number

I%) which when.given a pair of numbers in the accumulator
will divide them respectively by the square root of the sum
of their squares can be written using subroutine no. 6 in
the example above:

| * IO (B) rev (=) 6 | (y) « rev + y = 1

B When subroutines are attached to a progranm,
the program itself must be terminated by a bracket-symbol "]"
80 that it will not carry on into the subroutines. The bracket-
‘symbol.in fact has three uses: (i) to return a subroutine to
the main program; (ii) to restart or terminate a repetitive
operation; and (iii) to terminate a program. It fulfils the
third function provided no subroutine or repetitive operation
is in prog#ess:

To read in two numbers and punch the square root of the

sum of their squares, using subroutine no. 6 as above: the
complete program is:

FER6 3} (P); (main program)

] (bracket to indicate end of main
program)

* 6 dup X rev dup x + .5 pow) (subroutine)

1.8 Skips and discrimination

A place mdTker, consisting of the symbol "*"
followed by a ‘single numeral symbol as described in the previous
section, may be inserted anywhere in a program: it will be
omitted by the translator, which howevdr notes in a special
list called the "mark list" the address of the next instruction
following. A "skip" instruction, or instruction to resume the
program from a point so marked, may be given by writing the
number of the mark followed by the symbol "f". This symbol
operates in the same way as the "skip to subroutine" symbol "|",
except that it makes no provision for later returning to the
point of interruption.

For example, to continue indefinitely reading in pairs
of numbers and punching out their sum, write

*ORR+ (P) ; 01}

Skips may however be conditional on the results
of a calculation. For this purpose Two "relational' operators
"=" and ">", and three "logical" operators Moty "&" and "w"
are provided. A skip ("t" or "{") is treated as conditional
whenever one of the two relational operators has preceded it
(since the previous skip).

' The relational operators are diadic operators
which give as result a digit (the sign digit) to indicate
whether the r#détdon is "true" or "false". For example:

"a B =" gives "truth" if a = b, "falsehood" otherwise.
|I'a ‘b }l'l n n a > ‘b, fn n

When a skip is "conditional", the last occupied cell of the
accumulator is examined to see if it indicates "truth"; and
the skip takes place only if this is so. Thus:

For "If x = 0 skip to mark no. 8 (otherwise continue)"
write

x0=81

Both the "truth" indication and the mark number are cancelled
from the accumulator, whether the skip takes place or not,

- (10)

- ; The "lpgicdl" operators are operators on truth-
values, and extend the. range of possible relations.

: ' (or "mot")'is monadic and gives logical negation:
'that 15, it changes “truth" to- “falsehood" or vice versa.
Thus:

Fér- , + ~"a £ b" i wrte © ' T-ab = ~
" tg £ H" _ m L & b > ~
"g" (or "and") is diadic and gives logical conjunction;

i.e. ¢ ruth" if both operands have "truth", "falsehood" otherwise.
- Thus:

For. g = p =0 writel; a2 0= b 0=&
s "a & x < D" m xa>bx>&
"y" (or "or") is diadic and gives logical disjunction;

i.e. truth“ if either or both operands have "truth", "falsehood"
only if both have "falsehood". ‘Thus:

For Mg =0 or 1" ‘write-

x0=x1= v
n "a or b or hoth exceed n"
write an>bn>v

Note that as constants "O" may be written to
represent "falsehood and "-1" (i.e. "1 neg") for "truth".
For "If any aj is zgrp:§3 =1, ... n) obey subroutine
no. 3" write L %
' 0, 1nrep (j) jlao=v}3\|

To iterate from initial value unity using the formula

Elnly = %(x(nj : E?i;) until Successive.values differ
by not more than e, write
1 *0 (x)yx+ +2+dup x.-mod e >07T-

(The result is left in the accumulator).

1.9 Miscellaneous programming points

The following notes deal with a number of
3080131 D01nts not so far mentioned.

