
Introduction
Future platforms for use in telecommunica-
tions must offer extremely high availabili-
ty, their systems must operate non-stop, re-
gardless of hardware or software errors, and
they must allow operators to upgrade hard-
ware and software during full operation
without disturbing the applications that
run on them. These rigorous requirements
for robustness must not affect system per-
formance.

In the field of telecommunications,
performance-related requirements are often
specified in terms of statistics. For example,
it must be possible, 90% of the time, to per-
form a certain operation within a specified
period. During the remaining 10% of the

time the stipulated threshold may be ex-
ceeded. Real-time performance of this kind,
sometimes referred to as soft, real-time per-
formance, is generally sufficient for telecom-
munications operating systems.

The platforms must also be scalable in
terms of capacity: operators should be able
to increase system capacity simply by plug-
ging in new processing equipment, as op-
posed to having to replace the processors in
a plant with more powerful ones.

Finally, there is a strong trend nowadays
toward open systems. Openness, however,
comes in many varieties:
• Open hardware platform. Operators must

be able to use commercially available off-
the-shelf hardware. This requirement
guarantees that the systems can keep up
with, and take advantage of, the latest ad-
vances in hardware design.

• Programming languages. Operators
should be able to hire skilled developers
who can become productive quickly with-
out first having to attend lengthy
courses.

• Interoperability. Open systems must sup-
port standard protocols so as to commu-
nicate with external systems from a vari-
ety of vendors.

• Compatibility with third-party software.
The application program interfaces (API)
in open systems should run on standard
operating systems.

TelORB-based systems support each of
these requirements. However, the proces-
sors that run the TelORB operating system
do not meet the last requirement; it is ful-
filled by the system’s adjunct processors,
which use UNIX or Windows NT.

General architecture
In short, TelORB provides an environment
for applications that control traffic and re-
quire soft, real-time responsiveness, high
throughput, high availability (minute-per-
year downtime), and scalability (in the sense
that capacity can be increased by adding
processors). Applications that run on
TelORB are expected to serve numerous sys-
tem end-users. These applications should
also be permitted to evolve or to be devel-
oped continuously, thereby offering users
new services. TelORB does not provide an
environment for controlling small, low-cost
hardware devices that require stringent,
real-time responsiveness (for example,
bounded, worst-case behavior). Nor does it
provide a standard programming environ-

156 Ericsson Review No. 3, 1999

TelORB—The distributed communications
operating system
Lars Hennert and Alexander Larruy

Future telecommunications platforms must fulfill both traditional require-
ments for availability and performance and increasingly stringent require-
ments for open-endedness and scalability.

TelORB is a distributed operating system for large-scale, embedded,
real-time applications that require non-stop operation. It is composed of a
modern OS kernel, a real-time database, software-configuration control,
and an associated development environment for writing task-specific
application code. A CORBA-compliant object request broker and a Java
virtual machine run on top of TelORB.

The authors describe the TelORB operating system platform, its unique
characteristics, and processing entities. These include device processors
that directly control hardware with stringent real-time requirements; the
TelORB operating system, which controls traffic availability and soft, real-
time performance; and UNIX or Windows NT, which provide standard pro-
gramming environments for less critical, real-time platform functionality
and applications.

TelORB

AP
DP

Figure 1
TelORB-based systems may consist of processors running the TelORB operating system,
adjunct processors running UNIX or Windows NT, and device processors that run com-
mercial, embedded, real-time operating systems.

Java™ is a trademark owned by Sun Microsys-
tems Inc. in the United States and other coun-
tries.
Windows NT is a registered trademark of
Microsoft Corporation.

TRADEMARKS

Ericsson Review No. 3, 1999 157

ment into which third-party software can be
integrated and custom adaptations quickly
introduced—these environments are ac-
commodated in the system architecture by
device processors (DP) and adjunct proces-
sors (AP).

DPs are typically low-cost processors that
control a handful of hardware devices. While
the memory footprint of the DP operating
system may be an issue, DPs require few (if
any) middleware components, and the ap-
plication software is fairly stable and well
defined. To simplify DP software further,
the DPs are owned and managed by appli-
cations running on TelORB.

