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“We adore chaos because we love to produce order.”

M. C. Escher





Abstract

Sound and music computing is all about. . . computing. But despite the large num-

ber of reusable software components and models-of-computation available for this

domain, audio developers face new problems all the time. Most often, however,

the same or similar problems have already been solved by others, but they lack

the means for reusing those solutions. This dissertation proposes a design pattern

language for data-flow systems: a technique that bridges the gap between the type

of functionality provided by libraries and data-flow frameworks, on one side, and

data-flow models-of-computation, on the other. The problem with libraries is that

they often are too specific. Frameworks cover a broader scope but often overlim-

iting how to do things. On the other hand, the data-flow models-of-computation

favors analysis versus design and implementation.

A pattern is a proved solution to a recurring design problem. It pays special

attention to the context in which it is applicable, to the competing “forces” it needs

to balance, and the consequences of its application. A pattern language, moreover,

suggests a sequence of patterns to be applied depending on the current context.

Patterns provide a better solution when the focus is on customizing a new design

on an existing code. However, neither data-flow systems nor other audio-related

areas have yet received relevant additions of domain specific patterns.

We demonstrate that the proposed catalog provides useful design reuse in the

audio domain, and we show that they can be found in many different applications.

As an example, we present the design of an object-oriented framework that uses

all the patterns. We also show that patterns are useful to communicate, docu-

ment and compare designs of audio systems. We believe that the incorporation of

pattern-driven design will allow audio software to “grow up” out of the craftsman

state and into a more mature state.
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Chapter 1

Introduction

After obtaining the grade in computer science in the Universitat Politècnica de

Catalunya, specializing in software engineering, I had the opportunity to join

Xavier Serra’s Music Technology Group so I was able to combine two of my pas-

sions: computers and music. During the last 5 years I’ve been very involved on

the development of the CLAM framework (C++ Library for Audio and Music)

[Amatriain and Arumı́, 2005]. Which has been a fruitful environment to learn,

experiment and put together many aspects of sound and music computing, and

software engineering.

Recently I was asked for advice on how to implement certain features in three

different audio related software under development in my university. It happened

that all three problems were familiar to me because they were issues solved during

the years of experience developing and evolving the CLAM framework.

Direct reuse of code was not feasible in these cases. Mostly because existing

code was not readily usable and needed a big integration effort, or because it

would incorporate unneeded complexity making the solution overkilling —thus,

not compatible with the simple design quality[Beck, 1999]. But also for non-

technical reasons like incompatible software licenses.

I found that because of having seen —or directly implemented— similar prob-

lems before, I was able to predict the resulting context and the trade-offs that

the solution carried, so we were able to discuss it’s applicability and optimization

trade-offs before hand. And we were able to implement the similar design on a

new system very quickly. I roughly estimate that an order of magnitude quicker

1
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—and less defective also— than the first time I approached the similar problem.

Actually I see this happen around me over and over again. To give a concrete

example of a design reuse in our domain: In the last month, I’ve seen my colleague

Maarten de Boer implementing a real-time application that processes audio sam-

ples being read from the disk on-the-fly. This is not easy at all to do right because

of a myriad of potential pitfalls: It involves non-blocking multi-threading tech-

niques and sharing buffers between a real-time thread in charge of the processing

and a low-priority thread that reads chunks of audio from the disk.

However, he was able to effectively implement it in few hours. And, he recog-

nises, this was possible because he was reusing the same design idea that had

worked for him several times before in similar situations. Never mind that the

application at hand was about mosaicing, and the previous similar applications

were, fundamentally, mere audio file players. Also, the new implemented solution

varied in several aspects from the previous experiences. Finally, he comments, the

first time he approached such problem it took him several weeks to find a good

design, and it was after going through a trial of discovering the consequences of

each design decision and correcting many design flaws.

I’ve checked with other developers and they have confirmed that the design

reuse, specially in the sound and music field, is mostly reduced to personal expe-

rience and that is very hard to learn from others experience.

This thesis start from the observation that sometimes reusing existing do-

main libraries and frameworks is not possible. Instead or reuse at code level, we

might take advantage of reuse at design level. Design patterns, introduced by

[Gamma et al., 1995] is a technology that allows recording best design practices.

But the field of sound and music computing has been quite impermeable to these

recent advances.

Design patterns are not the only mechanism for conceptual reuse in our do-

main. Existing data-flow models are very useful for developing many kinds of

audio systems. These models allows a thorough analysis of the system under de-

velopment. However, there is a gap between analysis and an effective design and

implementation. The research reported in this work goes toward bridging this

gap, and also provides the scope for a future PhD thesis.
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1.1 The Problem

Software development is a central activity in sound and music computing. It is

important not only for practitioners in the industry developing audio applications

for end-users. But also for academic researchers for who the primary resort for

carrying our experiments is programming.

Experienced developers are many times more productive and successful than

novices. The formers find that when they are trying to solve a new problem, the

situation usually has something in common with a solution they have already either

created or seen. The problems may not be identical, and an identical solution will

rarely solve a new problem, but the problems are similar, so a similar solution

should work. This similar solution generalized and formalized, is called a design

pattern and provides reusable design that can be applied to new problems.

Fostering code and design reuse can drastically reduce the costs of audio soft-

ware development and maintenance, therefore they represent good research op-

portunities.

This thesis approaches the general problem of lack of design reuse within the

sound and music computing field. However, most part of this work narrows the

scope and focus into the problem of how to translate general data-flow models into

well crafted and understood designs.

Now we are going to dive a little deeper into both the general and concrete

problems.

Lack of design reuse in sound and music computing

Reusing software components like libraries and frameworks often results in a big

productivity boost. However this is not always possible. Libraries are very limited

in scope and they solve very specific problems. For example, loading audio files,

converting sample rate, Fast Fourier Transform (FFT), audio routing, MIDI and

audio I/O, etc.

Frameworks, on the other hand, have a much broader scope, allows the cre-

ation —instantiation— of complete applications with little programming effort,

and provides mechanisms to be parametrized and extended. Actually, when you

use a framework you are not only reusing code through an Application Program-
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mer Interface (API) but you are also reusing its design. The disadvantages of

frameworks are that they limit the ways to do things, in a way that, in some occa-

sions, makes it hard or impossible to adapt to your needs. Moreover, frameworks

are much more difficult to design and construct than applications, even though

they greatly simplify application development.

Therefore, in many occasions code reuse is not feasible. Then, developers have

no choice but to fall back to ad-hoc and “creative” solutions. Is in such cases

when developers tend to reuse similar solutions that worked well, and, as they

gain more experience, their repertoire of design experience grows and they be-

come more proficient. Unfortunately, this design reuse is usually restricted to

personal experience and there is little sharing of design knowledge among devel-

opers [Beck et al., 1996].

General design patterns —like the ones from the Gang of Four

[Gamma et al., 1995], and the POSA [Buschman et al., 1996a] catalogs— are be-

ing more and more widely used in sound and music computing. This can be

appreciated, for instance, in academic papers describing audio systems, where

there is a growing tendency of documenting the overall system design in terms of

general design patterns. But also in open-source projects, both in discussions on

projects mailing-lists and in code documentation.

Nevertheless, the fact is that do not exist any (published) catalog of design pat-

tern in the sound and music computing domain. The present work is an attempt

to change this situation and goes in the same direction as other very recent efforts:

Aucouturier presented several patterns for Music Information Retrieval in his the-

sis [Aucouturier, 2006]. And Roger B. Dannenberg and Ross Bencina presented

several patterns on audio and real-time in a ICMC 2005 workshop —though we

are not aware that they have been published. In the border line of the domain we

found music composition patterns [Borchers, 2000] and, finally, a pattern language

for designing patches for modular digital synthesisers [Judkins and Gill, 2000].

Apart from spreading the design best practices, collecting audio patterns can

serve to another goal: record innovative software designs for critical examination

which might, eventually, become new best practices.

Analysis reuse in the form of models have been actively used, mainly in models

of computations (or metamodels), and have been object of formal study during
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the last decades [Hylands et al., 2003]. Though being useful for the analysis of

the system under development, models give little, or no clue at all, on how their

requirements can be designed and implemented successfully.

Translating data-flow models into concrete designs

Data-flow (meta)models and the process paradigm uses mathematical graphs for

modeling its functionalities. They have a relatively long tradition in the area of

system engineering, and they are suitable for formal study, providing each model

with a set of guarantees like bounded memory, scheduling properties, etc. Since

sound and music systems have a strong heritage on DSP systems, also do have

it on data-flow models. Specially on Data-flow Process Networks and its variants

[Parks, 1995].

There have been recent efforts for customizing these traditional metamodels

into the multimedia systems requirements, using the object-oriented paradigm.

The Metamodel for Multimedia Systems (4MS) is readily-usable for analysis in

the sound and music domain [Amatriain, 2004]. Though the object-oriented ap-

proach of 4MS facilitates the translation of models into concrete implementations,

in practice there is still a big leap to do. Our experience developing data-flow

frameworks for sound and music indicates that many design problems and in-

sights can not be effectively captured only using models. They are abstractions

by definition and have to favor a holistic view of system features versus the design

aspects.

During the last 10 years have been attempts to write patterns related with

data-flow architectures. They were compiled and extended in a Data-flow Pattern

Language [Manolescu, 1997]. The patterns from Manolescu are quite high-level

(not implementation oriented) and, in general, applicable in our domain. However,

problems in sound and music systems tends to be quite specific, and thus, require

specific patterns. Each pattern defines a set of forces or quality-of-service to be

optimized and its solution results in optimizing a set of forces while de-optimizing

another set. Since the sound and music domain often imposes specific quality-

of-service (for instance, real-time constrains and efficient management of audio

samples), this implies that specific patterns are needed.
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Another related problem is the lack of common vocabulary for express-

ing designs of frameworks in our domain. One one hand, a framework can

be viewed as the implementation of a system of design patterns, so design

patterns may be also employed in its documentation [Appleton, 1997]. On

the other hand, several frameworks exists for sound and music computing

using a data-flow architecture. For example, Supercollider, CSL or CLAM

[McCartney, 2002, Pope and Ramakrishnan, 2003, Amatriain and Arumı́, 2005].

Though, sometimes, they already incorporate general patterns in their documen-

tation, the domain specific designs are not easily documented —if documented

at all— because of a lacks of appropriate patterns. In consequence, frameworks

are not as easy to understand and to compare as it might, should they share a

common design vocabulary made of domain patterns.

1.2 The Solution

Our solution to the previous problems is the proposal of a pattern language for

sound and music computing.

Simply stated, a pattern is a proven solution to a recurring design problem.

It pays special attention to the context in which is applicable, to the competing

“forces” it needs to balance, and to the positive and negative consequences of its

application. A pattern language, as described in [Borchers, 2000], is a compre-

hensive collection of patterns organized in a hierarchical structure. Each pattern

references higher-level patterns describing the context in which it can be applied,

and lower-level patterns that could be used after the current one to further refine

the solution.

All the patterns presented in this catalog fits within the generic architectural

pattern defined by Manolescu as the Data Flow Architecture pattern (figure 1.1).

This pattern addresses how to design a system which performs a number of sorted

operations on similar data elements in a flexible way so they can dynamically

change the overall functionality without compromising performance.

It is important to note that the Data Flow Architecture pattern does not impose

any restrictions on issues like message passing protocol, module execution schedul-

ing, data token implementation, etc. All these aspects should be addressed in other
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Filter 1 Filter 2

Filter 3

Filter 4 Filter 5

Filter 45

Source 1

Source 2

Sink

Static composition 
(to improve performance)

Figure 1.1: Data-flow Architecture

fine-grained and orthogonal design patterns, like the 10 patterns proposed in our

pattern language. Our patterns focus on the following three aspects:

1. How to organize different kinds of modules connections.

2. How to transfer tokens between modules allowing a great flexibility.

3. How humans can interact with the data-flow networks.

An example of a system that may be optimally designed (and documented) al-

most completely using these patterns —plus the general or “traditional” ones—

is the following: A system performing real-time Spectral Modeling Synthesis

(a technique described in [Serra, 1990]) which implies performing two parallel

FFT/IFFTs each consuming audio sample blocks of different size. Of course each

module of the data-flow network encapsulates specific algorithms and techniques

that falls out of the scope of this thesis. However, such specific techniques are

not considered software design and are traditionally well recorded in scientific pa-

pers using appropriate means for documenting algorithms and signal processing

techniques.

The main limitation of our solution is that our patten language is not com-

prehensive. Several important aspects of data-flow audio systems are not covered,

for example the question of latency calculation (how long it take for input to

propagate to output), or the propagation of tokens time between modules. The

relevance of such gaps, however, will depend very much on the requirements of

the application at hand.
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Therefore, if we are strict with the definition, our pattern catalog should not

be considered a pattern language because it does not cover all the problems of

a domain.1 However, the other property of a pattern language do apply: our

patterns are organized hierarchically, making explicit the order in which they

can be “instantiated” (figure 1.2). Moreover, they have been crafted in a fine

grained way and work synergistically among them and with the existing ones from

Manolescu. Therefore, we expect that new pattern will also be easily incorporated

into the pattern “language-in-progress”.

Pattern

PatternPattern

Collaboration

Figure 1.2: Pattern Instantiation

The difficulties of creating new patterns should not be underestimated. The

teaching component of patterns —mostly corresponding to the description and

resolution of forces and the consequences of application— is the most important

1For simplicity, we are not adhering to the strict definition; though we do in the tile.
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and also the hardest part [Vlissides, 1998]. Moreover, growing a collection of

highly-related patterns, while keeping them independent, involves many iterations

and rewritings. Quoting [Beck et al., 1996]:

The availability of a catalog of design patterns can help both the ex-

perienced and the novice designer recognize situations in which design

reuse could or should occur. Such collection is time-consuming to cre-

ate, but it is our experience that the invested effort pays off.

(...) The pattern community is sufficiently enthused about the prospec-

tive advantages to be gained by making this design knowledge explicit

in form of patterns, that hundreds of patterns have been written, dis-

cussed and distributed.

1.3 The Method

“Engineering disciplines have large bodies of theory accumulated behind them.

But software engineering has a much shorter history than most engineering fields.

Consequently, software engineers don’t “calculate” software designs. Instead, they

follow guidelines and good examples of working designs and architectures that help

to make successful decisions. Therefore in the context of software engineering,

communicating experience, insight, and providing good examples are important

tasks.” [Szyperski, 1998]

Our research provides elements of reusable design for building object-oriented

sound and music data-flow systems. Consequently we have taken an approach that

is appropriate for this objective. The process of creating new patterns starts when

you have in depth experience on a particular area. You need to understand the

trade-off of forces (quality-of-services) to be optimized in a particular area. But

also you need sufficient breadth to understand the general aspects of the solutions

to abstract them into a generalized solution. This process is called pattern mining

(see figure 1.3).

“Pattern mining is not so much a matter of invention as it is of discovery

—seeing that this solution in some context is similar to that solution in another

context and abstracting away the specifics of the solutions. To be considered a use-
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ful pattern, it must occur in different contexts and perform a useful optimization

of one or more qualities-of-service.” [Douglass, 2003]

Our patterns have been mined studying several open-source domain tools for

application building: Aura, SndObj, OSW, STK, CSL, Supercollider and Marsyas

[Dannenberg and Brandt, 1996a, Lazzarini, 2001, Chaudhary et al., 1999,

Cook and Scavone, 1999, Pope and Ramakrishnan, 2003, McCartney, 2002,

Tzanetakis and Cook, 2002] respectively. But mainly, they came from our expe-

rience building and evolving the CLAM framework and its many applications.

Pattern

Collaboration

Collaboration

Collaboration

Figure 1.3: Pattern Mining

The patterns are evaluated assessing their usefulness in several use cases in

different real-life applications. We show that most of the patterns can be found in

different tools while few others only in the CLAM framework. However, we also

show that the CLAM framework has demonstrated its adaptability —with many

specific applications— to several scenarios within the sound and music domain

such as real-time processing and synthesis and off-line audio analysis.
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1.4 Contributions

The data-flow pattern language for sound and music computing allows software

developers to use tested design solutions into their systems. It enables applying

systematic solutions to domain problems with predictable consequences (trade-

offs), as well as efficiently communicate and document design ideas. These char-

acteristics represents a significant departure from other approaches that focus on

reusing code (libraries, frameworks) or reusing analysis (metamodels).

In this thesis I will:

• Propose a (non-comprehensive) pattern language addressing the following

aspects of sound and music data-flow architectures:

– General Data-flow Patterns: Address problems about how to orga-

nize high-level aspects of the data-flow architecture, by having different

types of modules connections.

