
COMPUTING 
PRACTICES 

The Effect of Programming 
Team Structures on 
Programming Tasks 

Marilyn Mantei 
The University of Michigan 

1. Introduction 

Two philosophies for organizing 
programming teams have achieved a 
moderate amount of popularity, if 
not utilization, in the data processing 
field. These are the egoless program- 
ming team proposed by Weinberg 
[28] and the chief programmer team 
proposed by Mills [18] and imple- 
mented by Baker [1]. In Weinberg's 
structure, the decision-making au- 
thority is diffused throughout project 
membership; in Baker's team, it be- 
longs to the chief programmer. Com- 
munication exchanges are decentral- 
ized in Weinberg's team and central- 
ized in the chief programmer orga- 
nization. Neither structure is totally 

Permission to copy without fee all or part of 
this material is granted provided that the cop- 
ies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
date appear, and notice is given that copying 
is by permission of the Association for Com- 
puting Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific per- 
mission. 
Key words and phrases: chief programmer 
team, project management, software engineer- 
ing, group dynamics, programming team 
structures 
CR Categories: 3.50, 4.6 
Author's address: M. Mantei, Graduate 
School of Business Administration, The Uni- 
versity of Michigan, Ann Arbor, MI 48109. 
© 1981 ACM 0001-0782/81/0300-0106 75¢. 

106 

SUMMARY: The literature recognizes two group structures 
for managing programming projects: Baker's chief program- 
mer team and Weinberg's egoless team. Although each struc- 
ture's success in project management can be demonstrated, 
this success is clearly dependent on the type of programming 
task undertaken. Here, for the purposes of comparison, a 
third project organization which lies between the other two in 
its communication patterns and dissemination of decision- 
making authority is presented. Recommendations are given 
for selecting one of the three team organizations depending 
on the task to be performed. 

decentralized, democratic, central- 
ized, or autocratic, but both Wein- 
berg and Baker present arguments 
on why their methods will lead 
to superior project performance. 
Baker's project succeeds with a spe- 
cific, difficult, and highly structured 
task. Weinberg's recommendations 
have no specific task in mind. 

Research conducted in small 
group dynamics [7, 23, 27] suggests 
that a decision to use either team 
structure is not clear-cut and that 
there are strong task dependencies 
associated with each group's per- 
formance. The next two sections an- 

Communications 
of 
the ACM 

alyze Weinberg and Baker's organi- 
zations. In Section 4, a third, com- 
monly encountered team organiza- 
tion is presented for the purposes of 
comparison. The fifth section con- 
ducts this comparison, recommend- 
ing which of the three structures 
should be selected for a given prop- 
erty of a programming task. 

2. An Analysis of Weinberg's 
Team Structure 

Weinberg is a promoter of the 
egoless programming concept. His 
teams are groups of ten or fewer 

March 1981 
Volume 24 
Number 3 



oJ°\o 
/ Individual programmers 

have varying skill levels 
and areas of expertise. 

0 0 C 
(a) Management Structure (b) Communication Channels 

Fig. 1. Egoless Team Structure. Authority is dispersed and communication linkages decentralized. 

programmers who exchange their 
code with other team members for 
error examination. In addition to 
code exchanges, goals are set by 
group consensus. Group leadership 
is a rotating function, becoming the 
responsibility of the individual with 
the abilities that are currently 
needed. Figure l(a) illustrates the 
basic management structure of an 
egoless team; Figure l(b) shows the 
communication exchanges that occur 
within this structure. The team pro- 
posed by Weinberg is acknowledged 
to be mythical in light of today's 
organization practices, but Weinberg 
feels that it is the appropriate orga- 
nization for the best qualitative and 
quantitative code generation. Using 
the factors of amount of code pro- 
duced, of time to produce code, and 
of error freeness to gauge program- 
ming performance, some task-related 
problems occur with Weinberg's 
team structure. 

Bavelas [3] and Leavitt [14], in 
their experiments on centralized and 
decentralized group problem-solving 
behavior, found that decentralized 
groups take more time and generate 
twice as many communications as 
centralized groups. This suggests that 
a Weinberg group would function 
well in long-term continuing projects 
without time constraints (such as 
program maintenance). It would not, 
however, adequately perform a rush 
programming project. 

A second weakness of Wein- 

107 

berg's proposal is the risky shift phe- 
nomena [5]. Groups engage in riskier 
behavior than individuals, both be- 
cause of the dispersion of failure and 
the high value associated with risk 
taking in Western culture. In the case 
of a group programming team, deci- 
sions to attempt riskier solutions to 
a software problem or to establish 
high risk deadlines would be more 
easily made. In a software project 
with a tight deadline or a crucial 
customer, a group decision might 
cause the project to fail. 

