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+e objective of this paper is to present novel algorithms for solving the multiple attribute decision-making problems under the
possibility intuitionistic fuzzy soft set (PIFSS) information. +e prominent characteristics of the PIFSS are that it considers the
membership and nonmembership degrees of each object during evaluation and their corresponding possibility degree. Keeping
these features, this paper presents some new operation laws, score function, and comparison laws between the pairs of the PIFSSs.
Further, we define COmplex PRoportional ASsessment (COPRAS) and weighted averaging and geometric aggregation operators
to aggregate the PIFSS information into a single one. Later, we develop two algorithms based on COPRAS and aggregation
operators to solve decision-making problems. In these approaches, the experts and the weights of the parameters are determined
with the help of entropy and the distance measure to remove the ambiguity in the information. Finally, a numerical example is
given to demonstrate the presented approaches.

1. Introduction

Multiple attribute decision-making (MADM) is the neces-
sary context of the decision-making science whose aim is to
recognize the most exceptional targets among the feasible
ones. In real decision-making, the person needs to furnish
the evaluation of the given choices by various types of
evaluation conditions such as crisp numbers and intervals.
However, in many cases, it is difficult for a person to opt for a
suitable one due to the presence of several kinds of un-
certainties in the data, which may occur due to a lack of
knowledge or human error. Accordingly, to quantify such
risks and to examine the process, a large-scale family of the
theory such as fuzzy set (FS) [1] and its extensions such as
intuitionistic FS (IFS) [2], cubic intuitionistic fuzzy set [3],
interval-valued IFS [4], and linguistic interval-valued IFS [5]
are appropriated by the researchers. In all these theories, an
object is evaluated by an expert in terms of their two
membership degrees such that their sum cannot exceed one.

Since its presence, various researchers have presented their
ways to illuminate decision-making problems by using
operators or measures [6–12]. For instance, Xu and Yager [6]
presented the weighted geometric operators for IFSs. Garg
[7, 8] presented interactive weighted aggregation operators
with Einstein t-norm. Liu and Li [13] introduced the
Muirhead mean aggregation operator to aggregate the in-
formation. Liu and Tang [11] presented the intuitionistic
fuzzy prioritized interactive Einstein aggregation operators.

+e prevailing theories have restrictions because of their
inadequacy over the parameterization tool, and conse-
quently, the decision makers cannot give an accurate de-
cision. To overwhelm these disadvantages, Molodtsov [14]
collaborated the soft set (SS) theory in which ratings are
given on specific parameters. Maji et al. [15, 16] extended
this theory by joining it with existing FS and IFS theoretical
approach and developed the idea of fuzzy soft set (FSS) and
intuitionistic fuzzy soft set (IFSS). +e major advantage of
the IFSS is that they have considered the information over
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the set of parameters as compared to the IFS. For instance, if
a person wants to buy a laptop, then by utilizing the IFSS
theory to access it, an information is represented with the
consideration of more than one parameters such as “price,”
“processor,” “memory,” “price,” and “compatibility.” On the
other hand, if the judgement is made over the IFS envi-
ronment, then there is no role of such parameters into the
analysis. In other words, IFSS theory deals the information
based on more than one parameter which makes it more
generalized than IFS theory. Keeping these advantages in
mind, several researchers have paid more attention on this
theory and applied them to solve the various decision-
making problems using different kinds of operations, in-
formation measures, and aggregation operators. In that
direction, Bora et al. [17] presented the basic operations of
IFSS. Petchimuthu et al. [18] defined the generalized
products for fuzzy soft matrices and its applications to
decision-making process. Jiang et al. [19] presented the
entropy measure for the interval-valued fuzzy soft sets. +e
authors in [20, 21] presented the similarity measures for IFSS
and applied them to solve the medical diagnosis problems.
+e distance measures for the IFSSs have been presented by
Khalid and Abbas [22], Athira et al. [23], and Sarala and
Suganya [24] and were applied to solve the decision-making
problems. In terms of aggregation operators, Arora and Garg
[25, 26] presented the weighted averaging/geometric as well
as prioritized operators for the intuitionistic fuzzy soft
numbers (IFSNs). Later on, Garg and Arora [27] presented
the concept of generalized and group-generalized IFSS and
presented an algorithm based on the operators to solve the
MADMproblems. Feng et al. [28] developed an algorithm to
deal with decision-making (DM) issues with combined use
of the generalized intuitionistic soft set, extended intersec-
tional operation, weighted averaging operator, and other
related concepts. Chang [29] defined an intuitionistic fuzzy
weighted averaging method to solve the decision-making
problem of supplier selection. Garg and Arora [30] devel-
oped the Bonferroni mean operators which can reflect the
interconnection between two info contentions. Garg and
Arora [31] presented the interactive operational laws for
IFSNs and defined scaled prioritized averaging aggregation
operators for solving the MADM problems. Hu et al. [32]
developed the weighted intuitionistic fuzzy soft Bonferroni
mean operator for the IFSSs, in which weights are deter-
mined by the maximizing deviationmethod. Garg and Arora
[33] presented more generalized aggregation operators for
IFSS by using the Archimedean t-norm operations.
Alcantud and Muñoz Torrecillas [34] introduced the con-
cept of intertemporal choice of fuzzy soft sets. A survey on
different algorithms of parameter reduction of soft sets has
been given by Zhan and Alcantud [35].

All the existing studies based on the IFSs, FSSs, IFSSs,
etc., are widely used in different environments to solve the
decision-making problems. However, under certain cases,
these existing approaches fail to classify the objects based on
their possibility degrees. In other words, we can say that the
existing studies have treated the possibility degree of each
element as one. However, in many practical applications,
different persons may have their possibility degrees which

differ from one related to each object. To address this issue
into the decision-making process, Alkhazaleh et al. [36]
introduced the concept of the possibility of FSS by assigning
a possibility degree to each number of FSS. However, in this
set, there is a complete lack of the degree of nonmembership
degree during the analysis. To tackle it and address more
appropriately, a concept of possibility IFSS (PIFSS) was
introduced by Bashir et al. [37]. +e PIFSS is more gener-
alized than the existing FSS, IFSS, and other sets. In PIFSS, a
degree of possibility of each component is assigned to the
degrees of the IFSNs during evaluating the object. For in-
stance, consider a term of “honesty” and three different
experts have considered evaluating the candidate. +e
possibility of the honesty of a candidate according to the first
expert can be 0.7, while for others it would differ from the
first expert. To evaluate the given candidate, the rating values
of it in terms of IFSS are taken as (0.6, 0.3) where 0.6
represents the favorable degree of the expert towards the
candidate and 0.3 be against the degree.

Hence, in terms of PIFSS, such information is repre-
sented as (0.6, 0.3; 0.7) rather than IFSS or IFS as (0.6, 0.3)
only. +erefore, we can conclude that the evaluation of the
object by using PIFSS is more reliable and robust than the
other existing FSSs or IFSSs. Keeping these features, Bashir
et al. [37] gave the similarity measure between the pairs of
PIFSSs and applied them to solve the medical diagnosis
problems. Later on, Selvachandran and Salleh [38] and
Zhang et al. [39] presented the applications of the PIFSS to
the decision-making process.

In recent years, a wide variety of methods such as AHP
(“Analytic Hierarchy Process”), VIKOR (“VlseKriterijumska
Optimizacija I Kompromisno Resenje”), TOPSIS (“Tech-
nique for Order Preference by Similarity to Ideal Solution”),
and COPRAS (“COmplex PRoportional ASsessment”)
which can effectively deal with the ranking procedure have
been used. +e main purpose of these methods is to choose
the best alternatives by aggregating the information and
hence rank the objective based on their significance. AHP
was introduced by Saaty [40], and it provides generally a
view of the complex connections and helps the choice maker
to survey the relationship between the levels. VIKOR, in-
troduced by Opricovic [41], is a technique to rank the objects
based on a specific degree of closeness to the ideal solution
and can get a set of compromise solutions when the criterion
strikes with each other. On the other hand, the TOPSIS [42]
method characterizes the PIS (“Positive Ideal Solution”) and
the NIS (“Negative Ideal Solution”) and selects the best ones
whose distance from PIS is less. +e COPRAS method in-
troduced by Zavadskas et al. [43] compares each alternative
and computes their priorities by taking into account the
criteria weights. Among all suchmethods, COPRAS is one of
the most appropriate methods to rank the given alternatives
and widely used for both quantitative and qualitative
analysis. +e COPRAS method considers direct and the
proportional reliance of the weights and the utility degree of
examined adaptations on a framework of criteria. A com-
parative analysis of COPRAS and the other AHP, TOPSIS,
and VIKOR methods is conducted by Chatterjee et al. [44]
and was concluded that the COPRAS method indicates less

2 Mathematical Problems in Engineering



calculation time, extremely basic, good transparency, and
high possibility of graphical understanding of their coun-
terpart strategies. In the literature, there exists many ap-
plications of the COPRAS method under the diverse fuzzy
environment. For instance, Hajiagha et al. [45] presented the
COPRAS method and its applications by taking interval-
valued intuitionistic fuzzy information. Turanoglu Bekar
et al. [46] created a fuzzy COPRAS technique to evaluate the
performance of the total productive maintenance strategy.
Garg and Nancy [47] presented the COPRASmethod for the
possibility linguistic set under the neutrosophic domain.
Peng and Dai [48] presented a decision-making approach
based on the COPRAS method with hesitant fuzzy soft
information. Zheng et al. [49] presented the method for
assessing the chronic obstructive diseases based on the
hesitant fuzzy linguistic COPRAS method.

