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ABSTRACT Today’s information systems of enterprises are incredibly complex and typically composed of
a large number of participants. Running logs are a valuable source of information about the actual execution
of the distributed information systems. In this paper, a top-down process mining approach is proposed
to construct the structural model for a complex workflow from its multi-source and heterogeneous logs
collected from its distributed environment. The discovered top-level process model is represented by an
extended Petri net with abstract transitions while the obtained bottom-level process models are represented
using classical Petri nets. The Petri net refinement operation is used to integrate these models (both top-level
and bottom-level ones) to an integrated one for the whole complex workflow. A multi-modal transportation
business process is used as a typical case to display the proposed approach. By evaluating the discovered
process model in terms of different quality metrics, we argue that the proposed approach is readily applicable
for real-life business scenario.

INDEX TERMS Workflow Models, Multi-source Running Log, Distributed Process Mining, Petri Nets,
Refinement Operation

I. INTRODUCTION

Workflow Management Systems (WfMSs) support the exe-
cution of business processes [1] as they require the definition
of processes, automate the enactment of process steps and
their execution is guided by business rules and execution
logic, and finally they record the execution steps of a business
process. In particular, workflow logs [2], [3], [4], [5], [6],
[7], contain the execution information for all instances of
activities of. They depict when and which actor performed
which task, which contains very valuable information of the
actual execution of business processes (as opposed of mere-
ly specified or desired descriptions of business processes).
Thus they could be a valuable resource for business process
improvement, reorganizations, and re-engineering. Process
mining (also referred to as workflow mining) is a subfield of
data mining concerned with method(s) of distilling a struc-
tured process description from a set of real executions [3]. Its
goal is to analyze a running log to construct a workflow (or

process) model that best describes all its recorded instances.

Today’s information systems are incredibly complex and
typically composed of a large number of applications or
components. Applications typically support fragments [8] of
a process and as a result, the information required for pro-
cess mining is scattered over different enterprise information
systems. Therefore, the step to collect the event log used as
input for process mining is far from trivial [2]. Even within
a single product, events may be logged at several different
parts of the system. Consider for example an ERP (Enterprise
Resource Planning) system like SAP (System Applications
and Products) [9], there are dozens of logs relevant for
process mining and these logs are always kept by different
partners or organizations. One approach is to use a data
warehouse to extract the information from these distributed
logs [10], and then mining the process model directly from
the centralized warehouse with integrated log data. The other
way is to conduct a distributed mining technique, i.e. mining
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process models of different organizations separately, and then
integrate them to obtain the whole one.

In contrast to the existing work [11], [12], [13], we ex-
plore the distributed process mining from heterogeneous logs
which have the following characteristics: (1) The workflow
logs used for process mining are distributed on different
servers; (2) The workflow logs are recorded on different
servers with different log structures; (3) The workflow logs
are kept by their own organization or partner, and they are not
accessible to others for security; and (4) The workflow logs
of single organization can only reflect part of the business
processes of the whole workflow and its interactions with
other organizations. Therefore, this paper adopts the later
idea. Towards this issue, we have introduced a bottom-to-top
process mining approach in [2]. This work first separately
obtain the process models of each organization, and then inte-
grate these models using four coordination patterns to obtain
the integrated process model. This work assumed that those
distributed servers are the same, i.e. they are functionally
equal with each other. However, servers are not always in
the same status for some real-life applications. Consider for
example, a service out-sourcing scenario will usually involve
one main workflow describing the businesses of the whole
enterprise and several out-sourcing sub-processes provided
by other enterprises. Therefore, its corresponding running
logs are distributed over one main server and several local
servers. To cope with this problem, a top-down process
mining approach is proposed in our work.

The rest of this paper is organized as follows. Section
II presents a brief review of the related work. Section III
defines some related preliminaries. Section IV presents the
framework of the top-down process mining. Section V intro-
duces the detailed mining approaches to obtain the integrated
model. Section VI introduces a multi-modal transportation
process as a typical case to illustrate our top-down process
mining approaches. Finally, Section VII concludes the paper.

II. RELATED WORK
In this section, we mainly discuss two related research areas,
i.e. process mining and Petri net refinement.

A. PROCESS MINING
Process mining is used to discover, monitor and improve
real processes by extracting knowledge from event logs [14].
Many works that address on process mining techniques,
which take event logs to produce a process model without
using any priori information, have been published, in partic-
ular those on control-flow discovery, such as [11], [15], [12],
[13], [16], and the existing process mining approaches and
future directions are surveyed in [17].

A large number of techniques have been developed to
solve process mining tasks in last decade. As an often cited
example, α−Algorithm [11] first defined four kinds of log-
based ordering relations, based on which the ordering rela-
tions among activities are obtained. And then a workflow
net was derived from these activity dependency relations.

Following this work, some improvements [12], [13] on the
α−Algorithm were introduced to promote its performance.
To further its application for less-structured event log and
overcome the "spaghetti-like" models which contain all de-
tails without any hierarchies, Christian and Wil [18] pro-
posed the fuzzy mining approach. In this approach, activities
and their relations are clustered and abstracted according
to their importance to demonstrate different hierarchies or
levels. However, the fuzzy miner does not have any semantic
significance with respect to the domain, therefore it may
suffer the risk of aggravating some irrelevant activities to-
gether to a cluster. Towards this limitation, Bose et al. [19]
proposed hierarchical discovery approaches using a set of
interrelated plug-ins in ProM to deal with fine-grained event
log and less structures process models. Different from the
traditional fuzzy miner, the hierarchies are obtained through
the automated discovery of pattern abstractions [20]. It is
proved that the discovered patterns always have its specific
domain semantics. To be able to analyze incomplete and
noisy event logs with various guarantees, a set of inductive
process mining techniques [21] on the basis on process trees
are well-developed, which can well guarantee the discovered
model to be sound.

In our previous work, a process mining approach was
presented to obtain the structural model with timing con-
straints for a workflow from its timed running logs in [22].
By constructing its reachability graph, we found the running
schemas of a workflow with timing constraints on each
activity. In [8], we calculated the minimum execution time
of a workflow and how to fragment it to achieve a high
server usage according to the workflow model mined from
its corresponding running logs. In [2], we conducted the ap-
plication of process mining for workflow integration, where
four coordination patterns between different organizations
are defined. Process mining approaches are used to discover
the workflow model of each organization and corresponding
coordination patterns, based on which the process integration
is conducted.

B. PETRI NET REFINEMENT
Generally speaking, Petri net refinement technique is used
as a top-down approach for supporting hierarchical modeling
and properties analysis of complex systems [23]. Zuberek et.
al. [24] formalized the concepts of hierarchies of refinements
in Petri nets and demonstrated some simple applications in
traditional flexible manufacturing systems. On the work of
[24], Huang [25] performed a further study on the structural
and dynamical properties preservation of refinement in sys-
tem design. More recently, Li et. al. [26] considered two
kinds of refinement transformations, and proved that regu-
larity can be preserved automatically for a kind of pure and
ordinary connected nets. The two refinement transformations
can be used to construct large and complex net models in
Petri-net-based system design and verification.

In the area of business process management, van der
Aalst [27] first applied the refinement technique to model
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hierarchical workflow nets. In [28], refinement operation of
workflow nets was applied to model and analyze an integrat-
ed workflow. They proved that step-by-step refinement of
transitions could realize hierarchical modeling of workflow
and workflow integration. In [29], a series of concepts were
defined for formalizing the refinement of workflow net. And
then the net languages of the refined net can be obtained,
which is proved in a lower complexity. In [30], Ding et.
al. first introduced the Petri net refinement on the basis of
a type of k-well-behaved Petri net and then the property
relationships among sub-, original, and refined Petri nets
from the perspective of system synthesis and net language
preservation via stepwise refinement was studied in depth.