The democratic team structure 
works best when the problem is dif- 
ficult. When the problem is simple, 
performance is better in an auto- 
cratic highly structured group [12]. 
Ironically, democratic groups at- 
tempt to become more autocratic as 
task difficulty increases. In the de- 
centralized group, the additional 
communication which aided in solv- 
ing the difficult problem is superflu- 
ous; it interferes with the simple 
problem solution. Tasks such as re- 
port generation and payroll pro- 
gramming fall into the category of 
simple tasks--for these, a Weinberg 
group is least efficient. 

The decentralized group is 
lauded for its open communication 
channels. They allow the dissemina- 
tion of programming information to 
all participants via informal chan- 
nels. By virtue of code exchanges and 
open communication, Weinberg 
concludes that the product will be 

Communications 
of 
the ACM 

superior. March and Simon [16] 
point out that hierarchical structures 
are built to limit the flow of infor- 
mation, because of the human 
mind's limited processing capabili- 
ties. In the decentralized groups, as 
investigated by Bavelas, although 
twice as many communications were 
exchanged as in centralized groups, 
the groups often failed to finish their 
task. Similarly, individuals within a 
nonstructured programming group 
may be unable to organize project 
information effectively and many 
suffer from information overload. 
The structure and limited flow asso- 
ciated with hierarchical control may 
be assets to information assimilation. 

Decentralized groups exhibit 
greater conformity than centralized 
groups [11]; they enforce a uniform- 
ity of behavior and punish deviations 
from the norm [20]. This is good if it 
results in quality documentation and 
coding practices, but it may hurt ex- 
perimental software development or 
the production of novel ideas. 

Despite the pressure to conform 
and an apparent lack of information 
organization, decentralized groups 
exhibit the greatest job satisfaction 
[23]. For long projects hurt by high 
turnover rates, job satisfaction is a 
major concern. Job satisfaction is 
also important for healthy relation- 
ships with the public or a customer-- 
if indeed this is a necessary element 
of the programming project. 

In summary, Weinberg's decen- 

March 1981 
Volume 24 
Number  3 



COMPUTING 
PRACTICES 

tralized democratic group does not 
perform well in tasks with time con- 
straints, simple solutions, large infor- 
mation exchange requirements, or 
unusual approaches. A difficult task 
of  considerable duration which de- 
mands personal interaction with the 
customer is optimal for a Weinberg 
team. 

3. An Analysis of Baker's Team 
Structure 

Baker describes the use of  a 
highly structured programming team 
to develop a complex on-line infor- 
mation retrieval system for the New 
York Times Data Bank; the team is 
a three-person unit. It consists of  a 
chief programmer, who manages a 
senior level programmer and a pro- 
gram librarian. Additional program- 
mers and analysts are added to the 
team on a temporary basis to meet 
specific project needs. Figure 2(a) 
illustrates the structure of  the chief 
programmer team; the communica- 
tion channels are shown in Figure 
2(b). 

The chief programmer manages 
all technical aspects of  the project, 
reporting horizontally to a project 
manager who performs the adminis- 
trative work. Program design and as- 
signment are initiated at the top level 
of  the team. Communication occurs 

through a programming library sys- 
tem, which contains up-to-date in- 
formation on all code developed. 
The program librarian maintains the 
library and performs clerical support 
for the project. Rigid program stan- 
dards are upheld by the chief pro- 
grammer. 

The Baker team is a centralized 
autocratic structure in which prob- 
lem solutions and goal decisions are 
made at the top level. The task which 
the team undertakes is well-defined, 
but large and complex. Definite time 
constraints exist. Baker concludes 
that this compact highly structured 
team led to the successful completion 
of  the project and that it has general 
applicability. 

Several weaknesses exist in 
Baker's argument. Shaw [21] finds 
that a centralized communication 
network is more vulnerable to satu- 
ration at the top level. Information 
from all lower modes in this structure 
flows upward to the parent mode. 
Baker's team was intentionally small 
and worked with a highly structured 
system for managing project infor- 
mation; both these factors were crit- 
ical to the success of  the project. A 
third, equally important factor was 
the team leader's ability to handle 
project communication. This ability 
is closely related to the leader's soft- 
ware expertise. A less experienced 
leader or a more complex problem 
might have changed the project's 
success, even with staffing con- 
straints and information manage- 
ment. Yourdon [29] points out that 

the effective chief programmer is a 
rare individual and indicates that 
most so-called chief programmer 
teams are headed by someone who 
is unlikely to adequately handle the 
communication complexity. 