The APs run standard operating systems,
such as UNIX or Windows NT. They host
operation and maintenance-related (O&M)
platform components, such as off-line data-
bases for complex queries, logging facilities,
and management models, but can also host
application software, such as purchased pro-
tocol stacks or specialized end-user services.
A system may be composed of up to several
hundred DPs, two or more TelORB proces-
sors, and one or more APs (Figure 1).

Within the system, one or more networks
interconnect the various processors.
Present-day TelORB systems use dual Eth-
ernet, but ATM or practically any other net-
work solution can be used as long as ade-
quate bandwidth is provided. Different net-
works with different media may even co-
exist in the same system: the TelORB
processors and the adjunct processors could,
for example, be interconnected with Ether-
net, whereas the device processors could be
accessed through an ATM network.

The TelORB inter-process communica-
tion (IPC) protocol is used for transporting
data between TelORB processors. A varia-
tion of that protocol is used between
TelORB and the device processors. The
standard user datagram protocol/Internet
protocol (UDP/IP) and the transmission
control protocol/Internet protocol (TCP/IP)
are used for transporting data between
TelORB and the adjunct processors. Appli-
cations can use CORBA or dialogs (when
within TelORB) on top of these transport
protocols. TelORB communicates directly
with the device processors via the trans-
portation layer.

Characteristics
Some key features of TelORB are its real-
time characteristics and its support of con-
tinuous operation.

Real time
TelORB is intended for use with soft, real-
time applications; that is, applications with
load-dependent, statistically deterministic
behavior. Support for stringent, real-time
applications (applications with bounded,
worst-case behavior) affects performance
and application flexibility and is therefore
left to the device processors.

Priorities and scheduling

Processes execute on one of four priority lev-
els: high, normal, low, and background. The
normal level is intended for ordinary tele-
com traffic applications, whereas the low

AP
Adjunct processor
API
Application program interface
ATM
Asynchronous transfer mode
Callback function
Function that is called as a result of an external
event (for example, an incoming message on a
communication link)
CORBA
Common object request broker architecture
DBMS
Database management system
Delos
One of the interface specification languages in
TelORB
delux
The Delos compiler
DOA
Database object agent
DP
Device processor
DU
Distribution unit
Forlopp
Chain of interconnected processes resulting
from an external event; several resources may
be allocated during this chain of processes in
order to handle the originating event
IDL
Interface definition language
IDP
Internal delivery package
IIOP
Internet inter-ORB protocol
IPC
Inter-process communication
LM
Load module
LPC
Linked procedure call
Managed object
Object that can be accessed from the O&M system

MI
Managed item
MIB
Managed information base
NTP
Network time protocol
O&M
Operation and maintenance
OMG
Object management group
ORB
Object request broker
OS
Operating system
OU
Object unit
Persistent object
Database object
SCC
Source code component
Scheduling queue
Queue in the kernel that holds processes that
are ready to be executed
Supervisory mode
Execution mode in a microprocessor that con-
tains the complete instruction set; application
processes execute in the user mode, which has
a slightly limited set of instructions
SWI
Software interface
TCP/IP
Transmission control protocol/Internet protocol
TMN
Telecommunication management network
Trigger (database)
Optional user-defined function that is called
when certain events take place (for instance,
when a database object is created or
deleted)
UDP
User datagram protocol
Zone
Cluster of interconnected TelORB proces-
sors

BOX A, ABBREVIATIONS AND TERMS

level is intended for maintenance. The high-
priority level should be used frugally for
processes that involve the servicing of hard-
ware. The background level could be used
for audits and hardware diagnostic tests.
TelORB uses a simple scheduling policy:
the highest priority process that is ready to
execute is allowed to execute for at most one
time slice (about two milliseconds) until it
becomes blocked, idle, or its time slice ex-
pires. If its time slice expires, the process is
queued last at its priority level. This proce-
dure is then repeated with the subsequent
highest priority process that is ready to ex-
ecute.

Obviously, average scheduling delays de-
pend on the load of the processor. TelORB
has a load-regulation mechanism that per-
mits applications to reject parts of the traf-
fic operations, in order to sustain real-time
performance.