(i) The accumulater is limited to 12 celis. This
is more than enough for all normal calculations; but a program
which demands more cells may be written inadvertenﬁlyg e.58.
by omitting a "cancel" sign (";") in a repetitive operation.
Such a program will give fallure, as also will a program
which instructs taking a number from an empty accumulator.

(ii) Subroutlnes and repetltlve operations involve
the use of a special set of locations called the "link list".
An entry is inserted in this 1ist whenever a subroutine or |
repetitive operation is entered, and cancelled (by the bracket-
symbol "]1") when it is compieted “Phe link list is limited to
six entries, and a program must - not at any one time have more
than this number of subroutines and/or repetltlve operations
nested ohe within another.. = b

(iii) There {s room in the instruction store for
512 symbols before translation, and for a similar number of
keywords after translation. Translation of symbols into
keywords is not exactly- one—for—one gertain symbols such as

(11)

comma and marks are omitted, but a few symbols give rise to
two keywords each (seec Appendix II). On the average there
will generally be about 10% more kcywords than corresponding
symbols. To avoid detailed counting of symbols and keywords
programs can in cases of doubt be sectionalised (see operating
instructions).

(iv) - In-certain: cases symbols are translated in
pairs or groups,. and the members of a pair or group must not
be separated by-other symbols such as comma, mark, skip ete.
Theserare: 'numeradl sequences; bar-signs "|" and "\" with
‘their following variables or names; "rep" with its following
name; "Ry ", "B, "Ry", "By" 2nd their following names; the
asterigk "*" snd its gollowlng numeral.

(v) Numbers used in a program for "indexing"
purposes (i.c¢. as suffixes, skip numbers, ranges T repctition)
are assumed to be 'intezers of modulus less than 242, and use
of numbers with fractional parts or outside this range may give
incorrect results. 3kip numbers are interpreted modulo 32,

(vi) Although suffixes are normally limited to the
range O to 31, use of values outside these limits is vossible
under certain circumstances. When 3 single suffix exczeds 21,
the storage location represcnted is one corresponding with
a letter alphabetically following: o.g. "a52“ represents

the same number as "bD"“ "335“ the same as "bl“, "a64" the
g me 38 ”co“ and so on. Hence if the larger suffix-values

are required the =2ppropriate storage-locations must be reserved.
(Consult the alphabetical order of the letters in the coding
table in Avopendix I if necessary). In the extreme case the
entirc vector store may be reserved for (say) Bar eer 31003

no other singly-suffixed variables being used. Larger valucs
again will mercly cause reduplication. Negative suffixcs are
similarly interpreted modulc 1024, causing spill to locations
of alphabetically preceding letters: - “a_l" represents

the same number 23 "“31"‘

In the case of doubly-suffixed variables and
names the second suffix is interpreted modulo 32 and does not
cause spilTl; but the first suffix is interpreted modulo 128
and causes spill through a, b, ¢ and d in the same way as
described.

(vii) The symbol "wait" performs no operation,
but holds up the calculation until a manual signal (single
shot) is given, incidentally displaying on the output lights
the number in the last occupied cell of the accumulator (or
the special indication Py_1p if the accumulator is empty).

Numbers are in standard "semi-flozting" binary, with signed
exponent in positions 1~10 and signed mantissa in positions
11-32 (binary point between positions 31 and 32).

(viii) Symbol "I" operates to transfer a nunber
set in on' the input keys to the first vacant cell of the
accumuplator. This permits manual control of a program by
means of discrimination: e.g. for "If the innut lights are
clear, skip to mark no. 4" write "I O = 4 $". It is generally
advisable that the program should have "wait" a2t some nreceding
point to permit the input lights to be set as requined, (See
however the operating instructions for GEORGE II).

(12)

2. . OPERATION

23l General:n:ocedure

= The .basic GEORGE IA program or GEORGE II program
is redd into the machine and is stored on the magnetic drum.
Provided this remains intact, ‘a program in G-code (or "G-program")
- can be inseeted at any time usging the "initial input" key, and will
be translated and performed without interruption. A program in
G-code consists of i~

(a) & gpegial "G-program initial card".