C. SUMMARY OF THE RELATED WORK
Based on the aforementioned summaries, we conclude that
existing work on process mining [11], [12], [13] suffers from
the following two limitations: (1) existing mining techniques
only suit a centralized mining demand, i.e. they only take
in centralized log set; and (2) only homogeneous-structured
running logs are used to conduct the mining process. As
the inner data of one organization is not accessible to other
organizations for security sake, the former approach is not
applicable in real-life use. Moreover, the running logs stored
by different organizations are usually heterogeneous, which
is not easy to integrate them for centralized mining. In con-
trast to the existing work we explore the distributed process
mining from a set of multi-source heterogeneous running
logs. Different from traditional idea that only takes the Petri
net refinement operation [23], [24], [25], [26] as a means
to model and analyse structural and dynamic properties of
complex systems, our scope is to use it as a technique to
integrate the top-level process model and its corresponding
bottom-level ones.

The main contributions of our work include: (1) The top-
down process mining architecture is first presented to handle
process mining in a distributed case; (2) The top-level process
mining algorithm is proposed whose result is represented
as an extension of Petri nets; (3) The bottom-level process
mining algorithm is proposed and its result is formalized
with traditional Petri net model; and (4) Petri net refinement
operation is used to refine the abstract transitions in the top-
level process model with their corresponding bottom-level
models to obtain the integrated process model.

III. PRELIMINARY
As Petri nets [31] are capable of combining the graphical
representation of workflows and a formal foundation, so
they have been widely used to model, analyze and verify
workflows [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42], [43], [44]. Some of the essential terminology
and notations regarding the Petri net used in this paper are
presented as follows.
N = (P, T ;F ) is named as a net if (1) P∩T = φ, P∪T 6=

φ; (2) F ⊆ (P×T )∪(T×P ); and (3)Dom(F )∪Cod(F ) =
P ∪T . ∀x ∈ P ∪T , the set •x = {y|y ∈ P ∪T and (y, x) ∈
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pm1
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t1 t2
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pm4pm3

pm2

FIGURE 1. An Example Top-level Process Model

F} is the preset of x and x• = {y|y ∈ P∪T and (x, y) ∈ F}
is the postset of x. A Petri net is a 4-tuple Σ = (P, T ;F,M0),
where N = (P, T ;F ) is a net, and M0 : P → Z+ (Z+ is the
non-negative integer set) is the initial marking of Σ.
Definition 1: (Top-level Process Model) A Petri net
ΣTPM = (P, T ;F,M0) is a top-level process model for a
workflow if (1) P = PL ∪PM where PL represents the logic
places and the PM represents the message places exchanged
between different organizations or partners; (2) T = TA∪TP ,
TA∩TP = ∅, where TA represents the activities of a process,
and TP represents the abstract procedures in ΣTPM ; (3)
ps ∈ PL is the start place of ΣTPM where •ps = ∅, and
pe ∈ PL is the end place of ΣTPM where p•e = ∅; and (4)
∀p ∈ P , M0(p) = 1 if p = pe, M0(p) = 0 otherwise.

The top-level process model ΣTPM is a kind of Petri nets
extended with abstract transitions, i.e. there are two kinds of
transitions, one kind to represent the normal activities, and
the other to represent the abstract procedures. To differ from
the normal transitions, an abstract transition is represented
by a double rectangle. For example, a top-level Petri net is
shown in Fig. 1, in which T1 is an abstract transition.

An abstract transition in the top-level model is just like
a black-box, and its semantics and contents are not clear
for this level, so the structure of each abstract transition
should be refined. The operation to refine the content of an
abstract transition is called Petri net refinement [23], [24],
[25], [26]. In this paper, an abstract transition will be refined
by a bottom-level process model.
Definition 2: (Bottom-level Process Model) A Petri net
ΣBPM = (P, T ;F,M0) is a bottom-level process model
for a workflow if (1) P = PL ∪ PM where PL is the
logic places and the PM is the message places exchanged
between different organizations or partners; (2) T represents
the activities of a process; and (3) For any p ∈ P ,M0(p) = 0.

A bottom-level model ΣBPM is different from a top-
level model as it does not contain any abstract transition.
Therefore, its firing rule is same as that of a standard Petri
net, i.e., ∀t ∈ T , ∀M ∈ R(M0), t is enabled under M iff
∀p ∈• t, M(p) ≥ 1.
Definition 3: (Refinement Operation) Let ΣTPM =
(P, T ;F,M0) be a top-level process model and ΣBPM =
(P1, T1;F1,M01) be a bottom-level process model. Given
t (t ∈ T ) is an abstract transition, t can be replaced by
ΣBPM = (P1, T1;F1,M01) if •t = {p|p ∈ P1 and

•p = ∅}
and t• = {p|p ∈ P1 and p

• = ∅}. The top-level model
after refinement is Σ

′

TPM = (P
′
, T

′
;F

′
,M

′

0), where (1)
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P
′

= P ∪ P1; (2) T
′

= (T − {t}) ∪ T1; (3) F
′

=
((P

′×T ′
)∪ (T

′×P ′
))∩ (F ∪F1); and (4) For any p

′ ∈ P ′
,

M
′

0(p
′
) = M0(p

′
) if p

′ ∈ P , and M
′

0(p
′
) = M01(p

′
)

otherwise.
According to Definition 3, the refinement operation aims

to refine an abstract transition by a bottom-level model. The
structure of a bottom-level model will replace the abstract
transition and other parts in the original top-level model
keep invariant. For example, a bottom-level process model is
shown in Fig. 2, and we use this bottom-level process model
to refine the abstract transition T1. The top-level model after
refinement is shown in Fig. 3. Obviously, the top-level model
becomes a standard one after refinement.

pm1

pm4pm3

pm2
p1.1

t1.1 t1.2

FIGURE 2. An Example Bottom-level Process Model
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FIGURE 3. An Example Model after Refinement

Definition 4: (Input/Output Place and Read/Write Place)
Let ΣTPM = (P, T ;F,M0) be a top-level process mod-
el, t ∈ T be an abstract transition, and a bottom-
level model Σ1 = (P1, T1;F1,M01) be the refinemen-
t model of t. We have (1) The set {p|p ∈ ∪•(t′),
t
′
is a start transition of Σ1}, is the input places

of t, denoted by ◦t; (2) The set {p|p ∈ ∪(t
′
)•,

t
′
is an end transition of Σ1}, is the output places of t,

denoted by t◦; (3) The set •t−◦ t, denoted by �t, is named as
the read places of t; and (4) The set t• − t◦, denoted by t�, is
named as the write places of t.

Table 1 compares these six notations for each abstract
transition. To differ the read (write) places of an abstract
transition from its input (output) places, the arcs between
the read (write) places and the abstract transition are drawn
in broken lines. For example, in Fig. 1, T1 is an abstract
transition, and pm3 (pm4) is the input (output) place and pm2

(pm1) is the read (write) places of T1. Both arcs from T1 to
pm1 and that from pm2 to T1 are drawn in broken lines.