Centralized groups exhibit low 
morale [3]; this, in turn, leads to dis- 
satisfaction and poor group cohe- 
siveness. Members of  highly cohesive 
groups communicate with each other 
to a greater extent than members of  
groups with low cohesion [15]. With 
a clearly defined problem that is split 
into distinct modules, this lack of  
communication will have little im- 
pact, but an ill-defined problem with 
many interfaces would suffer in a 
chief programmer team environ- 
ment. The two software modules (the 
interface systems) on this project 
which might have served as indica- 
tors of  this communication condition 
are, as a matter of  fact, developed as 
a joint effort between the chief pro- 
grammer and another team member. 

Communication in a status hier- 
archy tends to be directed upward; 
its content is more positive than that 
of  any communication directed 
downward [27]. In a tricky, difficult 
programming task, this favorable 
one-way flow of  communication 
denies the group leader access to a 
better solution or, at least, an indi- 
cation of  problems in the current 
solution. Decentralized groups gen- 
erate more and better solutions to 
problems than individuals working 
alone [25]--such as a chief program- 
mer. The major basis for the success 

\ Chief Programmer 0 / ( , ~  ~ 
\ \ \ \ 

\ \  \ 
\ \ 

O o "o "o Librarian Special Problems 
Consultant 

Programmers 

(a) Management Structure (b) Communication Channels 

Fig. 2. Chief Programmer Team Structure. Authority is vested in the chief programmer and communication is centralized to this individual. 

108 Communications March 1981 
of Volume 24 
the ACM Number 3 



( ~ )  Project Leader 

0 SeniOr PrOgrammers 

/IX 
0 0 0 0 0 0 JpU°ig°rrmmers 

(a) Management Structure (b) Communication Channels 

Fig. 3. Controlled Decentralized Team Structure. Authority is vested in the project leader and senior programmers, but communication at 
each level of the management hierarchy is decentralized. 

of the New York Times Data Bank 
project was the team's ability to meet 
the delivery date. A centralized 
structure completes tasks more 
quickly than any decentralized form 
of  control [14], but perhaps a more 
creative solution might have resulted 
from a different approach. Propo- 
nents of good software management 
stress concern for the software life 
cycle [8, 9, 13]. This implies that 
consideration be given not only to 
project completion schedules but to 
the software's usability, cost to the 
customer, and modifiability. 

In summary, communication ex- 
ists to a much lesser degree in cen- 
tralized groups and is directed to- 
ward the manager. Both difficult 
tasks requiring multiple inputs for 
solution and unstructured tasks re- 
quiring substantial cooperation fare 
poorly in this kind of  communication 
environment. Group morale and, 
thus, goal motivation are low in such 
a hierarchical structure. A simple, 
well-structured programming task 
with rigid completion deadlines and 
little individual interface with the 
client is perfect for the chief pro- 
grammer team. 

4. An Analysis of a Controlled 
Decentralized Team Structure 

In practice, programming team 
structures vary considerably. Most 
take on some form of  organization 

109 

that draws from both Weinberg's 
egoless team and Baker's chief pro- 
grammer team. A third, frequently 
used organization which we will call 
the controlled decentralized (CD) 
team is described in this section. 

The controlled decentralized 
team has a project leader who gov- 
erns a group of  senior programmers. 
Each senior programmer, in turn, 
manages a group of junior program- 
mers. Figure 3(a) illustrates the or- 
ganization of this group; Figure 3(b) 
indicates the flow of communication 
that takes place in this type of  group 
structure. 

Metzger [17] describes this orga- 
nization as a reasonable manage- 
ment approach. He makes two rec- 
ommendations: First, he suggests 
that intermediate levels of manage- 
ment are preferable to requiring all 
senior programmers to report to the 
project leader and, second, he rec- 
ommends that the programming 
groups be partitioned not according 
to code module assigned, but in 
terms of  the type of  role played in 
the project, e.g., test, maintenance, 
etc. Shneiderman [24] lists this struc- 
ture as the most probable type of  
project organization. Like Yourdon 
[29], he suggests that the individual 
subgroups in the project participate 
in structured walkthroughs and code 
exchanges in the manner of  Wein- 
berg's egoless teams. 

