The Hydrogen Economy

If the fuel cell Is to become the modern
steam engine, basic research must
provide breakthroughs in understanding,
materials, and design to make a
hydrogen-based energy system a vibrant
and competitive force.
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Introduction (1/3)

World Marketed Energy Consumption By Region, 1970-2025
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In contrast to the emerging economies, increases in energy consumption for the
mature market economies and transitional economies are projected to be more

modest.
Source: International Energy Outlook 2005, p. 1
http://www.eia.doe.qgov/oiaf/ieo/



Introduction (2/3)

World Market Energy Use by Energy Type, 1970-2025
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Source: International Energy Outlook 2005, p. 3
http://www.eia.doe.qgov/oiaf/ieo/



Millions of Barrels per Day

Introduction (3/3)

Transportation Petroleum Use by Mode, 1970-2025
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Source: Basic Research Needs for the Hydrogen Economy, p. 10
http://www.sc.doe.gov/bes/reports/abstracts.htmi#NHE



Hydrogen as energy carrier
why “Hydrogen”?

Hydrogen is abundant, clean, efficient and

generously distributed throughout the world without
regard for national boundaries.
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Beyond reforming (1/4)

Water electrolysis o Sowee| | &
The advantage of this process |

is that it supplies a very clean L L
hydrogen fuel that is free from — »—
carbon non-fossil and sulfur H+

Im pu rities. < Oxygen . Hydrogen
The disadvantage is that
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pProcess. H20

Source: Basic Research Needs for the Hydrogen Economy, p. 12
http://www.sc.doe.gov/bes/reports/abstracts.htmi#NHE



Beyond reforming (2/4)

Water and sunlight, both natural and abundant,
Solar are used in a cycle to produce power. Hydrogen
stores solar energy, so the power is available

Hyd 'O g en whenever it is ,_n_,eeged__-_ﬁ__.
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separate cell.

Source: http://www.humboldt.edu/~serc/trinidad.html
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Beyond reforming (3/4)

@stem used by Zou et al., which produhl—l2 ﬂotovoltaic devices cah

n advance over previous photocatalysts.

Energy-conversion

strategies for %
creating fuel or I
electricity S

from sunlight.

/In/photosynthesis, plants
use solar radiation, in
conjunction with CO,
and water, to produce

sugars (the fuel) and O
UL ( )

Photosynthesis

as the potential fuel. The semiconducting material
and metal electrode are immersed in water. Under
light irradiation, photoexcited electrons reduce
water to give H,, whereas the electron vacancies
oxidize water to O,. Zou et al. have doped an
iIndium—tantalum-oxide with nickel, and find that
this material absorbs light in the visible spectrum,

convert solar energy
directly into electricity:
when light shines on a
photovoltaic solar cell,
electrons are released
from a semiconducting
material (blue), and then
flow as electric current to
metal electrode (green).

Photovoltaic device

Source: Nature vol. 414,p. 589 (2001)

Semiconductor-electrolyte cell



Beyond reforming (4/4)

Nature has developed remarkably simple and efficient methods to split
water and transform H, into its component protons and electrons.

Blo-inspired processes

The basic constituent of the catalyst that
splits water during photosynthesis is
cubane — clusters of manganese and
oxygen. Researchers are only beginning
to understand cubane’s oxidation states
using crystallography and spectroscopy.

Bacteria use the iron-based cluster to
catalyze the transformation of two protons
and two electrons into H,. The roles of this
enzyme’'s complicated structural and
electronic forms in the catalytic process
can be imitated in the laboratory. The hope
IS to create synthetic versions of these
natural catalysts.




Storing hydrogen (1/6)

The challenge by showing the gravimetric and volumetric energy densities
of fuels, including the container and apparatus needed for fuel handling.
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For on-vehicle use, hydrogen need store only about half of the energy
that gasoline provides because the efficiency of fuel cells can be
greater by a factor of two or more than that of internal combustion
engines.




HYDROGEN VOLUME DENSITY (kg Hy m—3)

Storing hydrogen (2/6)
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Storing hydrogen (3/6)

van't Hoff Diagram Showing Dissociation Pressures and
Temperatures of Various Hydrides
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Source: Basic Research Needs for the Hydrogen Economy, p. 39
http://www.sc.doe.gov/bes/reports/abstracts.htmi#NHE



Storing hydrogen (4/6)

Challenges for on-vehicle
hydrogen storage and use
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Storing hydrogen (5/6)
e Currently, there is considerable excitement about a
new class of materials with unique properties that
stem from their reduced length scale (1<d<100nm).

Double-wall , Cup-stacked Carbon Nanofiber

Source: Basic Research Needs for the Hydrogen Economy, p.43
http://www.sc.doe.gov/bes/reports/abstracts.htmi#NHE



Storing hydrogen (6/6)

Another approach is to use 3-D solids with open structures,
such as metal-organic frameworks in which hydrogen
molecules or atoms can be adsorbed on internal surfaces.

Schematic of a Single Crystal X-ray
Structure for the Metal-organic
Framework of Composition Zn,0(1,4-
benzene dicarboxylate), Showing a
Single Cube Fragment of a Cubic 3-D
Extended Porous Structure (This
metal-organic compound adsorbed up
to 4.5 wt% hydrogen at 78 K and 1
wt% at ambient temperature and 20
bar. Variants of this structure show
promise for even better performances
regarding hydrogen storage.)