The firing rules of the top-level process model are defined
as follows: (1) ∀t ∈ TA, ∀M ∈ R(M0), t is enabled under
M iff ∀p ∈• t, M(p) ≥ 1; and (2) ∀t ∈ TP , ∀M ∈ R(M0),
t is enabled under M iff ∀p ∈◦ t, M(p) ≥ 1. These rules are
different from that of a standard Petri net. For example, in
Fig. 1, T1 can be fired if pm3 has at least one token even

TABLE 1. Symbols and Meanings

Symbol Meaning
•t the preset places of t
t• the postset places of t
◦t the input place set of t
t◦ the output place set of t
�t the read place set of t
t� the write place set of t

if pm2 has no any token. Other properties about the top-
level model such as reachability, boundedness, and etc. can
be defined same as that of a standard one.

IV. FRAMEWORK FOR TOP-DOWN PROCESS MINING
In this section, the framework for top-down process mining is
first proposed, and then formal definitions of the multi-source
running logs are defined.

A. FRAMEWORK FOR TOP-DOWN PROCESS MINING

Workflow Application Systems

Running Logs

Top-level Process Model

Process Model after Refinement

Running Logs
Running Logs

Process mining Process mining

Running Logs Running Logs

Refinement Operation

Process mining Process mining

Bottom-level Process Models

FIGURE 4. Framework for Top-down Process Mining

A framework for top-down process mining based on Petri
net refinement operation is illustrated in Fig. 4, which in-
cludes four main steps:

Recording Running Logs. While a workflow system runs
on several distributed servers, each server can record the run-
ning logs for each activity and store them into a log database.
Such running logs collected from multi-source servers are
used for our top-down process mining. An example of run-
ning logs will be presented in the following subsection.

Process Mining from Top-level Workflow Running Logs.
Using the collected running logs, our top-level process min-
ing algorithm aims to discover the top-level process model of
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FIGURE 5. an Introduction Example of the Running Logs

the workflow system. The mining results can be represented
in the formalized form of Petri nets extended with abstract
transitions. To protect security, the detailed contents of the
abstract transition cannot be obtained in this step.

Process Mining from Bottom-level Workflow Running
Logs. Using the collected running logs, our bottom-level
process mining algorithm aims to discover the detailed model
for each abstract procedure. The obtained bottom-level model
is shown in the standard form of Petri nets without any
abstract transitions.

Model Integration based on Petri Net Refinement Op-
eration. After obtaining both the top-level process model
and the bottom-level process models from the distributed
running logs, Petri net refinement operation is applied to
refine the abstract transitions with its corresponding bottom-
level models to obtain the integrated model of the whole
workflow system.

B. A MULTI-SOURCE RUNNING LOG EXAMPLE
During the execution of workflow systems, the information
of each activity and abstract procedure is recorded. For
example, Fig. 5 presents a screenshot segment of the running
logs in the XES format, which is a standard format developed
by the IEEE Task Force [45] for logging events. Its source
event log data is available at [46]. The following explanations
are given for the running logs.

(1) There are two running logs in the segment which
records the information about one activity A3 and one ab-
stract procedure PA1 (recorded as T1 in the event log); (2)
The running log of one activity records the activity ID, case
ID, operator, the start time, the end time, input messages and
output messages of this activity. For example, the operator

of A3 is the Consigner, the start time of activity A3 is
[09:13 April 04], and the end time is [09:16 April 04]. The
input message record of A3 is empty, which means that
the execution of A3 does not need any message from other
partners, and its output message is pm1; and (3) There are
some differences between the running log of one activity
and that of an abstract procedure. Obviously, the log of an
abstract procedure also records the procedure ID, case ID,
start time, and end time, input messages and output messages.
In addition, the messages read and writen during its execution
are also recorded. For example, the messages read of PA1

are pm3, pm6 and pm7, and its write messages are pm2, pm5

and pm8, which means that during its execution PA1 receives
messages pm3, pm6 and pm7 from other partners and sends
messages pm2, pm5 and pm8 to others.

C. FORMAL DEFINITIONS OF THE MULTI-SOURCE
RUNNING LOGS
In this sub-section, we present the formal definitions of the
multi-source running logs.
Definition 5: (Running Log of an Activity) A running log
of an activity is a 7-tuple, ARLog=( Ai, ts, te, Operator,
CaseID, InputMessage, OutputMessage), where (1) Ai

is the name (ID) of the activity; (2) ts is the start running
time of activity Ai; (3) te is the end running time of ac-
tivity Ai, and te ≥ ts; (4) Operator is the operator ID
of Ai; (5) CaseID indicates the case which Ai runs in;
(6) InputMessage is the input message set to execute Ai;
and (7) OutputMessage is the output message set when
finishing Ai.

For example, the formalized form of the first log of activity
A3 in Fig. 5 as (A3, [09:13 April 04], [09:16 April 04],
Consigner, Case1122, ∅, {pm1}). In the following discus-
sions, we use Ai.ts and Ai.te to represent the start and end
time of activityAi respectively, i.e.,A3.ts =[09:13 April 04]
and A3.te =[09:16 April 04].
Definition 6: (Running Log of an Abstract Pro-
cedure) A running log of an abstract procedure is
a 9-tuple, PRLog=(PAi, ts, te, Operator, CaseID,
InputMessage, OutputMessage, ReadMessage,
WriteMessage), where (1) PAi is the name (ID) of an
abstract procedure; (2) ts is the start running time of the
abstract procedure PAi; (3) te is the end running time of the
abstract procedure PAi, and te ≥ ts; (4) Operator is the
operator ID of PAi; (5) CaseID indicates the case which
PAi runs in; (6) InputMessage is the input message set to
execute PAi; (7) OutputMessage is the output message set
when finishing PAi; (8) ReadMessage is the read message
set during the execution of PAi; and (9) WriteMessage is
the write message set during the execution of PAi.

For example, the formalized form of the abstract pro-
cedure PA1 in Fig. 5 is (PA1, [09:18 April 04], [10:34
April 04], Consigner, Case1122, {pm1}, {pm3, pm6, pm7},
{pm2, pm5, pm8}, {pm9}).

In the following, both the activity and abstract procedure
are called by a joint name as the assignment, which is
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formalized as ASLog=(ASi, ts, te, Operator, CaseID,
RequiredMessage, SentMessage). It is worth noting
that (1) for an activity, the RequiredMessage and the
SentMessage are same as its InputMessage and Out-
putMessage; and (2) for an abstract procedure, we have
RequiredMessage = InputMessage ∪ ReadMessage
and SentMessage = OutputMessage∪WriteMessage.
For the rest of this paper, we use the term assignment syn-
onymously with activity and abstract procedure.
Definition 7: (Case) A case of a set of running logs of
assignments, i.e., RCase = {ASLog|} ASLog is a running
log of an assignment.
Definition 8: (Logs) A log is a set of cases, i.e.,RLogs =
{RCase|RCase is a running case}.