– Flow Implementation Patterns: Address how to physically transfer to-

kens from one module to another, according to the types of flow de-

fined by the general data-flow patterns. Tokens life-cycle, ownership

and memory management are recurrent issues in those patterns.

– Network Usability Patterns: Address how humans can interact with

data-flow networks without compromising the network processing effi-

ciency.

• Demonstrate that design patterns provides useful design reuse in the domain

of sound and music computing.

• Show that all the patterns can be found in different applications and con-

texts.

• Show how design patterns are useful to communicate, document and com-

pare designs of audio systems.
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1.5 Thesis Organization

This thesis is structured as follows. Chapter 2 introduces the necessary back-

ground on object-oriented, patterns and graphical models of computation. Chap-

ter 3 introduces related work somehow tries to solves the stated problem. It

discusses sound and music specific models and an existing data-flow pattern lan-

guage. Chapters 4, 5 and 6 discuss the proposed data-flow design pattern for sound

and music. Chapter 7, organizes the catalog using pattern relations. Chapter 8,

use case studies to provide qualitative evaluation of patterns. Finally, Chapter 9

draws conclusions and discusses open issues and future lines for a PhD thesis.
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Chapter 2

Background

This chapter introduces the object technology which we used in the proposed

design patterns. Moreover, design patterns born whithin the object technology

community so they are related concepts. Since this is a thesis about audio patterns,

this chapter introduces patterns and delineates what a pattern is and what is not.

Our contributions focus on data-flow systems for sound and music. Thus, here we

introduce the graphical models of computation.

2.1 Object Orientation

Booch defines Object-oriented programming as “a method of implementation in

which programs are organized as cooperative collections of objects, each of which

represents an instance of some class, and whose classes are all members of a hier-

archy of classes united via inheritance relationships.” [Booch, 1994]

Objects act on each other, as opposed to a traditional view in which a program

may be seen as a collection of functions, or a list of instructions. Each object is

able to receive messages, process data and send messages to other objects. Thus,

objects can be regarded as actors with a distinct role or responsibility.

An object is a real-world or abstract entity made up of an identity, a state, and

a behavior. A class is an abstraction of a set of objects that have the same behavior

and represent the same kind of instances. The object-oriented paradigm can be

deployed in the different phases of a software life-cycle and the UML language

15
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supports most of the activities contained in them.

An object-oriented language supports two characteristic features: encapsula-

tion and inheritance. Abstraction is the process of identifying relevant objects in

the application and ignoring the irrelevant background. Abstraction delivers re-

usability and information hiding through encapsulation. Encapsulation consists

in hiding the implementation of objects and declaring publicly the specification

of their behavior through a set of attributes and operations. The data structures

and methods that implements these are private to the objects.

Object types or classes are similar to data types and to entity types with

encapsulated methods. Data and methods are encapsulated and hidden by objects.

Classes may have concrete instances, also known as objects.

Inheritance is the ability to deal with generalization and specialization or clas-

sification. Subclasses inherit attributes and methods from their super-classes and

may add others of their own or override those inherited. In most object-oriented

programming languages, instances inherit all and only the properties of their base

class. Inheritance delivers extensibility, but can compromise re-usability.

Objects communicate only by message passing. Polymorphism —having many

forms— means the ability of a variable of function to take different forms at run

time, or more specifically the ability to refer to instances of various classes.

The benefits arising from the use of objects technology are summarized by

Graham in [Graham, 1991]

Reusability, extensibility and semantic richness. Top-down decomposi-

ton can lead to application-specific modules and compromise reuse.

The bottom-up approach and the principle of information hiding max-

imize reuse potential. Encapsulation delivers reuse.

Polymorphism and inheritance make handling variation and exceptions

easier and therefore lead to more extensible systems. The open-closed

principle is supported by inheritance. Inheritance elivers extensibility

but may compromise reuse.

Semantic reichness is provided by inheritance and other natural struc-

tures, together with constraints and rules concerning the meaning of

objects in context. This also compromises reuse and must be carefully
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managed.

Furthermore, proponents of the Object Oriented Programming claim that is

easier to learn, simpler to develop and to maintain, lending itself to more direct

analysis, coding, and understanding of complex situations and procedures

As Allan Kay observes in [Kay, 1993]

Though it has noble ancestors indeed, Smalltalk’s contribution is anew

design paradigm —which I called object-oriented— for attacking large

problems of the professional programmer, and making small ones pos-

sible for the novice user. Object-oriented design is a successful attempt

to qualitatively improve the efficiency of modeling the ever more com-

plex dynamic systems and user relationships made possible by the

silicon explosion.

2.2 Design Patterns

A design pattern is a particular form of recording design information such that

designs which have worked well in the past can be applied again in similar situa-

tions in the future by others. The form consists of structured prose and diagrams

—usually UML diagrams: classes, objects, sequences, etc. The pattern identifies

a problem, a set of forces or constraints —usually in conflict—, a solution that re-

solves the forces, and consequences that makes explicit how the forces are resolved

and what is the resulting context.

A definition for patterns that become quite popular is the one inspired by

Christopher Alexander “A pattern is a solution to a problem in a context.”. How-

ever, Vlissides points out [Vlissides, 1998] three relevant things are missing from

this definition:

1. Recurrence, which makes the solution relevant in situations outside the im-

mediate one.

2. Teaching, which gives you the understanding to tailor the solution to a vari-

ant of the problem. (Most of the teaching in real patterns lies in the descrip-

tion and resolution of forces, and/or the consequences of its application.)
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3. A name by which to refer to the pattern.

2.2.1 A Brief History of Design Patterns

In the 1960’s, building architects were investigating automated, computerized

building design. The mainstream of this movement was known as modular con-

struction, which tries to transform requirements into a configuration of build-

ing modules using computerized rules and algorithms. The architect Christopher

Alexander broke with this movement, noting that the great architectures of his-

tory where not made from rigorous, planned designs, but that their pieces were

custom-fit to each other and to the building’s surroundings. He also noted that

some buildings were more aesthetically pleasing than others, and that these aes-

thetics were often attuned to human needs and comforts. He found recurring

themes in architecture, and captured them into descriptions (and instructions)

that he called patterns and pattern languages [Alexander, 1977]. The term “pat-

tern” appeals to the replicated similarity in a design, and in particular to similarity

that makes room for variability and customization in each of the elements. “Thus

Window on Two Sides of Every Room is a pattern, yet it prescribes neither the

size of the windows, the distance between them, their height from the floor, nor

their framing (though there are other patterns that may refine these properties).”

[Coplien, 1998]

Over the decade of the 1990’s, software designers discovered analogies be-

tween Alexander patterns and software architectures. The first work on design

pattern had their origin in the late 1980’s when Ward Cunningham (the fa-

ther of the wiki) and Kent Beck (best known for its extreme programming ag-

ile methodology) documented a set of patterns for developing elegant user inter-

faces in Smalltalk[Beck, 1988]. Few years later, Jim Coplien developed a cata-

log of language-specific C++ patterns called idioms. Meanwhile, Erich Gamma

collected recurring design structures while working on the ET++ framework

[Weinand et al., 1989] and his doctoral dissertation on object-oriented sofware

development. These people and others met at a series of OOPSLA workshops

starting in 1991. Draft versions of the first pattern catalog were matured during 4

years and eventually formed the basis for the first book on design patterns called
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Design Patterns [Gamma et al., 1995] that appeared in 1995. It was received with

enthusiasm and the authors were given the name of Gang-of-Four. In the summer

of 1993, a small group of pattern enthusiasts formed the “Hillside Generative Pat-

terns Group” and subsequently organized the first conference on patterns called

the “Pattern Languages of Programming” (PLoP) in 1994.

Patterns have been used for many different domains: development processes

and organizations, testing, architecture, etc. Apart from Design Patterns, other

important pattern books include Pattern-Oriented Software Architecture: A Sys-

tem of Patterns [Buschman et al., 1996b] —also called the POSA book, authored

by five engineers at Siemens; and the book series entitled Pattern Languages of

Program Design with five volumes to the date.

2.2.2 Pattern Misconceptions

One of the most recurring misconceptions about patterns is to try to reduce them

to something known, like rules, programming tricks, data structures. . .

John Vlissides, one of the Gang of Four, comments in his book Pattern Hatch-

ing [Vlissides, 1998]:

Patterns are not rules you can apply mindlessly (the teaching compo-

nent works against that) nor are they limited to programming tricks,

even the “idioms” branch of the discipline focuses on patterns that

are programming language-specific. “Tricks” is a tad pejorative to my

ear as well, and it overemphasizes solution at the expense of problem,

context, teaching, and naming.

Since software patterns grew inside the object-oriented community to record

object-oriented design principles, they are often seen as limited to object-oriented

design. However, patterns capture expertise and the nature of that expertise is

left open to the pattern writer. Certainly there’s expertise worth capturing in

object-oriented design — and not just design but analysis, maintenance, testing,

documentation, organizational structure, and on and on. As Vlissides recognises:

“the highly structured style the GoF used in Design Patterns is very biased to

its domain (object technology), and it doesn’t work for other areas of expertise.
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Clearly, one pattern format does not fit all. What does fit all is the general concept

of pattern as a vehicle for capturing and conveying expertise, whatever the field.”

Not every solution, algorithm, best practice, maxim, or heuristic constitutes a

pattern; one or more key pattern ingredients may be absent. Even if something

appears to have all the requisite pattern elements, it should not be considered a

pattern until it has been verified to be a recurring phenomenon. Some feel it is

inappropriate to call something a pattern until it has undergone some degree of

scrutiny ore review by others. [Appleton, 1997]

Documenting good patterns can be an extremely difficult task. To quote Jim

Coplien [Coplien, 1998], good patterns do the following:

• It solves a problem: Patterns capture solutions, not just abstract principles

or strategies.

• It is a proven concept: Patterns capture solutions with a track record, not

theories or speculation.

• The solution isn’t obvious: Many problem-solving techniques (such as soft-

ware design paradigms or methods) try to derive solution from first prin-

ciples. The best patterns generate a solution to a problem indirectly — a

necessary approach for the most difficult problems of design.

• It describes a relationship: Patterns don’t just describe modules, but de-

scribe deeper system structures and mechanisms.

• The pattern has a significant human component: All software serves human

comfort or quality of life; the best patterns explicitly appeal to aesthetics

and utility.

2.2.3 Patterns, Frameworks and Architectures

The practical nature of patterns themselves and the people writing and us-

ing patterns should not be underestimated. As Ralph Johnson observed

[Beck et al., 1996]:

One of the distinguishing characteristics of computer people is the

tendency to go “meta” at the slightest provocation. Instead of writ-

ing programs, we want to invent programming languages, we want to
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create systems for specifying programming languages. There are many

good reasons for this tendency, since good theory makes it a lot easier

to solve particular instances of the problem. But if you try to build

a theory without having enough experience in the problem, you are

unlikely to find a good solution. Moreover, much of the information in

design is not derived from first principles, but obtained by experience.

Kent Beck and Ralph Johnson points to the reasons why patterns are powerful

tools in the design process. [Beck and Johnson, 1994]

Design is hard. One way to avoid the act of design is to reuse existing

designs. But reusing designs requires learning them, or at least some

parts of them, and communicating complex designs is hard too. One

reason for this is that existing design notations focus on communicat-

ing the “what” of designs, but almost completely ignore the “why”.

However, the “why” of a design is crucial for customizing it to a partic-

ular problem. We need ways of describing designs that communicate

the reasons for our design decisions, not just the results.

One approach to improving design, currently receiving attention primarily out-

side the object community, is the idea of “architecture” An architecture is the way

the parts work together to make the whole. The way architectures are notated,

applied, and discovered are all topics of active research.

A closely related idea inside the object community is that of “framework”.

A framework is the reusable design of a system or a part of a system expressed

as a set of abstract classes and a way instances of (subclasses of) those classes

collaborate. Frameworks are a particular way of representing architectures, so

there are architectures that can’t be expressed as frameworks. Nevertheless, the

two ideas overlap. Both are attempts to reuse design, and examples of one are

sometimes used as examples of the other.

Beck and Johnson were pioneers of object-oriented frameworks. They observed

that frameworks, could be explained as a set of interrelated patterns. Thus, frame-

works are a good source for pattern mining. [Beck and Johnson, 1994]

The HotDraw architecture is not magic, but is the logical result of a

set of design patterns. In the past, we have explained the architecture
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as “Drawing, Figure, Tool, and Handle”. The pattern-based deriva-

tion puts each of theses classes in perspective. It explains exactly why

each was created and what problem it solves. Presented this way,

HotDraw becomes much easier to re-implement, or to modify should

circumstances so warrant. This is a completely different approach to

describing the design of a framework than more formal approaches like

Contracts. The more formal results only explain what the design is,

but a pattern-based derivation explains why. When we attempted to

derive HotDraw from the patterns described in the Design Pattern Cat-

alog [Gamma et al., 1995], we immediately realized that the Catalog

had none of the graphics patterns that HotDraw would need. It turned

out that it did not have the Editor pattern, either, so the derivation

of HotDraw showed us that we need to describe a new object-oriented

design pattern. This is similar to the proof process in mathematics,

where the presentation of a proof hides most of its history, and where

advances in mathematics are often caused by break-downs in proofs.

Catalogs of design patterns will mature as people try to explain de-

signs in terms of patterns, and find patterns that are missing from the

catalogs.

2.2.4 Empirical Studies

The need for reliable software has made software engineering an important as-

pect for industry in the last decades. The steady progress recently produced an

enormous number of different approaches, concepts and techniques: the object

oriented paradigm, agile software development, the open source movement, com-

ponent based systems, frameworks and software patterns, just to name a few. All

these approaches claim to be superior, more effective or more appropriate in some

area than their predecessors. However, to prove that these claims indeed hold and

generate benefits in a real-world setting is often very hard due to missing data

and a lack of control over the environment conditions of the setting.

In the join paper Industrial Experiences with Design Patterns

[Beck et al., 1996] authored together by Kent Beck (First Class Software),



2.2. Design Patterns 23

James O. Coplien (AT&T), Ron Crocker (Motorola), John Vlissides (IBM)

and other 3 experts, authors describe the efforts and experiences they and

their companies had with design patterns. The paper contains a table of the

most important observations ordered by the number of experts who mentioned

them. This can be interpreted as the results of interviewing experts. The top 3

observations mentioned by all experts where:

1. Patterns are a good communication medium.

2. Patterns are extracted from working designs.

3. Patterns capture design essentials.

The first observation is, indeed, the most prominent benefit of design patterns:

In Design Pattern book [Gamma et al., 1995] by the Gang of Four two of the ex-

pected benefits are the design patterns provide “a common design vocabulary” and

a “documentation and learning aid” which also focus on the communication pro-

cess. The other two observations focus on the idea that design patterns describes

best practices for important aspects of software design.

In [Prechelt et al., 1998] two controlled experiments using deign patterns for

maintenance exercises are presented. For one experiment students were used to

compare the speed and correctness maintenance work with and without design

patterns used for the documentation of the original program. The result of this

experiment was that using patterns in the documentation increases either the

speed or decreases the number of errors for the maintenance task and thus seems

to improve communication between the original developer and the maintainer via

the documentation.

Another quantitative experiment is presented in [Hahsler, 2004]. They ana-

lyzed historic data describing the software development process of over 1000 open

source projects in Java. They found out that only a very small fraction of projects

used design patterns for documenting changes in the source code. Though the

study had many limitations, e.g., the information on the quality of the produced

code is not included. the results show a correlation between use of patterns and

project activity, and that design patterns are adopted for documenting changes
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and thus for communicating in practice by many of the most active open source

developers.

2.3 Graphical Models of Computation

Models of computation are abstract representations of a family of related systems.

Thus, they are not simple models (that represent concrete systems) but models of

a family of models; that is, metamodels. For sound and music computing, the most

useful Models of Computation are those that belong to the category of Graphi-

cal Models of Computation that are metamodels expressed using (mathematical)

graphs. Many Graphical Models of Computation are characterized by assigning

a concrete semantic to arcs and nodes and by restricting the general structure of

the graph.

Many Graphical Models of Computation exist for different purposes and with

different features. For example: Queuing Models, Finite State Machines, State

Charts, Petri Nets, Processing Networks and Data-flow Networks. Each of these

can have many variants that can be found in the context of the Ptolemy project

[Hylands et al., 2003] 1.