Communications 
of 
the ACM 

The CD team possesses control 
over the goal selection and decision- 
making aspects of  the Baker team 
and the decentralized communica- 
tion aspects of  the Weinberg team. 
Setting project goals and dividing 
work among the groups are the tasks 
of the project leader. More detailed 
control over the project's functions is 
assigned to the senior programmers. 
Within each programming subgroup, 
the organization is decentralized. 
Problem solving is a group activity 
as is checking for code errors. Each 
group leader serves as the sole recip- 
ient or gatekeeper of  project infor- 
mation for the subgroup and acts as 
a liaison with the leaders of the other 
groups. The communication and 
control problems of the egoless and 
chief programmer teams do not dis- 
appear in a CD structure but occur 
in the subgroups of  the controlled 
decentralized team that correspond 
to the Weinberg and Baker teams: 
Thus, the properties of  the subtask 
allocated to any of the subgroups 
interact, in a similar fashion, with 
the subgroup structure. 

The decentralized subgroups of  
the CD team work poorly with 
highly structured or simple tasks. 
Group solutions are best directed at 
difficult problems. Much of  the cre- 
ative and difficult part of program- 
ming is planning the design and par- 
titioning the work. In the CD struc- 

March 1981 
Volume 24 
Number  3 



COMPUTING 
PRACTICES 

ture this work is completed by the 
project leader. The senior program- 
mers then take on their portion of  
the task and develop a group solu- 
tion. Ironically, when the task is most 
difficult, the team structure is least 
effective. A poll of  programming 
managers and academics indicated 
that the area they believed needed 
the most attention in software engi- 
neering was the planning and design 
stage [26], the work carried out by 
the CD team project leader. 

With small problems, the CD 
team is unnecessary since its very 
structure presumes the existence of  a 
larger project. As Brooks [6] points 
out, even though adding individuals 
to a project increases the communi- 
cation problems and, thus, the effec- 
tiveness of  the project's members, it 
is still necessary to have large teams 
for those programming tasks which 
are so large they could not be accom- 
plished in a reasonable length of time 
by a few programmers. 

Although control over projects is 
exercised from above, the group 
problem-solving approach at lower 
levels will take longer, and projects 
will be more likely to fall behind in 
meeting deadlines. The structure of 
the CD team would tend to centralize 
the egoless programming subgroups. 
Because of  the senior programmer's 
gatekeeper role, he or she would 
emerge as an informal leader in 
group sessions. This, in turn, would 
lower individual satisfaction with the 
project and generate the ensuing 
problems of  a high job turnover rate 
and group socialization difficulties. 
Because of  this strong tendency to- 
ward centralization, shorter projects 
are best for the CD structure. 

A controlled decentralized team 
is an effective error-purge mecha- 
nism. The code walkthroughs and 
group input at the code generation 
level will filter out many errors. Code 
generated in this fashion is more re- 
liable than code coming from a chief 
programmer team operation. 

! !0  

Programming tasks that are not 
easily subdivided suffer in a CD 
team. Note in Figure 3(b) that com- 
munication between groups occurs at 
the senior programmer level. Proj- 
ects requiring micro-decision com- 
munication about code interfaces 
cannot expect this communication to 
be conveyed effectively through a 
liaison person functioning at a macro 
level in the project. 

In summary, the controlled de- 
centralized team will work best for 
large projects which are reason- 
ably straightforward and short-lived. 
Such teams can be expected to pro- 
duce highly reliable code but not 
necessarily on time or in a friendly 
manner. They are ill-suited for long- 
term researchlike projects. 

Team Structure and 
Programming Task Relationships 

This section describes seven sa- 
lient properties of programming 
tasks and compares the performance 
of  each team structure discussed in 
relationship to these task properties. 
The relevant properties are: 

(1) Difficulty. The program re- 
quired to solve the problem can be 
complex, consisting of  many decision 
points and data interfaces, or it may 
be a simple decision tree. Distributed 
processing systems and projects with 
severe core or rapid response time 
constraints fall into the difficult cat- 
egory. Much of  the scientific pro- 
gramming would come under the 
simple category heading. 

(2) Size. Programs may range 
from ten to hundreds of thousands 
of  lines of  code for any given project. 

(3) Duration. The lifetime of  the 
programming team varies. Mainte- 
nance teams have a long lifetime; 
one-shot project teams have a short 
lifetime. 

(4) Modularity. If  a task can be 
completely compartmentalized into 
subtasks, it is highly modular. Most 
programming problems can be split 
into subtasks, but the amount of  
communication required between 
the subtasks determines their modu- 
larity rating. A tape system for pay- 
roll reports is a highly modular task. 

Communications 
of 
the ACM 

A data management system for the 
same purpose has a low degree of 
modularity. 