Taking the running logs of logtop.XES in [46] as an exam-
ple, caseRCase1122 = {A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10, A11, A12, PA1, PA2, PA3} and the running logs
RLogs = {Case1122, Case1123, Case1124, Case1125}.
Definition 9: (Activity Set) Let RLogs be the run-
ning logs of a workflow system, (1) ∀RCasei∈
RLogs, ActivitySet(RCasei)={Aj |∀Aj ∈ RCasei,
Aj = (Aj , ts, te, Operator, CaseID, InputMessage,
OutputMessage)} is the activity set of RCasei; and (2)
ActivitySet(RLogs) =

⋃
RCasei∈RLogs

ActivitySet(RCasei)

is the activity set of RLogs.
Definition 10: (Abstract Procedure Set) Let RLogs
be the running logs of a workflow system, we have
(1) ∀RCasei ∈ RLogs,ProcedureSet(RCasei) =
{PAj |∀PAj ∈ RCasei, PAj=(PAj , ts, te,Operator,
CaseID, InputMessage,OutputMessage,ReadMessage,
WriteMessage)} is the abstract procedure set of RCasei;
and (2) ProcedureSet(RLogs)
=

⋃
RCasei∈RLogs

ProcedureSet(RCasei) is the abstract

procedure set of RLogs.
Following Definitions 9-10, we can also define

AssignmentSet(RCasei) as the assignment set ofRCasei
and AssignmentSet(RLogs) of RLogs in the same way.
Obviously, we have: (1) AssignmentSet(RCasei) =
ActivitySet(RCasei) ∪ ProcedureSet(RCasei) where
∀RCasei ∈ RLogs, 1 ≤ i ≤ |RLogs|; and (2)
AssignmentSet(RLogs) = ActivitySet(RLogs) ∪
ProcedureSet(RLogs). Considering for example, we have
AssignmentSet(RCase1122) = {A1, A2, A3, A4, A5, A6,
A7, A8, A9, A10, A11, A12, PA1, PA2, PA3},ActivitySet(RCase1)
= {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12} and
ProcedureSet(RCase1122) = {PA1, PA2, PA3}.
Definition 11: (Pre-assignments and Post-assignments)
Let RLogs be the running logs of a workflow system,
∀ASi, ASj ∈ AssignmentSet(RLogs), ASj is one of
the post-assignments of ASi (or ASi is one of the pre-
assignments of ASj), denoted by ASi � ASj , if ASi.te ≤
ASj .ts holds in all cases of RLogs.
Definition 12: (Direct Pre-assignments and Direct Post-
assignments) Let RLogs be the running logs of a work-
flow system, ∀ASi, ASj ∈ AssignmentSet(RLogs), ASj

is one of the direct post-assignments of ASi (or ASi is
one of the direct pre-assignments of ASj), denoted by
ASi ≺ ASj , if ASi � ASj and there is no assignment
ASk ∈ AssignmentSet(RLogs) such thatASi � ASk and
ASk � ASj .

The direct pre-assignments (or post-assignments) set of
ASi is denoted by ASi.P reSet (or ASi.PostSet). In the
Case1122 in [46], the post-assignments of A3 are A4 and
PA1, and A4 is the direct post-activity of A3, denoted as
A3.PostSet = {A4}. The pre-assignments of PA1 are
A3 and A4, and A4 is its direct post-activity, denoted as
PA1.P reSet = {A4}.

In this paper, we assume that the multi-source running logs
collected from those distributed servers are complete, i.e., the
logs contain sufficient information to derive the model.

V. TOP-DOWN PROCESS MINING FROM MULTI-SOURCE
RUNNING LOGS
In this section, top-down process mining approaches are first
presented and then Petri net refinement operation is used to
obtain the integrated model.

A. TOP-LEVEL PROCESS MINING

It is known that α−algorithm [11] is a classical algorithm
for process mining. Unfortunately, α−algorithm cannot be
applied directly to mine the process model for a top-level
process model with abstract procedures and messages. Here
we first present our mining approach to discover the top-
level process model. Our approach is mainly composed of
two functional components presented in Algorithms 1-2.
Algorithm 1 obtains assignment dependency relations, and
Algorithm 2 takes these relations as inputs to construct the
final top-level process model. Before rendering our mining
algorithms, we first define a function PostSet(ASi, RCase)
to calculate the direct post-assignments of assignmentASi in
a specific running case RCase.
Function 1: To obtain the ASi·PostSet of ASi in running case
RCase.
Begin:
1: For each ASi ∈ AssignmentSet(RCase) Do

ASi·PostSet← ∅;
For each ASj ∈ AssignmentSet(RCase) Do

If ASi·te < ASj·ts then
ASi·PostSet← ASi·PostSet ∪ {ASj};

End if
End do

End do
2: For each ASj ∈ ASi·PostSet Do

For each ASk ∈ ASj·PostSet Do
ASi·PostSet← ASi·PostSet− {ASk};

End do
End do

3: return ASi·PostSet.
End

The complexity of Function 1 mainly lies in its first step
whose complexity is O(|RCase|2). Therefore, Function 1
has its O(|RCase|2) complexity.
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TABLE 3. Pre-Set and Post-Set of Each Assignment in the Top-level Example
Process Model

Assign. Pre-Set Post-Set RequiredM. SentM.
t1 ∅ {t2} ∅ ∅
t2 {t1} {t3} ∅ ∅
t3 {t2} {T1} ∅ {pm3}
T1 {t3} {t5} {pm2, pm3} {pm1, pm4}
t4 {t2} {t5} {pm1} {pm2}
t5 {t4, T1} ∅ {pm4} ∅

Table 2 shows part of an example running logs of the top-
level process model that involves two running cases, Case1
andCase2 . Based on the running log, required messages and
sent messages of each assignment can be obtained directly.
Next, we propose Algorithm 1 to obtain the dependency
relations between different assignments.

Algorithm 1 To obtain the ASi·PreSet and ASi·PostSet
of each assignment ASi in the running logs.
Input: RLogs
Output: (ASi, ASi·PreSet, ASi·PostSet,

ASi·ReceivedMessage, ASi·SentMessage).
1: For each ASi ∈ AssignmentSet(RCase) Do

(1.1)ASi·PreSet← ∅;
(1.2)ASi·PostSet← ∅;

End do
2: For each ASi ∈ AssignmentSet(RCase) Do

ASi·PostSet ← ASi·PostSet ∪⋂
1≤j≤|RLog|

PostSet(ASi, RCasej);

3: For each ASi ∈ AssignmentSet(RCase) Do
For each ASj ∈ AssignmentSet(RCase) Do

ASi·PreSet ← ASi·PreSet ∪ {ASj |ASi ∈
ASj·PostSet};

End do
End do

4: return (ASi, ASi·PreSet, ASi·PostSet,
ASi·ReceivedMessage, ASi·SentMessage).

Theorem 1: The complexity of Algorithm 1 is O(|Rlog| ∗
|RCase|3), where |Rlog| is the number of running cases in
the running logs and |RCase| is the number of assignments
in a running case.
Proof. The complexity of the function PostSet is
O(|RCase|2), thereby complexity of Step 2 is O(|Rlog| ∗
|RCase|3). Because the complexity of Algorithm 1 is mainly
determined by its second step, the complexity of Algorithm
1 is O(|Rlog| ∗ |RCase|3).

Take the example running logs in Table 2 as an ex-
ample. By executing Algorithm 1, the Pre-Set, Post-set,
ReceivedMessage and SentMessage are shown in Table 3.
Based on the assignment dependency relations in Table 3, we
present Algorithm 2 to construct the top-level process model.
Theorem 2: The complexity of Algorithm 2 is O(|RCase|2)
where|RCase| is the number of assignments in a running
case.
Proof. The complexity of Algorithm 2 is mainly determined
by Step 3 whose complexity is O(|RCase|2). Therefore,

Algorithm 2 To obtain the top-level process model ΣTPM .
Input: {(ASi, ASi·PreSet, ASi·PostSet, ASi·ReceivedMessage,

ASi·SentMessage)|1 ≤ i ≤ |RCase|, RCase ∈ RLog}.
Output: ΣTPM = (P, T ;F,M0).