Using the proper Graphical Model of Computation improves de development

process and yields a better analysis of the properties of the system under design.

Selecting the appropriate Graphical Model of Computation depends on the pur-

pose and requirements of the system to develop but the choice is also generally

conditioned by the application domain. Flexible sound and music systems, for

instance, will generally benefit from Data-flow Networks — while, say, control-

intensive applications will benefit from Finite State Machine.

We will now give a brief description of those metamodels that are more suited

for sound and music:

• State Charts consist on states, events, conditions and actions. Events and

conditions cause transitions and there are AND and OR compositions of

1Ptolemy project include the following Graphical Models of Computations: Component In-
teraction, Communicating Sequential Processes, Continuous Time, Discrete Events, Distributed
Discrete Events, Discrete Time, Synchronous Reactive, and Timed Multitasking can be found
in the context of the Ptolemy project (see [Hylands et al., 2003]).
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states.

• Petri Nets are suited for systems with concurrency, asynchronous messages,

distribution, non-deterministic, and parallelism. It consists of places, transi-

tions and arcs that connect them. A Petri net is executed by the firing rules

that transmit the tokens from one place to another. Such firing rules gets

enabled when each input place has a token inside.

• Process Networks (or Kahn Process Networks) is a concurrent model of com-

putation that is a super set of data-flow models. Its graph is directed and

each arc represents a queue for communicating tokens, and each node rep-

resents an independent, concurrent process.

• Data-flow Networks is a special case of Process Networks where nodes are

actors that respond to firing rules

We are now going to describe the Data-flow Network metamodel since this is

the one more related to our pattern language and implemented systems.

2.3.1 Data-flow Networks

Data-flow Networks is a Graphical Model of Computation very closely related

to Process Networks. In this model arcs also represent queues. But now the

nodes of the graph, instead of representing processes, represent actors. Instead of

responding to the simple the blocking-read semantics of Process Networks, actors

use firing rules that specify how many tokens must be available on every input for

the actor to fire (see figure 2.1). When an actor fires, it consumes a finite number

of tokens and produces also a finite number of output tokens. A process can be

formed by repeated firings of a data-flow actor.

An actor may have more than one firing rule. The evaluation of the firing rules

is sequential in the sense that rules are sequentially evaluated until at least one of

them is satisfied. Thus an actor can only fire if one or more than one of its firing

rules are satisfied. In general, though, synchronous data-flow actors have a single

firing rule of the same kind: a number of tokens that must be available at each of

the inputs. For example, an adder with two inputs has a single firing rule saying

that each input must at least have one token.



26 Chapter 2. Background

As pointed out by [Parks, 1995] breaking down processes into smaller units such

as data-flow actors firings, makes efficient implementations possible. Restricting

the type of data-flow actors to those that have a predictable consumption and

production pattern makes it possible to perform static, off-line analysis to bound

the memory.

In Data-flow Networks instead of suspending a process on blocking read or

non-blocking write, processes are freely interleaved by a scheduler that determines

the sequence of actor firings. The biggest advantage is that the cost of process

suspension and resumption is avoided[Lee and Park, 1995].

In many signal processing applications the firing sequence can be determined

statically at compile time. The class of data-flow process networks where this is

possible are called“synchronous data-flow networks” and will be commented in

next section.

Data-flow graphs have data-driven semantics. The availability of operands en-

ables the operator and hence sequencing constraints follow only from data avail-

ability. This feature has its limitations. The principal strength of data-flow net-

works is that they do not over-specify an algorithm by imposing unnecessary

sequencing constraints between operators [Buck and Lee, 1994].

2.3.2 Synchronous Data-flow Networks

Synchronous Data-flow Networks (SDF) is a special case of Data-flow Networks in

which the number of tokens consumed and produced by an actor is known before

the execution begins. The same behavior repeats in a particular actor every time

it is fired. Arcs can have initial tokens. Every initial token represents an offset

between the token produced and the token consumed at the other end. It is a

unit delay and is represented by a diamond in the middle of the arc. Figure 2.2

illustrates a Synchronous Data-flow Network.

Schedule can be performed statically. As the execution of the graph is going

to be repeated the compiler should just construct one “complete cycle” of the

periodic schedule. A “complete cycle” is defined as the sequence of actor firings

that returns the graph to its original state. From the static information of the

network we can construct a “topology matrix” that contains relations between
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1
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1

queue

firing rule

P2 needs to receive 2 tokens
from P1 and 1 from P4 to fire

Figure 2.1: Data-flow Process Network

produced/consumed tokens in every arc. The element ij is defined as the number

of tokens produced on the ith arc by the jth actor. Although it is only a partial

info because there is no information on the number of initial tokens on each arc

we can use the matrix to build the static schedule. For doing so we must find the

smallest integer vector that satisfies the equation matrix*vector=0. It must be

noted though that in complex networks these equations may not have a solution.

2.3.3 Boolean Data-flow Networks

Although SDF is adequate for representing large parts of systems it is rarely

enough for representing an entire program. A more general model is needed to

represent data-dependent iteration, conditionals and recursion. We can generalize

synchronous data-flow to allow conditional, data-dependent execution and still

use the balance equations. Boolean Data-flow Networks (BDF) is an extension of

Synchronous Data-flow that allows conditional token consumption and production.

By adding two simple control actors like switch and select we can build con-

ditional constructs like if-then-else and do-while loops. The switch actor gets a
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P2 consumes 3 tokens for each firing and
P1 produces 2 tokens each firing: The network
is unbalanced.

Figure 2.2: Synchronous Data-flow Process Network

control token and then copies a token from the input to the appropriate output,

determined by the boolean value of the control token. The select actor gets a

control token and then copies a token from the appropriate input, determined by

the boolean value of the control token, to the output. These actors are not SDF

because the number of produced/consumed tokens is not fixed and depends on an

input boolean control [Buck and Lee, 1994].

2.3.4 Dynamic Data-flow Networks

Dynamic Data-flow Networks are a Boolean Data-flow Networks with one addi-

tional variation: the control actors mentioned in the BDF model can now read

multiple token values and the data actors can be fired conditionally based on the

control actors read. Although dynamic scheduling might also be used for any of

the previous models, it is a must for this model as production/consumption rates

may vary during execution.

Dynamic scheduling can be classified as data-driven (eager execution),

demand-driven (lazy execution) or a combination of the two. In eager execution a

process is activated as soon as it has enough data as required by any of its firing

rules. In lazy execution a process is activated only if the consumer process does

not have enough data tokens. When using bounded scheduling (see [Parks, 1995])

three rules must be applied: (a) a process is suspended when trying to read from

an empty input, (b) a process is suspended when trying to write onto a full queue
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and (c) on artificial deadlock, increase the capacity of the smallest full queue until

its producer can fire.

2.3.5 Computation Graphs

Computation graphs are a model of parallel computation similar to Process Net-

works. It is represented by a finite graph with a set of nodes, each associated with

a function, a set of arcs , where a branch is a queue of data directed from one

node to another. Four non-negative integers (A, U, W and T) are associated with

each arc. A is the number of tokens initially present in the arc, U is the number

of tokens produced by the function associated with the node, W is the number of

tokens consumed by the function associated with the node, T is a threshold that

specifies the number of tokens that must be present in the arc before the function

can be fired (obviously, T ≥ W).

Questions of termination and boundness are solvable for Computation Graphs,

which turn out to be a restricted version of PN. It is interesting to note that

Synchronous Data-flow Networks is a special case of Computation Graphs where

T=W for all arcs.

2.3.6 Context-Aware Process Networks

A special kind of Process Network introduced as an extension to the basic model

but that is interesting for our purposes is that of Context-aware Process Networks

[van Dijk et al., 2002]. This new model emerges from the addition of asynchronous

coordination to basic Kahn Process Networks so process can immediately respond

to changes in their context. This situation is very common in embedded systems.

In Context-aware Process Networks, stream oriented communication of data is

done through regular channels but context information is sent through unidirec-

tional register links (REG). These links have destructive and replicative behavior:

writing to a full register overwrites the previous value and reading from a register

returns the last value regardless if it has been read before or not. Thus, regis-

ter links are an event-driven asynchronous mechanism. As a consequence, the

behavior of a CAPN depends on the applied schedule or context.
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A simple example of a system that can be effectively modeled by a context-

aware network is a transmitter/receiver scheme in which the receiver needs to send

information about its consumption rate to the transmitter so transmission speed

can be optimized. The basic transmitter/receiver scheme can be implemented

with a Kahn Process Network but in order to implement feedback coordination

we need to use the register link provided by context-aware process networks.

Context-aware systems are indeterminate by nature. Unless the indeterminate

behavior can be isolated, a composition of indeterminate components becomes

a non-deterministic system, which is possible but not practical. Nevertheless as

mentioned in [van Dijk et al., 2002] some techniques can be used in order to limit

indetermination.



Chapter 3

Related Work

This chapter discusses the Metamodel for Multimedia Systems, a customization of

a data-flow network for multimedia systems. The metamodel is readily-usable for

object-oriented analysis in the sound and music domain. However, the translation

from models to concrete implementations is still a big gap. This gap should be

covered by design patterns. This chapter also discusses a generic Data-flow Pattern

Language. Though it is very related to our work, it does not cover many aspects

that are specific of sound and music.

3.1 Sound and Music Models

3.1.1 Metamodel for Multi Media Systems

4MS [Amatriain, 2004] stands for MetaModel for Multi-Media Systems, and was

initially known as DSPOOM. 1 4MS can be instantiated to describe any multi-

media processing design, and that combines the advantages of the object-oriented

paradigm with system engineering techniques and Graphical Models of Computa-

tion.

The 4MS metamodel is based on a classification of signal processing objects

into two primary categories: Processing objects that operate on data and control,

and Processing Data objects that passively hold media content. Data input to and

1DSPOOM stands for Digital Signal Processing Object-Oriented Metamodel
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output from Processing objects is done through Ports, and control data is handled

through the Control mechanism.

In 4MS, applications consist of networks of processing objects interchanging

signal flow (via ports) and events (via controls).

Processing objects are the object-oriented encapsulation of a process or algo-

rithm. They include support for synchronous data processing and asynchronous

event-driven control processing as well as a configuration mechanism and an ex-

plicit life-cycle.

Processing objects can only process Processing Data objects. Processing Data

classes should offer a number of services like: introspection (accept queries about

which are its attributes); homogeneous interface, to operate independently of the

concrete subclass; encapsulation of its internal data representation; persistence,

automatically built-in; and Display facilities that allow for debugging and visual-

izing its content at any time.

The metamodel defines several class hierarchies (processing, port, control. . . )

and a processing network composite model.

3.1.2 4MS as a Graphical Model of Computation

In his thesis, Amatriain classifies the 4MS metamodel as a Context-aware Data-

flow Network. [Amatriain, 2004] First, it can be assimilated to Data-flow Networks

because Processing objects can produce and consume different quantities of data

tokens. The “firing rules” of Data-flow Networks are translated into region sizes in

the 4MS. Second, the control mechanism introduces an extension the basic Process

Network and Data-flow language. This extension is almost identical to that in

Context-aware Process Networks. The coordination introduced by the context

information in Context-aware Process Networks has the same requirements and

features than 4MS control mechanism.

3.2 A Data-flow Pattern Language

Many pattern catalogs have been written on different domains. Some of them

relates in more or less degree to the Graphical Models of Computation, and the
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data-flow paradigm [Buschman et al., 1996a, Shaw, 1996]

others covers specific aspects of data-flow [Meunier, 1995, Edwards, 1995]; and

some of them are specialized patterns for a particular domain [Posnak et al., 1996].

But the most complete catalog is given by Dragos-Anton Manolescu who

gives a complete overview of software patterns applied to the data-flow model

[Manolescu, 1997]. Based on the previous studies and on a different set of system

examples, Manolescu organizes the existing patterns, redefines its granularity and

identify 3 other patterns.

These patterns are not a theoretical approach to data-flow models but rather

the result of an exhaustive analysis of existing software solutions. Therefore, they

represent a key element to translate the model requirements into the software

domain.

Data-flow is a very broad area, thus is not strange that we find different systems

with conflicting quality-of-service requirements. The applicability of Manolescu’s

pattern language to the sound and music domain varies depending on the pattern.

The most architectonic or high-level ones apply very well, but others have forces

that are in conflict with those in the sound and music domain. Moreover, sound

and music models have many specific requirements that are not covered at all by

the general patterns.

The pattern language is composed by the following patterns that will be sum-

marised in the following sections: Data-flow architecture, Payloads, Module data

protocol, and Out-of-band/in-band partitions.

3.2.1 Data flow architecture

A variety of applications apply a series of transformations to a data stream. The

architectures emphasize data flow and control flow is not represented explicitly.

They consist of a set of modules that interconnect forming a new module or net-

work. The modules are self-contained entities that perform generic operations that

can be used in a variety of contexts. A module is a computational unit while a

network is an operational unit. The application functionality is determined by:

types of modules and interconnections between modules. The application could

also be required to adapt dynamically to new requirements.
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In this context, sometimes a high-performance toolkit applicable to a wide

range of problems is required. The application may need to adapt dynamically or

at run-time. In complex applications it is not possible to construct a set of com-

ponents that cover all potential combinations. The loose coupling associated with

the black-box paradigm usually has performance penalties: generic context-free

efficient algorithms are difficult to obtain. Software modules could have different

incompatible interfaces, share state, or need global variables.

The Solution is to highlight the data flow such that the application’s architec-

ture can be seen as a network of modules. Inter-module communication is done

by passing messages (sometimes called tokens) through unidirectional input and

output ports (replacing direct calls). Depending on the number and types of ports,

modules can be classified into sources (only have output ports and interface with

an input device), sinks (only have input ports and interface with output devices),

and filters (have both input and output ports).

Filter 1 Filter 2

Filter 3

Filter 4 Filter 5

Filter 45

Source 1

Source 2

Sink

Static composition 
(to improve performance)

Figure 3.1: Data-flow architecture

Because any of the component depends only on the upstream modules it is pos-

sible to change output connections at run-time. For two modules to be connected

the output port of the upstream module and the input port of the downstream
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module must be plug-compatible. Having more than one data type means that

some modules perform specialized processing. Filters that do not have internal

state could be replaced while the system is running. The network usually triggers

re-computations whenever a filter output changes.

In a network, adjacent performance-critical modules could be regarded as a

larger filter and replaced with an optimized version, using the Adaptive Pipeline

pattern [Posnak et al., 1996] which trades flexibility for performance. Modules

that use static composition cannot be dynamically configured.

3.2.2 Payloads

In data-flow-oriented software systems separate components need to exchange in-

formation either by sending messages (payloads) through a communication channel

or with direct calls. If it is restricted to message passing, payloads will encapsulate

all kinds of information but components need a way to distinguish the type as well

as other message attributes such as asynchronousity, priority... Some overhead is

associated with every message transfer. Depending on the kind of communication,

the mechanism must be optimized.

Type

Asynchronous

Priority

Descriptor

Control Message

Type

Asynchronous

Priority

Descriptor

Control Message

Image Name

Image Size

Format

Data

Image Data

Type-specific
Parameters

Figure 3.2: Different payloads and their components

Payloads give a solution to this problem. Payloads are self-identifying, dy-

namically typed objects such that the type of information can be easily identified.
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Payloads have two components: a descriptor component and a data component.

In the case where different components are on different machines, payloads need

to offer serialization in order to be transmitted over the channel.

Payload copying should be avoided as much as possible using references when-

ever possible. If the fan out is larger than one, the payload has to be cloned. In

order to reduce copies even in that case, the cloned copies can be references of the

same entities and only perform the actual copy if a downstream receiver has to

modify its input. If it is not possible to avoid copying there are two possibilities:

shallow copy (copy just the descriptor and share the data component) and deep

copy (copy the data component as well maybe implementing copy-on-write).

The greatest disadvantage of the payload pattern compared to direct call is its

inefficiency, associated with the message passing mechanism. One way to minimize

it is by grouping different messages and sending them in a single package.

A consequence of this pattern is that new message types can be added without

having to modify existing entities. If a component receives an unknown token, it

just passes it downstream.

3.2.3 Module data protocol

Collaborating modules pass data-blocks (payloads) but depending on the applica-

tion, the requirements for these payloads could be very different: some may need

asynchronous user events, some may have different priority levels, some may con-

tain large amounts of data. On the other hand, sometimes the receiving module

operates at a slower rate than the transmitter, to avoid data loss the receiver must

be able to determine the flow control.