(5) Reliability. Some tasks such as 
patient monitoring systems have se- 
vere failure penalties, while other 
tasks, such as natural language pro- 
cessing experiments, need not be as 
reliable, although working programs 
are always desirable. The reliability 
measure depends on the social, fi- 
nancial, and psychological require- 
ments of  the task. 

(6) Time. How much time is re- 
quired for task completion? Is the 
time adequate or is there time pres- 
sure? The penalty for not meeting a 
deadline strongly affects this mea- 
sure. 

(7) Sociability. Some program- 
ming tasks require considerable 
communication with the user or with 
other technical personnel, such as 
engineers or mathematicians, while 
other tasks involve interaction with 
the team alone. Computer  center 
consulting groups that develop user 
aids have higher sociability require- 
ments than groups programming 
their own set of software tools. 

Throughout  this paper, the labels 
egoless programming team and chief 
programmer team have prevailed. 
For  the purposes of  comparison, 
these terms have been changed to 
names reflecting the decision-mak- 
ing authority and communication 
structure of  the teams. The three 
teams are: 

1. Democrat ic  Decentral ized 
(DD). This group is like Weinberg's 
proposed team; it has no leaders, but 
appoints task coordinators for short 
durations. Decisions on problem so- 
lutions and goal direction are made 
by group consensus. Communication 
among members is horizontal. 

2. Controlled Decentralized ( CD). 
The CD group has a leader who 
coordinates tasks. Secondary man- 
agement positions exist below that of  
the leader. Problem solving remains 
a group activity but partitioning the 
problem among groups is a task of  
the leader. Communication is decen- 
tralized in the subgroups and cen- 
tralized along the control hierarchy. 

March 1981 
Volume 24 
Number  3 



Table I. Recommended Team Structures for Programming Task Features. 

Programming Task Characteristics 

Difficulty Size Duration Modularity Reliability Time Required Sociability 

Group Structures High Low Large Small Short Long High Low High Low Strict Lax High Low 

Democratic X X X X X X X 
Decentralized 

Controlled Decentralized X X X X X X X 
Controlled Centralized X X X X X X X 

3. Controlled Centralized (CC). 
This group is like Baker's team. Both 
problem solving and goal directions 
are generated by the team leader. 
Communication is vertical along the 
path of control. 

The expected interaction of each 
of  these team structures with the fac- 
tors governing program tasks can be 
drawn from experimental research 
on small group dynamics. To assess 
performance quality, team structures 
are assumed to be evaluated on the 
quality of generated code and the 
time in which the code generation 
was completed. 

Table I lists recommended group 
structures for each task variable. Un- 
der the category task difficulty, sim- 
ple problems are best performed by 
a centralized structure which com- 
pletes tasks faster. Decentralization 
works best for difficult problems. 
Groups are found to generate more 
and better solutions than individuals. 
Unfortunately, the CD team is cen- 
tralized precisely where the problem 
is difficult. The DD team is the best 
solution for difficult problems. For 
simpler programming tasks, a CC or 
CD structure is recommended. 

As programming tasks increase 
in size, the amount of  cooperation 
required among group members in- 
creases. Group performance is neg- 
atively correlated with the coopera- 
tion requirements of a task. As tasks 
become very large, the DD group is 
no longer viable because of its co- 
operation requirements. CC and CD 
groups can be effectively regrouped 
into smaller structures to handle the 
task. When the task size requires a 
smaller number of  programmers, the 

111 

DD group performs better because 
of its high level of  communication. 
For very small tasks, the CC group is 
best because it does not require the 
additional communication of  demo- 
cratic groups; but then, a group is 
unnecessary. An individual will do. 

The duration of  the task interacts 
with group morale. Short tasks may 
not require high group morale, 
whereas long tasks will suffer from 
high personnel turnover if morale is 
low. DD groups have high morale 
and high job satisfaction. This 
should be the preferred group struc- 
ture for ongoing tasks. The CC and 
CD groups are effective for short- 
term tasks. 

If  task modularity is low, the DD 
group performs best because of its 
higher volume of  communication. 
Cooperative (read DD) groups have 
higher orderliness scores than com- 
petitive (read CC) groups [10]. This 
orderliness is essential for maintain- 
ing the interfaces of  a low modularity 
task. Nondirective leadership has 
been found to be most effective when 
a task has a high multiplicity of so- 
lutions. Directive leadership is best 
for tasks with low multiplicity solu- 
tion choices [22]. A D D  group can 
be characterized as having nondirec- 
tive leadership, CC and CD groups 
as having directive leadership. High 
modularity tasks have a low multi- 
plicity of  solutions, and thus the CD 
and CC groups can be expected to 
exhibit the best performance given 
such tasks. 