Interruptible kernel

By allowing operations within the OS ker-
nel to be interrupted, the interrupt response
time can be kept within reasonable bounds.
However, to keep the kernel from becom-
ing overly complex and error-prone, an
interrupt-service routine restricts the num-
ber of operations that are allowed to run in
the kernel. One such operation is the sched-
uling of a delayed interrupt-service routine,

which (because it is synchronized with re-
spect to other kernel operations) can use ad-
ditional operations. Applications are ad-
vised to do the least amount of work in the
real interrupt-service routine, postponing
the rest of the work for the delayed
interrupt-service routine.

Continuous operation
Today, more and more systems must oper-
ate non-stop—they are expected to provide
year-round service, 24 hours a day, seven
days a week. TelORB was designed specif-
ically for these kinds of system. Its
memory-protection hardware protects sys-
tems from ordinary application faults, and
its fault-tolerant software permits in-service
upgrades.

Memory protection

TelORB processes have their own memory
space, which cannot be manipulated from
other processes. Data in the OS kernel is also
protected from manipulation by processes.
Thus, errors in any given process cannot af-
fect other processes. This minimizes the im-
pact that a software error might have on the
overall system.

Fault-tolerance implemented in software

To handle, and recover from, hardware er-
rors and errors in the OS kernel, TelORB re-
configures the processes of a failing proces-
sor to other processors in the system. Con-
sequently, TelORB systems do not require
expensive, fault-tolerant hardware (Box B).

Network redundancy

To handle catastrophic situations (earth-
quakes and fire, for example), TelORB sup-
ports the option of having a redundant, ge-
ographically separate system that works in
a standby fashion. The redundant system is
continuously updated during normal oper-
ation and can take over immediately with-
out any loss of data.

In-service upgrade

New software can be loaded and taken into
operation while the system is running and
providing service. Obviously, this requires
cooperation between TelORB and the ap-
plication programs that is facilitated by the
framework for implementing processes.
Since the same mechanisms are used for in-
service upgrades and for reconfiguring the
system, operators can easily verify the as-
pects of an application program to be up-
graded.

158 Ericsson Review No. 3, 1999

TelORB supports the following recovery
levels:
• Database transaction rollback. The appli-

cation is informed when a transaction is
unable to commit successfully.

• Process abort/restart. If a static process
encounters an internal error from which it
cannot recover (for example, division by
zero) it is restarted. Similarly, if a dynamic
process encounters an internal error from
which it cannot recover, then it is aborted.

• Forlopp recover. TelORB informs process-
es that are interconnected with communi-
cation links when the remote side of the link
disappears. This enables the application to
clean up any resources allocated to a cer-
tain chain of events.

• Processor reload. TelORB attempts to
reload the processor after an error has
occurred in the hardware or in software in
the kernel code.

• Zone reload. If there is a risk of inconsis-
tency in the system state—for example,
when two or more processors fail simulta-
neously—TelORB reloads the entire clus-
ter with the most recent backup.

BOX B: RECOVERY LEVELS IN TELORB

Ericsson Review No. 3, 1999 159

Overload protection

In rare situations, events in the outside
world create disproportionate load on the
systems, exhausting system resources and si-
multaneously rendering several processors
unusable. TelORB protects the system from
situations of this kind by measuring the
length of the scheduling queue and reject-
ing dialog setup attempts when the queue
length exceeds set limits. In this case, sys-
tem response time slows and fewer opera-
tions are carried out successfully.

Rapid last resort

Although many precautions have been
taken to protect the system, there is always
a remote chance that it will fail completely.
For instance, several processors might con-
ceivably fail at the same time, making it im-
possible for TelORB to maintain a consis-
tent system state without reverting to a pre-
viously saved state. Thus, as a last resort,
TelORB reloads all processors with a back-
up of the database. To minimize downtime,
TelORB uses a multicast loading protocol
that enables the parallel loading of all
processors in the system without a bottle-
neck in the communications medium, and
without requiring disks to be attached to
each processor. If the network redundancy
feature is being used, then even “cata-
strophic” situations can be handled without
loss of data.

Program environment
Programs written for TelORB execute as
one or more cooperating processes using the
database to store configuration parameters
and other data that needs to persist. The pro-
grams can use several operating system ser-
vices through the TelORB API. The pro-
grams are written in standard C/C++ or
Java, with interoperability interfaces speci-
fied in the CORBA interface definition lan-
guage (IDL). Delos, a proprietary specifica-
tion language, provides the constructs that
standard programming languages lack for
specifying processes and database objects
(Figure 2).