(v) A card or cards containing in order the symbols
of the program in numerical code, with a special punching
(two.adjacent digits in Y-row) to indicate the last card.

(c) Cards containing data, if any, in the order
in which it is required by the program.

If 'a second G-program (with its own initial
card) is stacked behind the first it will be read in without
interruption as soon as the first is finished. The accumulator
is cleared between programs, but the number store is not:
hence a program too large for the instruction store may be
sectionalised, later sections using the results of earlier.

The store for unsuffixed variables is D.L.l12,
and this is cleared when the "initial input" key is used.
If it is desired to avoid this, a G-program may be inserted
using the "call read" and "run in" keys, provided control
has 0-0x, W=T, any m.c. (e.g. clésar and enter D.L.8 with
"external tree"). _ .)

The stores for guffixed variables are in the
magnetic drum. A special card is previded to clear them
between programs if required: this must be read in, preceded
by & blank card, with the "initial input" key. It is in any
case normally incorporated in the basic pack (inserted between
cards O and 1). LT s o

The I.D. should normally be clear when a G-program
is read in. Certain settings, however, give special test
facilities (see below).

2.2 Punching of program

) Each program symbol.is represented, in the
internal operation of the machine, by a combination of 8
binary digits. For convernience, however, symbol-codes are
punched in decimal as pairs of numbers in the range O=-=15;
e.g. "+" is "5/0", "n" is "13/4", etc. (See table in Appendix
I). Symbol-codes of & program .are punched consecutively up
to sixteen per card, the first number of each code in an odd
column and the second in. the following even ‘column. Code
numbers 10, 1¥, ... 15 are punched.as 0-«5 with an over-
punching in X-row (i.e. X ceunts as 10). *

Code 0/0 is ignored by read; and blank columns
are read as zeros, whence unused portions of the Deuce field
of a card may be simply left blank.

The last card of a G-program should be punched
in Y-row in two successive columns: this stops program read-in
when all the symbols on the card have been read. Y-row is
otherwise ignored.

(13)

2t§___Eunching of data

. Bumbers as data are punched one per card in
floating decimal, with sign of mantissa in col. 1, mantissa
(91) in cols. 2-10 with decimal point between cols. 2 and 3;
- 8ign of exponent in col. 11, exponent (integer) in cols. 12-20.

i . " Qutput cards are always in this standard form.
The mantissa is however rounded to six significant figures,
and the exponént .cannot exceed three digits: hence cols.
8-10 and 12-17 will in any case have zeros.

i . Input cards are essentially in this form, but
some flexibility iS5 allowed for ease of manual punching, as
follows:~ ¢ i

(1) Plus signs and zeros need not be punched.

(ii) Minus sign of the mantissa may be punched in
any of colsy 1-10, and minus sign of the exponent in any
of cols. 11-20. . (The latter is often conveniently over-
punched in col. 20).

Note that figures in cols. 8-10 and 12-17 are in any case
treated as zero by the reader.

2 14 "St ODS“

The following is a virtually complete list of
the "stops" that can occur in the course of a program. Note
that in the case of purely arithmetical failures the program
can usually be resumed by giving a single-shot, though of
course incorrect answers will be obtained.

The annotations "IA" and "II" refer to the two
versions of GEORGE.

Indication Cause Action

Loop with buzz ¥inor cycle synchron- Non-resumable. Basic
(on read in or sation slip (machine program must be read in

after diag. or fault) again

EPS card)
1 12-24x Reader operated with Switch to "normal"
(read in or EPS| machine at "stop"

card)
1 11-1x

(diag. card)
5 9-24 8.8, missed (reader Non-resumable
6(gafa read) fault)

(prggram read)
> 9-giwy More than 512 symbols Non-resumable
(program read) in program

7 O-14x Program card required Supply card or supply
(read called) "end program read"

indication

3 2-2x (IA; } Mark number used Resumable with S.S.