Besides, we must take into account a number of possible problems. Large

payloads make buffering very difficult. Payloads with time-sensitive data have

to be transferred in such a way that no deadlines are violated. Asynchronous or

priorized events are sent from one module to another- Shared resources for inter-

module communication might not be available or the synchronization overhead

not acceptable. And flow control has to be determined by receiving module.

There are three basic ways to assign flow control among modules that exchange

Payloads:
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• Pull (functional): The downstream module requests information from the

upstream module with a method call that returns the values as result. This

mechanism can be implemented via a sequential protocol, may be multi-

threaded and may process in-place. The receiving module determines flow

control. It is applicable in systems where the sender operates faster than

the receiver. This mechanism cannot deal with asynchronous or high-priority

events.

Module 1 Module 2

Request (1)

Return (2)

Data Flow

Token

Figure 3.3: The pull model for inter-module communication.

• Push (event driven): The upstream module issues a message whenever new

values are available. The mechanism can be implemented: as procedure calls

containing new data as arguments; as non-returning point to point messages

or broadcast; as high-priority interrupts; or as continuation-style program

jumps. Usually the sending module does not know whether the receiver is

ready or not. To prevent data loss the receiver can have a queue. If there

are asynchronous or high-priority events, the queue must let them pass, else

a simple queue can do.

Module 1 Module 2
Message

Data Flow

QueueToken

Figure 3.4: The push model for inter-module communication.
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• Indirect (shared resources): Requires a shared repository accessible to both

modules. When the sender is ready to pass a payload to the receiver, it

writes in the shared repository. When ready to process, the receiver takes

a payload from the repository. The sender and the receiver can process

at different rates. If not all the payloads are required by the receiver, the

upstream module can overwrite data.

Module 1 Module 2

Transfer (1) Transfer (2)

Data Flow

Token Token

Shared
Repository

Figure 3.5: The indirect model for inter-module communication.

It must be noted though that having more than one input port complicates

flow control and requires additional policies.

3.2.4 Out-of-band and in-band partitions

An interactive application has a dual functionality: first it interfaces with the

user handling event-driven programming associated with the user interface and

the response times have to be in the order of hundreds of milliseconds; second it

handles the data processing according to the domain requirements

User actions are non-deterministic so user interface code has to cover many

possibilities. Data processing has strict requirements and the sequence of oper-

ations (algorithm) is known before hand. Human users require response in the

order of hundreds of milliseconds but applications emphasize performance that is

irrelevant for the user interface. Generally, a large fraction of the running time

is spent waiting for user input. The user interface code and data processing code

are part of the same application and they collaborate with each other.

The solution is to organize the application into two different partitions:
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• Out-of-band partition: typically responsible for user interaction.

• In-band partition: it contains the code that performs data processing. This

partition does not take into account any aspects of user interaction

Interpartition
communication

In-band code
(high performance)

Out-of-band code

Out-of-band partition

In-band partition

Events

Media tokens

Figure 3.6: Out-of-band and in-band partitions within an application.
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Chapter 4

Introduction to Audio Data-flow

Patterns

We have shown that exist previous efforts in building pattern languages for the

data-flow paradigm. The following chapters offer an initial pattern catalog for

data-flow systems in sound and music computing. All patterns presented in this

catalog fits within the generic Data-flow Flow Architecture pattern.

The Data Flow Architecture pattern solves the problem by designing a system

which performs some number of sorted operations on similar data elements (that

we will call tokens ) in a flexible way so they can dynamically change the overall

functionality without compromising performance. The pattern solution is an ar-

chitecture that can be seen as a network of modules with strict interfaces at the

module boundary, allowing a large number of possible combinations.

Modules read incoming tokens through their in-ports and writes them through

their out-ports. Module connections are done by connecting out-ports to in-ports,

forming a network.

In sound and music computing, tokens flow through modules in two different

fashions: at regular (or almost regular) rate, which is known as a stream flow,

and when they flow without any regularity, which is known as event flow. For

example, the flow of data coming from an audio card is a stream flow, while the

flow of note-on and note-off messages from a MIDI keyboard is an event flow.

Each module in a network is periodically executed, which means a call to the

43



44 Chapter 4. Introduction to Audio Data-flow Patterns

FFT Peak detection Pitch estimation Peak continuation

Spectral sine generatorFFT

Window generation

Window generation BH92

Sine magnitudes,
frequencies,
and phases

Residual spectrum

_

Input 
sound

Figure 4.1: A use case for audio data-flow: the Spectral Modeling Synthesis.

module’s execution method (also known as module’s algorithm).

It is important to note that the Data Flow Architecture pattern does not im-

pose any restrictions on issues like message passing protocol, module execution

scheduling, or data token implementation. All these aspects imply different prob-

lems that can be addressed in other fine-grained patterns, like the ones in the

present pattern language. This pattern granularity [Vlissides, 1998] proved very

useful because we have been able to incorporate orthogonal patterns that work

synergistically among them and with the existing ones from Manolescu.

The proposed patterns are inspired by our experience in the audio domain. And

some patterns are clearly motivated by the requirements of the spectral processing.

A use case that exemplifies its complexity is the analysis-synthesis using sinusoids

plus residual (see figure 4.1), where different Fast Fourier Transforms are done

consuming different number of tokens (audio samples) in parallel.

The following pattern structure has been chosen for all our patterns. Adherence

to a structure facilitates browsing the catalog and comparing patterns.

Context and Problem Statement Sets the solution space. Defines what is an

“admissible” solution and what is not. Problem statement is just the core

statement of the problem. Should be punchy and easy to remember. But it

is not different from context in essence.
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Forces Do not define the solution space but gives criteria on what is a good

solution and what is a bad one. In other words, the quality-of-services that

we want to optimize.

Solution The architecture/design/implementation that solves the problem, with-

out giving many justifications. The given solution should make clear that it

belongs to the solution space.

Consequences They justifies why the solution is a good one in terms of the

stated forces. That is, why all the forces are optimized (or resolved) or how

the forces are balanced in case they are conflicting.

Related Patterns References higher-level patterns describing the context in

which this pattern can be applied, and lower-level patterns that could be

used to further refine the solution. As well as other used or similar patterns.

Examples Gives a list of real-life systems where the pattern can be found imple-

mented.

Taking into account the previously introduced background, the patterns con-

tributed in this thesis are presented in the next 3 chapters, organized in three

categories:

• General Data-flow Patterns: Address problems about how to organize

high-level aspects of the data-flow architecture, by having different types of

modules connections.

• Flow Implementation Patterns: Address how to physically transfer to-

kens from one module to another, according to the types of flow defined

by the general data-flow patterns. Tokens life-cycle, ownership and memory

management are recurrent issues in those patterns.

• Network Usability Patterns: Address how humans can interact with

data-flow networks without compromising the network processing efficiency.
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General Data-flow Patterns

5.1 Semantic Ports

Context

Applications with a dataflow architecture consist on a directed graph of modules,

like shown in figure 5.1. Is a very common case that a module receives tokens

with different semantics. For example, a module that mixes n audio channels will

receive tokens of audio data corresponding to each channel. Identifying which

token corresponds to each channel —the token semantics— is fundamental to

produce output tokens containing the audio mix. The Payloads pattern described

by Manolescu provides a solution to this problem consisting on adding a descriptor

component into each token which provides the semantic information about the

token, as well as type-specific parameters. The implication of applying Payloads is

that incoming tokens needs to be dispatched according to its descriptor component,

before doing any processing.

Figure 5.1: A directed graph of components forming a network
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Tokens produced by a module may also have different semantics. One might

want to send to a connected module only tokens with a given semantics and not

all the produced tokens.

Problem

How can a module manage tokens according to their semantics in order to deal

with the incoming ones in different ways and send the produced ones to different

destinations?

Forces

• Module implementation should be as simple as possible, because modules

are developed by different authors while general infrastructure is just imple-

mented once by experienced programmers.

• Dispatching tokens adds complexity to module programming

• Module execution should be efficient in time, often real-time constrains are

imposed.

• Dispatching tokens adds a run-time overhead.

• Token semantics fields on tokens add overhead

• Token semantics should be given by the module and they should not be

restricted.

• Incoming might also have different priorities, and modules should consume

the tokens with greatest priority first.

Solution

Use different ports for every different token semantics in each module. So that

modules have as many in-ports and out-ports as different input and output se-

mantics are needed. Instead of connecting modules directly, connect modules by

pairing out-ports with in-ports, as shown in figure 5.2. Module’s execution method

knows the semantics associated to each port, thus, it can obtain tokens of specific

semantics just by picking the proper in-port. Because connections are done among
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Figure 5.2: A network of components with multiple ports

ports instead of modules, a processed tokens will target the proper destination just

by sending tokens through the proper out-port.

Consequences

Tokens does not need to incorporate a description component. Module imple-

mentation is simplified because programming a token dispatcher regarding its

semantics is not needed. Also, run-time penalty associated to the dispatching is

avoided. The pattern solution implies that token semantics is not defined inside

the tokens with a description component, but semantics is something intrinsic of

the ports.

Retaking the audio mixer example; instead of having a “channel” field on each

token arriving to the mixer, using the Semantic Ports pattern, we would have a

mixer with n different in-ports, each one receiving tokens of a single channel.

Tokens with different priorities should be routed to different in-ports. The

module knows the priority of each in-port and so is able —in its execution

method— to consume tokens in the right order.

Related Patterns

Most patterns in this collection build on Semantic Ports: Driver Ports, Stream and

Event Ports, and Cascading Event Ports are clear examples of separation of ports

regarding its semantics.

Semantic Ports also relates to Payloads in the sense that the problems they

solve are similar but, since they have different forces, they end up with different

solutions.
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Semantic Ports can handle different token types by using the Typed Connection

pattern.

Examples

CLAM uses Semantic Ports to separate different flows. Visual environments

like Pure-Data (PD) [Puckette, 1997] or MAX/MSP [Puckette, 1991] also do.

They ports separate both audio (“tilde”) streams lower rate streams on their

semantic. We find another good examples in Open Sound World (OSW)

[Chaudhary et al., 1999] and the JACK sound server [Davis et al., 2004].

Anti-examples —systems that do not use Semantic Ports because they

use other approaches— are also interesting to see for this pattern: Marsyas

[Tzanetakis and Cook, 2002] and SndObj [Lazzarini, 2001], they do not use sep-

arated ports for its network connections but they do it at module level. SndObj

modules, for instance, keeps a pointer to their connected producers and reads its

output signal doing a direct call.

5.2 Driver Ports

Context

Module execution on data-flow system is driven by the availability of flowing

tokens. But not all token flows drive the execution.

Imagine a module which receives an audio signal and performs a low-pass filter

with a given cutoff frequency. The audio signal is fed into the module with a

constant rate but the cutoff values are fed seldom into the module. These cutoff

values typically come from a sequencer module or a knob in the user interface.

Each execution of the module must wait for the availability of new audio signal

data. But there is not such dependency on the seldom received cutoff values, it

just uses the last value. To summarize, whereas audio stream tokens drive the

modules execution, the frequency event tokens does not.
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Problem

How can we make module execution depend on the availability of tokens on certain

in-ports and not on others?

Forces

• Concrete modules implementation should be simple.

• Visual programming tools should be able to distinguish the flow that drives

the module execution from the one that does not.

Solution

driver 
in-ports

driver 
out-port

non-driver in-port

non-driver out-ports

execution-driving flow direction

Figure 5.3: A representation of a module with different types of in-ports and
out-ports

Allow the concrete module developer to define which are the driver in-ports and

which are not. Give the modules a common interface from which external entities

can know which are the drivers and which are not. The module execution will

be enabled by the availability of enough tokens on the driver in-ports. Note that

enabling is not the same as triggering. The network scheduling policy determines

if a module will be executed as soon as it is able —in a pull strategy— or if it will

be postponed until other module executions end.
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One implementation strategy :

Figure 5.4 shows a class collaboration with two class hierarchies: Module and

Port. This structure allows separate general infrastructure in base classes mak-

ing the concrete classes simpler to implement —this is actually an example of

white box reuse in frameworks. Some modules services are implemented in the

base class, usually delegating to its ports, and thus freeing the concrete module

writer form this responsibility. An important detail here, is that concrete modules

own its ports, declared as normal member attributes. However, at construction

time, they get “registered” to the module base class so that it can implement

generic operations, independently of the concrete module. Examples of such op-

erations are ableToExecute which can be useful to a firing manager; and driver-

Ports/nonDriverPorts which give the lists of driver and non-driver ports to, say,

a GUI client.

Module

+ableToExecute()

+execute()

ConcreteModule

+execute()

InPort

+haveData()

*1

1

*

ports are owned by concrete
modules, but references to them
are also kept in the base class in
order to put general behaviour 
on the base class.

OutPort

+canWrite()

* 1

1

*

<<Client>>

Client

Port

-isDriver: bool

+isDriver(): bool

Figure 5.4: Separated Module and ConcreteModule classes, to reuse behaviour
among modules

Other patterns like Stream and Event Ports and Typed Connections also benefit

from using this class structure. However, each pattern enriches the Port and
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Module base class interfaces to fit its needs.

Consequences

Whether a module is ready to be executed or not can be checked without relying

on the concrete module implementation because the visibility of the separation

between driver and non-driver ports. This is safer and simplifies concrete module

implementation.

Visual builder tools can distinguish driver and non-driver flows by identifying

driver and non-driver ports and displaying them differently.

As mentioned in [Foote, 1988] module networks are often built with visual

programming tools. Such tools should give the user a clear separation between

stream ports and event ports, else, event connections might hide the main data-

flow —the stream flow that drives the modules execution.

For example, CLAM’s visual builder called Network Editor (see figure 5.5)

uses horizontal connections (left to right) for driver flow, and vertical (top-down)

connections for the non-driver flow.

Other visual builders takes different approaches. Open Sound World (OSW),

for instance, paints the driver ports in green while the non-driver ports are gray.

This can be appreciated —though if the copy is not colored it can be hard— in

figure 5.6.

Related Patterns

Driver Ports is strongly related with Stream and Event Ports. Actually, in most

of the examined applications those ports that drive the execution coincide with

the stream ports. However, they are better off being separate patterns because

they solve orthogonal problems. Moreover, examples exist where driver ports and

stream ports are totally independent.

Systems whose driver ports are stream ports that can produce and consume

different number of tokens needs dynamic scheduling. Its design is explained in

the Multi-rate Stream Ports pattern.
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Figure 5.5: Screenshot of CLAM visual builder (NetworkEditor) doing SMS
analysis-synthesis
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Figure 5.6: Screenshot of Open Sound World visual builder

Examples

Pure Data (PD) [Puckette, 1997] and MAX/MSP [Puckette, 1991] are graphical

programming environment for real-time musical applications with a widespread

use among composers. Its ports are called inlets and outlets and they are visually

arranged horizontally. With few exceptions (notably the “timer”), objects treat

their leftmost inlet as “hot” in the sense that messages to left inlets can result

in output messages. The rest of inlets are “cold” in that they only store the

received message and do not trigger any execution. Thus, the “hot” or leftmost

inlets are the driver ports. However, since modules have only one driver port and

modules are executed at the time a token arrives at the driver port, the following

problematic situation may occur when two modules are connected by more than

one connection: the module might be triggered before receiving all its data because

the “hot” inlet was not the last to receive the data. In order to avoid this output

messages are —by convention— written from right to left and modules connections

should be (visually) done without any crossing lines. Finally, PD and MAX/MSP

is important example where driver ports do not coincide with stream ports.

Open Sound World (OSW) [Chaudhary et al., 1999] have a similar approach

to PD and MAX/MSP but it does not limit the number of driver ports. In the

JACK audio server [Davis et al., 2004] all ports are drivers. CLAM also uses
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Driver Ports and restricts its drivers to be constant-rate stream ports.

5.3 Stream and Event Ports

Context

In audio systems, two kind of flows exist: stream flow, when tokens flows at

continuous (or almost continuous) rate; and event flow, when tokens flow with an

unpredictable rate.

A module may receive tokens of both kinds —stream and event— coming from

different sources. Moreover, streams may arrive at different rates. For example, a

module may receive two audio samples streams one at 44100 Hz and the other at

22050 Hz. Figure 5.7 shows another example: a module is receiving two streams

at different (though constant) rates and an irregularly distributed flow of events.

Its output stream have the same rate as the second input stream.