Processes

Specification

The processes that run on TelORB are spec-
ified in Delos, which assigns a name and
characteristics to each process type. From
the process type, TelORB creates process in-
stances as defined in the specification.

Processes are declared as being static or
dynamic. Static process instances, which are
created when the system is started or when
the process is installed, are recreated after a
failure. Dynamic process instances, which
are created when addressed by another
process, are not recreated after a failure.

The process type specification indicates
whether or not a process instance is to be
replicated on several processors. When a
process instance is replicated, TelORB di-
rects any other process that wants to coop-
erate with it to its replica (if one exists) on
the same processor. If a replica does not exist,
the process is directed to an arbitrarily se-
lected replica on some other processor. Note:
replicas do not know of one another’s exis-
tence unless required to do so by the appli-
cation.

Finally, the process type specification in-
dicates how multiple instances of the same
type are to be differentiated and installed.
For example, as an alternative to simply
being instantiated anywhere whenever ad-
dressed, the instances of a dynamic process
type can be differentiated by a primary key
(that is consistent with corresponding data-
base objects). TelORB can thus direct sev-
eral calls with the same key to the same in-
stance until it is terminated. For static
process types, instances can be created au-
tomatically when the system starts, or the
application software can install them
through the TelORB API. This option is
particularly well suited to process instances

Delos source code

Delux
C++ or Java

compiler

C++ or Java

skeleton

C++ or Java

stubs

Application-specific code

Application-specific code

Figure 2
The Delos source code is fed into delux (the Delos compiler), which generates C++/Java
stub and skeleton files. The application-specific code is then manually added to the skele-
ton files before final compilation (C++ or Java compiler) together with other application
code. The IDL source code is handled in a similar way.

that are directly associated with the hard-
ware configuration, which might vary from
site to site and as plants are extended.

Implementation framework

The specified processes are implemented
within a framework given by C++ or Java
code that was generated from the Delos spec-
ification. The framework gives entry points
for handling
• startup (initially, and after system

crashes);
• the reconfiguration of instances between

processors;
• in-service software upgrades; and
• termination.
When TelORB initiates a static process in-
stance, it also indicates (in the instance) one
of three reasons for starting it. Either the in-
stance was created for the first time, or it has
been recreated after a system crash. Alter-
natively, the instance was recreated after sys-
tem reload. In this case, a serious system
error occurred making it impossible to pre-
serve database consistency. Consequently,
the system was reloaded with a consistent
backup of the database, which by necessity
did not contain the most recent updates. The
hardware state could thus be inconsistent
with the state in the database. Notwith-
standing, applications that can differentiate
between the two usually accept the hardware
state.

To facilitate non-disturbing reconfigura-
tions and in-service upgrades, TelORB al-
lows dynamic processes running on the orig-
inal processor (with the original software) to
terminate naturally over a period of time.
New processes (running the new software)
are created on the new processor. For static
processes, TelORB creates another instance
on the new processor (with the new software)
that is allowed to run in parallel with the
old instance. The new instance is also given
a reference to the old one, so that the two
can communicate—by means of an
application-specific state-transfer protocol.
Other processes in the system perceive the
pair as a single instance. Nonetheless, if op-
eration is not to be disturbed, certain spe-
cial provisions may be needed for
application-specific cooperation between
the processes.

The execution paradigm

All execution within a TelORB process
takes place as the execution of callback func-
tions (most often as member functions of
C++ or Java class instances) associated with
events that are external to the process. Or-
dinarily, the program cannot choose to dis-
able the handling of events—they are exe-
cuted in the order in which they take place.
Programmers must thus adapt to an inher-
ently asynchronous outside world. The han-
dling of all events, however, is serialized.

160 Ericsson Review No. 3, 1999

Processor 1 Processor 2

Dialog

op 1

op 2

op 3

Figure 3
Processes cooperate by means of
dialogs, which are specified as a pair of
object types that has operations on it (in
this example, op1, op2 and op3 can be
called from the process in processor 1).

Ericsson Review No. 3, 1999 161

Thus, programmers need not bother with
the problems of concurrent programming
(one callback function is finished before the
next is called, which means there is effec-
tively only one thread of execution in a
TelORB process). On top of the execution
paradigm, programmers are free to make use
of lightweight threads. In Java, however,
multithreading is supported as described by
the language specification.

