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Abstract
Effects and coeffects are two general, complementary aspects of
program behaviour. They roughly correspond to computations
which change the execution context (effects) versus computations
which make demands on the context (coeffects). Effectful features
include partiality, non-determinism, input-output, state, and ex-
ceptions. Coeffectful features include resource demands, variable
access, notions of linearity, and data input requirements.

The effectful or coeffectful behaviour of a program can be
captured and described via type-based analyses, with fine grained
information provided by monoidal effect annotations and semiring
coeffects. Various recent work has proposed models for such typed
calculi in terms of graded (strong) monads for effects and graded
(monoidal) comonads for coeffects.

Effects and coeffects have been studied separately so far, but
in practice many computations are both effectful and coeffectful,
e.g., possibly throwing exceptions but with resource requirements.
To remedy this, we introduce a new general calculus with a com-
bined effect-coeffect system. This can describe both the changes and
requirements that a program has on its context, as well as interac-
tions between these effectful and coeffectful features of computa-
tion. The effect-coeffect system has a denotational model in terms
of effect-graded monads and coeffect-graded comonads where in-
teraction is expressed via the novel concept of graded distributive
laws. This graded semantics unifies the syntactic type theory with
the denotational model. We show that our calculus can be instanti-
ated to describe in a natural way various different kinds of interac-
tion between a program and its evaluation context.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

Keywords effects; coeffects; monads; comonads; distributive
laws; grading; types; categorical semantics
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1. Introduction
Pure, total functional programming languages are highly amenable
to clear and concise semantic descriptions. This semantics aids
both correct-by-construction programming and tools for reasoning
about program properties. A pure program can be described as a
mathematical object that is isolated from the real world. However,
even in the most abstract setting, a program is hardly isolated.
Instead it interacts with its evaluation context; paradise is lost.

The interaction of a program with its context can be described
in several ways. For instance it can be described by recording the
changes that a program performs on its context, e.g. the program
can write to a memory cell or it can print a character on an output
display. At the same time the interaction can also be expressed by
recording the requirements that a program has with respect to its
context, e.g. the program can require a given amount of memory or
to read the input from some channel. These two aspects correspond
to the view of a program as a producer and as a consumer.

Computational effects and monads The need to describe the in-
teraction of a program with its context emerged early in pure func-
tional programming. Indeed, basic operations like input-output are
inconceivable in a program that runs in isolation. Most of the
original efforts to understand the interaction of a program with
its context focussed on input-output, stateful computations, non-
determinism, and probabilistic behaviours. This leads to the dis-
tinction between pure and effectful computation. The diverse col-
lection of interactions described above are often referred to as com-
putational effects. For our presentation, we identify these with be-
haviours that change the execution context, or as producer effects.

Moggi showed that the semantics of sequential composition
for various computational effects can be described uniformly via
the structure of a (strong) monad [30]. It was then shown how to
syntactically integrate monads into a typed calculus (the monadic
metalanguage) [31] providing a way to describe and encapsulate
concrete computational effects in languages like Haskell [51].

In parallel to this, effect systems—a class of static analysis
augmenting a type system—were introduced to analyse various
kinds of computational effect [17, 25, 35]. Effect systems track
individual effectful operations. This gives a more fine grained view
than monadic types, which indicate only the variety of effect taking
place (e.g., state effects) but not which effect operations are used.

These two strands of work on the analysis and semantics of ef-
fects were eventually unified, syntactically [53] with effect infor-
mation annotating monadic types, and then semantically [24, 38] by
“grading” a monad with effects. This grading requires effect terms
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to have a (preordered) monoidal structure. Effect-graded monads1

provide a semantics for effects, in the style of Moggi’s monadic
calculus, but where effects are explicitly tracked. This provides a
denotational semantics describing computations in a refined way
whilst also providing tools for program analysis in the types.

Coeffects and comonads Dual to the notion of producer effects,
which change the evaluation context, are consumer effects which
make demands on the context by requiring some computational
resource. Computational resource requirements may be intensional
in nature, such as memory or CPU usage; or requirements may be
extensional, affecting the outcome of a computation. For example,
requirements might be for a particular library version, hardware
resource, service, or size and extent of a data structure.

Comonads (the categorical dual of monads) have been shown to
describe a general class of resource-dependent computations and
the requirements that a program has on the execution context. For
instance, (monoidal) comonads are at the heart of the resource man-
agement mechanism embedded in Girard’s Linear Logic via the !
modality [18] and give the semantics of context-dependent dataflow
programs [50]. Similarly to monads, comonads provide a uniform
semantics for consumer effects. However, they suffer also the same
limitations: the abstraction layer provided by comonads gives only
coarse-grained information on the resource requirements.

Dual to effect systems, for fine-grained effect information, are
coeffect systems for resource requirements, which have been re-
cently introduced [8, 15, 36, 39–41]. For example, the reuse bounds
in Bounded Linear Logic are an instance of a coeffect system which
precisely tracks the usage requirements on variables. The name
“coeffect” emphasizes the duality with traditional effect systems
and the notion of resource consumption or context-dependent ef-
fects. The notion of a coeffect-graded comonad, dualising graded
monads, has also been shown to unify fine-grained resource re-
quirement analyses with a denotational model of resources.

Our contribution: effect-coeffect systems via distributivity The
interaction of a program with its evaluation context is not always
solely about producing a change or consuming a resource. Instead,
programs make both demands on, and produce changes to, the con-
text; computations are often both effectful and coeffectful. Moti-
vated by this observation we propose an effect-coeffect system: a
typed calculus combining effects and coeffects syntactically, and
employing both effect-graded monads and coeffect-graded comon-
ads in its semantics. We show that combining these two notions in
one system captures a broad class of fine-grained interactions be-
tween a program and its context.

Moreover, changes to the evaluation context may depend on
program requirements, and vice versa. That is, coeffects and ef-
fects may interact. To capture these interactions semantically re-
quires the interaction of a graded monad and a graded comonad.
A standard categorical technique for combining a (non-graded)
monad and (non-graded) comonad uses a distributive law between
them [7, 45, 50]. Inspired by this, we lift notions of distributive law
to the graded setting. This grading induces a syntactic theory of
interaction between effects and coeffects, captured by a matched-
pair of operations which calculates an effect and a coeffect from a
coeffect-effect pair.

We make the following contributions:

• a novel typed calculus with both a general effect system and
coeffect system which may interact via a family of distributive
laws; the calculus is parameterised by the algebraic structure for
effects, coeffects, and their distributive interaction (Section 3),

1 We borrow this terminology from “graded algebra” to avoid confusion
with “parametrised” or “indexed monad” terminology in different contexts.

• an equational theory for our calculus describing the interaction
of these components from a syntactic perspective (Section 4),
• a categorical denotational semantics, introducing the notion of

graded distributive laws between graded monads and comon-
ads, giving a sound model of our calculus with respect to its
equational theory (Section 5),
• various examples demonstrating how our calculus can be

smoothly instantiated to describe different computational be-
haviours that result from the interaction of effectful and coef-
fectful computation (Section 6).

Section 7 discusses related work and Section 8 considers various
possible avenues for further study. We begin by introducing and
motivating the main components of our system with examples.

Our intention with this calculus is to give a strong and flexible
starting point for building languages and designing semantics that
clearly capture effect-coeffect interactions. We present a general
system, setting out a design space of the choices for distributive
laws, which provide the effect-coeffect interaction.

2. In brief: effects, coeffects, and their interaction
To introduce effectful and coeffectful computations, their type-
based analysis, and their graded models, we look first at exceptions
as a classic example of effects (Section 2.1) and reuse bounds for
variables as an example of coeffects (Section 2.2). We then com-
bine exceptions and reuse bounds, giving an example of their inter-
action and an introduction to graded distributive laws (Section 2.3).

2.1 Effects and graded monads
Consider a language with a notion of global exception that inter-
rupts the control-flow of a program and is uncaught. Exceptions
are introduced to a program via an operation throw.

In a monadic metalanguage à la Moggi [31], exceptions are
typed ` throw : T unit where T is the type constructor of a monad
and unit is the singleton unit type as the evaluation need not return
a value. In the monadic metalanguage, the monad T comes with
a term for its unit operation (often called return) and a term for
monadic composition (based on the multiplication operation):

Γ ` t : A
Γ ` 〈t〉 : TA

Γ ` t1 : TA Γ, x : A ` t2 : TB

Γ ` let 〈x〉 = t1 in t2 : TB

If the evaluation of some term t potentially throws an exception,
the soundness of the typing rules ensures that we will assign to t a
type Γ ` t : TA. Seen from the converse perspective, given a term
of type Γ ` t : TA all we know is that the term t may throw an
exception. Consider a situation where instead we have a program
analysis that can determine whether a term definitely throws an
exception, definitely does not throw an exception, or it is unknown
what will happen. The analysis is thus three-valued: ⊥ (meaning
definite exception), > (no exceptions) and ? (statically unknown).
The information from this analysis can be added explicitly to the
type system. We can do this in a uniform way for a broad class
of effectful computations and analyses by following Katsumata
[24] and “grading” the monad2 T with effect annotations that are
elements of a preordered monoid3 (E , •, I), that is, with binary
operation • : E × E → E and the unit element I ∈ E . Given an
effect annotation e ∈ E (or effect for short), then an effect graded
monad provides the indexed type Te.

2 To be clear, we use “grading” as a verb here, but a specific graded monad
is not the result of some “grading” transformation on a monad. Rather, the
graded monad definition generalisations that of monads.
3 We highlight effect annotation operations and elements in orange and
coeffect annotation operations and elements in blue.
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Thus to improve the type-level information in our example,
we use a graded monad for exceptions with the discretely ordered
monoid ({⊥, ?,>}, •,>), where • is defined:

• ⊥ ? >
⊥ ⊥ ⊥ ⊥
? ⊥ ? ?
> ⊥ ? >

i.e., ⊥ is the absorbing element and > is the unit. The typing for
throw becomes ` throw : T⊥unit since it is clear that the term
definitely raises an exception.