0 10 20 30 40 50 60 70 80 90
time

stream in 2

stream in 1

in events

stream out

Figure 5.7: Chronogram of the arrival (and departure) time of stream and event
tokens

Such a module consume its incoming tokens and then calls its execution method

that will take the consumed tokens as its input. When receiving tokens at dif-

ferent rates, the module needs to synchronize all the incoming tokens prior to its

processing. This synchronization can also be seen as a time-alignment of incom-

ing tokens, and it implies knowing the time associated to each token. Here, is

important to differentiate the time associated to the tokens, with the “real” time

where the module is executed. The two kind of times might be totally different.

Figure 5.8 illustrates the alignment of tokes of different nature.
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Figure 5.8: Alignment of incoming tokens in each execution. Note that time cor-
responds to token’s time-information and does not relate to the module execution
time (though they are equally spaced).

While incoming stream tokens always needs to be accurately aligned, this is

not always true for incoming event tokens. Some applications requires a precise

alignment of event tokens, while others admit a loose time alignment.

An obvious approach is to use the Payloads pattern, adding a precise time

information —time-stamp— to each token. In real-time systems, this time-stamp

relates to the time when the token is introduced into the system. In non real-time

systems it relates to a virtual time. Transformations on a token should preserve

the original time-stamp. However, this Payloads approach can be overkilling in

some cases. For example, when stream tokens flow at a high rate, as it happens

with audio samples.

Problem

In order to synchronize incoming tokens we need its time information. How can

we get the time information of incoming tokens when they arrive both as streams

in different rates and as events?

Forces

• Time-stamp is a big overhead when the data token is relatively small.

• Propagating timestamps from the consumed tokens to the produced tokens

is a run-time overhead and makes concrete module implementation more
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complex.

• Concrete module implementation should be simple.

• All stream sources must share the same hardware clock, so that their (token)

rates can not vary among different streams.

Solution

Calculate time information of incoming stream tokens instead of using time-

stamps. If the application needs accurate timing for events use time-stamps —only

for event tokens—, else do not.

Separate the stream and event flow in different kinds of ports: stream and event

ports. Place the stream timing responsibility into the stream in-port class. Stream

in-ports are initially configured with a “token-rate” and “first-token-time” values,

and they also keep the sequence —with a counter, for example— of consumed

tokens. When a module execution method asks the stream in-port for new tokens

to consume, the in-port provides the time information along with the tokens itself.

Ports parameters (“token-rate” and “first-token-time”) configuration is a key

issue to solve. Two main approaches exist: ports handshaking and centralized

management.

Ports handshaking consists in propagating parameters down-stream. In-ports

receives parameters from their connected out-ports, and modules propagate them

from in-ports to out-ports. In most cases, modules only need to copy them from

the in-ports to out-ports. However, in some cases, the module processing may

introduce delay and may change the token-rate; thus, this must be reflected in the

out-port settings. In consequence, modules do not impose port parameters, they

receives it and propagate them. Of course, source modules 1 are the exception to

that rule. They must set the out-port parameters, because they are the source of

the stream.

The second approach —centralized management— consist in incorporating an

entity that orchestrates the configuration —and maybe the modules execution—

of the whole network. This configuration manager is responsible for configuring

1Source modules are that ones that do have stream out-ports but do not have any stream
in-ports
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all the stream ports in the network.

Alignment of event tokens with stream tokens is done in slightly different ways

depending on whether the application needs accurate event timing or not —that

is, whether they incorporate time-stamps or not. Note that on each execution,

the module may consume not only one stream token but a bunch of them. In

some cases, like with audio samples, even a large number of them like, say, 1000.

If incoming events are time-stamped, the module knows the time information for

all the incoming tokens, thus the module can align each event token with the

stream tokens precisely. If events are not time-stamped, the module should align

all consumed events with the first consumed stream token of each in-port.

Consequences

Making the stream tokens time implicit instead of explicit, the space overhead is

avoided. For event tokens, time-stamps is allowed, though not imposed by the

pattern solution. In case of having timestamps in event tokens the overhead is not

as problematic as with stream tokens, since they flow non continuously, in much

lower frequency than streams.

Events Jitter: Having a big number of stream tokens to be consumed on each

execution and having non time-stamped event tokens at the same time is a com-

mon cause for jitter. That is, unsteadiness or irregular variation on the time the

system respond to incoming events. The amount of jitter is bounded by the time

interval between executions, which is proportional to the number of stream tokens

consumed on each execution. Thus, making modules consume fewer stream tokens

each time, reduces jitter. Of course, when events comes in with time-stamps, jitter

can be eliminated completely. The consequences of having jitter varies enormously

depending on the concrete application. In most cases jitter can be neglected, in

other cases, however reducing it is paramount.

Ports connectivity: The solution forbids time-stamps in the stream tokens

and this restricts how stream ports can be connected. Because time must be

inferred from the incoming stream sequence, in-ports must receive well formed
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sequences —without gaps, etc.— of an individual stream. Thereof, in general,

N-to-1 connections of stream ports are to be forbidden by the system. However,

an exception to this rule exists when the in-port is able to implicitly perform a

combining operation prior to keeping track of the incoming sequence. For example,

imagine an in-port of audio samples fed by multiple different streams. Parallel

samples are added, forming an audio mix. Then the in-port counts the incoming

tokens the same way as if the source were unique. Apart from addition, packing

—that is, create a new composite token— is another common combining operation.

In general, multiple stream combinations is better handled explicitly in specific

modules. It gives the system designer flexibility to choose his or her combining

operation. Moreover, a system can have token types without any valid combining

operation, thus making implicit combinations impossible.

We have seen that, in general, N-to-1 connections of stream ports are to be

forbidden by the system. On the other hand, N-to-1 connections of event ports are

perfectly fine, since there is no need to infer the token time information from the

order of arrival. Time information is either read from the time-stamp or simply

ignored.

Splitting one stream to multiple streams is a different story: 1-to-N connections

of both stream and event ports are allowed. The consideration that has to be done

here is how to duplicate outgoing tokens flowing to multiple destinations. Two

strategies exist: one is making a copy of each outgoing token to every in-port, and

the other is passing a managed reference to each in-port. In the later case, the

in-ports will have to enforce read-only semantics.

Related Patterns

Stream and Event Ports uses to go together with Driver Ports and, in most of the

cases, stream ports are also the driver ones.

Systems that use Stream and Event Ports may also use Multi-rate Stream Ports

for designing the stream ports —allowing stream ports to consume and produce

at different cadences—, and may use Cascading Event Ports for its event ports

—allowing event ports to propagate events immediately.

Stream ports designed with the Multi-rate Stream Ports pattern defines the
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number of released tokens for each stream port on each execution. This numbers

influence how the ports “token-rate” settings are propagated —in this case, being

re-calculated— from in-ports to out-ports.

Stream and Event Ports can handle different token types by using the Typed

Connection pattern.

Examples

SuperCollider3 [McCartney, 2002] and CSL [Pope and Ramakrishnan, 2003] use

the pattern but events can not arrive at any time: they have a dual rate system,

control rate and audio rate, being control rate a divisor of the audio block rate.

Marsyas, [Tzanetakis and Cook, 2002] uses this pattern though its event ports

does not follow the data-flow architecture because connections are not done ex-

plicitly. Interestingly, it implements the token packing technique (from multiple

sources) as mentioned in the Ports Connectivity section.

CLAM and OSW [Chaudhary et al., 1999] clearly use this pattern, separating

ports for streams and for events.

5.4 Typed Connections

Context

Most simple audio applications have a single type of token: the sample or the

sample buffer. But more elaborated processing applications must manage some

other kinds of tokens such as spectra, spectral peaks, MFCC’s, MIDI... You may

not even want to limit the supported types. The same applies to events channels,

we could limit them to floating point types but we may use structured events

controls like the ones OSC [Wright, 1998] allows.

Heterogeneous data could be handled in a generic way (common abstract class,

void pointers...) but this adds a dynamic type handling overhead to modules.

Module programmers should have to deal with this complexity and this is not

desirable. It is better to directly provide them the proper token type. Besides

that, coupling the communication channel between modules with the actual token
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type is good because this eases the channel internal buffers management.

But using typed connections may imply that the entity that handles the con-

nections should deal with all the possible types. This could imply, at least, that

the connection entity would have a maintainability problem. And it could even be

unfeasible to manage when the set of those token types is not known at compilation

time, but at run-time, for example, when we use plugins.

Problem

Connectable entities communicate typed tokens but token types are not limited.

Thus, how can a connection maker do typed connections without knowing the

types?

Forces

• Process needs to be very efficient and avoid dynamic type checking and

handling.

• Connections are done in run-time by the user, so they can mismatch the

token type.

• Dynamic type handling is a complex and error prone programming task,

thus, placing it on the connection infrastructure is preferable than placing

it on concrete modules implementation.

• Token buffering among modules can be implemented in a wiser way by know-

ing the concrete token type rather than just knowing an abstract base class.

• The set of token types evolves and grows.

• A connection maker coupled to the evolving set of types is a maintenance

workhorse.

• A type could be added in run time.

Solution

Split complementary ports interfaces into an abstract level, which is independent

of the token-type, and a derived level that is coupled to the token-type. The class
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Figure 5.9: Class diagram of a cannonical solution of Typed Connections

diagram of this solution is shown in figure 5.9.

Let the connection maker set the connections throught the generic interface,

while the connected entities use the token-type coupled interface to communicate

each other. Access to typed tokens from the concrete module implementations

using the typed interface.

Use run-time type checks when modules get connected (binding time) to get

sure that connected ports types are compatible, and, once they are correctly con-

nected (processing time), rely just on compile-time type checks.

To do that, the generic connection method on the abstract interface (bind)

should delegate the dynamic type checking to abstract methods (isCompatible,

typeId) implemented on token-type coupled classes.

Consequences

By applying the solution, the connection maker is not coupled to token types.

Just concrete modules are coupled to the token types they use.

Type safety is assured by checking the dynamic type on binding time and

relying on compile time type checks during processing time. So this is both efficient

and safe.

Because both sides on the connection know the token type, buffering structures
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can deal with tokens in a wiser way when doing allocations, initializations, copies,

etc.

Concrete modules just access to the static typed tokens. So, no dynamic type

handling is needed.

Besides the static type, connection checking gives the ability to do extra checks

on the connecting entities such as semantic type information. For example, im-

plementations of the bind method could check that the size and scale of audio

spectra match.

Related Patterns

This pattern enriches Multi-rate Stream Ports and Event Ports, and can be also

useful for the binding of the visualization and the Port Monitor.

The proposed implementation of Typed Connections uses the Template Method

[Gamma et al., 1995] to call the concrete binding method from the generic inter-

face.

Examples

OSW [Chaudhary et al., 1999] uses Typed Connections to allow incorporating cus-

tom data types.

The CLAM framework uses this pattern notably on several pluggable pairs

such as in and out ports and in and out controls, which are, in addition, examples

of the Multi-rate Stream Ports and Event Ports patterns.

But the Typed connection pattern in CLAM is not limited to port like pairs.

For example, CLAM implements sound descriptors extractor modules which have

ports directly connected to a descriptor container which stores them. The extrac-

tor and the container are type coupled but the connections are done as described

in a configuration file, so handling generic typed connections is needed.

The Music Annotator [Amatriain et al., 2005] is a recent application which

provides another example of non-port-like use of Typed Connections. Most of its

views are type coupled and they are mostly plugins. Data to be visualized is

read from an storage like the one before. A design based on the Typed Connection

pattern is used in order to know which data on the schema is available to be
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viewed with each vista so that users can attach any view to any type compatible

attribute on the storage.





Chapter 6

Flow Implementation Patterns

6.1 Cascading Event Ports

Context

It is common that the arrival of an event token into a module implies propagating

events to other modules. For instance, a sequencer controlled instrument has to

send control events to several sound synthesis modules in response to an incoming

note-on event. If the propagation chain has several levels and the event propaga-

tion through a module is not performed until it is executed, some of the receiver

modules may execute several times before receiving the event tokens. So we need

the event tokens to be propagated before any other module is executed.

Problem

How can we send event tokens and run associated actions on the receiver, including

propagation, so that they get to the destination before other modules are executed?

Forces

• Module execution should be able to send events.

• Event token reception may imply change the module state.

67
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• Event token reception may imply the sending of new event tokens to other

modules.

• Event token propagation should not be costly in respect to module execution

in order not to break execution cadence and real-time restrictions.

• Coarse event tokens are hard to propagate by copy.

• Feedback loops on event ports should be allowed.

• 1 to N event ports connections should be allowed.

• N to 1 event ports connections should be allowed.

Solution

Provide the concrete module implementers a way to bind a event in-port with

a callback method to be called on event reception. This callback might change

the module state, or propagate other events in cascade through the module event

out-ports. Make the sending of an event through an event out-port imply the

immediate execution of callback methods associated with every connected event

in-port.

Propagate coarse event tokens using references instead copies and make them

read-only for the receiving modules. Limit the life of event tokens sent by reference

to the cascade propagation and, forbid the receiving modules to keep references

further than the callback execution.

Consequences

Event in-port callback implementers should be careful not to do too much things

on them. Events may be sent in bursts; thus, expensive callbacks could break the

real-time restrictions.

Propagation of coarse events is something that could add penalty to in-port

callbacks, but, by using references, this is avoided. Sending references could be

dangerous when considering 1 to N connections, as one of the receiving modules

may modify the event token. This is solved by making them read-only for the

receiving modules.
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in1: EventInPort out1 : EventOutPort

in1

out1

in2 in3

in2: EventInPort in3: EventInPort

newEvent

callback

sendEvent

callback
newEvent

callback
newEvent

Figure 6.1: A scenario with cascading event ports and its sequence diagram.
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Another danger associated to sending references is that modules might keep

references to such tokens. Because of this, keeping references is forbidden, but we

could loose this restriction by using reference counting on event tokens. The use

of garbage collectors is not a good solution due to real-time restrictions.

The solution allows setting up loops on the event ports connection graph.

Those loops might be harmless but they might be pernicious because the cascade

callback calling enters in a non-ending loop. Harmful loops happen whenever the

call sequence reaches a port that was already involved on the cascade.

Static analysis of the network topology to warn the user about harmful loops

is useless: Not every event reception implies propagation on the event out-ports of

the module; it depends on the callbacks methods. Because the sending of events is

a synchronous call, one simple solution is to block sending tokens through a port

which is already sending one. This is implemented just by adding a “sending-on-

progress” flag in each port.

Related Patterns

Event tokens could be restricted to a given set of types, but we could also use the

Typed Connections pattern to a more flexible solution.

Cascading Event Ports provides a flexible way for communicating the two parti-

tions of the Out-of-band and in-band-partitions pattern [Manolescu, 1997]. The user

interface partition communicates with the processing partition via connected event

ports. Since both partitions are in different threads, a safe thread boundary must

be established. Using, for example, the Message Queuing pattern [Douglass, 2003].

This pattern could be seen as a concrete adaptation of Observer

[Gamma et al., 1995] to a data-flow domain where modules can act both as ob-

servers and subjects, in a way that they can be chained.

Examples

CLAM implements controls as cascading event ports. Multiple control inputs and

outputs are supported. By default, events are copied as part of the module state

but you can add a callback method to process each control in a special way. In its

current version (0.91) event tokens are limited to floating point numbers.
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PD [Puckette, 1997], MAX/MSP [Puckette, 1991] they all use cascading event

ports for their non-audio-related modules “hot inlets”.

6.2 Multi-rate Stream Ports

Context

Many applications in the audio and music domain need to process chunks of con-

secutive audio samples in a single step. A common example is an FFT transfor-

mation which consumes N audio sample tokens and produces a single spectrum

token. Thereof, the flowing rate of spectrum tokens is N times lower than the

samples flowing rate. The FFT transformation may also need to process over-

lapping sample windows. That is, the FFT module reads N samples through an

in-port and, after the execution, the window slides a step of M samples, where M

and N are different.

In such applications the stream may undergo a type change (i.e. from samples

to spectrum) after a filter module.1 Moreover, filter modules may have different

number of in-ports and out-ports.

This example shows two different —though related— problems:

• Streams can flow at different rates. Like, for example, sample and spectrum

streams do.

• Modules may need to process different numbers of tokens on each execution,

regardless of the rate of its incoming streams. For example, an FFT module

may require 512 samples while another FFT module may require 1024.

That means that the number of tokens a module consume and produce should

be flexible, allowing modules to operate with different consuming and producing

rates.