As an exception to this scheme, TelORB
actually provides mechanisms for blocking
the process-only execution thread. In this
state, it cannot be unblocked except by a sin-
gle corresponding event or time out.

Process cooperation

Processes cooperate by invoking remote op-
erations that are collected in the Delos no-
tion of dialogs. A dialog is specified as a pair
of object types that has operations, and
sometimes results, on it. C++ classes are
generated from the specification. Some
classes marshal and unmarshal the opera-
tions with their arguments; others provide
the framework for implementing the actions
of invocations within the processes
(Figure 3).

To set up a dialog, one process addresses
the other process by its type and, where
needed, data that differentiates a particular
instance. After the dialog has been set up, a
connection is established between each

member, to enable members to signal in the
event that one of them dies. When the
processes terminate, a dialog-shutdown pro-
cedure safely closes the connection.

The database
While data inside a process is volatile (it is
lost if the process or the processor it runs on
crashes), data stored in the TelORB data-
base persists even after a process or proces-
sor crashes. Besides storing data, the data-
base shares data between processes. The
TelORB database is an object-oriented, real-
time database that stores data in primary
memory on the processors (Figure 4).

Specification

Data in the database consists of instances of
persistent object types (specified in Delos)
that have attributes of the persistently
stored data and an associated set of methods
that the application can use to manipulate
the data.

The attributes include ordinary data
types—integer, enumeration, record, and so
on—as well as a data type which is specific
to the TelORB database, and which holds
references to other database objects, much
like pointers in programming languages.
These reference attributes may have either a
single value or a multiple value. Object
types may be derived from other types, in
which case the behavior of the methods be-

Processor 1

Primary

memory

Replica Replica

2-phase commit

Primary

memory

DOA DOA

Processor 2

Figure 4
The database object agent (DOA) causes
database objects to appear as ordinary
objects belonging to a global database. In
reality, however, each object is stored as
a local replica in the primary memory of
the corresponding processor. The data-
base management system (DBMS) man-
ages data access and keeps the replicat-
ed data in different processors consistent.
Data replicas are updated automatically
using a two-phase commit protocol.

comes polymorphic; that is, an application
can open an object of a basic type and find
an instance of a specialized type. When
methods are invoked, the implementation
of the specialization is executed. Delos also
allows certain properties to be specified for
attributes; for example:
• an array type attribute can have an ele-

ment access property, which means that
instead of retrieving the entire attribute,
individual array elements can be retrieved
from the database;

• a reference type attribute can have an in-
verse property (in this case, a reference
type attribute in the referenced object
must refer back to the referrer); and

• attributes can be optional, making it pos-
sible to lower the expense of storing de-
fault values for large attributes.

C++ and Java classes, which provide neces-
sary interfaces to the database and the frame-
work for implementing methods and trig-
gers, are generated from the Delos specifi-
cations.

Operations

With the object types thus specified, appli-
cations can
• create new objects;
• open existing objects;
• fetch the values of, and assign new values

to, attributes;
• invoke methods; and
• close and delete objects.
Database consistency is maintained by
grouping operations into atomic transac-
tions: either all operations are performed
within a transaction or no operations are

performed. TelORB maintains locks on ob-
jects to prevent several processes from
changing the same data simultaneously.
Applications are also allowed to introduce
their own integrity checks by implement-
ing trigger functions called during certain
operations.

Replication

Data in the database is stored entirely in the
primary memory of the processors, which
makes operation very fast. To survive crash-
es, data is replicated on at least two proces-
sors. An extended, optimized, two-phase
commit protocol is employed to replicate
changes quickly and safely.

Network redundancy

The mechanisms for network redundancy
are closely related to the database, since they
always synchronize the database contents of
the geographically separate standby side
with data in the active system.

Lookup

For an object to be found in the database, it
must either have one attribute designated as
a primary key, which uniquely identifies an
instance of a particular type, or it must be
referenced from a reference type attribute of
some other database object.

Objects in the database may also be found
by means of iterators, which retrieve every
object of a particular type (which matches
the selection criteria defined for the itera-
tor). Iterators can be applied to the entire
database or to a multivalue reference type
attribute. When an iterator is applied to the

162 Ericsson Review No. 3, 1999

WaitForEvent(...)