CC and CD groups perform well 
when confronted with high reliabil- 
ity requirement problems. Decen- 
tralized groups have been found to 
make less errors and produce better 

Communications 
of 
the ACM 

solutions to problems. A CC group 
is more error-prone and probably 
should never be used for projects in 
which relatively simple errors can 
result in disaster. 

A decentralized group takes 
longer to complete a problem than a 
centralized group. If  tasks have se- 
vere time constraints, a CC team is 
best. When time is not crucial, the 
low motivation of  CC groups can 
interfere with task completion. 
Therefore, the more democratic 
groups are preferred, with the DD 
structure being the best choice. 

If  a task requires high sociability, 
the DD team structure is best. 
Groups learn faster than individuals 
(such as the team leaders of CC 
groups). Therefore, a DD group 
would understand a user's interface 
problem in a shorter period of  time. 
DD groups are higher in social inter- 
action and morale than CD or CC 
groups. These traits will enhance 
their social relationships with the 
task contacts. 

6. Conclusion 
Many programming task features 

interact with each other, e.g., a large 
project is often a difficult one. Group 
structures that are effective for one 
aspect of  a task may be totally wrong 
for another. In selecting a team struc- 
ture, it is important to use a decision- 
making algorithm to prioritize, 
weight, or combine the crucial task 
variables. 

Little experimental work on pro- 
gramming team and task interaction 
has been carried out. Basili and Rei- 
ter [2] found relationships between 
the size of  a programming group and 
several software metrics. They also 

Lrch 1981 
v olume 24 
Number 3 



COMPUTING 
PRACTICES 

found cost differential behavior aris- 
ing from the software development 
approach taken, with structured 
techniques being notably cheaper. 
Only one programming task was per- 
formed by the experimental groups. 
Weinberg's suggestions on group or- 
ganization are anecdotal and Baker's 
conclusions are confounded by the 
team personnel and the program- 
ming methods selected. 

Most of the research on group 
problem-solving behavior was con- 
ducted in a laboratory setting with 
students and tasks of short duration. 
A problem exists in trying to apply 
these conclusions to the external 
work environment. In particular, 
programming tasks generally involve 
an entirely different time span than 
laboratory experiments. Becker [4] 
scathingly criticizes these "cage" ex- 
periments. Rogers [19] suggests sub- 
stituting network analysis field work 
to understand the effects of group 
structures. 

None of these task/structure rec- 
ommendations have been tested in a 
software development environment. 
Despite all these shortcomings, the 
application of a body of research on 
group dynamics to the organization 
of personnel on a programming proj- 
ect is a step forward from the hit- 
and-miss guessing that is the current 
state of the art. 

References 

1. Baker, F.T. Chief programmer team 
management of production programming. 
IBM Syst. J. 1 (1972), 57-73. Baker presents 
a case history of a program project manage- 
ment organization, the chief programmer 
team. This compact management strategy 
coupled with top-down program develop- 
ment methods achieves above average suc- 
cess in terms of productivity and error-free 
code. 

2. Basili, V.R., and Reiter, R.W., Jr. The 
investigation of human factors in software 
development. Comptr. 12, 12 (Dec. 1979), 
21-38. This paper examines the impact of a 
programming team's size and program devel- 
opment approach, disciplined or ad hoc, on 
the software product. The disciplined 
method resulted in major savings in develop- 
ment efficiency and smaller groups built 
larger code modules. 

3. Bavelas, A. Communication patterns in 
task-oriented groups. J. Acoustical Soc. 
America 22 (1950), 725-730. Bavelas de- 
scribes an experiment in which the commu- 
nication structures of a circle, wheel, and 
chain were imposed on small groups by the 
physical arrangement of cubicles and mes- 
sage slots. Each structure was then measured 
for its problem-solving efficiency. 

4. Becker, H. Vitalizing sociological theory. 
Amer. Sociological Rev. 19 (1954), 377-388. 
Becker refers to the small group laboratory 
studies as "cage studies" and recommends 
their use by sociological theorists only for an 
awareness of such studies' limiting condi- 
tions. 
5. Bem, D.J., Wallace, M.A., and Kogen, 
N. Group decision making under risk of ad- 
versive consequences../. Personality and So- 
cial Psyehol. 1 (1965), 453-460. This paper 
demonstrates, in a context of adversive con- 
sequences (loss of money, induced nausea, 
etc.), that unanimous group decisions con- 
cerning matters of risk shift toward greater 
risk-taking than individual decisions. More- 
over, the authors provide evidence that the 
underlying process for the risky shift is a 
diffusion of the responsibility among group 
members. 