How to approach this problem is not obvious. Some real-life systems2 perform

multi-rate processing inside their modules while restricting inter-module commu-

nication to a single rate. Since the number of tokens that a module’s algorithm

1Filter modules are those that have both stream in-ports and stream out-ports
2One example is the JACK [Davis et al., 2004] audio server, with the Jamin mastering tool.
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Figure 6.2: Two modules consuming and producing different numbers of tokens

needs is not the same as the number of tokens consumed on each execution, input

and output buffering is needed inside the module. A weird effect of this approach

is that the module execution not always implies its algorithm execution; when

not enough tokens are ready for the algorithm, the module execution just adds

incoming tokens to the internal buffers. Of course, this solution yields complex

code in every concrete module.

Problem

How to allow modules accessing a different number of consecutive tokens on every

stream port?

Forces

• The number of accessed tokens and the number of released tokens is partic-

ular for each port.

• For a given port, the number of accessed tokens and the number of released

tokens are unrelated.

• Modules have to process a sorted sequence of stream data tokens (usually a

time sorted sequence)

• All the stream tokens have the same priority.

• An out-port could be connected to multiple in-ports so that the tokens pro-

duced might be consumed by different modules.

• A module may need access to a number of consecutive tokens for each in-

coming stream to be able to execute.

• A module execution may produce a number of consecutive tokens for each
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output stream.

• Arbitrary consuming and producing rates in a network renders static

scheduling of executions impossible.

• Feedback loops should be allowed

• Copy of coarse tokens may be an important overhead to avoid.

• Concrete module implementation should be simple.

Solution

Design stream ports so that they support consuming and producing at different

rates. This way they can adapt to the rate the module’s algorithm needs, while

keeping the buffering details outside the module. The in-port and out-ports should

give access to N tokens from a queue3 and should release M tokens on every module

execution. Let the module developer define N and M for each port.

Give the ports and interface for accessing tokens —but only a window of N

tokens at the head of the queue— and for releasing them. Releasing tokens results

in that M tokens will be dequeued and put away from the module reach. “Access”

and “release” are operations implemented as port methods and they are to be

called consecutively by the module execution method. Seen as a single operation,

“access-and-release” is equivalent to “consume”, when called in an in port, and

“produce”, when called in an out-port.

Make the ports own the tokens flowing between two modules, and make them

responsible for all necessary buffering between out-ports and in-ports.

Buffers can be either associated to in-ports or to out-ports. In 1-to-N connec-

tions —that is, a single out-port connected to N in-ports— this decision makes

the difference between heaving N different buffers (at the in-ports) or having a

single buffer (at the out-port).

In the following paragraphs we discuss the implications of having buffers at

the in-ports and at the our-ports.

3By queue we mean the abstract data type with its generic operations without making as-
sumptions on it implementation.
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Buffers at the in-ports: This is the simplest solution to implement. Give to

each in-port an associated buffer (figure 6.3). Tokens being produced from an out-

port are then passed to the connected in-port buffers. Tokens can be either passed

by reference or by copy. Passing tokens by copy is easy to implement since each

in-port is the owner of its tokens. Passing references, on the other hand, is more

efficient because copies are avoided. This efficiency gain can be very important

when tokens are to be passed to many in-ports or when tokens are coarse objects.

Of course, the efficiency gain associated with passing references instead of

copying comes with a price: it is more difficult to implement. Given that multi-

ple modules receive a reference to the same token, aliasing problems have to be

avoided. In-ports have to be designed in a way that guarantees read-only semantics

—or copy-on-write semantics— on the incoming tokens. The other aspect to be

addressed here is the tokens life-cycle. Since token memory can not be freed —or

recycled— while references to it exist, we need a reference-counting mechanism.4

Figure 6.3: Each in-port having its own buffer.

However, passing references to the in-ports is not always feasible. Some appli-

cations may require its modules to operate on tokens placed on contiguous memory

—examples of this are very common in the audio domain— as a consequence, such

modules need the actual tokens data (not references) placed together in circular

buffers at the in-ports.

This shortcoming can be overcome placing the buffers at the out-ports, which

allows having both reference passing and contiguity. Again, we will see that effi-

4Like C++ smart pointers
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ciency comes with a price.

Buffers at the out-ports: Having a single buffer for a 1-to-N connection —

thus, associated to the out-port— allows benefiting from passing tokens by refer-

ence while achieving data contiguity (figure 6.4).

For that, the buffer must be implemented with a circular buffer. Not only the

out-port is accessing the buffer but also the N connected in-ports.

Figure 6.4: A buffer at the out-port is shared with two in-ports.

Allowing a buffer to be written by a producer and read by N different con-

sumers, while allowing each one to produce or consume at a different cadence

needs to done carefully. The following two basic restrictions must be enforced by

design:

• The out-port can not over-write tokens that still have to be red/consumed

by some in-port.

• The in-ports can not read/consume tokens that still have to be written/pro-

duced by the out-port.

Though complex to implement, this approach avoids the need for unnecessary

copies of tokens and allows contiguous memory access to all involved modules.

Summing up: We have seen different strategies for implementing ports buffer-

ing that present a trade-off between simplicity and efficiency. Placing buffers at

the in-ports and passing tokens by copy is the most simple approach. If copies
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are to be avoided, token references can be passed, but they have to be managed.

Sometimes this is not enough. Apart from avoiding copies we need memory conti-

guity. Then, a circular buffer must be placed at the out-port and some restrictions

must be enforced.

Consequences

Since all buffers adaptation is done at the ports level by the general infrastructure,

concrete module implementors do not have to deal with buffers adaptation. That

results in simpler, less error-prone code in every module.

Modules with different production and consumption rates can be connected

together, as drawn in figure 6.2. As a result, this increases the number of the

possible networks that can be built out of a set of modules.

The number of tokens stored in each port connection depends on two factors:

In one hand, the requirements given by each port regarding the number of accessed

and released tokens and, on the other hand, the scheduling policy in use.

This solution implies that, in general, the network will need a dynamic sched-

uler of module executions. To facilitate the task of such scheduler, modules may

provide an interface to inform whether they are ready to execute or not. Such

module method could be easily implemented in the module base class by delegat-

ing the question into every driver port, and returning the and combination if its

responses.

Related Patterns

Multi-rate Stream Ports is applied in the context of systems that uses Stream and

Event Ports, it addresses how stream ports can be designed so that they offer a

flexible behavior.

Multiple Window Circular Buffer pattern addresses the low level implementation

of the more complex variant of Multi-rate Stream Ports, that is buffers at the out-

ports.

The design and implementation of buffer at the out-ports is a clear example of

the Multiple Window Circular Buffer pattern.
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Examples

In most of the systems reviewed, ports of the same type have all the same window

size, and thus do not need to use this pattern. This is, for example, the case

of the CSL [Pope and Ramakrishnan, 2003] and OSW [Chaudhary et al., 1999]

frameworks and the visual programming tool MAX [Puckette, 2002].

On the other hand the Marsyas [Tzanetakis and Cook, 2002], SuperCollider3

[McCartney, 2002] and CLAM frameworks allow different window sizes, but they

follow different approaches.

SuperCollider3 [McCartney, 2002] features variable block calculation and single

sample calculation. For example, modules corresponding to different voices of a

synthesizer may consume and produce different block sizes. The SuperCollider3

framework permits embedded graphs that have a block size witch is an integer

multiple or division of the parent. This allows parts of a graph which may require

large or single sample buffer sizes to be segregated allowing the rest of the graph

to be performed more efficiently.

Marsyas allows buffer size adaptation using special modules. CLAM —

probably for its bias towards the spectral domain— is the most flexible, allowing

any port connection regardless of its window size. CLAM sets up a buffer at each

out-port.

6.3 Multiple Window Circular Buffer

Context

As a result of incorporating the Multi-rate Stream Ports pattern, the ports-

connection queues needs a complex behaviour, in order to access and release dif-

ferent number of tokens.

If it was not enough, such systems often have real-time requirements and some

optimization factors must be taken into account: avoiding unnecessary copies,

totally avoiding allocations and being able to work with contiguous tokens. Take

for example (again) modules that performs the FFT transformation —delegating

to some external library— upon a chunk of audio sample tokens; input samples

must be provided to the library as an array. In the audio domain, not only FFTs
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need to operate with arrays, temporal domain processing is typically done that

way too.

A simple implementation of Multi-rate Stream Ports consists in having a buffer

associated to each in-port. But, unfortunately, this means copying tokens. The

copy-saving implementation of Multi-rate Stream Ports requires a single buffer to

be shared by an out-port and many in-ports. A design for this is not obvious at

all. So, this is what this pattern addresses.

Finally, note that though a normal circular buffer is not suited for accommo-

dating the given requirements, what we are seeking may be seen as a “generalized”

circular buffer. Moreover, this can be useful in scenarios other than data-flow ar-

chitectures.

Problem

What design supports a single source of tokens with one writer and multiple

readers, giving each one access to a subsequence of tokens?

Forces

• Each port must give access to a subsequence of N tokens (the window).

• The subsequence of tokens should be in contiguous memory, since many

algorithms or domain tool-kits and libraries works on contiguous memory.

• Windows sizes and steps should all be independent.

• Reading windows can only map tokens that have been already produced

through the writing window.

• Allocation during processing time should be avoided, since (normal) dynamic

memory allocation breaks the real-time requirements.

• All client executes in the same thread.

Solution

Have a contiguous circular buffer with windows that maps (contiguous) portions

of the buffer. There will be as many reading windows as needed but only one
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writing window. Associate the reading windows with the writing window because,

as we will see they will need to calculate their relative distances. Also, provide

them means for sliding along the circular buffer.

The modules (the buffer clients) executions must be done in the same thread.

Its scheduling can be done either statically —fixed from the beginning— if all

ports consuming and producing rates are known; or dynamically, which is much

simpler to implement.

Windows clients need to follow the following protocol in order to avoid data

inconsistencies:

• The access to windows mapped elements and the subsequent slide of the

window must be done atomically in respect of other window operations. So,

these operations might be regarded as a single read-and-slice (or write-and-

slice) operation. Only when a window has finished the sliding, other clients

can access their own window.

• A reading window can only start a read-and-slice (also known as consume)

operation when it is not overlapping the writing window (overlapping other

reading windows is perfectly fine). This reader-overlapping-writer problem

indicates that the client is reading too fast. This problem should be detected

and, as a response, the reading module should not be executed till more data

has been written into the buffer.

• The writing window can only start a write-and-slice (or produce) operation

when it is not overlapping the furthest reading region. Such overlapping is

possible since regions are circulating over the underlying circular buffer. This

writer-overlapping-reading problem indicate either that a client is reading

too slow or that the buffer size is not large enough. When this is detected,

the writing module should not be executed and should wait for the readers

to advance.

The solution design uses the Layered pattern [Douglass, 2003] for arranging

different semantic concepts at different layers. Concretely, we distinguish three

levels of abstraction (figure 6.5). Starting from the layer that gives direct service

to the clients:
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Figure 6.5: Layered design of port windows.
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Windows Layer This is the upper or more abstract layer, which gives the

clients a view of the windows advancing on an infinite buffer. It offers, at least,

the following interface :

• Accessing the N contiguous elements mapped by the window.

• Advancing a window its slicing step (not necessarily N) as if the windows

where on an infinite buffer.

• Checking if a window is ready to be accessed-and-slided.

The state of this layer keeps the relative distances between each reading and

the writing window. This layer is in charge of detecting when a reading window

overlaps with the writing window, and delegates other checks to its underlying

layer.

Circular Windows Layer The state of this layer keeps the physical pointers (to

a circular buffer) for each window and also provides physical pointers to the upper

layer. This layer is in charge of detecting —and preventing— circular overlapping

with a reading window. That is, the case when the writer is about to write on a

still not read element.

Phantom Buffer Layer This is the lower layer, which knows nothing about

writing and reading and writing windows and is solely dedicated to provide chunks

of contiguous elements for each window. Thereof, this layer’s goal is to to provide

contiguous elements subsequences of size N or smaller. Where N is the size of the

biggest window.

The main problem this layer has to solve is the discontinuity problem associated

to circular buffers —the next element in a logical sequence of the last physical

element is the first physical element. To idea behind the solution is to replicate

the first N elements at the end of the buffer. This can be implemented using a

data structure that we call “Phantom Buffer” and is presented in this catalog as

the Phantom Buffer pattern.



82 Chapter 6. Flow Implementation Patterns

Consequences

The non-overlapping restrictions might suggest that there always exists a distance

between writing and reading windows and, thus, causing the introduction of cer-

tain latency. But this is not the case, because the non-overlapping restrictions

only apply, at the time of an access-and-slide operation. After a window have

been slided, it is perfectly legal to be in an overlapping state. This allows the

reading windows to consume the same tokens that the writing window has just

produced.

The reader-too-slow and writer-too-slow problems can be handled in the con-

text of a dynamic scheduler. Before doing any access-and-slide operation, a can-

Produce() or canConsume() check is done, so that the operation can be safely

aborted.

The consequence of the layered approach is a flexible design that allows chang-

ing the underlying data structure easily, without affecting the windows layer and

its client. It also eases the implementation task since the overall complexity is split

in well balanced layers which can be implemented and tested separately. On the

other hand, those many levels of indirections might carry a performance penalty.

However, it should be note that the implementation does not require polymor-

phism at all. Thus, when implemented in C++, with a modern compiler, most of

the indirections should be converted to in-line code by the compiler, reducing the

function-calls overhead.

In general, setting the window parameters can be done at configuration time;

that is, before the processing or module executions starts.

Related Patterns

This pattern solves the buffer at the out-port approach of the Multi-rate Stream

Ports pattern, which was the optimal one. Multiple Window Circular Buffer uses the

Layered pattern [Douglass, 2003].
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Examples

This pattern is maybe a proto-pattern [www-PatternsEssential, ] as the authors

only know their own implementation in the CLAM framework [www-CLAM, ].

Nevertheless, CLAM is a general purpose framework and several applications with

different requirements have proven the value of the pattern.

6.4 Phantom Buffer

Context

The goal of Multiple Window Circular Buffer is to design a generalized circular

buffer where, instead of having a writing and a reading pointer, we deal with a

writing window and multiple reading windows. The difference between a window

and a plain pointer is that a window gives access to multiple elements which,

moreover, need to be arranged in contiguous memory. Multiple Window Circular

Buffer relies, for its elements storage, upon some data structure with the following

functionalities: One, to be able to store a sequence of any size ranging from 0 to

MAX elements; and two, to be able to store each subsequence up to N elements

in contiguous memory.

A normal circular buffer efficiently implements a queue within a fixed block of

memory. But in a normal circular buffer the contiguity guarantee does not hold:

given an arbitrary element in the buffer, chances are that its next element in the

(logical) sequence will be physically stored on the other extreme of the buffer.

Note that, here, window management is not relevant at all because it is a

responsibility of upper layers. Thus, the only concern of this pattern is how the

low-level memory storage is organized.

Problem

Which data structure holds the benefits of circular buffer while guarantees that

each subsequence of N elements sits in contiguous memory?
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Forces

• Element copies is an overhead to avoid.

• Buffer reallocations are to be avoided.

• It should be possible for clients to read and write a subsequence of elements

using a pointer to the first element. The rational is that modules might want

to use existing libraries that, typically, use pointers as its input and output

data interface.

• Multi-threading is not a requirement.

Solution

The buffer with phantom zone —phantom buffer for short— is a simple data struc-

ture built on top of an array of MAX +N elements. Its main particularity is that

the last N elements are a replication of the first N elements. This guarantees

that starting at any physical position from 0 to MAX − 1, exists a contiguous

subsequence of size up to N elements. In effect, this is clear considering the worst

case scenario: take the element at position MAX − 1; let it be the first one in

a subsequence; since it is a circular buffer of MAX elements, the next element

is in the position 0, but positions from 0 to N − 1 are also replicated at the end

(starting at position MAX); thus the contiguity condition is guaranteed.

Interface of a PhantomBuffer class should include two methods: one for access-

ing a given window of elements, and the other, for synchronizing a given window

of elements. For example, in C++:

A client that wants to read a window, should call the access method, and

read elements starting from the returned pointer. If the client wants to write,

the sequence is a little different; first if should call access, write elements and,

finally, call synchronize. This method synchronizes, when needed, a portion of

the phantom zone with its counterpart in the buffer beginning. To be accurate, a

copy of elements will only be necessary when the window passed as argument to

synchronize have intersection with the phantom or the initial zone.

Summing up, a phantom buffer offers a contiguous array where the last N

elements are a replication of the first N . Each write on the first or last N element
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Figure 6.6: A phantom buffer of (logical) size 246, with 256 allocated elements
and phantom zone of size 10.

template<class T> class PhantomBuffer

{

public:

T* access(unsigned pos, unsigned size);

void synchronize(unsigned pos, unsigned size);

...