Dialog

Figure 5
An example of the use of events. A
method that receives a certain message
in a dialog can post an event to a thread
that is monitoring the event. When the
thread calls the "WaitForEvent" method, it
picks up any event that has already been
posted or, if none, waits for an event to be
posted. This renders a synchronous
behavior to TelORB’s otherwise inherently
asynchronous programming model.

Ericsson Review No. 3, 1999 163

entire database, it can only retrieve types
that have a primary key.

The O&M model
For O&M, TelORB requires that the speci-
fied object model be separate from the ac-
tual application implementation. This ob-
ject model consists of CORBA objects,
which have attributes, actions, and relations
to other objects.

The managed objects of a system form a
management information base (MIB),
which contains information on object con-
tents and on object types. This informa-
tion can be displayed by a graphical ap-
plication.

The O&M model also includes notifica-
tions, which the system sends to the opera-
tor, to inform him of particular events. A
notification is always associated with a par-
ticular CORBA object. A special kind of no-
tification is the alarm, which is sent when
the system requires operator intervention (a
typical example is when a processor board
has failed and must be repaired).

Services
TelORB provides applications with several
services, through
• the TelORB API—by means of C++ and

Java classes (where standard Java classes
do not suffice);

• Delos object types;
• Delos and the code generated from the

specifications; and
• Corba IDL and the code generated from

the specifications.

Threads and events

The lightweight threads in TelORB are de-
signed for use with events specified in Delos.
A Delos event is a type of message that is sent
from an object to any thread that monitors
the event. The intention has been to provide
a way of adding or changing threads that ex-
ecute control flows without having to change
the implementation of objects that represent
resources with more static behavior.

A new thread is created simply by in-
stantiating a C++ class derived from a
thread-base class in the TelORB API. The
main program for the new thread consists of
an overridden virtual member function. The
program executed by the thread typically
monitors several events from different ob-
jects and, where appropriate, waits for any
of a select set of events, taking appropriate
actions in response to the event received
(Figure 5). These lightweight threads and

events are only used for C++ code. The Java
language provides its own threads and syn-
chronization primitives.

Timers
A process can use one-time as well as peri-
odic timers that can be set to expire in steps
of five milliseconds, from ten milliseconds
up to about 20 days. When the timer ex-
pires, TelORB executes a callback function.
A timer can be cancelled at any time before
the callback function has been executed.

Clock and calendar

TelORB provides real-time clock and cal-
endar functions for converting the internal
format into a standardized calendar format.
Support for local calendars, including ad-
justments for daylight-saving time, has
been prepared but is not fully implement-
ed. The real-time clock is synchronized with
different processors by virtue of a TelORB
adaptation of the network time protocol
(NTP).

Static process installation

As noted earlier, static process instances can
be installed by application software through
the TelORB API. Since these instances typ-
ically relate to the hardware configuration,
applications must often check to see on
which processor a process is to run. For this
reason, the application installs a process in-
stance for creation within a processor group.
TelORB provides certain predefined proces-
sor groups, such as “all processors,” but gen-
erally, each application must provide its own
appropriate processor groups and register
them through the TelORB API.

Handling software errors

Basically, any process in which an error has
been detected is considered a bad process
that should be terminated immediately—
giving a crash dump for fault localization.
TelORB automatically terminates process-
es with errors detected by hardware (de-
references of zero pointers, for example). But
for errors detected by the application soft-
ware, TelORB provides an interface through
which information on the error can be at-
tached to the crash dump. After termina-
tion, a static process instance is recreated in
the usual way.

Processes that cooperate with a bad
process are notified by means of dialog abor-
tion indications. TelORB will not auto-
matically terminate a process that receives a
dialog abort indication, but leaves it to the

application program to select an appropri-
ate action or response.

Drivers
Drivers provide low-level control of hard-
ware. They are programs that are executed
in the processor’s supervisor mode, which
has the same privilege mode as the kernel.
Applications can use their own drivers to
control application-specific hardware. The
TelORB API provides services for imple-
menting drivers and for accessing them from
processes.

TelORB gives drivers the following func-
tionality: timers, installation of interrupt-
service routines, interrupt level control,

memory management, safe access to process
data, the use of other drivers, and the abili-
ty to signal users of drivers in processes. Dri-
vers can be opened, closed, and controlled
from a process.