Considering the versatility of PIFSS and the quality of
the COPRAS method, this paper extends the COPRAS
strategy to the PIFSS environment. +e essential charac-
teristics of the COPRAS method are (1) it considers the
proportions to the ideal solution and the worst solution at
the same time during the execution of the process; (2) the
method considers the direct and relative dependencies of the
importance and the utility degree of the alternatives under
the contrary criteria values; (3) this method is compelled to
get the decision in a more effectively and sensible way. +us,
by considering the advantages of both the aggregation op-
erators and the COPRAS method, this paper aims to present
a novel MAGDM approach to manage the information
related to the PIFSSs with some new information measures.
+erefore, motivated from the characteristics of PIFSS,
COPRAS, information measure, and aggregation operators,
the following are the fundamental objectives of the paper:

(1) To develop a new distance measure for PIFSSs to
measure the degree of discrimination and similarity
among the sets

(2) To propose new weighted averaging and geometric
aggregation operators under PIFSS environment,
where the information related to each alternative is
assessed in terms of possibility intuitionistic fuzzy
soft numbers (PIFSNs)

(3) To establish a COPRAS method to rank the given
PIFSNs

(4) To build two algorithms, based on COPRAS and
aggregation operators, to interpret decision-making
concerns

(5) To demonstrate the approach with a numerical ex-
ample to explore the study

+e rest of the text is organized as follows: Section 2
presents basic concepts related to soft sets, FSS, IFSS, and
PIFSS. In Section 3, we define the new distance measures as
well as the aggregation operators for the PIFSSs. +e various
desirable features of the proposed measures and operators
are investigated in detail. In Section 4, a COPRAS method is
presented to rank the alternatives with the PIFSS infor-
mation. In Section 5, we propose two novel MADM

approaches, based on proposed COPRAS and aggregation
operators, to solve the MADM problems. +e approaches
have been facilitated with a numerical example in Section 6.
Lastly, a conclusion is summarized in Section 7.

2. Preliminaries

In this section, we discuss some basic terms associated with
soft set theory. Let E be a set of parameters and U be the set
of experts.

Definition 1 (see [14]). A pair (F,E) is called as the soft set, if
F is a map defined as F: E⟶ KU where KU is a set of all
subsets of U.

Definition 2 (see [50]). Let A, B ⊂ E and (F, A), (G, B) be
two SSs over U. +en, the basic operations over them are
stated as

(1) (F, A)⊆ (G, B) if A⊆B and F(e)⊆G(e), ∀e ∈ A.
(2) (F,A) � (G,B) if (F,A)⊆(G,B) and (G,B)⊆(F,A).
(3) Complement: (F, A)c � (Fc, A), where

Fc : A⟶ KU defined as Fc(e) � U − F(e), ∀e ∈ A.

Definition 3 (see [16]). A map F : E⟶ FU is called FSS
defined as

Fui
ej􏼐 􏼑 � ui, ζj ui( 􏼁􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌 ui ∈ U􏼚 􏼛, (1)

where FU is a set of all fuzzy subsets of U and ζj(ui) is the
acceptance degree of an expert ui over parameter ej ∈ E.

Definition 4 (see [16]). For A, B ⊂ E and (F, A), (G, B) be
any two FSSs over U, then

(1) (F, A)⊆ (G, B) if, A ⊂ B and F(e)≤G(e) for each
e ∈ A.

(2) (F, A) � (G, B) is equal if (F, A)⊆ (G, B) and
(G, B)⊆ (F, A).

(3) Complement: (Fc, A) where for each e ∈ A,
Fc(e) � 1 − F(e).

Definition 5 (see [15]). A mapping F: E⟶ IFU is called
IFSS defined as

Fui
ej􏼐 􏼑 � ui, ζj ui( 􏼁, ϑj ui( 􏼁􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌 ui ∈ U􏼚 􏼛, (2)

where IFU is the intuitionistic fuzzy subsets of U and ζj and
ϑj are the “acceptance degree” and the “rejection degree”
respectively, with 0≤ ζj, ϑj, ζj + ϑj ≤ 1 for all ui ∈ U. For
simplicity, we denote the pair of Fui

(ej) as βij � (ζ ij, ϑij) or
(F,E) � (ζ ij, ϑij) and was called as an intuitionistic fuzzy
soft number (IFSN).

Definition 6 (see [26]). For an IFSN β � (ζ, ϑ), a score
function is defined as

Sc(β) � ζ − ϑ, (3)
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while an accuracy function is defined as

H(β) � ζ + ϑ. (4)

Definition 7 (see [26]). An order relation to compare the two
IFSNs β and c, denoted by β≻ c, holds if either of the
following condition holds:

(1) Sc(β)> Sc(c),
(2) Sc(β) � Sc(c) and H(β)>H(c).

here “≻” represents “preferred to.”

Definition 8 (see [37]). A mapping F : E⟶ IFU × FU is
called PIFSS which is defined as

Fui
ej􏼐 􏼑 � ui, ζj ui( 􏼁, ϑj ui( 􏼁􏼐 􏼑; pj ui( 􏼁

􏼌􏼌􏼌􏼌􏼌 ui ∈ U􏼚 􏼛. (5)

It is seen from equation (5) that PIFSS consists of two
kinds of information: one is IFSS and the other is the
possibility degree, pj, of existence of the IFSS value for any
ui ∈ U over the parameter E such that pj(ui) ∈ [0, 1].

Remark 1. +roughout the text, we represent the pair Fui
(ej)

or (F,E) as βij � (ζ ij, ϑij; pij) and called as possibility IFSN
(PIFSN), if the following condition is satisfied:

0≤ ζ ij,

ϑij, pij ≤ 1,

ζ ij + ϑij ≤ 1.

(6)

Remark 2. For a given set, if pij � 1 for all i, j; then PIFSNs
reduce to IFSNs.

Remark 3. We denote Γ be the collections of all PIFSNs.

3. Proposed Operational Laws, Distance
Measures, and Aggregation
Operators for PIFSSs

In this section, we present some operational laws, infor-
mation measures, and aggregation operators for a collection
of PIFSNs.

3.1. Operational Laws. In this section, we define some new
operational laws for PIFSNs.

Definition 9. For two PIFSNs β � (ζ , ϑ; p) and c � (θ, ϕ; q),
some operations on it are defined as

(i) β∪ c � (max(ζ , θ),min(ϑ, ϕ));
(ii) β∩ c � (min(ζ, θ),max(ϑ, ϕ));
(iii) Complement: βc � (ϑ, ζ, 1 − p);

(iv) β≤ c if ζ ≤ θ, ϑ≥ϕ and p≤ q;

and are all again PIFSNs.

Definition 10. For two PIFSNs β � (ζ , ϑ; p) and c � (θ, ϕ; q)

and a real λ> 0, we define some of their basic operational
laws as follows:

(i) β⊕ c � (1 − (1 − ζ)(1 − θ), ϑϕ; 1 − (1 − p)(1 − q));
(ii) β⊗ c � (ζθ, 1 − (1 − ϑ)(1 − ϕ); pq);
(iii) λβ � (1 − (1 − ζ)λ, ϑλ; 1 − (1 − p)λ);
(iv) βλ � (ζλ, 1 − (1 − ϑ)λ; pλ).

Theorem 1. �e operations defined in Definition 10 for two
PIFSNs are also PIFSNs.

Proof. Let β � (ζ , ϑ; p) and c � (θ, ϕ; q) be two PIFSNs
which imply that they satisfy the conditions given in
equation (6) as

0≤ ζ, ϑ, p≤ 1,

ζ + ϑ≤ 1,

0≤ θ, ϕ, q≤ 1,

θ + ϕ≤ 1.

(7)

To prove the part (i), we consider β⊕ c �

(ζβ⊕c, ϑβ⊕c; pβ⊕c), where ζβ⊕c � 1 − (1 − ζ)(1 − θ), ϑβ⊕c � ϑϕ,
and pβ⊕c � 1 − (1 − p)(1 − q). Now, to prove that β⊕c is
PIFSN, it is enough to show that it satisfies the conditions as
given in equation (6), i.e.,

0≤ ζβ⊕c, ϑβ⊕c, pβ⊕c ≤ 1,

ζβ⊕c + ϑβ⊕c ≤ 1.
(8)

ζ, θ ∈ [0, 1] which implies that 1 − (1 − ζ)(1 − θ)≤ 1 and
hence ζβ⊕c ∈ [0, 1]. Similarly, we can obtain that
ϑβ⊕c � ϑϕ ∈ [0, 1] and pβ⊕c � 1 − (1 − p)(1 − q) ∈ [0, 1].
Now, finally ζβ⊕c + ϑβ⊕c � 1 − (1 − ζ)(1 − θ) + ϑϕ≤ 1−

ϑϕ + ϑϕ � 1. Hence, β⊕ c is PIFSN. Similarly, we can obtain
for the other parts. □

Theorem 2. Let β and c be two PIFSNs and λ, λ1, λ2 > 0 be
three real numbers. �en, we have

(i) β⊕ c � c⊕ β.
(ii) β⊗ c � c⊗ β.
(iii) λ(β⊕ c) � λβ⊕ λc.
(iv) (β⊗ c)λ � βλ ⊗ cλ.
(v) λ1β⊕ λ2β � (λ1 + λ2)β.
(vi) βλ1 ⊗ βλ2 � βλ1+λ2 .

Proof. We shall proof the parts (iii) and (v) only, while
others can be proceeded likewise.