};

Figure 6.7: PhantomBuffer class definition in C++

is automatically synchronized in its dual zone. Thus, the client of a phantom

buffer will always have access to chunks of up to N contiguous elements,

Consequences

As a result of this design, clients must be well behaved. This includes two aspects:

The first is that clients that receive a pointer for a given window should not access

elements beyond that window; the second is that, after a write, a client must

call the synchronize method. Failing to do any of this might result in a serious

run-time failure.
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Certainly, this results in a lack of robustness. But this is the price to pay

for the requirement of providing plain pointers to the window, and avoiding un-

necessary copies and reallocations. However, the phantom buffer interface should

not be directly exposed to the concrete module implementation. The port classes

presents a higher level interface to the module while hiding details such as window

parameters and synchronizations.

The circular buffer allocation should be done at configuration time and the

phantom size depends (must be greater) on the maximum window size.

Related Patterns

This pattern can be regarded as a part of a more extensive pattern that provides

a generalized circular buffer with many readers. In this context, the windows

management issues are addressed in the more general Multiple Window Circular

Buffer pattern. Phantom Buffer provides a refinement of the lower-level layer drawn

in the general pattern. Thereof, these two patterns collaborate together to give a

complete solution for a generalized circular buffer.

Examples

This pattern can be found implemented in the CLAM framework. Specifically in

the PhantomBuffer class.
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Network Usability Patterns

7.1 Recursive networks

Context

The potential of the interconnected modules model is virtually infinite. You can

connect more and more modules to get larger and more complex systems. But

module networks are normally defined by humans and humans have limitations

on the complexity they can deal. So, big networks with a lot of connections are

difficult to handle by the user, and this fact limits, actually, the potential of the

model.

One of the reasons that makes audio systems to become larger is duplication.

Duplication happens, for example, whenever two audio channels have to be pro-

cessed the same way, This duplication is very hard to maintain, because it implies

having to apply repeated changes, and this is a very tedious and error prone

process.

Duplication may happen also outside the system boundaries. The same set of

interconnected modules may be present on several systems. Fixes on one of those

systems do not apply to the other one so we have to apply it repeatedly and this

is even more tedious and error prone.

87
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Problem

How to reduce the complexity the user has to handle in order to define large and

complex networks of interconnected modules?

Forces

• User defining big networks maybe too complex

• Human complexity handling is limited on the number of elements and rela-

tions

• Divide and conquer techniques help humans to handle complexity by fo-

cussing on smaller problems instead of the whole problem

• Duplications of sets of modules and connections is hard to maintain

• Reuse of previously designed networks helps on productivity

• Encapsulation hides details that can be useful on tracing the behavior of the

system

Solution

By applying the ’divide & conquer’ idea, we allow the user to define an abstraction

of a set of interconnected modules as a single module that can be used in any

other network. Some of the stream and event ports of the internal modules may

be externalized as the stream and event ports of the container module.

Several internal stream in-ports may be merged as a single external one. So

that, incoming stream tokens are read by all the internal stream in-ports. The

same happens with in and out event ports. But it doesn’t happen with the stream

out-ports. The same reasons that forbid to stream out-ports feed a single stream

in-port apply here.

If the system forbids merging ports on externalization, the externalized ports

may be the internal ones. But when port merging is permitted, the user needs

an abstraction on connecting a single port. This abstraction is given by a Proxy

[Gamma et al., 1995] port.
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Port proxy

Figure 7.1: A network acting as a module.

Depending on the implementation, the proxy port may act as a proxy on con-

nection time or additionally on process time.

A connect time port proxy is a proxy port that delegates binding calls to the

proxied ports. This way, during processing time the communication is done di-

rectly at non-proxy port level.

A processing time port proxy is a proxy port that acts as a the complementary

in/out port for the internal ports. For example, an in proxy port is seen as out

port for the internal ports connected to it. This is similar to have an identity

module that just pipes tokens. The processing time port proxy adds overhead but

it is useful when we need a clear boundary between inwards and outwards.

Also several approaches can be used for the flow control to handle recursive

networks. One approach is to make the inner modules visible to the outer flow

control, so that once all the modules are accessible by the flow control, all happens

the same way it would happen if the recursive network was not there.

A second approach is to hide the inner modules to the flow control. This can

be done by providing an inner flow control to the subnetwork. The subnetwork
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execution as module triggers the inner flow control. This approach is useful when

a special flow control is needed. Also when we want to keep control on the proxied

modules while processing.

Related Patterns

This pattern is a direct use of the Composite and Proxy [Gamma et al., 1995].

The flow control approach that hides inner modules to the outer flow control

by providing a inner one, is a Hierarchical Control [Douglass, 2003].

Adjacent performance critical modules can be replaced by an optimized version

as an static composition, trading flexibility by performance, using Adaptive Pipeline

[Posnak and M., 1996].

Examples

Most audio domain frameworks implement Recursive Networks. For

example MAX/MSP [Puckette, 1991], CSL [Pope and Ramakrishnan, 2003],

OSW [Chaudhary et al., 1999], Aura [Dannenberg and Brandt, 1996b], Marsyas

[Tzanetakis and Cook, 2002] and CLAM.

CLAM provides examples of most of the variants explained before. CLAM

Processing Composites are compiled networks that provide their own flow control

and they are seen for the flow control as a single module. Processing Composites ’s

ports are connection proxies so, external modules are actually connected on pro-

cessing time to the inner ports. On the other side, CLAM also provides dynamic

assembled networks, In this case, dummy modules which pipes directly event and

stream tokens, are used as process time port proxies.

7.2 Port Monitors

Context

Some audio applications need to show a graphical representation of tokens that are

being produced by some module out-port. While the visualization needs just to be

fluid, the processing has real-time requirements. This normally requires splitting
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visualization and processing into different threads, where the processing thread

has real-time requirements and is a high priority scheduled thread. But because

the non real-time monitoring should access to the processing thread tokens some

concurrency handling is needed and this often implies locking.

Problem

We need to graphically monitor tokens being processed. How to do it without

locking the real-time processing while keeping the visualization fluid?

Forces

• The processing has real-time requirements (ie. audio)

• Visualizations must be fluid; that means that it should visualize on time and

often but it may skip tokens

• Just the processing is not filling all the computation time

Solution

The solution is to encapsulate concurrency in a special kind of process module, the

Port monitor, that is connected to the monitored out-port. Port monitors offers

the visualization thread an special interface to access tokens in a thread safe way.

In order to manage the concurrency avoiding the processing to stall, the Port

monitor uses two alternated buffers to copy tokens. In a given time, one of them is

the writing one and the other is the reading one. The Port monitor state includes

a flag that indicates which buffer is the writing one. The Port monitor execution

starts by switching the writing buffer and copying the current token there. Any

access from the visualization thread locks the buffer switching flag. Port execution

uses a try lock to switch the buffer, so, the process thread is not being blocked, it

is just writing on the same buffer while the visualization holds the lock.
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Figure 7.2: A port monitor with its switching two buffers

Consequences

Applying this pattern we minimize the blocking effect of concurrent access on two

fronts. On one side, the processing thread never blocks. On the other, the blocking

time of the visualization thread is very reduced, due that it only lasts a single flag

switching.

Any way, the visualization thread may suffer starvation risk. Not because the

visualization thread will be blocked but because it may be reading always the same

buffer. That may happen when every time the processing thread tries to switch

the buffers, the visualization is blocking. This effect is not that critical and can

be avoided by minimizing the time the visualization thread is accessing tokens,

for example, by copying them and release.

When this effect is too notorious, a solution might be to use three buffers. This

way, even when the visualization is blocking the buffer, the processing thread may

alternate on the other buffers. The constraints that should apply are:

• Two buffer marks are always kept the reading buffer and the last written

buffer.

• Three mutually exclusive operations may happen:

– The processing thread should choose to write on any buffer that has

none of those marks.
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– When the processing thread ends writing it updates the last written

buffer.

– When the visualization thread access, it moves the reading mark to the

current last written mark.

This solution is not that good for real-time as the one based on just two buffers.

The former may block the processing thread, while the latter never blocks it.

Another issue with this pattern is how to monitor not a single token but a

window of tokens. For example, if we want to visualize a sonogram (a color map

representing spectra along the time) where each token is a single spectrum. The

simplest solution, without any modification on the previous monitor is to do the

buffering on the visualizer and pick samples at monitoring time. This implies that

some tokens will be skipped on the visualization, but, for some uses, this is a valid

solution.

The number of skipped tokens is not fixed, thus, this solution may show time

stretching like artifacts that may not be acceptable for some application. Dou-

ble/triple buffering on the port monitor the full window of tokens solves that. It

is reliable but it affects the performance of the processing thread.

Related Patterns

Port Monitor is a refinement of Out-of-band and In-band Partition pattern

[Manolescu, 1997]. Data flowing out of a port belongs to the In-band partition,

while the monitoring entity (for example a graphical widget) is located in the

out-of-band partition.

It is very similar to the Ordered Locking real-time pattern [Douglass, 2003].

Ordered Locking ensures that deadlock can not occur, preventing circular waiting.

The main difference is in their purpose: Port Monitor allows communicate two

band partitions with different requirements.

Examples

The CLAM Network Editor [Amatriain and Arumı́, 2005] is a visual builder for

CLAM that uses Port Monitor to visualize stream data in patch boxes. The same
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approach is used for the companion utility, the Prototyper, which dynamically

binds defined networks with a QT designer interface.

The Music Annotator also uses the concurrency handling aspect of Port Monitor

although it is not based on modules and ports but in sliding window storage.
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Refining The Catalog

8.1 Organizing the Catalog

The 10 patterns presented in this catalog have different scope. Some are very

high-level, like Semantic Ports and Driver Ports, while other are much focused

on implementation issues, like Phantom Buffer). However, they act as a pattern

language in the sense that each pattern references higher-level patterns describing

the context in which it can be applied, and lower-level patterns that could be

used after the current one, to further refine the solution. These relations form

a hierarchical structure drawn in figure 8.1. The arcs between patterns mean

“enables” relations: introducing a pattern in the system enables other patterns to

be used.

This pattern catalog shows how to approach the development of a complete

data-flow system for sound and music computing, in an evolutionary fashion with-

out needing a big up-front design. The patterns at the top of the hierarchy suggest

that you start with high level decisions driven by questions like: “do all ports drive

the module execution or not?” and “do you have to deal only with stream flow

or also with event flow?” It might also happen that at some point you will need

different token types. Then you’ll have to decide “does ports need to be strongly

typed while connectable by the user?”. Each of these questions is addressed by

one General Data-flow Pattern.

Having reached this point, it is feasible to get a relatively simple but useful
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General Data-flow Patterns

Flow Implementation Patterns

Network Usability Patterns

Data-flow Architecture

Figure 8.1: Introducing some patterns enables other patterns to be used.
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data-flow system allowing many module connections. However, it will have some

limitations. For example, limited ports connectivity and fixed block size. You

might find yourself in the need of implementing more flexible flows for stream and

events. Then you’ll want to look at the Flow Implementation Patterns. They

show how to implement efficient stream flows with flexible connectivity (i.e. con-

suming/producing different number of tokens) and event controls that propagates

immediately.

Humans might needs to interact with your system. Possible interaction in-

cludes building (complex) networks and monitoring the flowing data. This is

what the Human Usability Patterns do. They can be introduced in the first stages

of the system evolution or later on.

8.2 Sketched Patterns

The following is a brief description of possible future patterns that would fit in the

pattern language. All of them have to be worked out and assess that they hold the

needed pattern qualities. Nevertheless, this list gives an idea of directions where

the catalog could grow.

Controller Module Addresses how user events from the out-of-band partition

can enter into the in-band partition and propagated through the event ports

connections.

Dynamic repository Addresses how applications can incorporate new modules

without needing a rebuild, while keeping all modules organized in hierarchi-

cal structure, using meta-data.

Configuration Time Addresses how expensive changes, like memory allocation,

in modules can be done, without effecting the network execution, while pro-

viding error handling.

Configuration Object Addresses how modules can be configured by the user

without having to define user interfaces for each module, while allowing

configurations persistence.
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Enhanced Types Addresses how to separate the type parameters from the data

itself for an efficient processing, while allowing automatic type compatibility

checking and rich data representation.

Partitioned streaming Addresses how the flow in a network can be partitioned

in high-level orchestrated tasks, when big buffers are not viable. For exam-

ple, a process needs a large number of consecutive tokens in its input to start

producing its stream. User intervention might be needed to define the parti-

tion points. Outputs of every phase are stored in data pools. (Examples can

be found in Unix pipes, i.e. cat | sed | sort | sert, and the D2K framework.)

Stream time propagation Addresses how stream-tokens associated time can

be propagated though the network given that ports (and possibly module)

buffers causes latency. It also allows working with varying-rate streams.
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Evaluation of the Patterns

9.1 Known Uses Recap

This section collect all the examples found for each pattern, in order to give a

general picture.

The source for the examples are the following 10 systems: Pure-

Data (PD) [Puckette, 1997], MAX/MSP [Puckette, 1991], Open Sound

World (OSW) [Chaudhary et al., 1999], JACK [Davis et al., 2004], Super-

Collider3 [McCartney, 2002], CSL [Pope and Ramakrishnan, 2003], Marsyas

[Tzanetakis and Cook, 2002], Aura [Dannenberg and Brandt, 1996a], CLAM

(framework) [Amatriain and Arumı́, 2005, www-CLAM, ], CLAM Music Anno-

tator [Amatriain et al., 2005]

• General Data-flow Patterns:

– Semantic Ports address distinct management of tokens by semantic.

PD, MAX/MSP, OSW, JACK, CLAM

– Driver Ports address how to make modules executions independent of

the availability of certain kind of tokens.

PD, MAX/MSP, OSW, JACK, CLAM

– Stream and Event Ports address how to synchronize different streams

and events arriving to a module.

SuperCollider3, CSL, Marsyas, OSW, CLAM
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– Typed Connections address how to deal with typed tokens while allowing

the network connection maker to ignore the concrete types.

OSW, Music Annotator, CLAM

• Flow Implementation Patterns:

– Cascading Event Ports address the problem of having a high-priority

event-driven flow able to propagate through the network.

PD, MAX/MSP, CLAM

– Multi-rate Stream Ports address how stream ports can consume and

produce at different rates;

Marsyas, SuperCollider3, CLAM

– Multiple Window Circular Buffer address how a writer and multiple read-

ers can share the same tokens buffer.

CLAM

– Phantom Buffer address how to design a data structure both with the

benefits of a circular buffer and the guarantee of window contiguity.

CLAM

• Network Usability Patterns:

– Recursive Networks makes feasible for humans to deal with the definition

of big complex networks;

PD, MAX/MSP, CSL, OSW, Aura, Marsyas, CLAM

– Port Monitor address how to monitor a flow from a different thread,

without compromising the network processing efficiency.

CLAM, Music Annotator.
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Figure 9.1: The CLAM framework components

9.2 Implemented Applications with the CLAM

Framework

9.2.1 Introduction

CLAM stands for C++ Library for Audio and Music and it is a full-fledged soft-

ware framework for research and application development in the audio and music

domain. It offers a conceptual model; algorithms for analyzing, synthesizing and

transforming audio signals; and tools for handling audio and music streams and

creating cross-platform applications.

The CLAM framework is cross-platform. All the code is ANSI C++ and it is

regularly compiled under GNU/Linux, Windows and Mac OSX.

CLAM offers a processing kernel that includes an infrastructure and processing

and data repositories. In that sense, CLAM is both a black-box and a white-box
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framework as described i [Roberts and Johnson, 1996]. It is black-box because

already built-in components included in the repositories can be connected with

minimum programmer effort in order to build new applications. And it is white-

box because the abstract classes that make up the infrastructure can be easily

derived to extend the framework components with new processes or data classes.

Apart from the kernel, CLAM includes a number of tools for services such as

audio input/output or XML serialization and a number of applications that have

served as a testbed and validation of the framework.

The CLAM infrastructure is a direct implementation of the 4MS metamodel,

which will be explained in the following section. In the next sections we will

also review the CLAM repositories, its tools and applications. Please refer to

CLAM’s website (www.clam.iua.upf.edu) for further information, documentation,

and downloads.