Unit and composition for effectful computations is then pro-
vided by the following two rules for effect graded monads, which
use the monoid structure on E :

Γ ` t : A
Γ ` 〈t〉 : T>A

Γ ` t1 : TeA Γ, x : A ` t2 : TfB

Γ ` let 〈x〉 = t1 in t2 : Te•fB

The soundness of the typing rules now ensures that if the eval-
uation of t can potentially throw an exception then we will either
assign to t a type Γ ` t : T⊥A or Γ ` t : T?A. So, by using
effect-graded monad typing we are able to recover from our pro-
gram more information than in the classical monadic approach; the
indices of the graded monad provide an effect system.

2.2 Coeffects and graded comonads
One way to understand coeffects is to view them as a generalisa-
tion of resource consumption control provided by the exponential
modality ! of linear logic. This modality distinguishes terms that
are evaluated exactly once from terms that can be evaluated an ar-
bitrary number of times. If the evaluation of a term t requires the
repeated evaluation of some free variable x, then we assign to x a
type of the form !A. This expresses the requirement that x can be
evaluated an arbitrary number of times.

The comonadic nature of ! is apparent from its typing rules:4

der
Γ, x : A ` t : B

Γ, x :!A ` t : B
pr !Γ ` t : B

!Γ `!t :!B

In the linear logic literature, these two rules are usually referred to
as dereliction and promotion, respectively. The first corresponds to
the counit axiom !A → A of the comonad, while the second rule
roughly internalizes the comultiplication !A→!!A of the comonad
(combined with functoriality of !).

The ! modality has additional structure relating to the multi-
plicative connectives (1,⊗) of linear logic. Firstly, ! is has the addi-
tional structure of a monoidal comonad for managing the use of ! in
the context with operations of type 1→!A and !A⊗!B →!(A⊗B)
(called 0-monoidality and 2-monoidality respectively). Secondly,
!A admits structural rules via additional comonoidal structure, with
contraction !A →!A⊗!A and weakening !A → 1 operations.
These ensure that the ! modality satisfies the requirement of using
a variable an arbitrary number of times.

Whilst the ! comonad expresses unrestricted (re)use, in many
situations this requirement is too coarse grained. For instance, in
resource analysis we are often interested in giving a bound on the
number of times a variable is used. This can be used to express
the computational complexity of a program. Unfortunately, the !
comonad alone is not enough for expressing bounds. A natural way
to recover this information is by adding it explicitly to the type sys-
tem. We can do this in a uniform way for a large class of coeffect-
ful computations by following Brunel et al. [8], Ghica and Smith
[15], Petricek et al. [41] and using a coeffect-graded comonad
which provides a type constructor Dr indexed by elements r ∈ R

4 These rules are not syntax directed and break the type preservation
property. In the next sections, we will use a slightly different language with
syntax directed typing rules that guarantee type preservation.

of a preordered semiring (R,≤, 0,+, 1, ∗). In the concrete case of
resource analysis we take the standard natural numbers semiring N,
which gives an indexed ! modality corresponding to that of bounded
linear logic [19]. In the rest of this paper, D is used for the graded
comonad type constructor, but for this example we continue using
!. Graded comonads provide graded dereliction and promotion:

der
Γ, x : A ` t : B

Γ, x :!1A ` t : B
pr

!~sΓ ` t : B

!r∗~sΓ `!t :!rB

The type !1 for dereliction (corresponding to graded counit) is
indexed by 1, that is the multiplicative unit for the semiring N. The
promotion rule uses the multiplication ∗ of the semiring, where we
use the notation !~sΓ to mean that each variable assignment has the
shape xi : !siAi, and !r∗~sΓ denotes that each variable assignment
has the shape xi : !r∗siAi. A coeffect graded comonad enables
more information about program requirements to be captured in
types compared with using just the standard ! comonad.

We also need graded versions of contraction and weakening,
which uses the additive structure of N: graded contraction has type
!r+sA→!rA⊗!sA and graded weakening !0A→ 1.

In our calculus, defined formally in Section 3, coeffect types
on the left of typing judgments introduced by dereliction and pro-
motion are written [A]r instead of !rA. This notation is needed to
distinguish coeffect requirements [A]r on a free-variable assump-
tion from values of type Dr , which can be thought of as coeffect
capabilities. Along with this distinction comes syntax for coeffect-
ful substitution, composing a capability with a requirement:

let
Γ ` t1 : DrA ∆, x : [A]r ` t2 : B

Γ + ∆ ` let [x] = t1 in t2 : B

We subsequently write [t] for the syntax of promotion (rather than
!t in the linear logic example above). Now, the soundness of the
typing rules ensures that if in the evaluation of let [x] = t1 in t2
the term t1 is evaluated n times, then we will assign to t2 a type
∆, x : [A]n ` t2 : B. In fact, by using the preorder we can assign
type ∆, x : [A]m ` t2 : B where n ≤ m.

Other example coeffects in this style include tracking secure in-
formation flow (which we use in Section 6.1), consumption-bounds
in dataflow computations (see [41]), and fine-grained strictness in-
formation based on tracking the deconstructors applied to variables.

2.3 Interacting effects and coeffects; graded distributed law
Effect and coeffect systems as presented above express different
properties of a program’s interaction with its context. We can com-
bine them in a system where an effect-graded monad Te, graded
by the elements of an effect monoid E , coexists with a coeffect-
graded comonadDr , graded by the elements of a coeffect semiring
R. For instance, combining the two examples above gives a system
for exception tracking with reuse bound information.

In this system we can describe two kinds of composition involv-
ing effects and coeffects. The first is the coeffectful composition of
the following two typed terms:

Γ ` t1 : DrTeA ∆, x : [TeA]r ` t2 : B

In this situation we prioritize the reuse bound information r over
the exception information e (coeffects are at the outer level). The
second is the effect composition of the following two typed terms:

Γ ` t1 : TeDrA ∆, x : DrA ` t2 : Te′B

In this situation we prioritize the exception information over the
reuse bound information (effects are at the outer level).

Having only these two situations is unsatisfying because the
graded monad and the graded comonad cannot interact, simply
coexisting independently in the same world. Instead, we would also
like to allow their interaction.
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Consider the following two terms and their typings:

Γ ` t1 : TeA ∆, x : [A]r ` t2 : B (1)

In general, we would like to be able to compose these two computa-
tions with the effect and coeffect interacting. How can we do this?
One answer is provided by a distributive law between the graded
comonad and graded monad which captures an interaction between
coeffects and effects. In the non-graded case, a distributive law of
a comonad over a monad is an operation of type:

distA : DTA→ TDA

This can be understood as taking a capability for an effectful com-
putation and transforming it into an effectful computation of a capa-
bility. Our calculus provides a number of different possible graded
distributive laws for graded comonads and monads that we will
present in Section 3. For this example, we will use one specialised
to the following type:

distr,e,A : Dι(r,e)TeA→ TeDrA (2)

where ι : R × E → R is a binary operation that describes the
interaction between coeffects and effects, defined:

ι(r,⊥) = 1 ι(r,>) = r ι(r, ?) = r

Expanding the definition of ι, we have the following family of
graded distributive law operations:

distr,⊥,A : D1T⊥A→ T⊥DrA

distr,>,A : DrT>A→ T>DrA

distr,?,A : DrT?A→ T?DrA

The first case explains that, if an effectful computation is known to
definitely throw an exception, then only one copy of that effectful
computation is needed to satisfy any number of copies of A. This
is because the flow of execution is interrupted by the exception,
and so more copies of the exception are not needed. The other two
explain that, if it is not known whether the computation throws an
exception (or it definitely does not), then the coeffect is unchanged.

Using dist the original two terms in (1) can be composed:

Γ ` t1 : TeA

[Γ]1 ` t1 : TeA

[Γ]ι(r,e) ` [t1] : Dι(r,e)TeA

[Γ]ι(r,e) ` dist[t1] : TeDrA

∆, x : [A]r ` t2 : B

∆, x : [A]r ` 〈t2〉 : T1B

[Γ]ι(r,e) + ∆ ` let 〈[x]〉 = dist[t1] in 〈t2〉 : TeB

where let 〈[x]〉 = t in t′ is syntactic sugar for the two forms of ef-
fectful and coeffectful binding combined: let 〈z〉 = t in let [x] =
z in t′. Therefore, in the above composition, we see that the re-
quirements of t2 propagate towards the left-hand side, and are mod-
ified by the effect of t1 which may reduce the requirements.

Compositional motivation The graded distributive law above (2)
is a specialisation of a more general operation, of the form:

distr,e,A : Dι(r,e)TeA→ Tκ(r,e)DrA

with a pair of functions ι : R×E → R and κ : R×E → E which
describe how effects can modulate coeffects, and vice versa. The
specialised distributive law of eq. (2) had κ as right projection π2.

This graded distributive law provides a way to compose effectful-
coeffectful computations modelled as functions (more generally
morphisms) of the formDrA→ TeB. In our semantics (Section 5)
this is the interpretation of typing derivations proving judgments of
the form x : [A]r ` t : TeB. The composition is defined:

DsA
g−→ TeB DrA

h−→ TfC

Dι(r,e)∗sA
g†−→ Dι(r,e)TeA

σ−→ Tκ(r,e)DrA
h∗−−→ Tκ(r,e)∗fA

t ::= x | λx.t | t t | [t] | 〈t〉 | let 〈x〉 = t in t

| let [x] = t in t | distφ | op (φ ∈ FMT)

A,B,C ::= o | A→ A |DrA | TeA (e ∈ E)

Γ,∆ ::= ∅ | x : A,Γ | x : [A]r,Γ (r ∈ R)

Figure 1. Grammar for terms, types and typing environments.

where −† is the extension operation of the graded comonad (es-
sentially, promotion) and −∗ the extension operation of the graded
monad. But this isn’t the only way we could combine coeffects and
effects—there are other forms of distributive law.

A different interaction and distributive law We now consider an
alternate form of interaction between effects and coeffects in our
example via a different law, which we compare via the types with
the previous one in equation (2):

(previously) distr,e,A : Dι(r,e)TeA→ TeDrA

(alternate) dist′r,e,A : TeDrA→ Dι(r,e)TeA

In the previous operation, coeffects are distributed over effects.
The information flow for coeffects is from the right to left since
the coeffect capability provided by the input parameter is ι(r, e),
i.e., calculated from the coeffect r on the output and the effect e
(which is preserved from left-to-right). In the alternate rule, we
see two immediate differences. Firstly, the order of T and D is
changed—effects are now distributed over coeffects. Secondly, the
information flow has changed, where the coeffect parameter r is
provided by the coeffect capability of the input (left of the arrow).