(iii) For any real number λ> 0,
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λ(β⊕ c) � λ(1 − (1 − ζ)(1 − θ), ϑϕ; 1 − (1 − p)(1 − q))

� 1 − (1 − ζ)
λ
(1 − θ)

λ
, ϑλϕλ; 1 − (1 − p)

λ
(1 − q)

λ
􏼐 􏼑

� 1 − (1 − ζ)
λ
, ϑλ; 1 − (1 − p)

λ
􏼐 􏼑⊕ 1 − (1 − θ)

λ
,ϕλ; 1 − (1 − q)

λ
􏼐 􏼑

� λβ⊕ λc.

(9)

(v) For real numbers λ1, λ2 > 0,

λ1β⊕ λ2β � 1 − (1 − ζ)
λ1 , ϑλ1 ; 1 − (1 − p)

λ1􏼐 􏼑⊕ 1 − (1 − ζ)
λ2 , ϑλ2 ; 1 − (1 − p)

λ2􏼐 􏼑

� 1 − (1 − ζ)
λ1(1 − ζ)

λ2 , ϑλ1ϑλ2 ; 1 − (1 − p)
λ1(1 − p)

λ1􏼐 􏼑

� 1 − (1 − ζ)
λ1+λ2 , ϑλ1+λ2 ; 1 − (1 − p)

λ1+λ2􏼐 􏼑

� λ1 + λ2( 􏼁β.

(10)

□
Theorem 3. For two PIFSNs β and c and real λ> 0, we have

(i) λ(βc) � (βλ)c.
(ii) (βc)λ � (λβ)c.
(iii) βc ⊗ cc � (β⊕ c)c.
(iv) βc ⊕ cc � (β⊗ c)c.

Proof. For PIFSN β � (ζ, ϑ; p), we have βc � (ϑ, ζ; 1 − p).
+us, for real λ> 0, we have

(i) λ(βc) � (1 − (1 − ϑ)λ, ζλ; 1 − pλ) � (βλ)c.
(iii) βc⊗cc � (ϑ, ζ;1 − p)⊗(ϕ,θ;1 − q) � (ϑϕ,1 − (1 − ζ)

(1 − θ);(1 − p)(1 − q)) � (β⊕c)c.

To compare the two or more different PIFSNs, we define
score and accuracy functions as follows. □

Definition 11. For a PIFSN β � (ζ, ϑ; p), the score function
is described as

S(β) � p
1 + ζ − ϑ

2
􏼠 􏼡, (11)

and the accuracy function is

H(β) � (1 − p)
ζ + ϑ
2

􏼠 􏼡. (12)

Clearly, it is seen that S(β), H(β) ∈ [0, 1]. A comparison
rule between two PIFSNs β and c denoted by β≻ c holds if at
least one of the following conditions is met:

(a) S(β)> S(c).
(b) S(β) � S(c) and H(β)>H(c).

3.2. Distance Measure for PIFSS. In this section, we define
the distance measure for the distinct PIFSNs. Let
E � e1, e2, . . . , em􏼈 􏼉 be the set of parameters and U �

u1, u2, . . . , un􏼈 􏼉 be the set of experts.

Definition 12. Let (F,E) � (ζ ij, ϑij; pij) and (G,E) �

(θij,ϕij; qij) be two PIFSNs for i � 1(1)n; j � 1(1)m, and
λ≥ 1 be any real number. +en, the generalized normalized
distance measures between them is defined as

dλ((F,E), (G,E)) �
1

2mn
􏽘

m

j�1
􏽘

n

i�1
pijζ ij − qijθij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

+ pijϑij − qijϕij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

􏼒 􏼓⎞⎠

(1/λ)

.⎛⎜⎝ (13)

Remark 4. From the above definition, we conclude that

(i) If λ � 1, then equation (13) reduces to normalized
Hamming distance.

(ii) If λ � 2, then equation (13) reduces to normalized
Euclidean distance.

Theorem 4. For two PIFSNs (F,E) and (G,E), the measure
dλ defined in equation (13) satisfies the following properties:

(P1) 0≤dλ((F,E), (G,E))≤ 1.
(P2) dλ((F,E), (G,E)) � 0 if (F,E) � (G,E).
(P3) dλ((F,E), (G,E)) � dλ((F,E), (G,E)).

Proof. For PIFSNs (F,E) � (ζ ij, ϑij; pij) and
(G,E) � (θij, ϕij; qij) such that ζ ij, ϑij, θij, ϕij ∈ [0, 1],
ζ ij + ϑij ≤ 1, and θij + ϕij ≤ 1 for all i, j. +en, for λ≥ 1, we
have
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(P1) For PIFSNs we have 0≤ ζ ij, θij ≤ 1, 0≤ ϑij, ϕij ≤ 1,
and 0≤pij, qij ≤ 1; therefore, − 1≤pijζ ij − qijθij ≤ 1 and
− 1≤pijϑij − qijϕij ≤ 1. +is implies, 0≤ |pijζ ij−

qijθij|
λ ≤ 1 and 0≤ |pijϑij − qijϕij|

λ ≤ 1which results that
0≤ |pijζ ij − qijθij|

λ + |pijϑij − qijϕij|
λ ≤ 2 and hence

0≤ 􏽐
m
j�1 􏽐

n
j�1 |pijζ ij − qijθij|

λ + |pijϑij− qijϕij|
λ ≤ 2mn.

+us, 0≤ 1/2mn 􏽐
m
j�1 􏽐

n
j�1(|pijζ ij − qijθij|

λ + |pijϑij−

qijϕij|
λ)≤ 1. Hence, 0≤dλ((F,E), (G,E))≤ 1.

(P2) If (F,E) � (G,E) which implies that ζ ij � θij,
ϑij � ϕij, and pij � qij. +us, equation (13) becomes
dλ((F,E), (G,E)) � 0.
(P3) For any two positive real numbers h and g, we
know that |h − g| � |g − h|. Hence, from equation (13),
we get dλ((F,E), (G,E)) � dλ((G,E), (F,E)).

Hence, the proposed measure is a valid distance
measure.

To demonstrate the working of the stated measure, we
explain it with one illustrated example as follows. □

Example 1. Let U be a set of three houses given by, U �

u1, u2, u3􏼈 􏼉 under the consideration of a person to purchase
and E � e1, e2, e3, e4􏼈 􏼉 be set of parameters where e1 stands
for “expensive houses,” e2 stands for “wooden houses,” e3
stands for “cheap houses,” and e4 stands for houses which
are “in good location.” If F is a mapping from E to IFU × FU,
then the soft set (F,E) describes the “attractiveness of the
houses.” An expert gives their preferences in terms of
PIFSSs, (F,E), and (G,E), and their rating values are
summarized in the form of the following decision matrices:

(F,E) �
u1

u2

u3

e1 e2 e3 e4

(0.8, 0.1; 0.3) (0.5, 0.4; 0.5) (0.7, 0.2; 0.4) (0.6, 0.2; 0.7)

(0.6, 0.3; 0.5) (0.8, 0.2; 0.7) (0.8, 0.2; 0.6) (0.4, 0.3; 0.6)

(0.7, 0.1; 0.6) (0.6, 0.3; 0.4) (0.4, 0.5; 0.8) (0.5, 0.3; 0.8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(G,E) �
u1

u2

u3

e1 e2 e3 e4

(0.9, 0.1; 0.6) (0.8, 0.1; 0.7) (0.8, 0.2; 0.5) (0.7, 0.1; 0.8)

(0.6, 0.2; 0.5) (0.4, 0.2; 0.6) (0.5, 0.2; 0.8) (0.5, 0.3; 0.6)

(0.5, 0.3; 0.7) (0.7, 0.2; 0.8) (0.6, 0.3; 0.7) (0.6, 0.2; 0.9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

Without the loss of generality, we have taken λ � 1 in
equation (13) to compute the degree of separation between
the rating values of (F,E) and (G,E) and obtain

d1((F,E), (G,E))

�
1
24

􏽘

4

j�1
􏽘

3

i�1
pijζ ij − qijθij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + pijϑij − qijϕij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

�
1
24

[(|(0.3)(0.8) − (0.6)(0.9)| +|(0.3)(0.1) − (0.6)(0.1)|) +(|(0.5)(0.5) − (0.7)(0.8)| +|(0.5)(0.4) − (0.7)(0.1)|)

+(|(0.4)(0.7) − (0.5)(0.8)| +|(0.4)(0.2) − (0.5)(0.2)|) +(|(0.7)(0.6) − (0.8)(0.7)| +|(0.7)(0.2) − (0.8)(0.1)|)

+(|(0.5)(0.6) − (0.5)(0.6)| +|(0.5)(0.3) − (0.5)(0.2)|) +(|(0.7)(0.8) − (0.6)(0.4)| +|(0.7)(0.2) − (0.6)(0.2)|)

+(|(0.6)(0.8) − (0.8)(0.5)| +|(0.6)(0.2) − (0.8)(0.2)|) +(|(0.6)(0.4) − (0.6)(0.5)| +|(0.6)(0.3) − (0.6)(0.3)|)

+(|(0.6)(0.7) − (0.7)(0.5)| +|(0.6)(0.1) − (0.7)(0.3)|) +(|(0.4)(0.6) − (0.8)(0.7)| +|(0.4)(0.3) − (0.8)(0.2)|)

+(|(0.8)(0.4) − (0.7)(0.6)| +|(0.8)(0.5) − (0.7)(0.3)|) +(|(0.8)(0.5) − (0.9)(0.6)| +|(0.8)(0.3) − (0.9)(0.2)|)]

� 0.1633.

(15)
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Similarly, for some other values of λ, say λ � 1.5, 2, 2.5, 3,
we can compute that

d1.5((F,E), (G,E)) � 0.1821,

d2((F,E), (G,E)) � 0.1978,

d2.5((F,E), (G,E)) � 0.2110,

d3((F,E), (G,E)) � 0.2222.