1: P ← ∅,PL ← ∅,PM ← ∅, T ← ∅, TA ← ∅,TPA ← ∅,
F ← ∅, and M0 ← ∅.

2: For each ASi ∈ AssignmentSet(RCase) Do
If ASi ∈ ActivitySet(RCase) then

TA ← TA ∪ {ASi};
else if ASi ∈ ProcedureSet(RCase)

TPA ← TPA ∪ {ASi};
End if

End do
T ← TA ∪ TPA;

3: For each ASi, ASj ∈ T Do
If ASj ∈ ASi·PostSet then

(3.1) PL ← PL ∪ {pij};
(3.2) F ← F ∪ {(ASi, pij), (pij , ASj)};

End if
End do

4: For each ASi ∈ T Do
If ASi·ReceivedMessage 6= ∅ then

For each mi ∈ ASi·ReceivedMessage Do
(4.1) PM ← PM ∪ {pmi};
(4.2) F ← F ∪ {(pmi, ASi)};

End do
End if

End do
5: For each ASi ∈ T Do

If ASi·SentMessage 6= ∅ then
For each mi ∈ ASi·SentMessage Do

(5.1) PM ← PM ∪ {pmi};
(5.2) F ← F ∪ {(ASi, pmi)};

End do
End if

End do
6: For each ASi ∈ T Do

If ASi·PreSet == ∅ then
(6.1) PL ← PL ∪ {ps};
(6.2) F ← F ∪ {(ps, ASi)};

Else if ASi·PreSet == ∅ then
(6.3) PL ← PL ∪ {pe};
(6.4) F ← F ∪ {(ASi, pe)};

End if
End do

7: For each p ∈ P Do
If p == ps then

M0(p)← 1;
Else

M0(p)← 0;
End if

End do
8: return ΣTPM = (P, T ;F,M0).
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TABLE 2. Part of the Example Running Logs of the Top-level Process Model

Case Assignment Operator Start Time End Time RequiredMessage SentMessage
1 t1 Operator1 19 : 01 May 04 19 : 03 May 04 ∅ ∅
1 t2 Operator1 19 : 08 May 04 19 : 12 May 04 ∅ ∅
1 t3 Operator1 19 : 13 May 04 19 : 16 May 04 ∅ {pm3}
1 T1 Operator2 19 : 17 May 04 19 : 30 May 04 {pm2, pm3} {pm1, pm4}
1 t4 Operator1 19 : 20 May 04 19 : 25 May 04 {pm1} {pm2}
1 t5 Operator1 19 : 30 May 04 19 : 50 May 04 {pm4} ∅
2 t1 Operator1 19 : 31 May 04 19 : 33 May 04 ∅ ∅
2 t2 Operator1 19 : 38 May 04 19 : 42 May 04 ∅ ∅
2 t3 Operator1 19 : 43 May 04 19 : 46 May 04 ∅ {pm3}
2 T1 Operator2 19 : 47 May 04 20 : 20 May 04 {pm2, pm3} {pm1, pm4}
2 t4 Operator1 20 : 00 May 04 20 : 05 May 04 {pm1} {pm2}
2 t5 Operator1 20 : 40 May 04 20 : 50 May 04 {pm4} ∅

Algorithm 2 has a O(|RCase|2) complexity where |RCase|
is the number of assignments.

As the input of Algorithm 2 contains both abstract pro-
cedures and normal activities, thereby its mining result is a
Petri net extended with abstract transitions, i.e. a top-level
process model as defined in Definition 1. Take the assignment
dependency relations in Table 3 as an example. By executing
Algorithm 2, the model mined for the top-level example
process is shown in Fig. 1, satisfying: (1) there are 5 activities
and 1 abstract procedure that are represented by transition
ti (i = 1, 2, · · · , 5) and abstract transition T1 respectively;
and (2) the detailed process of the abstract procedure cannot
be obtained at this stage. Therefore, we need to mine its
corresponding bottom-level models from its running logs to
refine it.

B. BOTTOM-LEVEL PROCESS MINING

To refine abstract procedures in a top-level process model,
bottom-level process models are needed. Then Algorithm 3
is proposed to mine the bottom-level model from its corre-
sponding running logs.

Theorem 3: The complexity of Algorithm 3 is O(|RCase|2)
where |RCase| is the number of activities in a running case.
Proof. The complexity of Algorithm 3 is mainly determined
by Step 2 whose complexity is O(|RCase|2). Thus, the
complexity of Algorithm 3 is O(|RCase|2) where |RCase|
is the number of activities.

As the input of Algorithm 3 contains only normal activi-
ties, thereby its mining result is a traditional Petri net, i.e. a
bottom-level process model as defined in Definition 2. Take
the running logs in Table 4 as an example. By executing
Algorithm 1, the Pre-Set, Post-set, ReceivedMessage and
SentMessage of each assignment are shown in Table 5. Then,
by executing Algorithm 3, we can obtain the bottom-level
process model as shown in Fig. 2. Then, how to integrate
the bottom-level process models with the top-level process
model will be discussed in the following.

Algorithm 3 To obtain the bottom-level process model
ΣBPM .
Input: {(ASi, ASi·PreSet, ASi·PostSet, ASi·ReceivedMessage,

ASi·SentMessage)|1 ≤ i ≤ |RCase|, RCase ∈ RLog}.
Output: ΣBPM = (P, T ;F,M0).

1: P ← ∅,PL ← ∅,PM ← ∅,T ←
AssignmentSet(RCase),F ← ∅,and M0 ← ∅.

2: For each ASi, ASj ∈ T Do
If ASj ∈ ASi·PostSet then

(2.1) PL ← PL ∪ {pij};
(2.2) F ← F ∪ {(ASi, pij), (pij , ASj)};

End if
End do

3: For each ASi ∈ T Do
If ASi·ReceivedMessage 6= ∅ then

For each mi ∈ ASi·ReceivedMessage Do
(3.1) PM ← PM ∪ {pmi};
(3.2) F ← F ∪ {(pmi, ASi)};

End do
End if

End do
4: For each ASi ∈ T Do

If ASi·SentMessage 6= ∅ then
For each mi ∈ ASi·SentMessage Do

(4.1) PM ← PM ∪ {pmi};
(4.2) F ← F ∪ {(ASi, pmi)};

End do
End if

End do
5: P ← PL ∪ PM .
6: return ΣBPM = (P, T ;F,M0).

TABLE 5. Pre-Set and Post-Set of Each Assignment in the Bottom-level
Example Process Model

Assign. Pre-Set Post-Set RequiredM. SentM.
t1 ∅ {t2} {pm3} {pm1}
t2 {t1} ∅ {pm2} {pm4}
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TABLE 4. Part of the Running Logs of the Example Abstract Procedure

Case Assignment Operator Start Time End Time RequiredMessage SentMessage
1 t1.1 Operator2 19 : 18 May04 19 : 26 May04 {pm3} {pm1}
1 t1.2 Operator2 19 : 27 May04 19 : 30 May04 {pm2} {pm4}
2 t1.1 Operator2 19 : 48 May04 19 : 56 May04 {pm3} {pm1}
2 t1.2 Operator2 19 : 12 May04 19 : 18 May04 {pm2} {pm4}

C. PETRI NET REFINEMENT FOR PROCESS
INTEGRATION
Process mining technology is used to separately discover the
top-level and bottom-level models. Then how to integrate
them to obtain the integrated model is our main concern. Petri
net refinement operation as defined in Definition 3 is used.
With the refinement operation, one abstract transition in the
top-level process model can be refined by its corresponding
bottom-level model. Next, we present Algorithm 4 to conduct
the refinement operation.