In our exception/bounded-reuse example, the interesting case
for dist′ is when e = ⊥. This specialises to the rule typed:

dist′r,⊥,A : T⊥DrA→ D1T⊥A

The meaning is clear from the types, if we have a definitely failing
computation then the r-copies of valueA inside cannot be accessed
and therefore we need only produce one copy of the exception.

The above shows two possible distributive laws, but there are
more choices possible due to the two ways of ordering effects over
coeffects and four different kinds of information flow relating to the
position of r and e either on the input or output. In our framework,
we thus provide eight different forms of distributive law, which we
present in the next section.

3. Syntax and type system
In order to show how to combine effects and coeffects in actual
programs we consider a λ-calculus that combines effects in the
style of Moggi’s monadic metalanguage [31], with explicit terms
for managing effects via monadic constructions, and coeffects in
the style of the coeffect calculus from [8], with explicit terms for
managing coeffects via comonadic constructions.

The syntax of the calculus is given in Figure 1. We identify
four parts of the calculus: pure, effectful, coeffectful and distribu-
tive. The pure fragment corresponds to the standard terms of the
λ-calculus. The effectful fragment includes the constructions for
managing effects: the unit construct written 〈t〉 for lifting a term
t to a trivially effectful computation and the construct let 〈x〉 =
t in t for sequentially composing monadic, effectful computations
(which we refer to as letT). The coeffectful fragment includes con-
structions for managing coeffects: the promotion construct [t] in-
duces requirements on the context (corresponding to comonadic
comultiplication) and let [x] = t in t for discharging coeffect re-
quirements (referred to as letD). Finally, the distributive fragment
includes a family of operations distφ for the distributive laws, and
a family of possibly effectful and/or coeffectful operations op.
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The semantics of the calculus will be described by providing a
syntactic equational theory in Section 4 and a categorical semantics
in Section 5. We focus here on the type system for explicitly
tracking effects and coeffects, which we now define formally.

3.1 Effects and coeffects
The calculus is built upon the following data specifying effects,
coeffects and their interactions.

Effects We follow the approach of Katsumata [24], identifying
effects with elements of a preordered monoid.

A preordered monoid is a tuple E = (E,≤, 1, •) such that
(E, 1, •) is a monoid, (E,≤) is a preordered set and • is monotone
with respect to ≤ in each argument, i.e., e ≤ f and g ≤ h implies
e • g ≤ f • h. The preorder (E,≤) of E is denoted by E. The
order-opposite of E is again a preordered monoid, denoted by Eop.

The calculus is parameterised by a preordered monoid E , the
effect monoid, whose elements are effects ranged over by e, f , g.

Coeffects Similarly, we follow the approach by Petricek et al.
[40], Brunel et al. [8], and Ghica and Smith [15], identifying co-
effects with the elements of a semiring.

A preordered semiring is a tuple R = (R,≤, 0,+, 1, ∗) where
(R,≤) is a preordered set, (R, 0,+, 1, ∗) is a semiring and +, ∗
are monotone with respect to ≤ in both arguments. The additive
and multiplicative preordered monoids of R are denoted by R+

and R∗, respectively. The latter is sometimes denoted by R when
no confusion occurs. The preorder part (R,≤) of R is denoted by
R. The order-opposite of R is again a preordered semiring, which
is denoted byRop.

The calculus is parameterised by a preordered semiring R, the
coeffect semiring, with coeffect elements ranged over by r, s, t.

Note the asymmetry between effects and coeffects: coeffects are
structured by a (preordered) semiring, whilst effects are structured
instead only by a (preordered) monoid. This asymmetry arises
naturally as a consequence of the λ-calculus typing judgments
taking many inputs (free-variable assumptions) to a single output.
Thus, the input structure “on the left” is richer, capturing multiple
values, contrasting with the single output “on the right”. Since
coeffects are primarily a property of the input/context, they have
a richer structure to match.

Distributive law format As we discussed in Section 2.3, there
are several possibilities on the format of the distributive law, de-
pending on the purpose of the calculus and the role of the graded
(co)monadic types. To cover them systematically, we introduce a
symbolic representation of all formats of the distributive law.

Definition 1. A distributive law format is an element φ in the eight-
element set FMT = {LL, LR, RL, RR} × {TD, DT}.

The elements TD and DT express that the distributive law is either
T -over-D (effects over coeffects) or D-over-T (coeffects over ef-
fects). The elements LL, LR, RL, RR represent the position of Te and
Dr in a distributive law. We discuss this further in Section 3.2.1.

Effect-coeffect interaction by matched pairs A key novel part
of our calculus is the presence of two operations ι and κ which
combine the elements of the effect monoid E with those of the
coeffect semiring R. These operations must respect a particular
structure to fit the distributive law we present in the next section.
Interestingly, this structure corresponds to well-known structures
from quantum groups and group theory: matched pairs and Zappa-
Szép products. We first define the primitive form of matched pair.

Definition 2. Let R, E be preordered monoids (E ,≤, 1, •) and
(R,≤, 1, ∗). An R, E-matched pair [23] is a pair of monotone

functions ι : R× E → R and κ : R× E → E such that
ι(r, 1) = r ι(r, e • f) = ι(ι(r, e), f)
ι(1, e) = 1 ι(r ∗ s, e) = ι(r, κ(s, e)) ∗ ι(s, e)
κ(1, e) = e κ(r ∗ s, e) = κ(r, κ(s, e))
κ(r, 1) = 1 κ(r, e • f) = κ(r, e) • κ(ι(r, e), f)

Upon this definition we define the concept ofR, E-matched pair for
a given distributive law format φ. Below, for a preordered monoid,
by E we mean E’s reverse monoid, whose multiplication is given by
e •E f = f • e and likewise for coeffects R is the reverse monoid
with r ∗R s = s ∗ r.

Definition 3. LetR, E be preordered monoids, ι : R×E → R and
κ : R×E → E be monotone functions and φ be a distributive law
format. We say that (ι, κ) is an R, E-matched pair for the format
φ if the pair (ι, κ) is a Mφ-matched pair, where Mφ is looked up
from the following table:

Mφ =

 φ LL LR RL RR

TD R, E R, E R, E R, E
DT R, E R, E R, E R, E


For instance, (ι, κ) is anR, E-matched pair for the format (RL, DT)
if (ι, κ) is an R, E-matched pair in the sense of Definition 2. The
calculus is then parameterised by an Rop, E-matched pair (ι, κ)
for the format φ chosen for the calculus, using the multiplicative
preordered monoidR∗ in the matched pair axioms (Definition 2).

To summarise, the parameters of our calculus comprise: (1)
a coeffect semiring R and an effect monoid E (2) a distributive
law format φ and an Rop, E-matched pair (ι, κ) for φ, and (3)
operations op : Aop.

3.2 Type system
Typing judgments have the shape Γ ` t : A where A is a type
and Γ is a typing environment. The syntax of types and typing
environments is described in Figure 1. Types comprise simple types
built over base types o and an effect graded monad type constructor
TeA, graded over the effect e, and a coeffect graded comonad type
constructor DrA, graded over the coeffect r.

Typing environments comprise type assignments to variables.
Environments are treated as sets, therefore an exchange rule (per-
muting the order of assignments) is implicit, and variables can only
appear at most once in an environment. In the categorical semantics
(Section 5), exchange is made explicit to model environments.

Environments comprise two kinds of type assignment: linear
assignments of the shape x : A, and discharged assignments of
the shape x : [A]r that are graded over a coeffect r. Discharged
assignments have been introduced in some presentations of linear
logic [48] as a technical artifact useful for implicitly managing
variables in environments—without using explicit contraction and
weakening rules. We write [Γ] for an environment Γ which consists
only of discharged assignments, and [Γ]r when all such discharged
assignments have the same coeffect r.

Before introducing the type system, we lift coeffect operations
+ and ∗ to typing environments as follows:

Definition 4 (Summing and scalar multiplication on environments).
We say that Γ,∆ are summable, if for any x ∈ dom(Γ)∩dom(∆),
there exists (necessarily unique) type A and r, s ∈ R such that
Γ(x) = [A]r and ∆(x) = [A]s. The sum Γ + ∆ of two summable
typing environments Γ, ∆ is defined as follows:

∅+ ∆ = ∆ Γ + ∅ = Γ
(x : A,Γ) + ∆ = x : A, (Γ + ∆) if x /∈ FV (∆)
Γ + (x : A,∆) = x : A, (Γ + ∆) if x /∈ FV (Γ)

x : [A]r,Γ + x : [A]s,∆ = x : [A]r+s, (Γ + ∆)
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ax
x : A ` x : A

sub Γ ` t : A Γ′ <: Γ A <: B

Γ′, [∆]0 ` t : B

abs
Γ, x : A ` t : B

Γ ` λx.t : A→ B
app Γ ` t : A→ B ∆ ` t′ : A

Γ + ∆ ` t t′ : B

unit Γ ` t : A
Γ ` 〈t〉 : T1A

letT
Γ ` t1 : TeA ∆, x : A ` t2 : TfB

Γ + ∆ ` let 〈x〉 = t1 in t2 : Te•fB

der
Γ, x : A ` t : B

Γ, x : [A]1 ` t : B
pr

[Γ] ` t : B

r∗[Γ] ` [t] : DrB

letD
Γ ` t1 : DrA ∆, x : [A]r ` t2 : B

Γ + ∆ ` let [x] = t1 in t2 : B

` distφ : Fφr,eA→ Gφr,eA ` op : Aop

Figure 2. Typing rules: (a) pure, (b) effect rules, (c) coeffect rules,
(d) distributivity and operations.

Multiplication r∗[Γ] of a coeffect r by an environment [Γ] of dis-
charged variable assignments (of the form xi : [Ai]si ) is defined:

r ∗ ∅ = ∅ r ∗ (x : [A]s, [Γ]) = x : [A]r∗s, r ∗ [Γ]

With these operations, we now present the typing rules in Fig-
ure 2. There are four sets of rules: (a) pure rules, (b) effect rules,
(c) coeffect rules, (d) distributivity and operations (Section 3.2.1).