(16)

3.3. Aggregation Operator. Let Γ be the collection of PIFSNs
β � (F,E). +en in the following, we define some operators
on Γ named as possibility intuitionistic fuzzy soft weighted
averaging and geometric operators denoted by PIFSWA and
PIFSWG, respectively.

Definition 13. For the collection of PIFSNs βij; i �

1, 2, . . . , n, j � 1, 2, . . . , m, a possibility intuitionistic fuzzy
soft weighted average (PIFSWA) operator is mapping
PIFSWA: Γn⟶Γ defined as

PIFSWA β11, β12, . . . , βnm( 􏼁 �⊕m
j�1

ξj ⊕
n

i�1
ηiβij􏼠 􏼡, (17)

where ξj > 0, 􏽐
m
j�1 ξj � 1 be the weight vector of the pa-

rameters and ηi > 0, 􏽐
n
i�1 ηi � 1 be the weight vector of the

experts.

Theorem 5. For PIFSNs βij � (ζ ij, ϑij; pij), i � 1(1)n, j �

1(1)m, the collective value obtained by applying Definition 13
is again PIFSN and given by

PIFSWA β11, β12, . . . , βnm( 􏼁 � 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − ζ ij􏼐 􏼑

ηi ⎞⎠

ξj

, 􏽙
m

j�1
􏽙

n

i�1
ϑηi

ij
⎞⎠

ξj

; 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − pij􏼐 􏼑

ηi ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠.⎛⎜⎝⎛⎜⎝⎛⎜⎝ (18)

Proof. Wewill prove equation (18) with the help of principle
of mathematical induction (PMI) on n, m. For n � 1, we get

η1 � 1. +erefore, by using operational laws of PIFSNs, we
have

PIFSWA β11, β12, . . . , β1m( 􏼁 �⊕m
j�1

ξj ⊕
1

i�1
ηiβij

⎛⎝ ⎞⎠

�⊕m
j�1

ξj η1β1j􏼐 􏼑

� 1 − 􏽙
m

j�1
1 − ζ1j􏼐 􏼑

η1
􏼐 􏼑

ξj
, 􏽙

m

j�1
ϑη11j􏼐 􏼑

ξj
; 1 − 􏽙

m

j�1
1 − p1j􏼐 􏼑

η1
􏼐 􏼑

ξj⎛⎝ ⎞⎠

� 1 − 􏽙
m

j�1
􏽙

1

i�1
1 − ζ ij􏼐 􏼑

ηi ⎞⎠

ξj

, 􏽙
m

j�1
􏽙

1

i�1
ϑηi

ij
⎞⎠

ξj

; 1 − 􏽙
m

j�1
􏽙

1

i�1
1 − pij􏼐 􏼑

ηi ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠.⎛⎜⎝⎛⎜⎝⎛⎜⎝

(19)

Similarly, the result holds for m � 1.
Assume it holds for n � k1 + 1, m � k2 and for

n � k1, m � k2 + 1. For n � k1 + 1, m � k2 + 1, we have
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PIFSWA β11, β12, . . . , β k1+1( ) k2+1( )􏼒 􏼓

� ⊕
k2+1

j�1
ξj ⊕

k1+1

i�1
ηiβij

⎛⎝ ⎞⎠

�⊕
k2

j�1
ξj ⊕

k1+1

i�1
ηiβij

⎛⎝ ⎞⎠⊕ξk2+1 ⊕
k1+1

i�1
ηiβi k2+1( )

⎛⎝ ⎞⎠

� 1 − 􏽙

k2

j�1
􏽙

k1+1

i�1
1 − ζ ij􏼐 􏼑

ηi⎛⎝ ⎞⎠

ξj

, 􏽙

k2

j�1
􏽙

k1+1

i�1
ϑηi

ij
⎛⎝ ⎞⎠

ξj

; 1 − 􏽙

k2

j�1
􏽙

k1+1

i�1
1 − pij􏼐 􏼑

ηi⎛⎝ ⎞⎠

ξj

⎛⎜⎜⎝ ⎞⎟⎟⎠

⊕ 1 − 􏽙

k1+1

i�1
1 − ζ i k2+1( )􏼒 􏼓

ηi
⎛⎝ ⎞⎠

ξk2+1

, 􏽙

k1+1

i�1
ϑηi

i k2+1( )
⎛⎝ ⎞⎠

ξk2+1

; 1 − 􏽙

k1+1

i�1
1 − pi k2+1( )􏼒 􏼓

ηi
⎛⎝ ⎞⎠

ξk2+1

⎛⎜⎜⎝ ⎞⎟⎟⎠

� 1 − 􏽙

k2+1

j�1
􏽙

k1+1

i�1
1 − ζ ij􏼐 􏼑

ηi⎛⎝ ⎞⎠

ξj

, 􏽙

k2+1

j�1
􏽙

k1+1

i�1
ϑηi

ij
⎛⎝ ⎞⎠

ξj

; 1 − 􏽙

k2+1

j�1
􏽙

k1+1

i�1
1 − pij􏼐 􏼑

ηi⎛⎝ ⎞⎠

ξj

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(20)

Hence, the result holds for n � k1 + 1, m � k2 + 1.
+erefore, by PMI, the result is true for all n, m. □

Definition 14. Let βij � (ζ ij, ϑij; pij) be a collection of
PIFSNs and let PIFSWG: Γn⟶Γ. If

PIFSWG β11, β12, . . . , βnm( 􏼁 � ⊗
m

j�1
⊗
n

i�1
βηi

ij􏼒 􏼓
ξj

� 􏽙
m

j�1
􏽙

n

i�1
ζηi

ij
⎛⎝ ⎞⎠

ξj

, 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − ϑij􏼐 􏼑

ηi⎛⎝ ⎞⎠

ξj

; 􏽙
m

j�1
􏽙

n

i�1
p
ηi

ij
⎛⎝ ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠,

(21)

where ξj > 0, 􏽐
m
j�1 ξj � 1 and ηi > 0, 􏽐

n
i�1 ηi � 1 be the

weight vector of the parameters and the experts, respectively;
then, the function PIFSWG is the possibility intuitionistic
fuzzy soft weighted geometric operator.

LetF be either an PIFSWA or PIFSWG operator. +en,
theF operator satisfies certain properties which are stated as
follows.

Theorem 6. For collection of PIFSNs βij, we have

(P1) Idempotency: if all βij are identical, i.e., βij � β for
all i, j, then we have F(β11, β12, . . . , βnm) � β.
(P2) Monotonicity: let βij � (ζ ij, ϑij; pij) and
cij � (θij, ϕij; qij) be two PIFSNs such that
ζ ij ≤ θij, ϑij ≥ϕij and pij ≤ qij, for all i, j then
F(β11, β12, . . . , βnm)≤F(c11, c12, . . . , cnm).

(P3) Boundedness: let β− � (min
j

min
i

ζ ij􏽮 􏽯,max
j

max
i

ϑij􏽮 􏽯;min
j

min
i

pij􏽮 􏽯) and β+ � (max
j

max
i

ζ ij􏽮 􏽯,min
j

min
i

ϑij􏽮 􏽯;max
j

max
i

pij􏽮 􏽯), then

β− ≤F β11, β12, . . . , βnm( 􏼁≤ β+
. (22)

Proof. Without the loss of generality, we shall prove the
result by taking F as the PIFSWA operator only.

(P1) If βij � β � (ζ , ϑ; p) for all i, j, then by equation
(18), we have

F(β, β, . . . , β) � 1 − 􏽙
m

j�1
􏽙

n

i�1
(1 − ζ)

ηi⎛⎝ ⎞⎠

ξj

, 􏽙
m

j�1
􏽙

n

i�1
ϑηi⎛⎝ ⎞⎠

ξj

; 1 − 􏽙
m

j�1
􏽙

n

i�1
(1 − p)

ηi⎛⎝ ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠

� 1 − (1 − ζ)􏽐
n

i�1 ηi􏼒 􏼓
􏽐

m

j�1 ξj

, ϑ􏽐
n

i�1 ηi􏼒 􏼓
􏽐

m

j�1 ξj

; 1 − (1 − p)􏽐
n

i�1 ηi􏼒 􏼓
􏽐

m

j�1 ξj

􏼠 􏼡

� (1 − (1 − ζ), ϑ; 1 − (1 − p))

� β.

(23)
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(P2) For PIFSNs βij and cij, we have ζ ij ≤ θij; therefore,
1 − ζ ij ≥ 1 − θij which gives that 􏽑

n
i�1 (1−

ζ ij)
ηi ≥ 􏽑

n
i�1 (1 − θij)

ηi and hence we get 1 − 􏽑
m
j�1(􏽑

n
i�1

(1 − ζ ij)
ηi )ξj ≤ 1 − 􏽑

m
j�1 (􏽑

n
i�1 (1 − θij)

ηi )ξj . Similarly,
for ϑij ≥ϕij implies that 􏽑

m
j�1 (􏽑

n
i�1 ϑ

ηi

ij )ξj ≥
􏽑

m
j�1 (􏽑

n
i�1 ϕ

ηi

ij )ξj . Further, for pij ≤ qij, we can obtain
that 1 − 􏽑

m
j�1 􏽑

n
i�1 ((1 − pij)

ηi ) ξj ≤ 1 − 􏽑
m
j�1 (􏽑

n
i�1

(1 − qij)
ηi )ξj . Hence, by Definition 9, we can get

F(β11, β12, . . . , βnm)≤F(c11, c12, . . . , cnm).
(P3) By the definition of β− , βij, and β+ and Definition
9, we can obtain that β− ≤ βij ≤ β

+. +erefore, by the
monotonicity property, we can obtain F(β− , β− ,

. . . , β− )≤F(β11, β12, . . . , βnm)≤F(β+, β+, . . . , β+),
which implies that β− ≤F(β11, β12, . . . , βnm)≤ β+.