Algorithm 4 To refine a top-level process model ΣTPM

using a set of bottom-level process models ΣBPMi.
Input: ΣTPM = (P, T ;F,M0) and Θ = {ΣBPMi =

(Pi, Ti;Fi,M0i)|1 ≤ i ≤ |TP |}.
Output: Σ

′
TPM = (P

′
, T

′
;F

′
,M

′
0).

1: P
′
← P ,T

′
← T ,F

′
← F ,and M

′
0 ←M0.

2: For each ΣBPMi ∈ Θ Do
(2.1) In(ΣBPMi)← ∅; /*In(ΣBPMi) is the input place set

of ΣBPMi*/
(2.2) Out(ΣBPMi)← ∅; /*Out(ΣBPMi) is the output place

set of ΣBPMi*/
For each pi ∈ P Do

If •pi == ∅ then
In(ΣBPMi)← In(ΣBPMi) ∪ pi;

Else if p•i == ∅ then
Out(ΣBPMi)← Out(ΣBPMi) ∪ pi;

End if
End do

3: For each t ∈ TPA Do
For each ΣBPMi ∈ Θ Do

If (•t == In(ΣBPMi)) ∧ (t• == Out(ΣBPMi)) then
(3.1) P

′
← P

′
∪ Pi;

(3.2) T
′
← (T

′
− t) ∪ Ti;

(3.3) F
′
← (F

′
∪ Fi) ∩ ((P

′
× T

′
) ∪ (T

′
× P

′
));

End if
End do

End do
4: return Σ

′
TPM = (P

′
, T

′
;F

′
,M

′
0).

Theorem 4: The complexity of Algorithm 4 is O(|TPA|2)
where|TPA| is the number of abstract procedures in a running
case.
Proof. The complexity of Algorithm 4 is mainly determined
by Step 3 whose complexity is O(|TPA|2). Therefore, the
complexity of Algorithm 4 is O(|TPA|2) where |TPA| is the
number of abstract procedures.

As all abstract transitions in the top-level process model is
refined with its corresponding bottom-level process models,
therefore no abstract transition is involved in the refined
process model, i.e. it is a traditional Petri net. By executing

TABLE 6. Dataset and Objectives of Experiments

Experiment Dataset Objective
1 logtop.xml in [46] To verify Algorithms 1-2
2 logbottom1-3.xml in [46] To verify Algorithm 3
3 ————————- To verify Algorithm 4

Algorithm 4, the integrated model is shown in Fig. 3.

VI. RUNNING CASE AND EXPERIMENTAL
VERIFICATION
In this section, a multi-modal transportation business process
is used as a typical case to illustrate our top-down process
mining approaches.

A. A MULTI-MODAL TRANSPORTATION BUSINESS
PROCESS CASE
For security and privacy sake, the inner data of a partner will
be stored in its own database and will not be accessed by
others. To satisfy the requirements of security, a two-level
system architecture is required.

To realize this two-level architecture, four distributed
database servers will be used to record the system run-
ning logs. (1) The top-level architecture is an abstraction
of the whole multi-modal transportation business process.
The running logs of this level will be stored in a single
database server; (2) The transportation preparation procedure
consists of transportation planning, goods preparation with
the sender and the payment processes with the carrier and
the shipper. The running logs of this procedure will be stored
in a database server owned by the consigner; (3) The carrier
transportation procedure includes activities such as booking
acceptance, goods loading, issue waybill and payment. The
running logs of this procedure will be stored into the database
server kept by the carrier; and (4) The shipper transportation
procedure includes activities such as booking acceptance,
shipper inventory, terminal receipt, payment, delivery, goods
arrival and the interaction with the wharfinger. The running
logs of this procedure will be store in a database server within
the shipper.

B. EXPERIMENTAL VERIFICATION
In this subsection, the mining methods will be validated using
the following experiments whose dataset [46] and objectives
are concluded in Table 6.

Experiment 1. Table 7 shows part of the running logs of the
top-level architecture that involves one running case, Case1.
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FIGURE 6. Top-level Model of the Multi-modal Transportation Business Process

TABLE 9. Meaning of Each Message

Message Meaning
pm1 transportation contract
pm2 packing notice
pm3 goods preparation notice
pm4 booking request to shipper
pm5 booking request to carrier
pm6 acceptance notice of shipper
pm7 acceptance notice of carrier
pm8 transportation notice to carrier
pm9 payment notice of carrier
pm10 bill form
pm11 payment verification to carrier
pm12 goods arrival notice to shipper
pm13 payment notice of shipper
pm14 payment verification to shipper
pm15 goods arrival notice to buyer

According to Table 7, required messages and sent messages
of each assignment can be obtained directly. Taking these
running logs as input and execute Algorithm 1, the Pre-
Set, Post-set, ReceivedMessage and SentMessage of each
assignment are shown in Table 8. By executing Algorithm 2
which takes Table 8 as input, the top-level process model of
multi-modal transportation business process is shown in Fig.
6, and the meanings of message places are given in Table 9.

The result of our top-level mining is a top-level pro-
cess model with abstract transitions that are represented by
transition Ai (i = 1, 2, · · · , 12) and abstract transitions Tj
(j = 1, 2, 3). The detailed process about these three abstract
procedures cannot be obtained at this stage. Therefore, we
need to conduct Experiment 2, i.e. mine the bottom-level
models of these three abstract procedures from their respec-
tive running logs.

Experiment 2. Part of the running logs of the transportation
preparation procedure, the carrier transportation procedure
and the shipper transportation procedure are shown in Tables
10-12. First, we consider Table 10, the Pre-Set, Post-set,
ReceivedMessage and SentMessage of each assignment are
shown in Table 13 with Algorithm 1. Then, by executing
Algorithm 3 we can obtain the bottom-level process model
for the transportation preparation procedure (T1) as shown
in Fig. 7 where eight activities represented as A1.i (i =

A1.1 p1.1
A1.2

p1.2 p1.3

A1.3
A1.4

p1.4 A1.5 p1.5 A1.6 p1.6 A1.7 p1.7 A1.8pm1

pm2 pm3

pm4

pm5

pm6

pm7

pm8

pm9

FIGURE 7. Process Model of the Transportation Preparation Procedure

A2.1 A2.2 A2.3 A2.4

p2.1 p2.2 p2.3

pm5

pm7 pm8 pm10 pm11

pm12

FIGURE 8. Process Model of the Carrier Transportation Procedure

1, 2, · · · , 8) are involved.
Next, we consider the running logs in Table 11. By exe-

cuting Algorithm 1, the dependency relations between each
assignment are shown in Table 14. And then taking the
these dependency relations as inputs to run Algorithm 3, we
can obtain the bottom-level process model for the carrier
transportation procedure (T2) as shown in Fig. 8 where four
activities represented as A2.i (i = 1, 2, 3, 4) are involved.

Finally, we consider the shipper transportation procedure
whose running log segment is shown in Table 12. By exe-
cuting Algorithm 1, the dependency relations between each
assignment are shown in Table 15. And then taking the
these dependency relations as inputs to run Algorithm 3, we
can obtain the bottom-level process model for the shipper
transportation procedure (T3) as shown in Fig. 9 where nine
activities represented as A3.i (i = 1, 2, · · · , 9) are involved.