(a) pure rules The pure fragment corresponds to the typing of
the linear λ-calculus (without exponentials). It is worth noticing
that, in the (app) rule, type environments are composed using the
sum operation defined above. Moreover, we have a subtyping rule
(sub) that permits casting to a super-effect in the type and to sub-
coeffects in the type environment. The subtyping relation on types
and environments is defined in Figure 3. This relation is defined in
terms of the effect monoid and coeffect semiring preorders, where
it is covariant in effects whilst contravariant in coeffects (and thus
in discharged assignments). It is extended to environments and the
other types following the traditional structure of subtyping.

We can weaken and contract discharged variables at several
places in a derivation tree. The strength of these operations de-
pends on the coeffect semiring. Weakening of environments with
0-discharged variables is always permitted at the rule (sub). This
limited form of weakening is analogous to the weakening of envi-
ronments with !-types in linear logic. When 0 is the least element
in the coeffect semiringR, further application of (sub) allows us to
weaken 0-discharged variables to r-discharged variables. Therefore
in such a situation one can virtually weaken environments with ar-
bitrary r-discharged variables. In the rules (app), (letT) and (letD),
discharged variables in the environments of the subtrees are added
up by the environment summation. When the coeffect addition +
is idempotent, the environment sum of ∆ and ∆′ now contracts the
discharged variables that are common in ∆ and ∆′.

(b) effect rules The effectful fragment corresponds to the stan-
dard rules for monads in the computational λ-calculus but with ex-
plicit effects. These rules are those presented by Katsumata [24].
The (unit) rule introduces the unit of the monad graded with the 1
effect, and (letT) composes effects via the • operation.

(c) coeffect rules Following Brunel et al. [8], the rules for coef-
fects correspond to a decoration of the rules for linear logic. The
(der) rule introduces a trivial coeffect 1 on the left by discharg-
ing the assignment of a variable in the environment, and rule (pr)

s-ax
A <: A

s-arr A′ <: A B <: B′

A→ B <: A′ → B′
s-rf

Γ <: Γ

s-D
A <: A′ s ≤ r
DrA <: DsA

′ s-d
A <: A′ s ≤ r

[A]r <: [A′]s

s-T
A <: A′ e ≤ f
TeA <: TfA

′ s-c Γ <: ∆ B <: A
Γ, x : B <: ∆, x : A

Figure 3. Subeffecting rules

φ T over D (TD) D over T (DT)
Fφr,e Gφr,e Fφr,e Gφr,e

LL Te Dr →Dι(r,e)Tκ(r,e) Dr Te → Tκ(r,e)Dι(r,e)
RR Tκ(r,e)Dι(r,e)→Dr Te Dι(r,e)Tκ(r,e)→ Te Dr
LR Te Dι(r,e)→Dr Tκ(r,e) Dι(r,e)Te → Tκ(r,e)Dr
RL Tκ(r,e)Dr →Dι(r,e)Te Dr Tκ(r,e)→ Te Dι(r,e)

Figure 4. A zoo of distributive laws distφ : Fφr,ea→ Gφr,eA

introduces coeffects on the right by introducing a graded coeffect
comonad Dr on the type—this rule also requires the environment
to consist only of discharged assumptions, and it multiplies the co-
effects on the discharged formulas by r. Finally, we have a rule
(letD) that replaces a variable x which is a discharged assignment
with a comonadic term. This rule provides sequential composition
of a computation that provides a coeffect capability with one that
has a matching coeffect requirement.5

The (op) rule introduces operations to the language which
may be effectful/coeffectful, of type Aop which can be a func-
tion, monadic, or comonadic type. Any function-typed operation
can then be applied using the standard application rule.

Note on linearity and coeffects The connection between linear
types and coeffects is established in recent work [8, 15, 41], where
coeffects arise as an indexed generalisation of the exponential !.
We follow this tradition. Hence, the comonadic fragment of our
calculus reflects the constructions of linear logic. It is worth noting
that each instantiation of E and R corresponds to a refinement of
the simply typed lambda calculus. When the coeffect semiring R
is instantiated with an idempotent addition operation we obtain an
analysis that is not quantitative in the usual sense of linear logic.
For example, Section 6.1 shows information flow coeffects which
are non-quantitative as there is a lattice semiring for security labels
with the addition + as lattice join, which is thus idempotent.

3.2.1 Distributive Laws
Since the goal is for our calculus to be flexible in the interaction of
effects and coeffects, the distributive law syntax distφ is parame-
terised by a distributive law format φ indicating which law to use
(we omit φ when clear from the context, e.g., from the typing).

Figure 4 defines our “zoo” of distributive laws which is derived
systematically along the two axes which define formats φ. The
horizontal axis defined over {TD, DT} is a binary choice between
whether effects T are distributed over coeffects D or the converse,
coeffectsD over effects T . The vertical axis over {LL, RR, LR, RL}
relates to the direction of information flow for effects/coeffects as
enforced by the matched pair operations ι, κ. In the case where
effects e are parameters on the left (i.e., Te appears to the left of an

5 Notice that when the term t1 in (letD) is a variable, then (letD) corresponds
to introducing a coeffect graded comonad constructor on the left. The usual
dereliction rule of linear logic for ! can be obtained by combining the rule
(der) with the rule (letD) while promotion can be obtained by combining
the rule (pr) with (several applications of) the rule (letD). Contraction and
weakening are instead implicitly used in the management of environments.
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arrow) and κ(e, r) appears on the right then the flow of information
with respect to effects is from the left, marked L∗; conversely if
Te is on the right and Tκ(e,r) on the left then effect information
flows from the right, marked R∗. The information flow for coeffects
varies in the same fashion with Dr and Dι(e,r) on either side
marked by ∗L and ∗R. Definition 3 gave the axioms on Rop, E-
matched pairs that are induced by the choice of φ.

For both effects and coeffects, the choice of the information flow
direction collapses when ι and/or κ are projections.

Effectful-coeffectful let-binding We have chosen to include two
different let-binding constructions: one for effects (letT) and one
for coeffects (letD). In many concrete situations, it is however
convenient to have a let-binding that is effectful and coeffectful at
the same time. We introduce syntactic sugar for their composition:

(let 〈[x]〉 = t1 in t2) := let 〈y〉 = t1 in let [x] = y in t2
where y is fresh in t2. The derived typing is:

letTD
Γ ` t1 : TeDrA ∆, x : [A]r ` t2 : TfB

Γ + ∆ ` let 〈[x]〉 = t1 in t2 : Te•fB
(3)

In the dual situation of a computation of typeDrTe, the most useful
composition of effectful and coeffectful let is:

(let [〈x〉] = t1 in t2) := let [y] = t1 in [let 〈x〉 = y in t2]

where again y is fresh in t2. This gives the typing:

letDT
Γ ` t1 : DrTeA ∆, x : A ` t2 : TfB

Γ + ∆ ` let [〈x〉] = t1 in t2 : DrTe•fB
(4)

The form is a little different from (letTD), but can be understood as
giving a way to compose effects underneath a coeffect capability.

4. Equational theory
We equip our type system with a syntactic equational theory further
refinable into a rewrite system (operational semantics). Section 5
shows the corresponding categorical semantics.

4.1 Substitution
In defining the equational theory ≡ we consider βη-equality
(as pairs of introduction-elimination and elimination-introduction
rules) and associativity equalities for the pure, effectful, coeffect-
ful, and distributive parts of our calculus. Some equations rely on
the syntactic notion of (capture avoiding) substitution which for
our calculus is the standard one for the λ-calculus and recursively
defined over all other terms in a standard way.

We show that substitution is type preserving. Like several lin-
ear type systems, our calculus distinguishes two kinds of type as-
signments for variables: normal (linear) and discharged (coeffect-
ful). We show that substitution is preserved when the variable to
be substituted for belongs to either one of these assignments. Type-
preservation for substitution of linearly-typed variables is given by
the following lemma.

Lemma 1 (Linear substitution). Let Γ, x : A ` t2 : B and
∆ ` t1 : A. Then, Γ + ∆ ` t2[t1/x] : B

The proof employs the commutativity and associativity of + .
The following lemma shows substitution is type-preserving when
instead the substituted variable is a discharged assignment:

Lemma 2 (Coeffectful substitution). Let Γ, x : [A]r ` t2 : B and
[∆] ` t1 : A. Then, Γ + r ∗ [∆] ` t2[t1/x] : B

In order to prove the substitution lemmas above, we use several
of the algebraic properties of the coeffect semiring. In fact, the
semiring structure emerges naturally by the requirements imposed
by the substitution on the typing environments.

(λx.t2)t1 ≡ t2[t1/x] (β)
λx.tx ≡ t [x#t] (η)

let 〈x〉 = 〈t1〉 in t2 ≡ t2[t1/x] (β-eff)
let 〈x〉 = t1 in 〈x〉 ≡ t1 (η-eff)

(let 〈x〉 = t1 in let 〈y〉 = t2 in t3) (assoc-eff)
≡ let 〈y〉 = (let 〈x〉 = t1 in t2) in t3 [x#t3]

let [x] = [t1] in t2 ≡ t2[t1/x] (β-coeff)
let [x] = t1 in [x] ≡ t1 (η-coeff)

let [x] = [t1] in [t2] ≡ [let [x] = [t1] in t2] (assoc-coeff)

f (let [x] = t1 in t2) ≡ let [x] = t1 in f t2 [x#f ] (app↔letD)
〈let [x] = t1 in t2〉 ≡ let [x] = t1 in 〈t2〉 (unit↔letD)

Figure 5. Equational theory for the effect-coeffect calculus

4.2 Equations
We now introduce the equational theory ≡. This is defined by
the set of rules given in Figure 5. To avoid variables in terms
being unintentionally captured, we use the freshness predicate #
to denote that a variable does not appear free or bound in a term.

The equational theory is defined over typing derivations, like
the interpretation given in Section 5, but to keep the presentation
compact we will describe it only on terms. The equational theory
is well-defined in the sense that, if t ≡ u, then we can give to t and
u the same type in the same environment. As in the simply-typed
λ-calculus,this is true only under some additional assumptions on
the typability of the different components of the rule, e.g., the (η)
rule in Figure 5 is well-defined only if we can assign to the term t
a functional type A→ B. We omit here most of these assumptions
for brevity, but highlight a few examples.

Pure fragment: The (β) rule is well defined following Lemma 1
under the assumptions Γ, x : A ` t2 : B and ∆ ` t1 : A. The (η)
rule follows under the assumption Γ ` t : A→ B.