Similarly, we can prove these properties for the PIFSWG
operator. □

4. COPRAS Method

+is section addresses the COPRAS method by embedding
the PIFSS features. +e COPRAS method was initially
designed by Zavadskas et al. [43] by considering the de-
pendency factor of the priority and the utility degree of the
objects under the contrary attributes. To address it, assume

decision-making problems whose target is choosen as the
most favorable alternative from V(1),V(2), . . . ,V(z) which
are evaluated by “n” experts U1,U2, . . . ,Un􏼈 􏼉 under “m”
parameters e1, e2, . . . , em􏼈 􏼉. Let ηi and ξj be the normalized
weight vectors of the experts and the parameters, respec-
tively. +e rating values given by ith expert Ui under jth

parameter ej towards the assessment of dth alternative is
represented as PISFNs β(d)

ij � (ζ(d)
ij , ϑ(d)

ij ; p
(d)
ij ). +en, the

procedure steps which fall under the proposed COPRAS
method are presented as follows.

Step 1: compute the weighted decision matrix
A

(d)
� (β

(d)
)n×m, for each alternative V(d) by using

Definition 10, where β(d)
� (ζ

(d)

ij , ϑ(d)

ij ; p
(d)
ij ) is given by

β
(d)

� ξjηiV
(d)

� 1 − 1 − ζ(d)
ij􏼐 􏼑

ηiξj
, ϑ(d)

ij􏼐 􏼑
ηiξj

; 1 − 1 − p
(d)
ij􏼐 􏼑

ηiξj

􏼒 􏼓.

(24)

Step 2: assume that out of “m” parameters, “k” are the
benefit types and remaining “m − k” are the cost types.
Now, aggregate the values of these k parameters by
using the PIFSWA operator and get preference values
as P(d), where

P
(d)

� ⊕
k

j�1
⊕
n

i�1
β

(d)

� 1 − 􏽙
k

j�1
􏽙

n

i�1
1 − ζ

(d)

ij􏼒 􏼓
ηi

⎞⎠

ξj

, 􏽙
k

j�1
􏽙

n

i�1
ϑ

(d)

ij )
ηi􏼒 􏼓

ξj

; 1 − 􏽙
k

j�1
􏽙

n

i�1
1 − p

(d)
ij􏼐 􏼑

ηi ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠.⎛⎜⎝⎛⎜⎝⎛⎜⎝

(25)

Step 3: collect the aggregated value of the remaining
m − k parameters by using the following equation:

R
(d)

� ⊕
m

j�k+1
⊕
n

i�1
β

(d)

� 1 − 􏽙
m

j�k+1
􏽙

n

i�1
1 − ζ

(d)

ij􏼒 􏼓
ηi

⎞⎠

ξj

, 􏽙
m

j�k+1
􏽙

n

i�1
ϑ

(d)

ij􏼒 􏼓
ηi

)
ξj ; 1 − 􏽙

m

j�k+1
􏽙

n

i�1
1 − p

(d)
ij􏼐 􏼑

ηi ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠.⎛⎜⎝⎛⎜⎝⎛⎜⎝

(26)

Step 4: compute the minimal value of R(d) as

Rmin � min R
(1)

, R
(2)

, . . . , R
(z)

􏽮 􏽯. (27)

Step 5: determine the relative priority values of the
alternatives V(d) by the following equation:

Q
(d)

� S P
(d)

􏼐 􏼑 +
S Rmin( 􏼁 􏽐

z
d�1 S R(d)( 􏼁

S R(d)( 􏼁 􏽐
z
d�1 S Rmin( 􏼁/S R(d)( 􏼁( 􏼁

, (28)

provided S(R(d))≠ 0 and S(·) represents the score
function.
Step 6: compute the utility degree for V(d) as

N
(d)

�
Q(d)

Qmax
􏼠 􏼡 × 100%, (29)

where Qmax � maxd Q(d)􏼈 􏼉≠ 0.
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5. Proposed Approaches for Decision-
Making Problems

In this section, we addressed two different approaches, based
on “COPRAS” and “aggregation operators” with new dis-
tance measure, for solving the decision-making problems
under the PIFSS environment.

5.1. Model Description. Consider a problem with z alter-
natives V(1),V(2), . . . ,V(z), “m” parameters e1, e2, . . . , em,
and “n” experts U1,U2, . . . ,Un. +e ith expert Ui evaluates
the given alternatives V(d), d � 1, 2, . . . , z on jth parameter
and represents their preferences in terms of PIFSNs
β(d)

ij � (ζ(d)
ij , ϑ(d)

ij ; p
(d)
ij )such that 0≤ ζ(d)

ij , ϑ(d)
ij ≤ 1, 0≤p

(d)
ij ≤ 1,

and ζ(d)
ij + ϑ(d)

ij ≤ 1.+e complete information about the given
alternatives V(d) is represented in the following equation:

V
(d)

,E􏼐 􏼑 �

e1 e2 . . . em

U1 ζ(d)
11 , ϑ(d)

11 ; p
(d)
11􏼐 􏼑 ζ(d)

12 , ϑ(d)
12 ; p

(d)
12􏼐 􏼑 . . . ζ(d)

1m , ϑ(d)
1m ; p

(d)
1m􏼐 􏼑

U2 ζ(d)
21 , ϑ(d)

21 ; p
(d)
21􏼐 􏼑 ζ(d)

22 , ϑ(d)
22 ; p

(d)
22􏼐 􏼑 . . . ζ(d)

2m , ϑ(d)
2m ; p

(d)
2m􏼐 􏼑

⋮ ⋮ ⋮ ⋱ ⋮

Un ζ(d)
n1 , ϑ(d)

n1 ; p
(d)
n1􏼐 􏼑 ζ(d)

n2 , ϑ(d)
n2 ; p

(d)
n2􏼐 􏼑 . . . ζ(d)

nm , ϑ(d)
nm ; p(d)

nm􏼐 􏼑

. (30)

Consider that the weight of each expert and the pa-
rameter are represented as η1, η2, . . . , ηn and ξ1, ξ2, . . . , ξm,
respectively, such that ηi, ξj > 0, 􏽐

n
i�1 ηi � 1, and 􏽐

m
j�1 ξj � 1.

If such information is known as “priori” then we can use
them. On the opposite, if they are unknown, then we can
compute them by using the entropy measure, whose pro-
cedure is described as follows:

(i) For determination of ηi: by taking the information
β(d)

ij and their score function corresponding to each
expert Ui, we define the entropy measure as

Ui �
1

z(
�
2

√
− 1)

􏽘

z

d�1
sin

π h
(d)
ij􏼐 􏼑

2
⎛⎝ ⎞⎠ + sin

π 1 − h
(d)
ij􏼐 􏼑

2
⎛⎝ ⎞⎠ − 1⎡⎢⎢⎣ ⎤⎥⎥⎦; i � 1, 2, . . . , n, (31)

where h
(d)
ij � 1/2m 􏽐

m
j�1 p

(d)
ij (1 + ζd

ij − ϑ(d)
ij ) represents the

score values and Ui is the entropy value.
It is quite obvious that the lesser the value of the Ui, the

more valuable information is obtained for expert Ui im-
portance, i.e., smaller entropy value objects possessing
higher priority. Based on this policy, the ηis are calculated as

ηi �
1 − Ui

n − 􏽐
n
i�1 Ui

. (32)

(ii) For determination ofξj: by utilizing the information
β(d)

ij and the Euclidean distance measure between the
parameter values and ideal measure
β+ � (ζ+

, ϑ+; p+), we compute the weight vector ξj

for each parameter ej by using the entropy measure
defined as follows:

Vj �
1

z(
�
2

√
− 1)

􏽘

z

d�1
sin

π g
(d)
ij􏼐 􏼑

2
⎛⎝ ⎞⎠ + sin

π 1 − g
(d)
ij􏼐 􏼑

2
⎛⎝ ⎞⎠ − 1⎡⎢⎢⎣ ⎤⎥⎥⎦; j � 1, 2, . . . , m, (33)

where

g
(d)
ij �

1
n

􏽘

n

i�1
1 −

1
2

p
(d)
ij ζ(d)

ij − p
+ζ+

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ p
(d)
ij ϑ(d)

ij − p
+ϑ+

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓􏼒 􏼓
(1/2)

􏼠 􏼡. (34)
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+us, based on equation (33), the weight vector ξj for each
parameter ej is computed as

ξj �
1 − Vj

m − 􏽐
m
j�1 Vj

. (35)

Now, we describe two newmethods for solving decision-
making problems based on COPRAS and aggregation op-
erators by obtaining the collective information β(d)

ij and the
weight vectors ηi and ξj. +e execution steps of them are
represented as follows.

5.2. Approach Based on COPRAS Method. To find the finest
alternatives by using the method described in Section 4 for
PIFSS environment, the following steps are summarized
along with their flowchart in Figure 1:

Step 1: summarize the information about the alterna-
tives V(d) in the form of equation (30).
Step 2: if weight vectors are completely unknown, then
compute ηi and ξj by using equations (32) and (35),
respectively.
Step 3: by equation (24), calculate the weighted
judgement matrix denoted by A

(d)
� (ζ

(d)

ij , ϑ
(d)

ij ; p
(d)
ij )

for each alternative.
Step 4: by equation (25), compute the values by using
the PIFSWA operator.
Step 5: by equation (26), aggregate the cost type at-
tributes and get R(d).
Step 6: utilize equations (27) and (28) to compute the
priority values for V(d).
Step 7: by equation (29), compute the utility degree
N(d) for each V(d).