9.2.2 CLAM’s Metamodel

The Object-Oriented Metamodel for Multimedia Processing, 4MS for short, pro-

vides the conceptual framework (metamodel) for a hierarchy of models of media

data processing system architectures in an effective and general way. The meta-

model is an abstraction of many ideas found in the CLAM framework but also

of an extensive review of similar frameworks and collaborations with their au-

thors. Although derived and based in particular for audio and music frameworks,

it presents a comprehensive conceptual framework for media signal processing ap-

plications. For a more detailed description of the metamodel and how it relates

to different frameworks see Xavier Amatriain’s PhD [Amatriain, 2004] .

The 4MS metamodel is based on a classification of signal processing objects

into two categories: Processing objects that operate on data and control, and

Processing Data objects that passively hold media content. Processing objects

encapsulate a process or algorithm; they include support for synchronous data

processing and asynchronous event-driven control as well as a configuration mech-

anism and an explicit life cycle state model. On the other hand, Processing Data

objects offer a homogeneous interface to media data, and support for meta object

facilities such as reflection and serialization.
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Although the metamodel clearly distinguishes between two different kinds of

objects the managing of Processing Data constructs can be almost transparent

for the user. Therefore, we can view a 4MS system as a set of Processing objects

connected in a graph called Network.

Processing objects are connected through intermediate channels. These chan-

nels are the only mechanism for communicating between Processing objects and

with the outside world. Messages are queued (produced) and dequeued (con-

sumed) in these channels, which act as FIFO queues.

The metamodel offers two kinds of connection mechanisms: ports and con-

trols. Ports transmit data and have a synchronous data flow nature while controls

transmit events and have an asynchronous nature. By synchronous, we mean that

messages get produced and consumed at a predictable —if not fixed— rate. And

by asynchronous we mean that such a rate does not exist and the communication

follows an event-driven schema.

But apart from the incoming and outcoming data, some other entity —

probably the user through a GUI slider— might want to change some parame-

ters of the algorithm. This control events will arrive, unlike the audio stream,

sparsely or in bursts. In this case the processing object will receive these events

through various (input) control channels: one for the gain amount, another for

the frequency, etc.

The data flows through the ports when a processing is fired (by receiving a

Do() message).

Processing objects can consume and produce at different rates and consume

an arbitrary number of tokens at each firing. Connecting these processing objects

is not a problem as long as the ports are of the same data type. The data flow is

handled by a FlowControl entity that figures out how to schedule the firings in a

way that avoids firing a processing with not enough data in its input ports or not

enough space into its output ports.

9.2.3 Repositories

The Processing Repository contains a large set of ready-to-use processing algo-

rithms, and the Processing Data Repository contains all the classes that act as
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Figure 9.2: a 4MS processing network

data containers to be input or output to the processing algorithms.

The Processing Repository includes around 150 different Processing classes,

classified in the following categories: Analysis, ArithmeticOperators, AudioFileIO,

AudioIO, Controls, Generators, MIDIIO, Plugins, SDIFIO, Synthesis, and Trans-

formations. Although the repository has a strong bias toward spectral-domain

processing because of our group’s background and interests, there are enough

encapsulated algorithms and tools so as to cover a broad range of possible appli-

cations.

On the other hand, in the Processing Data Repository we offer the encapsu-

lated versions of the most commonly used data types such as Audio, Spectrum,

SpectralPeaks, Envelope or Segment. It is interesting to note that all of these

classes make use of the data infrastructure and are therefore able to offer services

such as a homogeneous interface or built-in automatic XML persistence.

9.2.4 Tools

Apart from the infrastructure and the repositories, which together make up the

CLAM processing kernel CLAM also includes a number of tools that can be nec-

essary to build an audio application.
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9.2.5 XML

Any CLAM Component can be stored to XML. Furthermore, Processing Data

and Processing Configurations make use of a macro-derived mechanism that

provides automatic XML support without having to add a single line of code

[Garcia and Amatrian, 2001].

9.2.6 GUI

When designing CLAM we had to think about ways of integrating the core of

the framework tools with a graphical user interface that may be used as a front-

end to the framework functionalities. CLAM offers a toolkit-independent support

through the CLAM Visualization Module. This general Visualization infrastruc-

ture is completed by some already implemented presentations and widgets. These

are offered both for the FLTK toolkit and the Trolltech’s Qt framework . An

example of such utilities are convenient debugging tools called Plots. Plots offer

ready-to-use independent widgets that include the presentation of the main Pro-

cessing Data in the CLAM framework such as audio, spectrum, spectral peaks. . .

9.2.7 Platform Abstraction

Under this category we include all those CLAM tools that encapsulate system-

level functionalities and allow a CLAM user to access them transparently from

the operating system or platform.

Using these tools a number of services –such as Audio input/output, MIDI

input/output or SDIF file support– can be added to an application and then used

on different operating systems without changing a single line of code.

9.2.8 Applications

The framework has been tested on —but also has been driven by— a number of

applications. Most of them will be introduced in the following paragraphs. The

last subsection shows the CLAM visual building tools. Though initially consid-

ered separate applications, they now allow visually building applications without

writing any line of code thus becoming part of the framework.
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Figure 9.3: Editing low-level descriptors and segments with the CLAM Music
Annotator

9.2.9 SMS Analysis/Synthesis

The main goal of the application is to analyze, transform and synthesize back

a given sound using the Sinusoidal plus Residual model [Serra, 1996]. In order

to do so the application reads an XML configuration file, and an audio file or

a previously analyzed sdif file. The input sound is analyzed, transformed in the

spectral domain according to a transformation score and then synthesized back.

9.2.10 The Music Annotator

The CLAM Music Annotator [Amatriain et al., 2005] is a tool for editing audio

descriptors. The application can be used as a platform for launching extraction al-

gorithms that analyze the signal and produce different kinds of descriptors. These

processes can be either local or web services. But most importantly, the Annota-

tor includes a powerful GUI to manually edit the result of these algorithms from

the audio sample level to the song level.
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9.2.11 SALTO

SALTO is a software based synthesizer that is also based on the Sinusoidal plus

Residual technique. It implements a general architecture for these synthesizers but

it is currently only prepared to produce high quality sax and trumpet synthesis.

Pre-analyzed data are loaded upon initialization. The synthesizer responds to

incoming MIDI data or to musical data stored in an XML file. SALTO can be

used as a regular synthesizer on real-time as it accepts messages coming from a

regular MIDI keyboard or a MIDI breath controller.

9.2.12 Spectral Delay

SpectralDelay is also known as CLAM’s Dummy Test. In this application it was

not important to actually implement an impressive application but rather to show

what can be accomplished using the CLAM framework. The SpectralDelay imple-

ments a delay in the spectral domain, dividing the audio signal into three bands

and allowing for each band to be delayed separately.

9.2.13 Others

Apart from the main sample applications CLAM has been used in many different

projects that are not included in the public version either because the projects

themselves have not reached a stable stage or because their results are protected

by non-disclosure agreements with third parties. In the following paragraphs we

will outline these other users of CLAM.

Rappid was a testing workbench for the CLAM framework in high demand-

ing situations. Rappid was tested in a live-concert situation. Rappid was used

as an essential part of a composition for harp, viola and tape, presented at the

Multiphonies 2002 cycle of concerts in Paris.

The Time Machine project implemented a high quality time stretching al-

gorithm that was later integrated and included in a commercial product. The

algorithm uses multi-band processing and works in real-time. It is a clear example

of how the core of CLAM processing can be used in isolation as it lacks of any

GUI or audio input/output infrastructure.
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The Vocal Processor is VST plug-in for singing voice transformations. This

prototype was a chance to test CLAM integration into VST API and also to check

the efficiency of the framework in highly demanding situations. Most transfor-

mations are implemented in the frequency domain and the plug-in must work in

real-time, consuming as few resources as possible.

The CUIDADO IST European project was completely developed with CLAM.

The focus of the project was on automatic analysis of audio files. In particular

rhythmic and melodic descriptions were implemented. The Open Drama project

was another IST European project that used CLAM extensively. The project focus

was on finding new interactive ways to present opera. In particular, a prototype

application was built to create an MPEG-7 compliant description of a complete

opera play.

9.2.14 CLAM as a Rapid Prototyping environment

The latest developments in CLAM have brought visual building capabilities into

the framework. These allow the user to concentrate on the research algorithms

and not on application development. Visual patching is also valuable for rapid

application prototyping of applications and audio-plug-ins.

CLAM’s visual builder is known as the NetworkEditor (see Figure 9.4). It

allows to generate an application—or its processing engine—by graphically con-

necting objects in a patch. Another application called Prototyper acts as the glue

between a graphical GUI designing tool (such as qt Designer) and the processing

engine defined with the NetworkEditor.
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Figure 9.4: NetworkEditor, the CLAM visual builder





Chapter 10

Conclusions

10.1 Summary of Contributions

This thesis makes a number of contributions:

Propose a pattern language for the sound and music domain. We have

presented 10 interrelated pattern addressing the following aspects of sound

and music data-flow architectures:

General Data-flow Patterns: Address problems about how to organize high-

level aspects of the data-flow architecture, by having different types of mod-

ules connections. Belonging to this category:

• Semantic Ports address distinct management of tokens by semantic.

• Driver Ports address how to make modules executions independent of

the availability of certain kind of tokens.

• Stream and Event Ports address how to synchronize different streams

and events arriving to a module.

• Typed Connections address how to deal with typed tokens while allowing

the network connection maker to ignore the concrete types.

Flow Implementation Patterns: Address how to physically transfer tokens

from one module to another, according to the types of flow defined by the

111
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general data-flow patterns. Tokens life-cycle, ownership and memory man-

agement are recurrent issues in those patterns.

• Cascading Event Ports address the problem of having a high-priority

event-driven flow able to propagate through the network.

• Multi-rate Stream Ports address how stream ports can consume and

produce at different rates;

• Multiple Window Circular Buffer address how a writer and multiple read-

ers can share the same tokens buffer.

• Phantom Buffer address how to design a data structure both with the

benefits of a circular buffer and the guarantee of window contiguity.

Network Usability Patterns: Address how humans can interact with data-flow

networks.

• Recursive Networks makes feasible for humans to deal with the definition

of big complex networks;

• Port Monitor address how to monitor a flow from a different thread,

without compromising the network processing efficiency.

Demonstrate that design patterns provide useful design reuse in the

domain of sound and music computing.

On one hand, our patterns covers many (if not most) features of data-flow

systems needed in our domain. On the other hand, their solutions are gen-

eral enough to be used in many different contexts. Finally, all of them

provide a teaching component (mostly found in the forces and consequences

sections) which is the fundamental key that enables those solutions to be

reused effectively.

Show that all the patterns can be found in different applications and

contexts.

Every pattern have its examples section presenting known uses in real-life

systems. Whenever possible we have presented more than three examples
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on tools aiming at different purposes. There are few patterns that we have

have not been able to find elsewhere than the CLAM framework. However,

a framework can be instantiated in many applications. We have developed

and shown here a number of CLAM applications with diverse purposes on

different fields.

Show how design patterns are useful to communicate, document and

compare the designs of audio systems.

As an example, consider the documenting value of the following sentence

(but take a deep breath first) : “CLAM have a Data-flow Architecture where

each stream and events channels are separated using Semantic Ports. It uses

Stream and Event Ports and Driver Ports, where the stream ports coincide with

the driving ones. While stream ports are Typed Connections with concrete

types such as Audio, Spectrum, Note or Melody, event ports are restricted

to floats. Event ports are implemented with Cascading Event Ports while

audio stream ports uses Multi-rate Stream Ports implemented with Multiple

Window Circular Buffer and a Phantom Buffer.”

This paragraph concisely conveys an immense amount of design information.

Though it might be a bit too dense it shows how using our patterns it is

possible communicate and document the overall design of a system efficiently.

Of course, it is required that the receptors are familiar with the patterns or,

at least, links to the pattern catalog.

As noted Christopher Alexander, patterns are both a “thing” (the design)

and “instructions on how to produce the thing” [Alexander, 1977]. When

documenting a system design we are using the first meaning.

These patterns are also efficient tools for comparing different systems. Again

an example: “MAX/MSP does use Driver Ports but unlike CLAM, its event

ports can also be drivers.” or “While CSL uses Stream and Event Ports,

JACK does not because its network only transports audio samples. And

neither one or the other use Typed Connections”
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10.2 Open Issues and Future Work

Empirical Quantitative Evaluation

We have not done empirical evaluation of the teaching value of our patterns.

This kind of studies take an approach similar to those in social-science. Involves

evaluating how individuals perform on technical problems when they know the

patterns and when they not. Due to the specialized nature of our patterns, we

believe that finding a significant sample of individuals would be very expensive.

Another kind of empirical study suitable for patterns, takes a more Darwinian

approach. Consists in collecting data from many development projects: com-

ments in the code, CVS logs, mailing-lists and the like, and then automatically

analyzing the data searching for traces of pattern usage. Then, some metrics that

capture the activity and “health” of the project are collected and used compare

projects that use the patterns with projects that do not. As a side note we want

to note that this approach have been used in several studies on general patterns

and open-source projects [Hahsler, 2004]. Interestingly enough, they detect a clear

correlation between the adoption of patterns and the amount of development ac-

tivity.

This kind of quantitative study for the presented patterns would be very in-

teresting. However, it requires many projects adopting those patterns, and this

takes time.

Growing the Pattern Catalog

The pattern language would be much more complete with patterns that covers

aspects like: time propagation in streams, latency management or firing scheduling

strategies. Some of these aspects should be covered in new patterns that have

been sketched in section 8.2: For example: Stream Time Propagation, Partitioned

Streaming and Dynamic Repository.

The presented work focuses on data-flow infrastructure for audio applications.

However, there are many sub-domains in sound and music computing where de-

sign patterns should be mined: Real-time, Computer-Human-Interaction with

real-time synthesis, multi-threading processing, distributed processing or Music
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Information Retrieval1, etc.

Therefore, we expect to do more research on patterns covering these areas

before completing the PhD. Sound and music computing is a rich and multidis-

ciplinary area. Collecting a complete pattern catalog is a cumbersome work far

beyond of a single dissertation. Nevertheless, it is feasible as a collective effort.

10.3 Additional Insights

Openness

We have found that patterns and open-source works synergystically. Open-source

boost patterns on three fronts: One, open-source projects give material to pattern

writers for new patterns to mine; two, they are a source of concrete code examples

to people learning and using patterns; and three, they provide the necessary data

for a quantitative evaluation of its effectiveness in real-life projects.

On the other hand, patterns also boost open-source. As [Seen et al., 2000]

observes the design pattern adoption score very high in open-source developers.

Specifically, patterns require no infrastructure investment, they can be adopted

bottom-up and visible pattern adoption advertises competence. All three proper-

ties are certainly more important in an open-source environment than in a tra-

ditional company where the necessary infrastructure is provided and the man-

agement controls the development process. Another important aspect is about

communication efficiency. The channels where communication takes place in open-

source development (mailing lists, chats, forums. . . ) are not appropriate for ver-

bose design descriptions and they motivate the use of a concise vocabulary for

communicate design ideas.

Finally, our experience is that code documented with design patterns is many

times easier to understand. Patterns are not mere design solution but they also

carry a deeper knowledge in form of “consequences” or “forces resolution”.

1Recent contribution on MIR patterns can be found in Aucouturier’s thesis
[Aucouturier, 2006]
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Agility

Practices of Agile Methodologies like Test Driven Development [Beck, 2002] and

Refactoring [Fowler et al., 1999] where key practices for experimenting with de-

sign choices. They relay on tools that support automatic tests. Since none of

the existing solutions fitted our needs, we developed two lightweight tools for au-

tomatic testing: MiniCppUnit [www-MiniCppUnit, ], for C++ unit-testing; and

Testfarm [Arumı́ et al., 2006], for automatic builds and tests in multiple clients

and platforms; both released as Free Software. This research would have taken

much longer without them.

Creativity

Our experience with patterns gave us some insights about patterns and creativity.

Design is a creative act: so is the creation or application of a design pattern. “If

design is codified in patterns, does the need for creativity go away? The answer

is that creativity is still needed to shape the patterns to a given context. (...)

Patterns channel creativity; they neither replace nor constrain it.” [Coplien, 1998]

10.4 Closing Statement

This thesis proposes design patterns as a better way to address the problem of

software complexity in sound and music computing. We believe that formulation

of design experience, methods and insight in the form of pattern languages should

be done systematically in the field of sound and music computing. A uniform

representation and computer support would help the search of the appropriate

pattern.

Many developers in sound and music computing agree that it is difficult to

manage the sheer complexity of their systems. We believe that new design patterns

will allow software to “grow up” out of the craftsman state and into a more mature

state.
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