Source: Basic Research Needs for the Hydrogen Economy, p.45
http://www.sc.doe.gov/bes/reports/abstracts.html#NHE



Realizing the promise (1/6)

Strong Government Strong Industry
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Source: http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/mfg_wkshp_plenary.pdf



Realizing the promise (2/6)

Hydrogen Powered Airplanes

Hydrogen Powered Cars & Trucks 2~




Realizing the promise (3/6)

» Electronics applications may be the first to
widely reach the consumer market, establish
public visibility, and advance the learning curve
for hydrogen technology.
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Realizing the promise (4/6)

The heart of the fuel cell is the ionic conducting Designing nanoscale |
membrane that transmits protons or oxygen ions &rchitectures for these triple
between electrodes while electrons go through an Pércolation networks that

external load to do their electrical work, as shown €ffectively coordinate the
in figure Interaction of reactants with

nanostructured catalysts is
PEMFC

a major opportunity for
improving fuel-cell
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and gases traveling in different media. http://www.physicstoday.org/pt/vol-54/iss-7/p22.html



Realizing the promise (5/6)

Fuel Cell Types and Their Operating Features

Fuel Cell Conducting  Temperature
Type Electrolyte Ion (°C) Features
Polymer CF(CF,),0CF,S0;> H' (hydrated) 60—-80 High power density, Pt catalyst,
must be kept wet, poisoned by CO
Alkaline KOH OH 90 High power density, cannot
tolerate CO;
Phosphoric ~ H;PO, H 200 Medium power density, Pt catalyst,

acid

sensitive to CO

Molten L1,CO; / K,CO; CO;’ 650 Low power density, Ni catalyst,

carbonate needs CO, recycle

Solid oxide  Zrp 9> Y050 06 O’ 700-1,000  Medium-to-high power density,
accepts CO as fuel

Direct CF(CF,),OCF,SO; H (H,0, 60-120 Medium power density, low

methanol CH;0H) efficiency, high Pt content

Source: Basic Research Needs for the Hydrogen Economy, p.54
http://www.sc.doe.gov/bes/reports/abstracts.html#NHE



Realizing the promise (6/6)

Primary limits for PEMFC performance: the slow kinetics of
the oxygen reduction reaction at the cathode.

The causes of the slow kinetics, and solutions for speeding
up the reaction, are hidden in the complex reaction pathways
and intermediate steps of the oxygen reduction reaction.

Anode
(H, — 2H" + 2e) Cathoda

It is now becoming possible to Menbrane (10, + 2H'+ 26 — HO)
understand this reaction at the =~ " ¥ O
atomic level using sophisticated

surface-structure and
spectroscopy tools such as
vibrational spectroscopies, .
scanning probe microscopy, x-ray |-
diffraction and spectroscopy, and "= €—
transmission electron microscopy.
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Outlook (1/5)

Hydrogen Infrastructure

Widespread commercialization of hydrogen fuel cell vehicles will require
development of an accompanying hydrogen infrastructure. The
Infrastructure will require changes that address all transport and safety
concerns.

Several steps, ranging from Successful

R&D through creating design R, .

and performance standards, o 4 Education, °“‘¢#
are necessary to achieve S5 4o aedRonten "%’;&

Insurable commercial
systems. R&D is the most
Important element of the Model Codes Implementation
safety pyramid because it

provides the citical data

needed to create Research, Development & Demonstration
performance standards. Source: www.climatetechnology.gov




Outlook (2/5)

Hydrogen Disaster- Lakehurst . May 6, 1937.

The bags of hydrogen that provided the lifting force for the Hindenburg
were NOT the main contributor to the fire. The surface of the ship was coated
with a combination of dark iron oxide and reflective aluminum paint. These
components are extremely flammable and burn at a tremendously energetic
rate once ignited. The skin of the airship was ignited by electrical discharge

from the clouds while docking during an electrical storm.
-

The Hindenburg would have burned if
it had been filled with inert helium gas.
Even if the Hindenburg had not been
lifted by hydrogen, the ignition of the
covering would still have happened,
and would then have set ablaze the
diesel stores, resulting in the same
disaster.

Source: www.hydrogennow.org



Outlook (3/5)

Fuel Comparisons

Hydrogen Gasoline Vapor| Natural Gas
Flammability 4-74% 1.4-7.6% 5.3-15%
Limits (in air)
Explosion Limits  18.3-59.0% 1.1-3.3% 5.7-14%
(in air)
Ignition Energy 0.02 0.20 0.29
(mJ)
Flame Temp. 2045 2197 1875
in air (°C)
Stoichiometric
Mixture (most 29% 2% 9%
easily ignited in air)

|
Source: http://www.hydrogenus.com



Outlook (4/5)

Some of the most notable differences between gaseous hydrogen
and other common fuels:

 Hydrogen is lighter than air and diffuses rapidly. ISRt IRIEIIES
* Hydrogen is odorless, colorless and tasteless. vs. hydrogen flames
* Hydrogen flames have low radiant heat. Right

Combustion

Like any flammable fuel, hydrogen can combust.
But hydrogen’s buoyancy, diffusivity and small
molecular size make it difficult to contain and create
a combustible situation.

Hydrogen car Gasoline car

At the time of this photo
(60s after ignition), the

' By hydrogen flame has begun
- to subside, while the

gasoline fire is intensifying.
Source: http://www.hydrogenus.com




Outlook (5/5)

To significantly increase the energy supply and security, and
to decrease carbon emission and air pollutants, however, the
hydrogen economy must go well beyond incremental advances.
Hydrogen must replace fossil fuels through efficient production
using solar radiation, thermochemical cycles, or bio-inspired
catalysts to split water.

The emphasis of the hydrogen research agenda varies with
country; communication and cooperation to share research plans
and results are essential.

Bringing hydrogen and fuel cells to that level of impact is a
fascinating challenge and opportunity for basic science,
spanning chemistry, physics, biology, and materials.