Effectful fragment: The equational theory for the effectful frag-
ment follows the standard one of the monadic metalanguage by
Moggi [31], and others [24, 53], modulo grading. In particular, the
(β-eff ) rule relies on the left-unit axiom of the monoid, (η-eff ) on
the right-unit of the monoid, and (assoc-eff ) on its associativity.

Coeffectful fragment: The equational theory for the coeffectful
fragment is similar to the one presented by Petricek et al. [40, 41]
but with some adaptation due to the difference in syntax. We show
here how to derive some of the rules. The fact that the (β-coeff )
rule let [x] = [t1] in t2 ≡ t2[t1/x] is well-defined follows from
the typing of its left-hand side:

letD
pr

[Γ] ` t1 : A

r∗[Γ] ` [t1] : DrA ∆, x : [A]r ` t2 : B

r∗[Γ] + ∆ ` let [x] = [t1] in t2 : B

and from the coeffectful substitution (Lemma 2) for its right-hand
side—assuming the premises of the derivation above. Similarly,
(η-coeff ) is well-defined by the following (partial) type derivation:

letD
Γ ` t : DrA

pr
x : [A]1 ` x : A

x : [A]r ` [x] : DrA

Γ ` (let [x] = t in [x]) ≡ t : DrA

assuming Γ ` t : DrA. The other rules are similarly well-typed
using the properties of the coeffect semiring.

Distributive fragment: The equational theory for the distributive
fragment splits into two sets of axioms depending on whether a TD
or DT axiom is being used. These are shown in Figure 6. To be well-
typed, these axioms rely on the properties of the Rop, E matched
pair (ι, κ) (see Definition 3).
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dist [〈t〉] ≡ 〈[t]〉 (eff1-dist)
let 〈[x]〉 = dist t in 〈x〉 ≡ let [x] = t in x (coeff1-dist)

let 〈[x]〉 = dist[t] in 〈[[x]]〉 ≡ dist [dist [t]] (coeff∗-dist)

let 〈x〉 = dist(t) in dist(x) ≡ (eff•-dist)
dist(let [〈x〉] = t in x)

(a) Equations for DT distributive laws

[〈t〉] ≡ dist 〈[t]〉 (eff1-dist)
let 〈[x]〉 = t in 〈x〉 ≡ let [x] = dist t in x (coeff1-dist)

let [x] = dist t in [[x]] ≡ (coeff∗-dist)
let [y] = dist(let 〈[x]〉 = t in 〈[[x]]〉) in [dist y]

dist(let 〈x〉 = t in x) ≡ (eff•-dist)
let [〈x〉] = dist(let 〈y〉 = t in 〈dist y〉) in x

(b) Equations for TD distributive laws

Figure 6. Equational theory for dist

For example, the DT rule (eff1-dist) dist [〈t〉] ≡ 〈[t]〉 says that
dist can swap any graded comonadD with the graded monadic unit
〈−〉. This is justified by the following derivation:

dist

pr
unit

[Γ] ` t : A

[Γ] ` 〈t〉 : T1A

ι(r, 1)∗[Γ] ` [〈t〉] : Dι(r,1)T1A

ι(r, 1)∗[Γ] ` dist(LR,DT) [〈t〉] ≡ 〈[t]〉 : Tκ(r,1)DrA
(eff1-dist)

The typing of the two sides of the equation are equal since by
the definition of a Rop, E matched pair we have ι(r, 1) = r and
κ(r, 1) = 1. The rule thus says that a coeffect can be distributed
over any trivial effect.

In the case of TD distributive laws, the order of effects and coef-
fects is flipped, leading to a mirrored axiom, with typing derivation:

dist

unit

pr
[Γ] ` t : A

ι(r, 1)∗[Γ] ` [t] : Dι(r,1)A

ι(r, 1)∗[Γ] ` 〈[t]〉 : T1Dι(r,1)A

ι(r, 1)∗[Γ] ` dist(LR,TD) 〈[t]〉 ≡ [〈t〉] : DrTκ(r,1)A
(eff1-dist)

The (eff1-dist) rule has a coeffectful counterpart in (coeff1-dist):
let 〈[x]〉 = dist t in 〈x〉 ≡ let [x] = t in x (for DT distributions).
This axiom is typed with the following (partial) derivation for its
left-hand side:

letTD

dist
Γ ` t : Dι(1,e)TeA

Γ ` dist(LR,DT) t : Tκ(1,e)D1A
unit

x : [A]1 ` x : A

x : [A]1 ` 〈x〉 : T1A

Γ ` let 〈[x]〉 = dist(LR,DT) t in 〈x〉 : Tκ(1,e)•1A

and the judgment Γ ` let [x] = t in x : TeA for its right-hand
side. Again, the two types are the same because by definition of
Rop, E matched pair we have ι(1, e) = 1 and κ(1, e) = e. So,
this rule says that distributing a trivial coeffect over an effect then
discharging it is equivalent to just discharging the trivial coeffect
(since on the right-hand side, x is bound and discharged without
any operations on it). The fact that the other rules are well-defined
can be shown in a similar way.

In the case of (eff•-dist) and (coeff∗-dist), both equate a double
use of dist (with some additional composition of effects/coeffects)
with a single use. For example, each side of (eff•-dist) for (DT, LL)
takes a term Γ ` t : DrTeTfA and produces a term whose type
is of the form Tκ(r,e•f)Dι(r,e•f)A by either applying dist twice
(DTT → TDT → TTD) and sequentially composing effects
(the left-hand side of the rule) or sequentially composing effects

then distributing once (right-hand side). Due to space limitations
we omit the rest of the typings for the equational theory.

Subtyping: For every typing rule, there is a non-syntax di-
rected equation stating that it commutes with (sub). That is, for
an n-ary typing rule Ψ with premises provided by derivation
trees π1...πn then for each i ∈ {1, .., n} there is an equation
Ψ(π1, .., sub(πi), .., πn) ≡ sub(Ψ(π1, .., πi, .., πn)). We omit
these here for brevity. The accompanying technical report [14] pro-
vides the full set of equations.

Before moving on, it is worth noting that by orienting the equa-
tions in Figures 5 and 6 we obtain an operational semantics for the
operation-free calculus. Moreover, since the equational theory is
well-defined with respect to typing, this operational semantics en-
joys type preservation. We next introduce the denotational, categor-
ical semantics before showing example instantiations in Section 6.

5. Categorical semantics
We give a categorical semantics to our calculus, built upon its pa-
rameters. Recall that its parameters comprise (1) a coeffect semir-
ing R and an effect monoid E , (2) a distributive law format φ and
anRop, E-matched pair (ι, κ) for φ, and (3) operations op : Aop.

Our calculus is based on the intuitionistic linear lambda calcu-
lus. We thus fix an underlying symmetric monoidal closed category
(C, I,⊗,() which provides the semantics of functions, environ-
ments, and abstraction. To interpret the (co)effect-annotated types
Te, Dr and distributive laws we introduce the following structures:

1. An E-graded strong monad T on C (Section 5.1).

2. AnRop-graded exponential comonad D on C (Section 5.2).

3. An (ι, κ)-distributive law σ for each φ (Section 5.3).

5.1 Graded strong monads
We first review the primitive form of graded monads. By [C, C] we
mean the category of endofunctors on C and natural transforma-
tions between them. We equip it with the strict monoidal structure
given by the identity functor and the functor composition. Then an
E-graded monad on C is given by a lax monoidal functor of type
E → ([C, C], Id, ◦). This terse definition is expanded to the fol-
lowing concrete definition: an E-graded monad on C consists of the
following functor and natural transformations:

Functor T : E → [C, C]
Unit ηA : A → T1A
Multiplication µe,f,A : Te(TfA) → T (e•f)A

making the following diagrams commute in [C, C]:

Te
η◦Te //

Te◦η ��

T1 ◦ Te
µ1,e��

Te ◦ T1
µe,1
// Te

Te ◦ Tf ◦ Tg
µe,f◦Tg ��

Te◦µf,g// Te ◦ T (f • g)

µe,fg��
T (e • f) ◦ Tg

µef,g
// T (e • f • g)

The primitive form of graded comonads are dually defined. In the
model we write Tf instead of Tf (and similarly for coeffects) to
make clear that (co)effect annotations are in fact object parameters.

Recall that interpreting the computational metalanguage using a
monad [31] requires the extra structure of tensorial strength on the
monad so that computations can be parameterised by environments.
We adopt the same approach for graded monads. To extend them
with tensorial strength, we first consider the category [C, C]s of
strong endofunctors and strong natural transformations between
them. We equip it with the strict monoidal structure given by
the identity functor and the functor composition. Then we define
an E-graded strong monad to be a lax monoidal functor of type
E → [C, C]s. Concretely speaking, it is an E-graded monad (above)

8



D(r ∗ 0)

δ ��

D0

w

��
Dr ◦D0
D◦w ��
Dr ◦ İ İ

mr,I
oo

D(t ∗ (r + s))

δ ��

D(t ∗ r + t ∗ s)
c��

Dt ◦D(r + s)

D◦c ��

D(t ∗ r)⊗̇D(t ∗ s)
δ⊗̇δ��

Dt ◦ (Dr⊗̇Ds) (Dt ◦Dr)⊗̇(Dt ◦Ds)
mt,D,D
oo

D(0 ∗ r)
δ ��

D0

w

��

D((r + s) ∗ t)
δ ��

D(r ∗ t+ s ∗ t)
c��

D0 ◦Dr
w◦D ��

D(r + s) ◦Dt
c◦D ��

D(r ∗ t)⊗̇D(s ∗ t)
δ⊗̇δ��

İ ◦Dr İ (Dr⊗̇Ds) ◦Dt (Dr ◦Dt)⊗̇(Ds ◦Dt)

Figure 7. Diagrammatic axioms for semiring-graded comonads; (co)effect annotations in morphisms are omitted

together with a tensorial strength ste,A,B : A⊗ TeB → Te(A⊗
B), which interacts with T, η, µ in a coherent way (with the usual
strong monad axioms [30, 31], modulo grading).

5.2 Semiring graded exponential comonads
In our calculus, the weakening and contraction is allowed on dis-
charged types [A]r in the context. To model these facilities, the
primitive form of graded comonads is insufficient on its own. We
need to give an additional structure describing the interaction be-
tween monoidal structure and the comonadic structure that is con-
trolled by the coeffect semiring. This was given by Brunel et al.
[8], Petricek et al. [41], which we introduce below.