Step 8: arrange the values ofN(d) and select the desired
alternatives.

5.3. Approach Based on Operators. +is section presents
approaches for solving the decision-making problems based
on proposed operators. +e pictorial representation of this
approach is given in Figure 2 while their steps are explained
as follows:

Step 1: summarize the information about the alterna-
tives V(d) in the form of equation (30).
Step 2: if weight vectors are completely unknown, then
compute ηi and ξj by using equations (32) and (35),
respectively.
Step 3: normalize the information β(d)

ij , if needed for the
cost type parameters, to q

(d)
ij by (36) given as

q
(d)
ij �

ζ(d)
ij ,ϑ(d)

ij ;p
(d)
ij􏼐 􏼑; forbenefit typeparameters,

ϑ(d)
ij ,ζ(d)

ij ;1 − p
(d)
ij􏼐 􏼑; forcost typeparameters.

⎧⎪⎪⎨

⎪⎪⎩

(36)

Step 4: aggregate the values q
(d)
ij of each alternativeV(d)

into q(d) either by the PIFSWA or PIFSWG operator.
+e person may utilize the appropriate operator based
on their desired goal towards the pessimistic or opti-
mistic decision. For example, if a person utilizes the
PIFSWA operator to combine q

(d)
ij by using ηi and ξj

information, then the collective one of alternativeV(d)

denoted by q(d) � (ζ(d)
, ϑ(d); p(d)) is computed by

equation (37) as

q
(d)

� 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − ζ(d)

ij􏼐 􏼑
ηi ⎞⎠

ξj

, 􏽙
m

j�1
􏽙

n

i�1
ϑ(d)

ij􏼐 􏼑
ηi ⎞⎠

ξj

; 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − p

(d)
ij􏼐 􏼑

ηi ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠.⎛⎜⎝⎛⎜⎝⎛⎜⎝ (37)

On the other hand, if a person utilizes the PIFSWG
operator, then q(d) is computed by equation (38) as

q
(d)

� 􏽙
m

j�1
􏽙

n

i�1
ζ(d)

ij􏼐 􏼑
ηi ⎞⎠

ξj

, 1 − 􏽙
m

j�1
􏽙

n

i�1
1 − ϑ(d)

ij􏼐 􏼑
ηi ⎞⎠

ξj

; 􏽙
m

j�1
􏽙

n

i�1
p

(d)
ij􏼐 􏼑

ηi ⎞⎠

ξj

⎛⎜⎝ ⎞⎟⎠.⎛⎜⎝⎛⎜⎝⎛⎜⎝ (38)

Step 5: compute the score values of V(d) by equation
(11) as

S q
(d)

􏼐 􏼑 � p
(d) 1 + ζ(d)

− ϑ(d)

2
􏼠 􏼡. (39)

If score values are equal for any two indices, then
compute the accuracy values for them by using
equation (12).
Step 6: by descending values of S(q(d)), we rank the given
alternativesV(d)(d � 1, 2, . . . , z) and select the best ones.
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6. Illustrative Example

+is section demonstrates the abovementioned approaches
with a numerical example and compares their results with
several existing methods.

6.1. Case Study. “Consider an IT outsourcing provider se-
lection problem as an MADM problem. Millennium
Semiconductors (MS), established in October 1995, is an

ISO 9001 − 2015 organization with distribution of elec-
tronic components as its core expertise. +is leading dis-
tributor of electronic components in India is synonymous
with innovation, and today, it is one of the most reputed
names in market. MS has been set up in nearly each locale of
India with catering more than 1500 clients in all sections
from the recent two decades. It engages in investigation and
improvement and production and promoting of items, for
example, full shading ultrahigh shine LED epitaxial items,

Start

Define the alternatives Appoint a team of experts Choose the parameters

Formulate the decision-making
problem using PIFSS information

Assign the rating values of each
alternative using PIFSNs

Compute the weight
vectors for decision
makers and criteria

Utilize equation 32 to derive 
each expert weights

Utilize equation 35 to derive
the weights for each parameter

No Yes

Summarize the weight
information

Aggregate preference of each decision
maker by PIFSWA operator

Computed the weighted
decision matrix by equation 24

Aggregate the benefit criteria
values by equation 25

Aggregation
process

Aggregate the cost criteria
values by equation 26

Compute relative priority values
by equation 27 and equation 28

Calculate utility degree by equation 29

Rank the alternatives

Expert satisifed?
No Yes

End

If weights are
known priori

Figure 1: Flowchart of the proposed approach based on the COPRAS method.
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chips, compound sun oriented cells, and high control
concentrating sunlight based items.+e branch offices of MS
are situated in Delhi, Bangalore, Hyderabad, Ahmedabad,
Chennai, and Mumbai in India and Overseas workplaces in
Singapore and Shenzhen (China). MS contributes the ex-
traordinary larger part of labor and financial resources to its
center competition rather than IT.+e outsourcing of IT is a

better choice for MS as of its lack of ability to do it efficiently.
+erefore, MS selects the following outsourcing providers:
Tata Consultancy services (V(1)), Infosys (V(2)), Wipro
(V(3)), and HCL (V(4)). Now, to find the more suitable or
best outsourcing provider among the above choices, MS
hires a team of four experts u1, u2, u3, and u4. +ese experts
evaluate each provider against the five parameters: design

Start

Define the alternatives Appoint a team of 
experts Choose the parameters

Formulate the decision-making problem 
using PIFSS information

Assign the rating values of each
alternative using PIFSNs

Compute the weight
vectors for decision
makers and criteria

If weights are
known priori

No Yes

Utilize equation 32 to derive
the weights for each expert

Utilize equation 35 to derive
the weights for each parameter

Summarize the weight
information

Convert the rating values of it into
benefit type using equation 36

Identify
the cost type

criteria

NoYes

Choose the behaviour of an
decision maker

Apply PIFSWA operator by
using equation 37

Apply PIFSWG operator by using
equation 38

Collect the aggregated values

Compute the score values of the
obtained PIFSN by equation 39

Rank the alternatives

Expert satisfied?

Optimism/
pessimism?

Optimism Pessimism

YesNo

End

Figure 2: Flowchart of the proposed approach based on aggregation operators.
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development (e1), quality of product (e2), delivery time (e3),
risk factor (e4), and cost (e5). Each expert assesses its rating
values for each provider over the parameters in terms of
PIFSNs which are summarized in Table 1. To compute the
importance of each expert, we find their associated weight
vector by using equations (31) and (32) and the decision
matrices given in Table 1 and can get η1 � 0.3126,
η2 � 0.2718, η3 � 0.2579, and η4 � 0.1578. Similarity, by
utilizing equations (33) and (35), we can get the weights of
each parameter which are ξ1 � 0.1823, ξ2 � 0.2043,
ξ3 � 0.1927, ξ4 � 0.2166, and ξ5 � 0.2041. +us, based on
such information, we applied the above proposed algorithms
to select the finest alternatives.

6.2. Based on COPRAS Method. +e steps of the method
presented in Section 5.2 are executed on the considered
problem as follows:

Step 1: Information about the alternatives is repre-
sented in Table 1.
Step 2: By equations (31) and (32), we get η1 � 0.3126,
η2 � 0.2718, η3 � 0.2579, and η4 � 0.1578. Similarly,
the weight vectors for five parameters ej are computed
by using equations (33) and (35) and hence we get
ξ1 � 0.1823, ξ2 � 0.2043, ξ3 � 0.1927, ξ4 � 0.2166, and
ξ5 � 0.2041.
Step 3: By equation (24), the weighted decision matrix
for V(d) is computed and presented in Table 2.
Step 4: By equation (25), aggregated values P(d) of each
alternative V(d) are computed as P(1) � (0.3909,

0.5127; 0.2576), P(2) � (0.3070, 0.6036; 0.2472), P(3) �

(0.3665, 0.5304; 0.2587), and P(4) � (0.3725, 0.4941;

0.2859).
Step 5: +e collective values R(d) of each alternative
V(d) by using equation (26) are obtained as R(1) �

(0.3692, 0.4012; 0.4093), R(2) � (0.4255, 0.4217;

0.3738), R(3) � (0.5358, 0.3594; 0.4231), and R(4) �

(0.4117, 0.4375; 0.5849).
Step 6: By equation (28), the priority values forV(d) are
obtained as Q(1) � 0.3723, Q(2) � 0.3606, Q(3) �

0.3145, and Q(4) � 0.3058.
Step 7: +e utility degrees for alternative V(d) are
measured by using equation (29) and obtain N(1) �

100, N(2) � 96.85, N(3) � 84.47, and N(4) � 82.13.
Step 8: By the values of N(d), the ordering of the given
objects is V(1) ≻V(2) ≻V(3) ≻V(4) and hence V(1) is
the best alternative.

6.3. Computational Results Based on Operators. +e steps of
algorithm described in Section 5.3 are executed here to get
the finest alternatives by using operators:

Step 1: Information about the alternatives is repre-
sented in Table 1.
Step 2: +e values of ηi and ξj are given in Step 2 of
Section 6.2.