Experiment 3. The bottom-level process models in Figs. 7-
9 are correspond with the three abstract procedures in Fig. 6.
Then the abstract transitions T1, T2 and T2 can be refined by
the models in Figs. 7-9 using Algorithm 4. The refined multi-
modal transportation business process model is shown in Fig.
10. Because no abstract transition is involved in the refined
model, we argue that the integration result of Algorithm 4 is
a traditional Petri net.

C. EXPERIMENTAL RESULT ANALYSIS
According to integrated model shown in Fig. 10, the typical
scenario of this multi-modal transportation business process
is described as follows/ There are seven roles in the process

A3.1

A3.2 A3.3

A3.4

A3.5

A3.6

A3.7
A3.8 A3.9p3.1

p3.2

p3.3
p3.4

p3.5

p3.6

p3.7

p3.8 p3.9pm4

pm6 pm12 pm13 pm14

pm15

FIGURE 9. Process Model of the Shipper Transportation Procedure
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TABLE 7. Part of the Running Logs of the Top-level Process Model

Case Assignment Operator Start Time End Time RequiredMessage SentMessage
1122 A1 Sender 09 : 01 April04 09 : 03April04 ∅ ∅
1122 A2 Consigner 09 : 08 April04 09 : 12 April04 ∅ ∅
1122 A3 Consigner 09 : 13 April04 09 : 16 April04 ∅ {pm1}
1122 A4 Sender 09 : 17 April04 09 : 20 April04 ∅ ∅
1122 T1 Consigner 09 : 18 April04 10 : 34 April04 {pm1, pm3, pm6, pm7} {pm2, pm4, pm5, pm8, pm9}
1122 T2 Carrier 09 : 22 April04 10 : 00 April06 {pm5, pm8, pm11} {pm7, pm10, pm12}
1122 T3 Shipper 09 : 24 April04 10 : 08 April10 {pm4, pm12, pm14} {pm6, pm13, pm15}
1122 A5 Sender 09 : 30 April04 09 : 50 April04 {pm2} {pm3}
1122 A6 Consigner 12 : 48 April04 12 : 56 April04 {pm9, pm10} {pm11}
1122 A7 Consigner 14 : 06 April06 14 : 08 April06 {pm13} {pm14}
1122 A8 Consigner 14 : 10 April06 14 : 16 April06 ∅ ∅
1122 A9 Sender 14 : 20 April06 14 : 25 April06 ∅ ∅
1122 A10 Consigner 15 : 10 April06 15 : 20 April06 ∅ ∅
1122 A11 Buyer 15 : 40 April06 15 : 46 April06 ∅ ∅
1122 A12 Buyer 10 : 10 April10 10 : 20 April10 {pm15} ∅

TABLE 8. Pre-Set and Post-Set of Each Assignment in the Top-level Process Model

Assign. Meaning Pre-Set Post-Set RequiredMessage SentMessage
A1 Apply Transportation ∅ {A2, A4} ∅ ∅
A2 Accept Application {A1} {A3} ∅ ∅
A3 Generate Contract {A2} {T1, A4} ∅ {pm1}
A4 Assign Contract {A3} {A5} ∅ ∅
T1 Transportation preparation procedure {A3} {T2, T3, A6} {pm1, pm3, pm6, pm7} {pm2, pm4, pm5, pm8, pm9}
T2 Carrier transportation procedure {T1} {A6} {pm5, pm8, pm11} {pm7, pm10, pm12}
T3 Shipper transportation procedure {T1} {A7, A12} {pm4, pm12, pm14} {pm6, pm13, pm15}
A5 Prepare Goods {A4} {A9} {pm2} {pm3}
A6 Pay the Carrier {T1, T2} {A7} {pm9, pm10} {pm11}
A7 Pay the Shipper {T3, A6} {A8} {pm13} {pm14}
A8 Generate Payment Receipt {A7} {A9} ∅ ∅
A9 Send pays the bill {A5, A8} {A10} ∅ ∅
A10 Generate Delivery Order {A8, A9} {A11} ∅ ∅
A11 Accept Release Form {A10} {A12} ∅ ∅
A12 Release Goods {T3, A11} ∅ {pm15} ∅

TABLE 10. Part of the Running Logs of the Transportation Preparation Procedure

Case Assignment Operator Start Time End Time RequiredMessage SentMessage
1122 A1.1 Consigner 09 : 18 April04 09 : 21 April04 {pm1} {pm4, pm5}
1122 A1.2 Consigner 09 : 27 April04 09 : 29 April04 {pm6, pm7} {pm2}
1122 A1.3 Consigner 09 : 30 April04 09 : 45 April04 {pm3} ∅
1122 A1.4 Consigner 09 : 51 April04 10 : 02 April04 ∅ ∅
1122 T1.5 Consigner 10 : 03 April04 10 : 05 April04 ∅ ∅
1122 T1.6 Consigner 10 : 06 April04 10 : 10 April04 ∅ ∅
1122 A1.7 Consigner 10 : 07 April04 10 : 30 April04 ∅ ∅
1122 A1.8 Consigner 10 : 32 April04 10 : 34 April04 ∅ {pm8, pm9}

TABLE 11. Part of the Running Logs of the Carrier Transportation Procedure

Case Assignment Operator Start Time End Time RequiredMessage SentMessage
1122 A2.1 Carrier 09 : 22 April04 09 : 24 April04 {pm5} {pm7}
1122 A2.2 Carrier 10 : 36 April04 12 : 30 April04 {pm8} ∅
1122 A2.3 Carrier 12 : 40 April04 12 : 45 April04 ∅ {pm10}
1122 A2.4 Carrier 13 : 00 April04 10 : 00 April06 ∅ {pm11, pm12}
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TABLE 12. Part of the Running Logs of the Shipper Transportation Procedure

Case Assign. Operator Start Time End Time RequiredMessage SentMessage
1122 A3.1 Shipper 09 : 24 April04 09 : 26 April04 {pm4} {pm6}
1122 A3.2 Shipper 09 : 30 April04 14 : 00 April04 ∅ ∅
1122 A3.3 Wharfinger 10 : 05 April06 12 : 30 April06 {pm12} ∅
1122 A3.4 Shipper 13 : 00 April06 13 : 30 April06 ∅ ∅
1122 T3.5 Wharfinger 13 : 10 April06 13 : 25 April06 ∅ ∅
1122 T3.6 Wharfinger 13 : 35 April06 13 : 50 April06 ∅ ∅
1122 A3.7 Shipper 14 : 00 April06 14 : 05 April06 ∅ {pm13}
1122 A3.8 Shipper 14 : 10 April06 10 : 00 April10 {pm14} ∅
1122 A3.9 Shipper 10 : 02 April10 10 : 08 April10 ∅ {pm15}

TABLE 13. Pre-Set and Post-Set of Each Assignment in the Transportation Preparation Procedure

Assign. Meaning Pre-set Post-set RequiredMessage SentMessage
A1.1 Request Booking ∅ {A1.2} {pm1} {pm4, pm4}
A1.2 Pack Notice {A1.1} {A1.3} {pm6, pm7} {pm2}
A1.3 Prepare Packing {A1.2} {A1.4} {pm3} ∅
A1.4 Pack Container {A1.3} {A1.5} ∅ ∅
A1.5 Make Declaration {A1.4} {A1.6} ∅ ∅
A1.6 Auditing {A1.5} {A1.7} ∅ ∅
A1.7 Release Goods {A1.6} {A1.8} ∅ ∅
A1.8 Forward Transportation {A1.7} ∅ ∅ {pm8, pm9}