0 2-2x (IT twice - " (second entry written

L . . over first in mark list)
5 31-29x (IA More than 512 key- Non-resumable
enly) words in translated
) program .
-

6 0-14, 0 24—251 I.D. has entry in Clear and continue

" (IA only) P13 -

s

249 :Diagnostic routine

A "diagnostic card" is

in with the "call reesd" and "run

“Indication Cause A . Action
FE0L28% Y ' ¢ - "Initial stop™ .(See below ander test
i o o R ik R R L facilities) .
"1 0-0x (IT. 1. "Test stop" .~ (See below under test
only) , facilities)
1 30-21x (IA)} ' Program uSes too m&nyﬂfEIA) Non-resumable
1-1-1x (TID} accumulator cells or II) S.8. calls in
; B i ‘has instructed taking [next symbol
-number from empty-
. ~ accumulator _ .
1 Bazlx'slﬁ%_: Too many. entries in "%IA) Non-resumable
1 3-3x (II link list (I.e. IT) 5.8. calls in
. nested subroutines or [next symbol
repeats to higher
i than sixth order)
- 7.25-299 Program calls for ' Non-resumable.
skip to non-existent Mark number X Pl?
mark ' appears on 0.5.

3 l4=-21x Result of arithmetic S.8. resumes with
operation exceeds exponent halved
permissible magnitude

1 4-24x Divisor zero (4) or §.8. resumes giving
argument negative (4) result zero

1 30-16x Divisor negative -or "
zero (rem _ :

1 30-21x Argument zero or i
negative (log) - .

7 30-21x Result exceeds i
permissible magnitude
(exp or pow) =

5 30-21x Fractional power of "

: negative number (pow) '
1 16-29x Programmed reﬁplt-of_ Number in last occupied
symbol "wait" + cell is given on 0.S.
Program resumed by S5.S5.
Or call and cancel punch
(machine at "stop") to
_ !obtain a copy on a card

2 0—16x] (11 Programmed stops for Set I.D. and give 8.8,

1 4-15x 3§ only) symbol "I " Reset I.D. and give S.S.

4 9—%&:1 Data card with Non-resumable

o exponent too. large . .

1 ll-6x} (read Data card wanted Supply card or emend

1 7-16x | called) ‘program - -

6 0-0x End of program

(read called) =5

provided which, when run

details relevant to the location
nmust have 0-0Ox¢ W=T, any m.c. —=
D.L.8). Five cards are punched;
Card 1 - ”

row ¥ _

quasi (TI);

in either case

in" keys, leads to punching of
of a program failure. (Control
¢.g. first clear and eater

‘as follows:=-

keyword track quasi (Iﬁ)ior gymbol-ecde track
' ‘number

of current track in P5-B

(15)

row X keyword m.é,-gqaai (IA) with m.c. number of
current keyword in P26—§O; or symbol-code

m.¢. quasi (II) with m.c. number of current
symbol in Pip -

0 accumulator quasi, number of occupied cells
- minus one in-PlV:ei.'

2 lihﬁfiigt quasi, number of oocupied link list
cells plus 17 in Pl7—2l'

2 and 3 blank

4-9 contents of "link 1ist. Subroutines have simply
a keyword or symbol-code address in Pl?—25;

- rppetitive operations are distinguished by Pz
and besides a keyword or symbol-code address
have the nunmber of the variable of repetition
in P27+5l‘ and a count-down number (integer
representing the number of complete repetitions
still to go) in P, .

: 1-16

Card 2 Contents of accumulator.
Cards %-5 Current track of keywords (IA) or symbol-codes (II);

first four rows blank.

Note that the 2ccumulator and link list may have entries beyond
the cell shown as the "last occupied", since old entries are
not in general erased.

; “The link list-gives keywoﬁd addresses in the
cage of GEORGE IA and symbol-code addresses in the case of
GEORGE II. In either case Pas_zs is track number. In GEORGE IT,

Pip.p1 is m.c. number. In GEORGE IA to determine m.c. number
take Pl?—2l’ nultiply by 2, and if the result exceeds 31,
subtract 31.

X . At-ﬁhEFEOnclusion of punching, the diagnostic
routine leads to 30-28x at the start of the calculation as
described under testing facilities below.