By SMonl[C, C] we mean the category of symmetric lax
monoidal endofunctors on C and monoidal natural transformations
between them. We equip it with the pointwise extension of the
symmetric monoidal structure on C. Namely, we give the following
tensor unit and tensor product on SMonl[C, C]:

İA = I, (F ⊗̇G)A = FA⊗GA.
We give a general definition of anR-graded exponential comonad
on C for a preordered semiringR. It consists of a symmetric colax
monoidal functor

(D,w, c) : R+ → (SMonl[C, C], İ, ⊗̇)

and a colax monoidal functor

(D, ε, δ) : R∗ → (SMonl[C, C], Id, ◦)
making the diagrams in Figure 7 commute.

A concrete definition of an R-graded exponential comonad
consists of the following functor and natural transformations:

Functor D : R → [C, C]
0-Monoidality mr,I : I → DrI
2-Monoidality mr,A,B : DrA⊗DrB → Dr(A⊗B)
Weakening wA : D0A → I
Contraction cr,s,A : D(r + s)A → DrA⊗DsA
Dereliction εA : D1A → A
Digging δr,s,A : D(r ∗ s)A → Dr(DsA)

making a number of diagrams commute. When the semiring is
trivial, it becomes a linear exponential comonad on C.

The categorical semantics of the calculus whose coeffect semir-
ing is R employs an Rop-graded comonad rather than R-graded
one. This is because for each ordered coeffect pair r ≤ s we would
like to have the monoidal natural transformation Ds → Dr em-
bodying the principle that “large also serves as a small”. This con-
travariance also matches the subtyping rule in Figure 3.

5.3 Distributive Laws
A key part of our calculus is the family of distributive operations
which are the direct counterpart of categorical graded distributive
laws. They are graded generalisations of the classical distributive
laws of a comonad D over a monad T [45] (and vice versa) and
involve nontrivial interactions between two kinds of grading given
by a matched pair. We first focus on one of eight variations.

Definition 5. Let R = (R,≤, 1, ∗) and E = (E,≤, 1, •) be
preordered monoids, D be an R-graded comonad on a category
C, T be an E-graded monad on C, and (ι, κ) be an R, E-matched
pair for the distributive law format (LL, DT). An (ι, κ)-distributive
law (for (LL, DT)) is a natural transformation

σr,e,A : D r (T eA) → T κ(r, e) (D ι(r, e)A) (5)

satisfying four equational axioms displayed in Figure 8.

The reason why we impose the matched pair axioms (Def. 2)
on effect-coeffect interactions ι, κ is the following. When we add
gradings to the equational axioms of the classical (i.e., non-graded)
distributive law, both sides of equational axioms get different grad-
ings, thus become incomparable. The matched pair axioms on ι, κ
are introduced to resolve this mismatch. For instance, one of the
equational axioms of the classical distributive law σ : D ◦ T →
T ◦ D of a comonad D over a monad (T, η, µ) is: σA ◦ DηA =
ηDA : DA → TDA. When we add gradings to D,T, σ, the mor-
phisms on each side of the equation have different gradings:

σr,1,A ◦DrηA : DrA → T κ(r, 1) (D ι(r, 1)A)
ηDrA : DrA → T1(DrA).

To equate them, we introduce two equalities κ(r, 1) = 1 and
ι(r, 1) = r, which are a part of Definition 2. Remaining axioms
of matched pair are similarly derived.

Generalising Definition 5, we define distributive laws for arbi-
trary format φ with respect to a given matched pair for φ.

Definition 6. Let R and E be preordered monoids, D be an R-
graded comonad on a category C, T be an E-graded monad on C,
φ be a distributive law format, and (ι, κ) be an R, E-matched pair
for φ. An (ι, κ)-distributive law (for φ) is a natural transformation
σφ : Fφ(r, e)→ Gφ(r, e), where Fφ and Gφ are functors of type
R× E → [C, C] determined by the following table:

φ Fφ(r, e) Gφ(r, e)
LL TD Te ◦Dr D(ι(r, e)) ◦ T (κ(r, e))
LR TD Te ◦D(ι(r, e)) Dr ◦ T (κ(r, e))
RL TD T (κ(r, e)) ◦Dr D(ι(r, e)) ◦ Te
RR TD T (κ(r, e)) ◦D(ι(r, e)) Dr ◦ Te
LL DT Dr ◦ Te T (κ(r, e)) ◦D(ι(r, e))
LR DT D(ι(r, e)) ◦ Te T (κ(r, e)) ◦Dr
RL DT Dr ◦ T (κ(r, e)) Te ◦D(ι(r, e))
RR DT D(ι(r, e)) ◦ T (κ(r, e)) Te ◦Dr

Moreover, σφ should satisfy four equalities that are given by the
diagrams similar to Figure 8.

5.4 Categorical Semantics
We have set-up the categorical structures we need to interpret
the calculus. The interpretation translates type derivation trees to
morphisms. The interpretation of types is standard. We fix an object
JoK of the interpretation of the base type o. We then inductively
extend this to the interpretation of all types by

JA→ BK = JAK ( JBK JDrAK = DrJAK JTeAK = TeJAK.

9



Dr
D◦η //

η◦D ''

Dr ◦ T1

σ
��

Dr ◦ Te ◦ Tf σ◦T //

D◦µ ��

T (κ(r, e)) ◦D(ι(r, e)) ◦ Tf T◦σ // T (κ(r, e)) ◦ T (κ(ι(r, e), f)) ◦D(ι(r, e • f))

µ◦D��
T1 ◦Dr Dr ◦ T (e • f)

σ
// T (κ(r, e • f)) ◦D(ι(r, e • f))

by ι(r, 1) = r
and κ(r, 1) = 1

by ι(r, e • f) = ι(ι(r, e), f) and κ(r, e • f) = κ(r, e) • κ(ι(r, e), f)

D1 ◦ Te ε◦T //

σ
��

Te D(r ∗ s) ◦ Te
δ◦T ��

σ // T (κ(r ∗ s, e)) ◦D(ι(r ∗ s, e))
T◦δ��

Te ◦D1
T◦ε

88

Dr ◦Ds ◦ Te
D◦σ
// Dr ◦ T (κ(s, e)) ◦D(ι(s, e))

σ◦D
// T (κ(r ∗ s, e)) ◦D(ι(r, κ(s, e))) ◦D(ι(s, e))

by ι(1, e) = 1
and κ(1, e) = e by ι(r ∗ s, e) = ι(r, κ(s, e)) ∗ ι(s, e) and κ(r ∗ s, e) = κ(r, κ(s, e))

Figure 8. Axioms of distributive laws in the (LL-DT) format; (co)effect annotations in morphisms are omitted

ax
idJAK : JAK→ JAK

abs
f : JΓ, x : AK→ JBK

λ(f ◦MΓ,x:A) : JΓK→ JA→ BK
app

f : JΓK→ JA→ BK g : J∆K→ JAK
ev ◦ (f ⊗ g) ◦ SΓ,∆ : JΓ + ∆K→ JBK

sub
f : JΓK→ JAK

JA <: BK ◦ f ◦ JΓ′, [∆0] <: ΓK : JΓ′, [∆]0K→ JBK
op

JopK : I→ JAopK
dist

f = λ(σφr,e,JAK ◦ rFφ(r,e)JAK)

f : I→ (Fφ(r, e)JAK ( Gφ(r, e)JAK)

unit
f : JΓK→ JAK

ηJAK ◦ f : JΓK→ JT1AK
letT

f : JΓK→ JTeAK g : J∆, x : AK→ JTe′BK
µe,e′,JBK ◦ Te(g ◦M∆,x:A) ◦ ste,J∆K,JAK ◦ (J∆K⊗ f) ◦ S∆,Γ

pr
f : J[Γ]K→ JBK

Drf ◦ dr,[Γ] : Jr ∗ [Γ]K→ JDrBK
der

f : JΓ, x : AK→ JBK
f ◦ ε(Γ,x:A)@x : JΓ, x : [A]1K→ JBK

letD
f : JΓK→ JDrAK g : J∆, x : [A]rK→ JBK

g ◦M∆,x:[A]r ◦ (J∆K⊗ f) ◦ S∆,Γ : JΓ + ∆K→ JBK

Figure 9. Categorical semantics of typing derivations

We also extend this interpretation to discharged types (which ap-
pear only inside typing environments) by J[A]rK = DrJAK

We next interpret the subtyping relations for types as mor-
phisms. To the subtyping relation A <: B, we inductively assign
a morphism JA <: BK : JAK → JBK using the functoriality of
each type constructor. As an example, we highlight the interpreta-
tion of the (s-D) subtyping rule. Note that D is Rop-graded (with
the opposite pre-order), thus:

JDrA <: DsA
′K = D(s ≤ r)(JA <: A′K) : DrJAK→ DsJA′K.

To interpret typing environments we assume an arbitrary linear or-
der < on variables. The interpretation JΓK of a typing environment
Γ is the tensor product JΓ(x1)K⊗ · · · ⊗ JΓ(xn)K of the interpreta-
tion of types (including discharged ones), where x1, · · · , xn forms
the <-sorted list of variables in dom(Γ). We then extend this inter-
pretation to the subtyping relation between typing environments.

We introduce some additional auxiliary morphisms.