6. Brooks, F.P., Jr. The Mythical Man- 
Month: Essays on Software Engineering. Ad- 
dison-Wesley, Reading, Mass., 1975. This 
work is a lyrical, enjoyable, and sage discus- 
sion of the problems and pitfalls that beset a 
mammoth software project--developing the 
IBM 360 operating system. 

7. Cartwright, D., and Zander, D., Eds. 
Group Dynamics: Research and Theory. 3rd 
edition, Harper and Row, N.Y., 1968. This 
serves as an excellent compendium of the 
spurt of group dynamics research activity in 
the late 1950s which laid the groundwork for 
what we know about group behavior today. 
8. Cave, W.C., and Salisbury, A.B. Con- 
trolling the software life cycle--The project 
management task. 1EEE Trans. Soft. Engr. 
SE-4, 4 (July 1978), 326-334. This paper de- 
scribes project management methods for 
controlling the life cycle of large software 
systems distributed to multiple users. It em- 
phasizes responding to user satisfaction and 
user requirements and suggests methods to 
establish and maintain control in an ex- 
tended dynamic environment. 
9. De Roze, B.C., and Nyman, T.H. The 
soft(rare life cycle--A management and 
technological challenge in the department of 
defense. IEEE Trans. Soft. Engr. SE-4, 4 
(July 1978), 309-318. De Roze and Nyman 
describe the software life cycle management 
policy and practices that have been estab- 
lished by the Department of Defense for im- 
proving the software development process. 
10. Deutsch, M. The effects of cooperation 
and competition upon group process. Human 
Relations 2 (1949), 129-152, 199-231. 
Deutsch describes an experiment which es- 
tablishes two forms of group relationships, 
cooperative and competitive. Besides better 
communication, increased orderliness and 
higher productivity result when the coopera- 
tive group relationship exists. 
l l .  Goldberg, S.C. Influence an d leadership 
as a function of group structure. J. Abnormal 
and Social Psychol. 51 (1955), 119-122. The 
experiment described in this paper compares 

group influence on group members in three 
organization structures: a star, a fork, and a 
chain. Individuals holding central positions 
were influenced less than other group mem- 
bers. 
12. Guetzkow, H., and Simon, H.A. The im- 
pact of certain communication nets upon or- 
ganization and performance in task-oriented 
groups. Mgmt. Sci. 1 (1955), 233-250. The 
authors establish three communication struc- 
tures: all-channel, wheel, and circle; they 
then examine their effect on solving a rela- 
tively simple communication problem. The 
restrictions of the wheel organization aided 
the solution process, whereas those of the 
circle hindered it. The lack of restrictions in 
the all-channel case also hurt the solution 
process. 
13. Jensen, R.W., and Tonies, C.C., Eds. 
Software Engineering. Prentice-Hall, Engle- 
wood Cliffs, N.J., 1979. Here, several break- 
downs of what constitutes a software life cy- 
cle are presented. The authors indicate that if 
the customer-use phase is included in this 
breakdown, the time spent on the code de- 
velopment constitutes a relatively small por- 
tion of the project. 
14. Leavitt, H.J. Some effects of certain 
communication patterns on group perform- 
ance. J. Abnormal and Social Psychol. 46 
(1951), 38-50. Leavitt compares problem- 
solving effectiveness in both wheel and circle 
communication structures. The wheel struc- 
ture was faster but the circle structure ac- 
counted for fewer errors. 
15. Lott, A.J., and Lott, B.E. Group cohe- 
siveness, communication level, and conform- 
ity. J. Abnormal and Social Psychol. 62 
(1961), 408-412. This paper describes an ex- 
periment in which groups were scored on 
cohesiveness and then tallied for the amount 
of communication generated in a discussion 
session. Highly cohesive groups communi- 
cated more. 
16. March, J.G., and Simon, H.A. Organiza- 
tions. Wiley, New York, 1958. March and 
Simon focus on the members of formal orga- 
nizations as rational men. From this, they 
point out that the basic features of organiza- 
tional structure and function derive from 
characteristics of the human problem-solving 
process and rational choice. 
17. Metzger, P.W. Managing a Programming 
Project. Prentice-Hall, Englewood Cliffs, 
N.J., 1973. Metzger suggests a project organi- 
zation constrained in terms of the types of 
tasks that are undertaken in the development 
of a software system. He goes on to describe 
how these tasks should be managed via this 
hierarchical arrangement. 
18. Mills, H.D. Chief programmer teams: 
Principles and procedures. IBM Rep. FSC 
71-5108, IBM Fed. Syst. Div., Gaithersburg, 
Md., 1971. Mills suggests that the large team 
approach to programming projects could 
eventually be replaced by smaller, tightly or- 
ganized and functionally specialized teams 
led by a chief programmer. 
19. Rogers, E.M., and Agarwala-Rogers, R. 
Communication in Organizations. Free Press, 
N.Y., t976. The basic research on group 
structures in small group network communi- 
cation is summarized and critiqued in a thor- 
oughly readable manner. 
20. Schachter, S. Deviation, rejection and 
communication. J. Abnormal and Social Psy- 