- Used with the "initial input" key, the diagnostic
card leads directly to the béginning of the stored program.

2.6 Program checking facilities in GEORGE IA

When P52-is-present on the I.D. during trans-

lation ali first keywords of the tranglated program will be
"stopped", permitting the calculation bo be taken step-by-step
with the single-shot key. Appendix I1 gives a list of keywords
for identification on'the instruction staticiser.

At the end of the translation the presence af
P52 causes a stop on 7 30-28x. A single-shot leads to the

start of the calculation as usual. Alternatively if a single-
shot is given with "discrim" key down (giving 7 15-31x),
followed by another with "discrim" key normal, the tracks
containing the keywords and the mark list are punched out:
control is returned to 7 30-2%x. Details of the arrangement
of keywords and mark list are also given in Appendix II.

2.7 Fagilities for manual control in GEORGE II

‘ In GEORGE II, the symbol-codes are not translated
into keywords, but instead interpreted one by one as the
calculation proceeds, and re-interpreted every time they

are used. (Marks are however pre-listed: the mark-symbols

(16)

remain in the symbol-sequence -but are ignored when-encounte;edjk
.The hinary code of each symbol. is displayed on the 0.5. as it :
is obeyed, the first aumber of the code in Pl7-20 and the second

iﬁ”Péi_éu: this permits identification of any symbol leading
to failure. ' '

‘*Tnitial stop”. - If there is anything at all on the
I.0. there will be an "initial stop" om 7 30-28x as forLGEOﬁGE
IA. . A single-shot leads to start of program. Alternatively if
a single-shot is given with "discrim" key down (giving 7 15-31x)
followed by another with "discrim" key normal, the tracks
containing the codes and mark list are punched out.

"Stop" and "reguest stop'. So long as P32 is present

I'qﬁ the I.D. the machine will stop'at-eaéh symbol. Alternatively
if'Pal is present on the I.D. the machine will stop whenever

the code of the symbol about to be obeyed matches the contents
of Pyn_py of the I.D. In cither of these cases the machine

stops on 1 0-0x, and this is referred to as the "test stop"
position. The code of the symbol about to be obeyed is dis-
played on the 0.5., and the symbol will be obeyed normally when
a single-shot is given if the I.D. is otherwise clear. (If

P31 is not present, ?l?—24 must be clear also).

"Slow moetion'". If P 0 ig present on the I.D. each
symbol is "held" for about % 383. before being obeyed. The

code -of the symbol is-displayed on the 0.8. during this period
and the machine will go .to. "test stop" 1 0-Ox if P32 is given.

Manual insertion. When the machine is at "test
stop" 1 0-Ox program symbols may be inserted one by one manually
on Pl?—24 (with 2.8. each time: Pﬁl must not be present). P32

should be present each time and will lead again to "test stop"
when the manually inserted symbol has been obeyed. The program
will be resumed normally when 5.,8. is given with Pl?-24 clear

Symbols of the stored program may be "skipped"
by giving S.S. with P, present. Pz- mast again be present to
secure a. further sgtop, i.e. on the.agxt symbol following; or
alternatively a "request stop!'=setting, leading to skipping
of all symbols down to the one indicated.

Manual insertion of symbols permits punching
out of numbers from store or the accumulator; display of
number from the accumulator on the 0.5. (using "wait");
skipping to marked positions, c¢tec.; as‘'well as temporary
alteration of the course of a faulty program pending re-punching.
It must be kept in mind, however, both when inserting and when
skipping symbols, that the result depends on the context of the
program at. the point concerned, and that this context may be
~altered by the process.