• Let Γ,∆ be summable typing environments. We define the
splitting SΓ,∆ : JΓ + ∆K → JΓK ⊗ J∆K by a combination of
the contraction cr,s,A and the symmetry of ⊗. The contraction
is performed only on the types assigned to the variables x ∈
dom(Γ)∩dom(∆). We note that when Γ,∆ are disjoint, SΓ,∆

becomes a (permutation) isomorphism.
• For a typing environment Γ with x 6∈ dom(Γ), define MΓ,x:A

to be (SΓ,x:A)−1 : JΓK⊗ JAK→ JΓ, x : AK.
• For r ∈ R and a discharged environment [Γ], define the multi-

comultiplication dr,[Γ] : Jr ∗ [Γ]K → DrJ[Γ]K to be the com-
posite of the tensor product of comultiplications of the form
δr,s,A followed by the |dom([Γ])|-monoidality, which is a com-
bination of 0- and 2-monoidality. For example, let ∆ = x :

[A]s1 , y : [B]s2 then multi-comultiplication dr,∆ is defined:

D(r ∗ s1)A⊗D(r ∗ s2)B

δr,s1,A⊗δr,s2,B ))

Dr(Ds1A⊗Ds2B)

DrDs1A⊗DrDs2B

mr,A,B

77

• For a typing environment Γ with x ∈ Γ and Γ(x) = [A]1,
let x1, · · · , x, · · · , xn be the <-sorted list of variables in
dom(Γ). Then we define multi-counit εΓ@x : JΓK → JAK to
be idJΓ(x1)K ⊗ · · · ⊗ εJAK ⊗ · · · ⊗ idJΓ(xn)K (dereliction/counit
appears only at the position of x).
• For a discharged typing environment [∆]0 having coeffect 0

only, let x1, · · · , xn be the <-sorted list of variables in it, and
[Ai]0 be the discharged type assigned to xi. Then we define
multi-weakening w[∆]0 by

J[∆]0K
wJA1K⊗···⊗wJAnK // I⊗ · · · ⊗ I

' // I

• For environments Γ′ <: Γ we define the subtyping-and-
weakening morphism JΓ′, [∆]0 <: ΓK as the composite:

JΓ′, [∆]0K
(JΓ′<:ΓK⊗w[∆]0

)◦SΓ′,[∆]0// JΓK⊗ I
' // JΓK

The core structures, along with these auxiliary definitions, then
provides the interpretation for typing derivations as morphisms in
C. For this, we assume that a morphism JopK : I → JAopK is
given for each operator symbol op. We then inductively interpret
a derivation of Γ ` t : A by the rules in Fig. 9. Each of these has
a corresponding rule in Fig. 2 and represents a construction of a
morphism along the typing rule. For instance, we read (abs) rule in
Fig. 9 as “if we construct a morphism f alongside the derivation π

10



of Γ, x : A ` t : B, we construct the morphism λ(f ◦MΓ,x:A) for
the derivation π+(abs) of Γ ` λx . t : A → B”. We can now state
the main theorem of this section.

Theorem 1 (Soundness). Let π1 and π2 be derivations of Γ ` ti :
A (i = 1, 2), respectively. If π1 = π2 is derivable in the equational
theory presented in Sect. 4, then Jπ1K = Jπ2K holds. The technical
report provides the full proof and auxiliary lemmas [14].

6. Examples
We now present the details for two concrete instances of our calcu-
lus which model some new interesting computational behaviours.
The first example combines a coeffect-graded comonad for infor-
mation flow with an effect-graded monad for nondeterminism anal-
ysis. The second example combines a coeffect-graded comonad for
exact resource analysis with an effect-graded monad for errors.

6.1 Combining information flow and nondeterminism
Information flow properties, such as tracking high- and low-
security code/data, have been described by effect systems with
a lattice of security levels, e.g. [1]. We argue that a coeffectful pre-
sentation is more natural, since information flow relates to variable
use. As an example of combining information flow coeffects with
effects, we pick non-determinism effects for the sake of variety. We
instantiate the calculus of Section 3 with the following data:

CoeffectR A distributive lattice (R,≤,⊥,∨,>,∧)
Effect E ({DET ≤ ND}, DET, •)

where x • y = DET iff x = y = DET
Dist. law format (LL, DT)
ι The first projection π1

κ The second projection π2

Operation orA : TNDA→ TNDA→ TNDA

The additive monoid of R is (R,∨,⊥) and multiplicative is
(R,∧,>). Note that, compared to the traditional effect-based pre-
sentation of information flow, the lattice is inverted here for coef-
fects, matching their contravariant nature.

The graded comonadic type Dr plays the role of information
masking corresponding to a (partial) view of an observer. That is, a
computation typedDrA provides a value of typeA only at security
levels inside the downset ↓r = {r′ ∈ R | r′ ≤ r}. Outside this
downset, the type DrA is only observable as the singleton type 1.

The graded monadic type constructor Te classifies whether the
computation is definitely deterministic (DET) or possibly nondeter-
ministic (ND). The order DET ≤ ND allows us to upcast determinis-
tic computations to nondeterministic ones. The operation orA is the
nondeterministic choice operator. As the result is always nondeter-
ministic, the result of the choice is classified as ND. The matched
pair of this calculus is simply (π1, π2). Therefore the distributive
laws we allow in this instantiation take the following form:

dist(LL,DT)
r,e,A : DrTeA→ TeDrA.

The semantics for this dist, given below in Def. 7, is that if a com-
putation is observed at a security level r′ that is not within ↓r then
any non-determinism at security levels within ↓r is masked, i.e., not
visible. Otherwise, if a computation is observed at r′ ∈ ↓r, then the
non-determinism is available (not masked). The intended semantics
of TDET and TND are the identity functor and the nonempty power-
set functor, respectively. These functors preserve terminal objects 1
which are used to model masked computations (see below), hence
TDET and TND commute with the masking functor D r for each
r ∈ R. In the calculus we reflect this isomorphism via the dis-
tributive law (LL, DT), which transforms possibly-masked effectful
computations to effectful possibly-masked computations.

Semantics We give a Set-based interpretation of this calculus.
The domain of the interpretation is SetR, the product category of
R-fold copies of Set. It is Cartesian closed, and the structure is
given security-level-wise. The idea is that denotations of terms are
computations that are indexed by security levels.

An object A of SetR is an R-indexed family {Ar}r∈R of
sets. This family describes how a type A is observed depending
on security levels. For instance, suppose that a set B ∈ Set
corresponds to a base type (e.g., natural numbers / booleans).

• The type where a B value is observable at each security level
corresponds to the constant family KB given by KBr = B.
• The type where B values are available only at the security level

inside ↓ r corresponds to the following family PrB:

(PrB)r′ =

{
1 r′ 6≤ r
B r′ ≤ r

Here 1 is the terminal object of Set. This type reduces to the
trivial data type (i.e. 1) when the security level is outside of ↓ r.

A morphism from A to B in SetR is an R-indexed family
of functions fr : Ar → B r. For natural transformations α
between endofunctors on SetR we write αA,r as shorthand for
(αA)r (the morphism in Set). Such a morphism may be seen as
a security-level dependent computation. We illustrate this situation
by considering a morphism f : PrB → PrB in SetR. From the
definition of PrB, f needs to be the following family:

fr′ =

{
id1 : 1→ 1 r′ 6≤ r
fr′ : B → B r′ ≤ r

Thus f can perform some nontrivial computation overB inside the
downset ↓ r of security levels, but outside ↓ r, it performs nothing.

For each security level r ∈ R, we introduce the masking functor
D r : SetR → SetR . This functor takes an R-indexed family of
sets, removes all the sets assigned to the security level outside of
the downset ↓ r, then fills the removed part with the terminal object
1 ∈ Set. The formal definition of Dr is the following.

(D rA) r′ =

{
1 r′ 6≤ r
A r′ r′ ≤ r , (D rf)r′ =

{
id1 r′ 6≤ r
fr′ r′ ≤ r

where (DrA) r′ is thus a functor in Set. For instance, we have
DrKB = PrB. To extend r 7→ Dr to a functor, for each ordered
pair r ≤ r′ of security levels, we define a natural transformation
D(r ≤ r′) : D r′ → D r by

D(r ≤ r′)A,r′′ =

{
!(D r′A) r′′ r′′ 6≤ r
idAr′′ r′′ ≤ r(≤ r′)

The join and meet of the security level poset R make the masking
functor D a graded exponential comonad.

Theorem 2. The assignment r 7→ Dr extends to an Rop-graded
exponential comonad over SetR.

We next construct an E-graded monad. Let us write Mnd(Set)
for the category of monads over Set and monad morphisms be-
tween them. We define a functor T ′ : E →Mnd(Set) by

T ′(DET) = Id, T ′(ND) = P+, T ′(DET ≤ ND) = η

where P+ is the nonempty powerset monad, and η is the unit of
P+, which is also a monad morphism from Id to P+. Since E
is a (two pointed) join semilattice, this extends to a graded monad
(T ′, η′, µ′) on Set [24, Theorem 2.12]. We then further extend this
pointwise to the graded monad (T, η, µ) on SetR:

(T eA) r = T ′e (Ar), ηA,r = η′Ar , µe,e′,A,r = µ′e,e′,(Ar)

The key part of this example is then the distributive law definition.

11



Definition 7. We define a (π1, π2)-distributive law σr,e : DrTe→
TeDr for (LL, DT):

σr,e,A,r′ =

{
T ′(DET ≤ e)1 ◦ η′1 r′ 6≤ r
idT ′e(Ar′) r′ ≤ r

In the first case, if the observer’s security level r′ is not within ↓ r,
the domain and codomain of σ is observed as 1 and T ′e1, respec-
tively. The latter is always isomorphic to 1; thus σ connects them
by the isomorphism. In the second case, where the observer’s se-
curity level is within ↓ r we preserve the non-determinism exactly
via the identity. Note that σ is an isomorphism at each component.

Finally, we interpret the non-deterministic choice operator by:

JorAKr : P+(JAKr)⇒ P+(JAKr)⇒ P+(JAKr)
JorAKr(x)(y) = x ∪ y

Theorem 3. The pair (π1, π2) is a Rop, E-matched pair for
(LL, DT), and σ is a (π1, π2)-distributive law.

The key point of this example is that the coeffect security grade
r modulates the effect– a non-trivial effect-coeffect interaction.
An alternate graded monad model might count the degree of non-
determinism (similar to the work of Benton et al. [5]).

6.2 Usage analysis and errors
Here we consider an example similar to that presented informally in
Section 2. We instantiate our calculus with coeffects that track the
exact number of times a variable is used and effects distinguishing
computations with errors (e.g., exceptions) (⊥) from the total, pure
computations (>). We have the following data:

CoeffectR (N,=, 0,+, 1,×)
Effect E ({>,⊥},=,>, •) such that

e • f = > iff e = f = >
Dist. law format (LL, TD)
ι ι(r,⊥) = 1 and ι(r,>) = r
κ The second projection π2

Operation throwA : T⊥A

In this instantiation, the graded comonadic type DrA (r ∈ N)
describes values that can be used exactly r times to obtain values of
the type A. In the semantics, we implement the graded comonadic
type DrA by the symmetric tensor product Ar . The graded monad
for this example classifies whether a program causes errors or not.
Note that the ordering of the coeffects R and effects E here is
equality, hence sub-(co)effecting is not useful in this instantiation.