112 Communications 
of 
the ACM 

March 1981 
Volume 24 
Number 3 



chol. 46 (1951), 190-207. This article de- 
scribes an experiment in which three group 
members were paid to respectively 1) deviate 
from, 2) follow, and 3) change over to the 
group position taken on an issue. Groups 
with high cohesiveness scores produced 
greater rejection only of the deviant individ- 
ual. 

21. Shaw, M.E. Some effects of unequal dis- 
tribution of information upon group per- 
formance in various communication nets. J. 
Abnormal and Social Psychol. 49 (1954), 547- 
553. In this paper, the amount of indepen- 
dence and, thus, individual satisfaction are 
examined in various group structures. Low 
centralization in groups led to member satis- 
faction. 

22. Shaw, M.E., and Blum, J.M. Effects of 
leadership styles upon performance as a 
function of task structure. J. Personality and 
Social Psychol. 3 (1966), 238-242. Shaw and 
Blum describe an experiment in which they 
manipulated the leadership of two groups to 
be nondirective or directive. Given three 
tasks of varying solution multiplicity, direc- 
tive leadership performed best with low mul- 
tiplicity tasks. 

23. Shaw, M.E. Group Dynamics: The Psy- 
chology of Small Group Behavior. McGraw- 
Hill, N.Y., 1971. 

24. Shneiderman, B. Software Psychology. 
Winthrop, Cambridge, Mass., 1980. Shnei- 
derman discusses the good and bad points of 
the Weinberg and Baker teams and a third 
conventional team. He notes that an egoless 
team may be difficult to maintain and a 
competent chief programmer hard to find, 
concluding that the currently existing con- 
ventional organization has strong chances for 
successful projects--especially with a compe- 
tent manager. 

25. Taylor, D.W., and Faust, W.L. Twenty 
questions: Efficiency of problem solving as a 
function of the size of the group. J. Experi- 
mental Psychol. 44 (1952), 360-363. Taylor 
compares individual problem-solving to 
group problem-solving in a game of 20 ques- 
tions. Even after several days of practice, 
groups of two and four individuals asked less 
questions to discover an answer than sole 
participants. 

26. Thayer, R.H., Pyster, A., and Wood, 
R.C. The challenge of software engineering 
project management. Comptr. 13, 8 (Aug. 
1980), 51-59. The three authors report on a 
survey of software project management ex- 
perts who were asked to indicate the most 
important issues facing software engineering. 
The structure of programming projects was 

rated as unimportant; planning received the 
highest ratings. 

27. Thibaut, J.W., and Kelley, H.H. The So- 
cial Psychology of Groups. Wiley, N.Y., 1959. 
The second section of this book presents a 
general theory for group formation and 
group dynamics--in particular, the status 
systems within groups, conformity require- 
ments, group goal setting behaviors, and the 
roles played by individuals within the group. 
In all, not light reading for the nonsociolo- 
gist. 

28. Weinberg, G. The Psychology of Com- 
puter Programming. Van Nostrand Reinhold, 
N.Y., 1971. Weinberg provides homilies, ad- 
vice, and some wisdom about the psychologi- 
cal considerations of the programming pro- 
cess. It is here that he suggests the egoless 
approach to programming and discusses its 
potential advantages--Weinberg is short on 
supportive research, but the book is fun to 
read. 

29. Yourdon, E. Managing the Structured 
Technique. Prentice-Hall, Englewood Cliffs, 
N.J., 1976. Yourdon discusses the chief pro- 
grammer team and Weinberg's egoless de- 
bugging techniques in a complete scenario 
for project management. He labels the chief 
programmer team impractical because of the 
dearth of true chief programmers. 

113 Communications 
of 
the ACM 

March 1981 
Volume 24 
Number 3 