"Final stop". If there is anybthing at all on the
I.D. there will be a "test stop" I O-Ox at the end of the
program. (The 0.S. is clear). Symbols may be inserted manually
at this point, e.g. for additional punching out of results etc.:
otherwise S.8. will lead out in the usual way to "call read"
for a further program. '

"Restart". Symbol-code 15/15, given manually,
restarts the stored program from the beginning, i.e. from -
initisal stop 7I50-28x. The number store is not cleared,

' "Logking-in". The accumulator is in D.L.10, m.c,
1-12: m.c.0 has Pl—lO’ which may be used to "set scope' znd
marks the position of the exponents of stored numbers. Each
time the magh}n@"goea~taa“£9Enms#Oﬁ“~i;0—Ox'it first clears

old entries (if any) from unused cells of the accumulator to
facilitate inspection. - ST

It’should_be'ngted that_numerq;;symbols-do not

(£7)

lead to the 1nsertian of a number in the accumulator until
after the first following non-numeral symbol has been called
in. (A "comma" may however bé¢ inserted manually after the
last symbol of the numeral).

The gtoré for unsuffixed variables is D.L.12.
Thile the machine is at "test stop" 1 0-0x it is permissible
to use "external tree to call any track of data from the
suffixed-variable stores to'D.T.11. (Use "cont. TT" key with
C=0). TFor store locations ‘sece next section.

The link 1is% is in D.L.10, m.c.18-23. Details

of its 3rrangement ‘given above under diagnostic
facility. -

Note on sy Since in GEORGE II the I.D. is
used for manusl coh _~ symbol "I" has been programmed to
lead to two stops, firat 2 0-16x to permit the desired
input number to be set on the I.D. and the second 1 4-15x to
permit the I.D. to be eleaIEﬂ or reset before the program is
continued, .

£ Ql |III1

2.5 meernal progxgm synchronlsation

In wsing othe? programming methods in conjnnctlon
w1th GEORGE it may be necessary to synchronise minor-cycles
in order to vermit access to the GEORGE data store. An "external
program synchronisastion" card (or EPS card) is provided for this
purpose. When a GEORGE basic program is in the machine, this
-_card may be used with "initial input" key. (or "call read" and
"run in" keys provided control has 0-Ox, W=T, any m.c¢.) and
will perform the usual functions of an'lnltial card, clear
D.L.8, and lead out to 0-Ox in m.c,0 with the rcader running.
Provided the basic program' (in drum positions 12~-15) is not
interfered with, an external program may be followed by a
further Guprogram if it finishes by calling read and giving
0-0x, W=D, any m.c.; or a further G-program may be inserted
using the “1nit1al input" key as’' usual if the unsufflxed«
varisble store need not be preserved.

Store locatlons are as fcllows

Unsuffixed variables: _D.L.la, with m.c. in order corres-
ponding with variable numbers (iie. five least significant
digits of binary symbol-code).

ingly-suffixéd variables: 0051tlons 8 and 9 of the drum.
Tracks 1n order corrhspona with variable numbers and m.c.
correspond with aufflx—values.

Doublx-suffzxed variables: Dosltlons 0-7 of the drum,
variable T"a" in positions O and 1, "b" in 2 and 3 cte. For
cach variable, tracks in order corrcapond with valucs of first
suffix and m.c. correspond with values of second suffix.

(1)

Appendix I
GEORGE
CODING TABLE

0 1 2 3 4 6 Yy 1= o8 15
0 ,(u“é%"d) [o | 8| a () | (@) | 205 | R
1 i , { 1 7 b (®) | (&) | exp | (P)
2 : ~ 2 18 c (¢) | (s) | pow
3 4 & 3 19 d @) | (¢) | ren
4 fwait | v 4 | 20 e (e) | () | +
5 E 1 5 21 £ (£) | (v) | sin
6 = 4 6 22 g (g) | (w) | cos
7 X ™ 7 23 | h () | (x)
8 # |[rep | 3 oL i 1) | &) R,
9 |lnee| T | 9 | mly (@D | @ |- i
10 | mod o | 28 k (k) | (=) Ry
11 | max T | 27 1 (1) | (&) Py
12 | dup 1IZ | 28| n (m) (y.)
13 | rev I3 | 29 n (m) | O
14 = % | 30 8 @ |
15 > | 5 | 3T | » | (») | ()

The code of cach symbel is its row number
followed by its column number. For exauple "+" is 5/0, and
"n" is 13/4. Columns 9-14 are not used. Following an asterisk,
symbols of cplumn 3 represéent numbers 16-31 as shown: other-
#ise any symbol of column 3 rcpresents decimal point.