Step 3: +e parameters e3, e4, and e5 are the cost types,
and so by equation (36), we compute q

(d)
ij and results

are summarized in Table 3.
Step 4: By taking weight vectors ηi and ζj, we apply the
PIFSWA operator on the values of q

(d)
ij by using

equation (37). +e obtained values of q(d) are q(1) �

(0.4973, 0.3265; 0.4950), q(2) � (0.4368, 0.4129;

0.5058), q(3) � (0.4618, 0.4135; 0.4890), and q(4) �

(0.4936, 0.3450; 0.4103). On the other hand, if a person
utilizes the PIFSWG operator given in equation (38) to
obtain the collective values, then we can get q(1) �

(0.3453, 0.4209; 0.4494), q(2) � (0.3380, 0.5043;

0.4759), q(3) � (0.3082, 0.5780; 0.4479), and q(4) �

(0.3686, 0.4550; 0.3290).
Step 5: By equation (39), the score values of the
numbers obtained through the PIFSWA operator are
given as S(q(1)) � 0.2898, S(q(2)) � 0.2590, S(q(3)) �

0.2563, and S(q(4)) � 0.2356, while these values for the
numbers obtained by PIFSWG operators are
S(q(1)) � 0.2077, S(q(2)) � 0.1984, S(q(3)) � 0.1635,
and S(q(4)) � 0.1503.
Step 6: Based on the values obtained from Step 5, we
obtain the ranking order as V(1) ≻V(2) ≻V(3) ≻V(4)

and V(1) is the best alternative.

6.4. Comparative Studies. To contrast the effects of proposed
methods with a few actual strategies under PIFSS and IFSS
environment, a correlation analysis has been made with
methods given in [25, 26, 37, 51]. +e obtained results are
reviewed in Table 4. In this table, the first comparison is done
with the similarity measure proposed by Bashir et al. [37].
As we can see in Table 4, the ranking order is V(1) ≻
V(2) � V(3) ≻V(4). Here, we cannot distinguish between
the choices V(2) andV(3). +erefore, the existing similarity
measure [37] fails in this case. Moreover, to solve the es-
timated problem with this method, we need an ideal al-
ternative which enhances the “complexity and
computational” overhead, but in proposed approaches, we
do not need any ideal resolution. +us, the recommended
methods are more fit for solving DM problems having PIFSS
information.

However, the decision maker cannot give an exact
opinion due to multifaceted nature and uncertainty in DM
process. In the literature, there are numerous techniques
proposed without considering the possibility of the assess-
ment esteem to illuminate DM problems with IFSS data, in
which they do not consider the decision maker’s risk factor
during DM process. But, the proposed approaches created in
this paper consider the possibility of the data given by the
decision maker to an assessed object. Further, in order to
contrast the proposed approach result with the existing
techniques of IFSS environment, we need to take the degree
of possibility equal to 1, i.e., we have to take pij � 1∀i, j for
converting PIFSS to IFSS. +us, the proposed operators
PIFSWA and PIFSWG reduce to the existing intuitionistic
fuzzy soft weighted averaging and geometric (IFSWA or
IFSWG) operators [25], respectively. From Table 4, we can
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clearly see that the ranking order of the obtained rating
values by utilizing proposed PIFSWA is the same as that of
the IFSWA operator [25] results. +e score values are dif-
ferent because both the techniques consider different score
functions. Also, the ranking order obtained by the operators
defined in [26] is different. +e reason of this difference is
that the authors in [26] considered the prioritized rela-
tionship between the parameters.

Further, the ranking order of the alternatives by utilizing
distance measure [51] isV(1) ≻V(4) ≻V(2) ≻V(3), which is
different from our results because the approach discussed by
Selvachandran et al. [51] considers the distances of the al-
ternative from an ideal alternative. However, the determi-
nation of the ideal alternative is merely a theoretical concept
whose practical equivalency is difficult to attain. In this way,
the proposed strategies are more adaptable and viable than
the existing strategies.

6.5. Advantages of Proposed Approach. In this section, some
advantages of the proposed work are highlighted, which are
as follows:

(1) +e presented approach took the importance of the
concept of possibility along with the IFSS to handle
modern decision-making problems. +e considered
possibility degree reflects the possibility of the ex-
istence of the degree of recognition and dismissal;
therefore, this organization has huge potential in the

true description within the area of computational
penetrations.

(2) If we assign possibility value as 1 to each IFSN then
the suggested PIFSWA and PIFSWG operators re-
duce to the existing IFSWA and IFSWG operators
[25], respectively. Also, the set defined as PIFSS
reduces to IFSS. Hence, IFSS can be exercised as a
particular case of PIFSS.

(3) In this manuscript, a new entropy measure has been
formed which not only renders the overall knowl-
edge about the amount of uncertainty imbed in the
specific structure but also appropriates as an efficient
tool in the DM process. As in this process, the al-
location of weights to the experts as well as the
parameters to signify the preference of both the
proposed entropy measures has been utilized. +us,
this paper gives us a way to find the completely
unknown weights of the experts and the parameters
using entropy measures.

(4) In this manuscript, the COPRAS technique is uti-
lized as a ranking method which is a proper policy to
prepare the information sensibly and effectively. +e
strategy used by the COPRAS method can process
the information given over the parameters from
distinctive points based on the complex proportional
calculation. +is method contains more accurate
information compared with other strategies dealing
with the benefit parameters or the cost parameters.

Table 1: Decision matrices for each alternative in terms of PIFSNs.

For alternative V(1) For alternative V(2)

e1 e2 e3 e4 e5 e1 e2 e3 e4 e5

u1
0.5, 0.2;

0.3􏼠 􏼡
0.6, 0.3;

0.4􏼠 􏼡
0.7, 0.1;

0.5􏼠 􏼡
0.3, 0.2;

0.6􏼠 􏼡
0.4, 0.5;

0.4􏼠 􏼡
0.7, 0.2;

0.5􏼠 􏼡
0.5, 0.4;

0.6􏼠 􏼡
0.6, 0.3;

0.4􏼠 􏼡
0.7, 0.3;

0.5􏼠 􏼡
0.6, 0.2;

0.4􏼠 􏼡

u2
0.6, 0.1;

0.4􏼠 􏼡
0.8, 0.2;

0.6􏼠 􏼡
0.6, 0.2;

0.7􏼠 􏼡
0.5, 0.3;

0.7􏼠 􏼡
0.4, 0.1;

0.3􏼠 􏼡
0.5, 0.3;

0.3􏼠 􏼡
0.8, 0.2;

0.5􏼠 􏼡
0.8, 0.2;

0.5􏼠 􏼡
0.6, 0.1;

0.3􏼠 􏼡
0.5, 0.4;

0.6􏼠 􏼡

u3
0.7, 0.3;

0.7􏼠 􏼡
0.9, 0.1;

0.7􏼠 􏼡
0.8, 0.2;

0.8􏼠 􏼡
0.6, 0.2;

0.6􏼠 􏼡
0.4, 0.3;

0.5􏼠 􏼡
0.3, 0.6;

0.4􏼠 􏼡
0.6, 0.3;

0.7􏼠 􏼡
0.5, 0.3;

0.6􏼠 􏼡
0.3, 0.5;

0.6􏼠 􏼡
0.3, 0.4;

0.5􏼠 􏼡

u4
0.8, 0.1;

0.6􏼠 􏼡
0.7, 0.2;

0.5􏼠 􏼡
0.5, 0.4;

0.4􏼠 􏼡
0.5, 0.2;

0.5􏼠 􏼡
0.3, 0.5;

0.6􏼠 􏼡
0.6, 0.1;

0.5􏼠 􏼡
0.7, 0.2;

0.5􏼠 􏼡
0.4, 0.3;

0.7􏼠 􏼡
0.8, 0.1;

0.7􏼠 􏼡
0.7, 0.1;

0.7􏼠 􏼡

For alternative V(3) For alternative V(4)

e1 e2 e3 e4 e5 e1 e2 e3 e4 e5

u1
0.8, 0.2;

0.7􏼠 􏼡
0.7, 0.3;

0.5􏼠 􏼡
0.9, 0.1;

0.7􏼠 􏼡
0.7, 0.2;

0.4􏼠 􏼡
0.8, 0.1;

0.7􏼠 􏼡
0.9, 0.1;

0.6􏼠 􏼡
0.4, 0.3;

0.6􏼠 􏼡
0.5, 0.2;

0.7􏼠 􏼡
0.6, 0.2;

0.7􏼠 􏼡
0.4, 0.3;

0.9􏼠 􏼡

u2
0.7, 0.1;

0.5􏼠 􏼡
0.6, 0.2;

0.4􏼠 􏼡
0.6, 0.1;

0.5􏼠 􏼡
0.6, 0.3;

0.5􏼠 􏼡
0.7, 0.2;

0.6􏼠 􏼡
0.7, 0.2;

0.5􏼠 􏼡
0.6, 0.2;

0.7􏼠 􏼡
0.6, 0.4;

0.8􏼠 􏼡
0.7, 0.2;

0.6􏼠 􏼡
0.5, 0.4;

0.7􏼠 􏼡

u3
0.6, 0.2;

0.6􏼠 􏼡
0.8, 0.1;

0.5􏼠 􏼡
0.5, 0.5;

0.7􏼠 􏼡
0.5, 0.4
0.4􏼠 􏼡

0.6, 0.3;

0.5􏼠 􏼡
0.6, 0.1;

0.7􏼠 􏼡
0.7, 0.1;

0.3􏼠 􏼡
0.7, 0.3;

0.6􏼠 􏼡
0.7, 0.1;

0.8􏼠 􏼡
0.6, 0.3;

0.8􏼠 􏼡

u4
0.5, 0.4;

0.4􏼠 􏼡
0.6, 0.3;

0.6􏼠 􏼡
0.8, 0.1;

0.4􏼠 􏼡
0.6, 0.2;

0.5􏼠 􏼡
0.9, 0.1;

0.9􏼠 􏼡
0.8, 0.2;

0.5􏼠 􏼡
0.7, 0.2;

0.6􏼠 􏼡
0.4, 0.6;

0.9􏼠 􏼡
0.5, 0.4;

0.6􏼠 􏼡
0.5, 0.2;

0.8􏼠 􏼡
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Table 3: Normalized decision matrices for each alternative.

