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  The age of the electric ship began anew in 
the late 1980s and early 1990s.  Iconic of 
this trend was the re-powering of Queen 
Elizabeth 2, 1986-7.  In the intervening 
years, propulsion motor and propulsion 
motor drive systems and technologies have 
advanced and become more compact and 
higher performing.  These advances have 
occurred in both naval warships and 
commercial ships.  What systems and 
technologies are taken to sea today?  What 
are the advances likely to be made in the 
future? 
 
Background 
  Most ocean-going ships, including naval 
combatants, exist to affordably transport 
either cargo or a military mission capability.  
Here, the term affordable is assessed relative 
to other means of transport.  That marine 
transport in ocean-going ships is affordable 
is borne out by established references, 
references [1] and [2], particularly Figures 2 
and 9 of reference [2].  There also exists a 
range of speeds within which virtually all 
ocean-going ships have operated and still 
operate, Figure 1 from reference [3] and [4].  
Within this range of speeds, roughly 15-30 

knots, ship propulsor speed, in revolutions-
per-minute (RPM), lie within a certain 
range, up to a couple hundred RPM.  This 
horsepower range coupled with propulsor 
RPM range make ship propulsion motor 
applications a high-torque, slow-speed 
electric motor.  Emerging ship designs 
which employ different propulsors, e.g. 
waterjets, may change in this regard.  
However, ship propulsion motors are 
predominantly high-torque, slow-speed 
motors and are likely to remain so for quite 
some time yet. 
 
Electric Propulsion Motors 
  Electric motor technologies appropriate for 
the ocean-going ship application are 
catergorized as in Figure 2.  Figure 2 is 
adapted from Figure 1 in the paper by 
Eckels and Calfo, reference [5].  State-of-
the-Art ship propulsion motors are almost 
entirely AC synchronous - wound field - 
conventionally cooled motors, or AC 
asynchronous - wound field - passive motors 
(induction motors). 
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Figure 1 

 
  Research and development has been 
conducted on permanent magnet motors, 
principally the radial and axial variety, AC 
synchronous - wound field - 
superconducting motors, DC homopolar - 
superconducting motors, and some little on 
transverse flux permanent magnet motors.  
While appealing on the grounds of more 
compactly and efficiently supplying the 
required torque at the relatively slow speeds 
of ship propulsors, these advanced motor 
technologies will require large investments 
before being available.  These advanced 
motor technologies, to be widely applied to 
ocean-going ships, must, though, become 
cost competitive, on any basis, with the 
presently employed technologies.  On 
strictly a motor-to-motor comparison, the 

advanced motor technologies may be 50 - 
75% less massive and occupy 20 - 70% less 
volume than the state-of-the-art motors.  
However, when ALL system changes 
necessary to incorporate the advanced motor 
technologies are accounted for, the total 
power systems based upon advanced motor 
technologies may be 10 - 20% less massive 
and occupy up to 10% less volume than the 
total power systems based upon state-of-the-
art motors.  These are worthwhile 
improvements at the system level.--Are they 
worth the investment? 
  Rather than focusing strictly on the 
propulsion motor technologies available, 
perhaps more attention should be paid to 
application of new technologies to the 
propulsion motor drives. 
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Figure 2 

 
Electric Propulsion Motor 
Drives 
  The high power variable speed motor drive 
is the ‘enabling technology’ for the modern 
integrated electric propulsion ship.  It is this 
piece of solid-state power conversion 
equipment that permits the variable speed 
AC motor to be powered from the same set 
of prime movers as the mission, ship service 
and hotel electric loads.  This reduction in 
prime movers, with its concomitant space, 
weight, maintenance and fuel savings, 
serves as the source of the affordability 
benefits which have lead to the increasing 
popularity of electric propulsion systems for 
ships. 
 
  Motor drive development has followed the 
power semiconductor evolution over the 
past 50 years.  In the 1960’s SCR-based 
rectifiers were used to drive mechanically-
commutated DC motors.  Later AC-AC 
cyclo-converters and Load-Commutated 

Inverters (LCI) or synchro-drives were 
developed to provide variable voltage & 
frequency to power AC synchronous motors.  
In recent years, the development of high 
voltage, high current Insulated Gate Bipolar 
Transistors (IGBT’s) with much higher 
switching speeds has facilitated a transition 
to pulse-width modulated (PWM) voltage 
sourced inverter drives.  Today’s state-of-
the-art drives are usually either two- or 
three-level PWM voltage source inverters.  
The most common front end rectifier is the 
12-pulse variety that requires a phase 
shifting transformer on a three-phase 
distribution bus. 
 
  There are two new technologies that will 
impact converter design in the coming years.  
The first has already been fielded in industry 
and is now making its way into the 
commercial marine sector.  This is the 
adoption of press-pack IGBT devices using 
deionized water cooling.  Press-pack devices 
allow for cooling both sides of the 



semiconductor device, thereby allowing 
greatly increased power density.  They also 
improve reliability by eliminating bond 
wires between the semiconductor chips 
themselves and the packaging. 
 
  The second technology that will change the 
landscape of the high power converters is 
Silicon Carbide (SiC) switching devices.  
Today, SiC diodes are available 
commercially with voltage ratings 
acceptable for use in high-power propulsion 
drives, albeit at very low current ratings.  
There are a number of researchers who have 
successfully tested SiC-based IGBT’s, 
MOSFET’s and JFET’s in the laboratory.  
However, commercialization of these 
devices and scale-up into current ratings 
needed for ship applications appears to be 
some years in the future.  The benefits of 
SiC devices have been well published: [8], 
[9], [10], [11] are just a few examples, many 

more could be cited.  The question at hand 
is, when will SiC switching devices be 
available and affordable commercially? 
 
Electric Power Distribution 
Systems 
  Today, distribution systems are 3-phase, 60 
Hz, radially oriented for the most part.  
System voltage may range from 450V to 
11,000V, depending on the system power 
requirement.  However, there is interest in 
moving to medium voltage DC distribution 
(~3-5kV) in both the commercial and 
military marine sectors.  There are size & 
cost advantages attainable with the DC 
distribution system that are attractive to both 
the commercial and military marine sectors.  
The issue of fault isolation still needs to be 
overcome but these systems should become 
reality within the next decade. 
 

Taxonomy of Power Semiconductor Devices - Figure 3 
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Conclusions 
  Dramatic improvements have occurred 
since the large AC synchronous - wound 
field - conventionally cooled motors went to 
sea on Queen Elizabeth 2, podded 
propulsion motors not even having been 
discussed.  Electric propulsion motors have 
become smaller, better and more affordable.  
Electric propulsion motor drives have 
followed a similar trend.  Subsequent 
improvements, in both naval and 
commercial ships, are almost certainly going 
to be implemented using the systems and 
technologies which offer the best Life-Cycle 
Cost benefits; thus  ocean-going ships, 
including naval combatants, will continue to 
most affordably transport either cargo or a 
military mission capability. 
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