TABLE 14. Pre-Set and Post-Set of Each Assignment in the Carrier Transportation Procedure

Assign. Meaning Pre-set Post-set RequiredMessage SentMessage
A2.1 Accept Booking ∅ {A2.2} {pm5} {pm7}
A2.2 Load the Goods {A2.1} {A2.3} {pm8} ∅
A2.3 Issue Waybill {A2.2} {A2.4} ∅ {pm10}
A2.4 Deliver Container {A2.3} ∅ ∅ {pm11, pm12}

TABLE 15. Pre-Set and Post-Set of Each Assignment in the Shipper Transportation Procedure

Assign. Meaning Pre-set Post-set RequiredMessage SentMessage
A3.1 Accept Booking ∅ {pm4} {pm6}
A3.2 Invent Shipper {A3.1} {A3.3, A3.5} ∅ ∅
A3.3 Receive Goods from Carrier {A3.2} {A3.4} {pm12} ∅
A3.4 Tally Goods {A3.3} {A3.6} ∅ ∅
A3.5 Container Entrance {A3.2} {A3.6} ∅ ∅
A3.6 Prepare Shipping {A3.4, A3.5} {A3.7} ∅ ∅
A3.7 Terminal Receipt {A3.6} {A3.8} ∅ {pm13}
A3.8 Deliver Shipping {A3.7} {A3.9} {pm14} ∅
A3.9 Goods Arrival {A3.8} ∅ ∅ {pm15}

including the sender, consigner, carrier, shipper, and buyer
in the main transportation process. Besides, the consigner
should have customer service declaration before delivering
the goods to the carrier, especially for overseas business.
And, the shipper should transport goods to wharfinger for
long-term storage. Therefore, another two roles, customer
service center and wharfinger, are also involved. This typ-
ical multi-modal transportation business process scenario
includes the following steps: (1) To start a transportation, the
sender should first apply for a transportation task from the
consigner; (2) After accepting a transportation application
from the sender, the consigner will generate a transportation
contract; (3) Then the sender signs the contract togetherïijŻ

(4) Receiving the contract assigned by the sender, the con-
signer will send a booking request to the carrier partner and
the shipper partner, respectively; (5) If the booking requests
are both accepted, the consigner will prepare containers and
packing notice is sent to the sender to prepare the transporta-
tion goods; (6) When the goods arrive, the consigner pack the
goods and make the transportation declaration. The customer
service center will audit and then release the legitimate goods
to load by the carrier; (7) The carrier loads the transportation
goods and then issues its waybill to the consigner; (8) Ac-
cording to the waybill, the consigner will give the payment to
the carrier; (9) After obtaining the payment, the goods will be
delivered and be transferred to the shipper by the carrier; (10)
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FIGURE 10. Refinement Model for the Multi-Modal Transportation Business Process

After receiving the booking request from the consigner, the
shipper partner will inform the wharfinger to tally the goods
and prepare shipping; (11) When the shipper receives the
goods transferred from the carrier, the wharfinger will inform
the container entrance to prepare shipping; (12) The terminal
receipt will be sent to the consigner to obtain the shipping
payment; (13) After receiving the payment, the goods will
be delivered by the shipper; (14) Next the sender will be
informed to pay for the transportation goods after payment by
the consigner to the carrier and shipper; (15) After payment,
the consigner will generate a delivery order and send a release
form to the buyer; and (16) When the goods arrival, the buyer
will pick up them with the release form.

As there are lots of messages exchanged between different
organizations or partners, the business logic is really com-
plex. As a consequence, to directly construct the model for
such a complicated cross-organizational business process is
obviously a time-consuming and error-prone process. Fortu-
nately, our top-down process mining approaches proposed
such a method to discover the complex business process
model from its system running logs.

D. QUALITY METRICS EVALUATION
Process mining algorithms typically aim to discover a process
model from event log that describe the recorded behavior.
In this sub-section, we measure the quality of the discov-
ered process model with our proposed method. Usually, the
quality of a process discovery approach is measured by the
following three quality dimensions:
• Fitness quantifies the extent to which a discovered mod-

el can accurately reproduce the cases recorded in the
log.

• Precision quantifies the fraction of the behavior allowed
by the model which is not seen in the event log.

• Generalization assesses the extent to which the resulting
model will be able to reproduce future behavior of the
process.

Besides the quality metric evaluations of the diovered
process model, we also compare the discovered process mod-

TABLE 16. Quality Comparison of Process Models using Different Miners

Discovery Approach Fitness Precision Generalization
AlphaMiner 0.93 0.98 0.75
ILPMiner 1.00 0.81 0.63

InductiveMiner 0.99 0.62 0.84
Top −DownMiner 1.00 0.92 0.82

els using the proposed approach with some related works,
i.e., Alpha Miner [11], ILP (language-based region) Miner
[47], Inductive Miner [21]), in terms of different quality
metrics. Some of the comparison results and explanations
are demonstrated in the following. Generally speaking, our
experiment is conducted based on the open source process
mining toolkit, ProM, developed by the AIS group of TU/e.
It contains the following consecutive steps:

Step 1: As these existing process discovery approaches
cannot handle the distributed event logs, we first merge them
into an integrated data set using the plug-in "Merge Event
Logs" [48] by configuring the merge attribute as Case Id.

Step 2: By taking the merged event log as input, we apply
Alpha Miner, ILP Miner, Inductive Miner to discover their
respective process models.

Step 3: Using these discovered process models and the
merged event log, we run Replay a Log on Petri net for
conformance Analysis plugin [49] to measure the replay
fitness. Similarly, the precision and generalization metrics
are evaluated using Measure Precision and Generalization
plugins. The evaluation results is shown in Table 16.

According to Table 16, the typical algorithms guaranteeing
perfect replay fitness are ILP miner and our top-down miner.
However, the generalization of the ILP miner is relatively
low. The precision of the Alpha miner is the highest while it
tends to be less general. Moreover, while the Inductive miner
can guarantee a high fitness and generalization its precision is
poor. In a nutshell, our proposed mining approach allow for
more traces to fitting and are more precise even though it is
less general. This evaluation results also prove the conclusion
that process discovery algorithms typically consider at most

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2984057, IEEE Access

Q. Zeng et al.: Top-Down Process Mining from Multi-source Running Logs

two out of these quality dimensions by [50].

VII. CONCLUSION
A complex enterprise information system is usually imple-
mented on a distributed platform. The running logs of the
workflow systems contain detailed information about the
execution behaviors of activities. In this paper, we discuss
how to discover the model for a complex workflow from
multi-source heterogeneous logs collected from distributed
servers. By obtaining the top-level process model with ab-
stract procedures and the bottom-level process models for
each abstract procedures, Petri net refinement operation is
used to integrate these process models to obtain the process
model for the whole workflow system.

In this paper, we assume that the running logs of the work-
flow used for process mining are well-formed and without
noise. However, a set of well-formed running logs is usually
difficult to obtain. Noise may occur when, for example, a
wrong activity is executed before or after another activity.
Obviously, running logs with noise will definitely lead to
improper mining result. Therefore, the detection approach
of noise and infrequent behavior in the distributed running
logs is badly needed. Meanwhile, the running logs also record
the messages exchanged between different organizations. In
fact, the execution of some activities in one organization
usually need to access messages sent by other partner. As
a consequence, the approach towards cross-organizational
message consistency verification will also be highly desired
in the future.
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