The matched pair and the distributive law in this derived calcu-
lus give the following two components:

distr,>,A : T>DrA→ DrT>A (6)
distr,⊥,A : T⊥DrA→ D1T⊥A (7)

The first law explains that, if the computation is pure then the coef-
fect is unchanged. The second explains that if we know that we will
definitely have an error, then only one copy of that effectful com-
putation is needed. This is because execution flow is interrupted by
the error, and so more copies of the error are not needed.

More concretely, the type T>A consists only of pure computa-
tions of type A. We hence identify it with the type A itself. Then
both sides of the first component of the distributive law (6) may be
seen as the typeDrA. The intended behaviour of this component of
the distributive law is the identity function. On the other hand, the
type T⊥A consists only of erratic computations and they contain
no value of type A; this applies when A = DrB. Therefore any
computation in T⊥DrB can be safely casted as an element in the
type D1T⊥B without changing its contents. This is the meaning of
the second component of the distributive law (7).

Semantics A categorical semantics of this derived calculus can be
given in a symmetric monoidal closed category C with a terminal
object 1. We also assume that C has limits of functors from any
one-object category, and the tensor product preserves these limits
in each argument.

We interpret the graded comonadic type by the symmetric tensor
product, which we sketch below. First, let Sr be the group of
bijections on r ∈ N (as a finite cardinal number), and regard Sr
as a one-object category. Each bijection i ∈ Sr naturally induces
a permutation morphism of type A⊗r → A⊗r for every A ∈ C.
We make this into a functor Sr,A : Sr → C, and let (Ar, πrA) be
its limit. The object part of this limit is called the symmetric tensor
product of A; see [27] for a similar calculation.

Theorem 4. The mapping D : r,A 7→ Ar extends to an Rop-
graded comonad D on C.

Next, define K1 to be the constant functor returning the terminal
object 1. This functor has a unique strength. It satisfies

Id ◦K1 = K1 ◦ Id = K1 ◦K1 = K1.

Therefore the functor T : E → [C, C] given by T> = Id and
T⊥ = K1 is a strict monoidal functor of type E → ([C, C], Id, ◦),
hence is an E-graded strong monad. The exception-throwing oper-
ation is interpreted by the unique morphism to the terminal object:
JthrowAK = !I : I→ JT⊥AK = 1.

We introduce the (ι, π2)-distributive law σ : Te ◦ Dr →
D(ι(r, e)) ◦ Te for (LL, TD). We reflect the intuition of the dis-
tributive law described in the previous paragraph by

σr,> = idDr, σr,⊥ = idK1 : K1 → K1.

Theorem 5. The pair (ι, π2) is an Rop, E-matched pair for
(LL, TD), and the above σ is a (ι, π2)-distributive law.

7. Related work
Monads and effects, comonads and coeffects. Starting with the
seminal work of Moggi [30] effectful computations have often been
structured by monads. The connection between monads and effect-
ful computation has also provided a rich mathematical foundation
for different concepts such as effectful operations [43] and effect
handlers [44]. Comonads have also been used to structure compu-
tation. Fundamental in this direction has been the work by Uustalu
and Vene [49, 50] formulating several context-dependent program-
ming models in terms of comonadic computations.

Monads and comonads together Uustalu and Vene [50] used
comonads to structure dataflow computations with partial compu-
tations modelled monadically. As in our work, they interact mon-
ads and comonads via distributive laws, but they do not use any
graded structure. They show how to implement some instances
of the distributive laws in Haskell. Brookes and Stone [7] used
monad and comonads for describing respectively the extensional
and intensional semantics for a language with computational ef-
fects. They used distributive laws to describe the intensional se-
mantics of computational effects and they have shown several in-
stances for concrete models. Power and Watanabe [45] combined
monads and comonads in the setting of categorical operational and
denotational semantics. They provide also a categorical account of
the different relationships that can be established between monads
and comonads when looking at distributive laws. Harmer et al. [20]
have used monads, comonads and distributive laws to give a cat-
egorical account of innocent strategies in game semantics. They
have shown in particular that the combinatorics of the distributivity
reflect one of the components involved in the composition of inno-
cent strategies. None of these works uses grading. The novelty of
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our approach is in making the interaction between monads, comon-
ads and distributive laws emerge in the type theory via grading.

In recent work, Curien et al. [9] have studied a polarized calcu-
lus with both effects and resources. They do not consider graded
monads and comonads but they investigate a calculus with effect
and the resource structures (in the sense of linear logic exponen-
tials); their model does not rely on distributive laws as effects and
resources are treated orthogonally via an adjunction-based model.
It will be interesting in future works to investigate whether the grad-
ing structure can be used in their context as well.

Zappa-Szép products appears in work on distributive laws be-
tween directed container comonads by Ahman and Uustalu [2]. In
their work, directed containers have a monoid(-like) structure on
shapes: container comonads can then be composed by a distributive
law which has the operations and axioms of a Zappa-Szép product
(at the value level). This structure also appears in their later work
on update monads with a similar situation of a composition of two
monoids [3]. The main difference with our work is that this struc-
ture emerges for us naturally as a result of the grading.

Indexing and grading The idea of refining monadic models of ef-
fects with some additional information has emerged quite naturally
and has generated different notions such as: indexed monads [52],
layered monads [11], parametrised monads [4], and parametric-
effect monads [24] (which are graded monads). Particularly rele-
vant for our work is the approach followed by Wadler [52] and
by Katsumata [24] who have established a bridge between monadic
systems and effect type systems such as those in [35, 46]. This
approach has also been advocated by Tate [47] who proposes the
notion of productor to describe general producer effect systems.
Interestingly, he also mentions the notion of consumptor, as dual
to productor, without working out the technical details for this no-
tion. The effectful fragment of our calculus is inspired by these
works and in particular it follows the mathematical formulation
provided by Katsumata [24] and by Melliès [28]. Various recent
work employs graded monads for refining models of effectful com-
putation e.g., [5, 16, 29, 32, 37]. Fujii et al. [12] study the mathe-
matical theory of graded monads in more depth.

A similar approach has been recently proposed for comonadic
computations. Coeffect systems have been introduced to to struc-
ture context-dependent computations firstly proposed by Petricek
et al. [40], including the semantic model of graded comonads. Co-
effect systems have also emerged in the study of resource consump-
tion following the approach of bounded linear logic. Indeed, the
comonad of bounded linear logic can be generalized to a coeffect-
graded comonad as shown by Brunel et al. [8], Ghica and Smith
[15], and Petricek et al. [39, 41]. Moreover, the semantics of coef-
fect systems has been also studied by Breuvart and Pagani [6] in
the relational semantics of linear logic.

Our work is the first to combine these two directions to study
the interaction between monadic and comonadic computations via
graded distributive laws.

Recent work by McBride [26] uses resource bounds (in the style
of bounded linear logic) in a dependently-typed context for ex-
plaining interactions between linearity and dependence. This in-
cludes a coeffect-like semiring structure in the type-system for fine
grained tracking of variable usage. Similar structures in combina-
tion with dependent types à la Dependent ML [54] have been also
used by Dal Lago and Gaboardi [10], Gaboardi et al. [13].

The Contextual Modal Type theory of Nanevski et al. [34] ap-
pears to be a related example of a coeffect-graded necessitation
modality, like our Dr , but graded by contexts of local scopes. Fur-
ther work is to explore fitting CMTT into our coeffect framework.
An early precursor to CMTT combines state effects with dynamic
binding effects (which resemble coeffects) [33]. Exploring whether
this is an instance of our effect-coeffect calculus is future work.

8. Conclusion and future directions
We presented a core calculus for effectful and coeffectful computa-
tion, where coeffects and effects may interact. Our semantics builds
on recently established graded monad and graded (exponential)
comonad models of effects and coeffects. We introduced graded
distributive laws to model effect-coeffect interactions, with a de-
sign space of choices. This is a step towards a better understanding
of how to combine effects and coeffects. There are many exciting
directions for further study. We touch on some of them here.

Concrete semantics and operations One of the most interesting
directions for future research is a general operational semantics for
effect-coeffect interactions, and their operations. Previous work by
Plotkin and Power [42] showed how to design an operational se-
mantics that collects effect information. Similarly, previous work
on coeffects included an instrumented operational semantics col-
lecting information on observable coeffect actions [8]. Both these
have used the operational semantics to prove the soundness of ef-
fect and coeffect types, respectively. These works can be a source
of inspiration for designing an operational semantics for our cal-
culus instrumented with effect and coeffect observations to prove
a general soundness result. This would be particularly useful for
understanding the kind of operations we can add to our calculus.

Computational λ-calculus and coeffect-effect analysis Early ef-
fect systems (e.g. [17, 22, 25]) were defined for impure λ-calculus-
like languages where any term may have side effects. Subsequently
effect information e forms part of typing judgments Γ ` t : A, e.
Relatedly, the latent effects of a function are recorded on the func-
tion type arrow, e.g. A e−→ B. Similarly, in early work on coeffect
systems all terms are considered potentially coeffectful and thus co-
effects form part of the typing judgment [40]. This contrasts with
our approach where a pure λ-calculus fragment is extended with
additional constructs for handling effects and coeffects (e.g., the
monadic metalanguage approach [31], cf. Haskell’s do-notation).
We believe the implicit style can be suitably integrated with the
explicit style and the distributive behaviour of our calculus. This
corresponds more closely to static analysis of effects and coeffects.

Categorical analysis of distributive laws Distributive laws be-
tween monads and comonads are equivalent to the liftings of one
structure (monad or comonad) to the Kleisli / Eilenberg-Moore cat-
egory of the other structure [45]. It is thus natural to extend this
equivalence to the graded case. One possible direction of this exten-
sion is to relate graded distributive laws and the liftings of graded
(co)monads to the Kleisli / Eilenberg-Moore categories of graded
(co)monads introduced in [12].

Type checking We have yet to develop a type checking procedure
for our calculus. Some exciting work has been done in this direction
for both effects [21] and coeffects [15]. We plan to study a bidirec-
tional re-characterisation of our system which goes towards a type
checking procedure. We expect this to explain where it is necessary
to insert explicit type signatures in a derivation (in Church style).
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