Aopendix II

(19)

Keywords corresponding with the-various symbols,

In a few cases keywords gé in pairs: in these

cases the first always his source 2 and represents an instruction

to pliace the second in a

G-code symbol

First keyword

svecified location.

Second keyword (if any)

) (not
1
* (not

neg
mod
max
dup
rev

W FE OO H W W F &\

>

|
(with following
symbol)

|

M
(with following
symbol)

N

- - s < B)

rep
(with following name)

Numerzl sequence
Variable (unsuffixed)
Name (unsuffixed)

Col. 8 operations

Read and punch (single)

S L el e T R~ B G VRN M i T

5

Read and punch 5
(vector and matrix)

ind of track 1

End of prozram 1

I 1

translated)
4-15

translated; following numeral also
not translated)

14-30
10-1
10-1
4-15
3-15
6-13
5-13
7-30
3-24
3-24
7-30
7-30

2=14 . - variable number x Pl?

+ P32 if name.
2-14 it

10-30
10-30
10-30
12-30
15-30
15-30
2-14

2-16
12-16
2-15
2~14

variable number x Pl?

number

1l 16-12
G-code x P26

2-14
2=14

G=-code x P26

G-code x P

plus
name—symb§§

X Pl?
17-21

15-31
0-16

-

(20)

Appendix IT (contd.)

The "number" of a variable (or name) is given
by the five least significant digits of its binary symbol-code.
Suffixed variables and names are translated together with
their bar-signs and the variable number is given by ,the second
keyword corresponding with a bar-symbol, as shown. In the case
of an unsuffixed wvari-hle the wvariable number may be inferred
from the wait number of the keyword by adding two plus the
number of the minor cycle in which it is stored (modulo 32);
and in the case of an unsuffixed name the variable number
may be inferred from the second keyword by subbracting 9
(modulo 32). i

When keywords are punched out using GEORGE IA
on dizgnostic punch or as described in the section on program
checking they are in triads zand in the latter case are headed
by their track number in P, _g of Y row (tracks are 0-15 of

position 10). In each track the keywords are interlaced, i.e.
the first sixteen in even minor cycles 0, 2, ... 30 and theé
second sixteen in odd minor cyecles 1, 3, ... 3l. Minor cycle
29 or 31 always has 1 17-21, leading to a routine to call the
next track of keywords: if this instruction is in m.c.29,
m.c.5l is Liank. The mark list is a single track (12/0) with
entries in minor cycles corresponding with mark numbers uscd
in the program, other minor cyeles having P,,. Each entry
gives the track and m.c. of the "marked" keyWord in PS-B and
P26—3O respectively.

Punching of codes using GEORGE II is from
tracks 0-15 of position 11, and the codes are in P 4 of
successive w.inor cycles. The mark list addresses -.5 track
number in P5—8‘ repeated in P22_25, and m.c. number in Pl?—2l‘

Acknowledigenients

Acknowledgement is due to Mr G. Karoly, and to
liessrs R. Brigham 2and G. Bell, and to Mr R. Smart, for
stimulation and suggestions.

	WRITE-00.pdf
	WRITE-00I.pdf
	WRITE-00II.pdf
	WRITE-01.pdf
	WRITE-02.pdf
	WRITE-03.pdf
	WRITE-04.pdf
	WRITE-05.pdf
	WRITE-06.pdf
	WRITE-07.pdf
	WRITE-08.pdf
	WRITE-09.pdf
	WRITE-10.pdf
	WRITE-11.pdf
	WRITE-12.pdf
	WRITE-13.pdf
	WRITE-14.pdf
	WRITE-15.pdf
	WRITE-16.pdf
	WRITE-17.pdf
	WRITE-18.pdf
	WRITE-19.pdf
	WRITE-20.pdf