For alternative V(1) For alternative V(2)

e1 e2 e3 e4 e5 e1 e2 e3 e4 e5

u1
0.5, 0.2;

0.3􏼠 􏼡
0.6, 0.3;

0.4􏼠 􏼡
0.1, 0.7;

0.5􏼠 􏼡
0.2, 0.3;

0.4􏼠 􏼡
0.5, 0.4;

0.6􏼠 􏼡
0.7, 0.2;

0.5􏼠 􏼡
0.5, 0.4;

0.6􏼠 􏼡
0.3, 0.6;

0.6􏼠 􏼡
0.3, 0.7;

0.5􏼠 􏼡
0.2, 0.6;

0.6􏼠 􏼡

u2
0.6, 0.1;

0.4􏼠 􏼡
0.8, 0.2;

0.6􏼠 􏼡
0.2, 0.6;

0.3􏼠 􏼡
0.3, 0.5;

0.3􏼠 􏼡
0.1, 0.5;

0.7􏼠 􏼡
0.5, 0.3;

0.3􏼠 􏼡
0.8, 0.2;

0.5􏼠 􏼡
0.2, 0.8;

0.5􏼠 􏼡
0.1, 0.6;

0.7􏼠 􏼡
0.4, 0.5;

0.4􏼠 􏼡

u3
0.7, 0.3;

0.7􏼠 􏼡
0.9, 0.1;

0.7􏼠 􏼡
0.2, 0.8;

0.2􏼠 􏼡
0.2, 0.6;

0.4􏼠 􏼡
0.3, 0.4;

0.5􏼠 􏼡
0.3, 0.6;

0.4􏼠 􏼡
0.6, 0.3;

0.7􏼠 􏼡
0.3, 0.5;

0.4􏼠 􏼡
0.5, 0.3;

0.4􏼠 􏼡
0.4, 0.3;

0.5􏼠 􏼡

u4
0.8, 0.1;

0.6􏼠 􏼡
0.7, 0.2;

0.5􏼠 􏼡
0.4, 0.5;

0.6􏼠 􏼡
0.2, 0.5;

0.5􏼠 􏼡
0.5, 0.3;

0.4􏼠 􏼡
0.6, 0.1;

0.5􏼠 􏼡
0.7, 0.2;

0.5􏼠 􏼡
0.3, 0.4;

0.3􏼠 􏼡
0.1, 0.8;

0.3􏼠 􏼡
0.1, 0.7;

0.3􏼠 􏼡

For alternative V(3) For alternative V(4)

e1 e2 e3 e4 e5 e1 e2 e3 e4 e5

u1
0.8, 0.2;

0.7􏼠 􏼡
0.7, 0.3;

0.5􏼠 􏼡
0.1, 0.9;

0.3􏼠 􏼡
0.2, 0.7;

0.6􏼠 􏼡
0.1, 0.8;

0.3􏼠 􏼡
0.9, 0.1;

0.6􏼠 􏼡
0.4, 0.3;

0.6􏼠 􏼡
0.2, 0.5;

0.3􏼠 􏼡
0.2, 0.6;

0.3􏼠 􏼡
0.3, 0.4;

0.1􏼠 􏼡

u2
0.7, 0.1;

0.5􏼠 􏼡
0.6, 0.2;

0.4􏼠 􏼡
0.1, 0.6;

0.5􏼠 􏼡
0.3, 0.6;

0.5􏼠 􏼡
0.2, 0.7;

0.4􏼠 􏼡
0.2, 0.7;

0.5􏼠 􏼡
0.2, 0.6;

0.3􏼠 􏼡
0.4, 0.6;

0.2􏼠 􏼡
0.2, 0.7;

0.4􏼠 􏼡
0.4, 0.5;

0.3􏼠 􏼡

u3
0.6, 0.2;

0.6􏼠 􏼡
0.8, 0.1;

0.5􏼠 􏼡
0.5, 0.5;

0.3􏼠 􏼡
0.4, 0.5;

0.6􏼠 􏼡
0.3, 0.6;

0.5􏼠 􏼡
0.6, 0.1;

0.7􏼠 􏼡
0.7, 0.1;

0.3􏼠 􏼡
0.3, 0.7;

0.4􏼠 􏼡
0.1, 0.7;

0.2􏼠 􏼡
0.3, 0.6;

0.2􏼠 􏼡

u4
0.5, 0.4;

0.4􏼠 􏼡
0.6, 0.3;

0.6􏼠 􏼡
0.1, 0.8;

0.6􏼠 􏼡
0.2, 0.6;

0.5􏼠 􏼡
0.1, 0.9;

0.1􏼠 􏼡
0.8, 0.2;

0.5􏼠 􏼡
0.7, 0.2;

0.6􏼠 􏼡
0.6, 0.4;

0.1􏼠 􏼡
0.4, 0.5;

0.4􏼠 􏼡
0.2, 0.5;

0.2􏼠 􏼡

Table 4: Comparison of proposed approaches with existing approaches.

When equal weights are taken When the weights obtained by proposed approach are taken
V(1) V(2) V(3) V(4) Ranking order V(1) V(2) V(3) V(4) Ranking order

Bashir et al.
[37] 0.6439 0.6201 0.6201 0.5250 V(1) ≻V(2) � V(3) ≻V(4) 0.6439 0.6201 0.6201 0.5250 V(1) ≻V(2) � V(3) ≻V(4)

Arora and
Garg [25] 0.1961 0.0381 0.0405 0.1759 V(1) ≻V(4) ≻V(3) ≻V(2) 0.1709 0.0239 0.0484 0.1487 V(1) ≻V(4) ≻V(3) ≻V(2)

Arora and
Garg [26] 0.5940 0.5574 0.5864 0.6303 V(4) ≻V(1) ≻V(3) ≻V(2) 0.5940 0.5574 0.5864 0.6303 V(4) ≻V(1) ≻V(3) ≻V(2)

Selvachandran
et al. [51] 0.8630 0.9271 0.9611 0.8708 V(1) ≻V(4) ≻V(2) ≻V(3) 0.8765 0.9289 0.9590 0.8886 V(1) ≻V(4) ≻V(2) ≻V(3)

Proposed
PIFSWA
operator with
possibility� 1

0.5981 0.5190 0.5203 0.5880 V(1) ≻V(4) ≻V(3) ≻V(2) 0.5615 0.4843 0.4646 0.5430 V(1) ≻V(4) ≻V(2) ≻V(3)

Proposed
PIFSWG
operator with
possibility� 1

0.3875 0.4168 0.4429 0.4156 V(3) ≻V(2) ≻V(1) ≻V(4) 0.3753 0.4145 0.4459 0.4131 V(3) ≻V(2) ≻V(1) ≻V(4)

Proposed
COPRAS
method with
possibility� 1

100 86.9067 83.4016 98.2851 V(1) ≻V(4) ≻V(2) ≻V(3) 100 87.7661 85.4024 99.7088 V(1) ≻V(4) ≻V(2) ≻V(3)
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7. Conclusion

+e key contribution of the work can be summarized as
follows:

(1) +e examined study employs the PIFSS to handle the
inadequate, vague, and conflicting data by consid-
ering membership degree, nonmembership degree,
and the possibility degree towards these membership
degrees. +us, a PIFSS expresses the veritable cir-
cumstances of the real conditions because it repre-
sents the fuzziness and the possibility acquired in
genuine issues.

(2) +is paper offers new operational laws and distance
measures for estimating the degree of discrimination
between the two or more PIFSSs. Traditionally, all
the measurements are computed without consider-
ing the degree of possibility into the analysis, which
may not furnish the proper choice to the expert. To
succeed it, distance measures are injected in this
work which supplies an alternative way to trade with
the PIFSS information.

(3) A new COPRAS method is presented for the col-
lection of the PIFSNs to rank the give alternatives. A
utility degree has been defined to rank the given
numbers.

(4) To aggregate the different collection of PIFSNs, we
proposed some series of weighted averaging and
geometric operators and investigated their proper-
ties. From these stated operators, it can be concluded
that by assigning the possibility degree of each rating
as one then the operators [25, 26] under the IFSS can
be deduced.

(5) Two new algorithms, based on proposed COPRAS
and aggregation operators, are presented to solve the
multiple attribute decision-making problems with
PIFSS information. In these approaches, the weight
vector of the experts and the parameters are com-
puted with the help of the entropy and distance
measures. +e fundamental advantages of proposed
techniques as compared to existing ones are that
these reflect the decision maker’s risk factor in the
application fields represented by the possibility of
each assessment esteem. Also, the COPRAS method-
based approach gives important and valuable data
including the extent of goals and the requests ac-
complished by the choice producers and the amount
of proficiency for one elective towards the other.
Hence, the proposed work gives a more reasonable
picture from dubious perspectives of practical situ-
ations. Finally, a numerical example is presented to
demonstrate the approach and compare their results
with the several existing approaches.

In the future, we shall lengthen the application of the
proposed measures to the diverse fuzzy environment as well
as different fields of application such as supply chain
management, emerging decision problems, brain hemor-
rhage, and risk evaluation [52–54].
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