Distribution
To make the most of the distributed proces-
sor platform, processes and data must be dis-
tributed in a way that balances processor
load and minimizes communication be-
tween processors. As relates to TelORB, two
simplistic approaches are either to distrib-
ute all process and database object instances
arbitrarily, or to let the plant engineer spec-
ify the distribution of each individual in-
stance. The first approach would probably
result in bad performance, whereas the sec-
ond approach would put unrealistic re-
quirements on plant engineers. Moreover,
each would fill memory with tables of the
addresses of different instances.

TelORB allows the application develop-
er to group individual instances into a
manageable number of distribution units
(DU). This grouping is typically done per
process type or database object type, by as-
sociating a Delos distribution unit type
specification with the specification of the
process or database object type. The distri-
bution unit type specifies the number of dis-
tribution units over which the instances
should be spread. When more than one dis-
tribution unit has been specified for the
type, the application program must supply
a function that maps instances onto distri-
bution units. TelORB also allows process
instances and database objects to be grouped
or co-located into the same distribution
unit. This minimizes the inter-processor
communication needed for manipulating
database objects (Figure 6).

When the plant engineer configures the
plant, he should group processors into dis-
tribution pools and allocate distribution
unit types to pools. TelORB configures (in
run-time) individual distribution units
from the types to processors within the pool,
and reconfigures them as necessary; for ex-
ample, when a processor crashes, when the
system is extended through the addition of
a new processor, and when the assignment
of a processor to a pool is changed
(Figure 7).

Thanks to the distribution units, table
sizes stay manageable. Experience gained
thus far indicates that the application de-
signer must also decide which pools to use
and which distribution unit types should be

164 Ericsson Review No. 3, 1999

DU instance 0

00

01
11

21

00

01
11

21

10
20

10

20

DU instance 1

DU instance 2

DU instance 3

Figure 6
For dynamic processes that are identified
by a key, the instances of several
processes and corresponding database
objects can be grouped into a distribution
unit (DU) instance. TelORB guarantees
that the contents of the DU are kept intact
regardless of reconfigurations, thus
ensuring that the processor always has
local access from one of these processes
to the corresponding database object.

Distribution

pool

Distribution

unit

Load module

ProcessorFigure 7
By attaching distribution units to distribu-
tion pools and assigning processors to
the pools at configuration, TelORB can
determine what code is needed to exe-
cute the distribution units on a processor
in the pool.

Ericsson Review No. 3, 1999 165

allocated to them. Therefore, this informa-
tion belongs to the internal delivery pack-
age (IDP).

Memory model
TelORB divides the processor’s logical ad-
dressing space into three main parts:
• instruction memory space (holds the code

to be executed);
• kernel data memory space (holds data for

the TelORB kernel and any drivers); and
• process data memory space (holds data for

the process currently executing).
All processes share the code in the instruction
memory space and can read (but not write)
data in the kernel data memory space. This
space is used to accelerate access to the data-
base, and could also be exploited by drivers.

The process data space is mapped to dif-
ferent physical memory when different
process instances are dispatched. This way,
processes become isolated from each other,
so that an error in one process cannot affect
another process (Figure 8).

Separating load modules
Code is loaded into load modules that are
not directly related to process types. Al-
though a process is implemented in a load
module, it can also execute code in any num-
ber of other load modules by means of a
mechanism called linked procedure call
(LPC). The LPC mechanism is used for im-
plementing database object type methods
and triggers (Figure 9).

External communication
For communication with the outside world,
TelORB provides common Internet proto-
cols and the means of implementing
application-specific protocols, as needed.

Internet protocols

TelORB implements TCP/IP and UDP/IP
for communicating with other systems.

CORBA protocols

TelORB supports the Internet inter-
operability protocol (IIOP), which is trans-
ported over TCP/IP.

Development environment
TelORB comes with a development envi-
ronment that runs on a UNIX workstation
and includes a software structure model,
build support, and tools for configuring a
plant. Application programs, which can be
run on the host on simulated processors, use

a source-level debugger and other tools for
pinpointing faults in the code.

Software structure model
The software structure model is based on
managed items (MI), which have attributes
(for instance, an identity and version) and
relationships to other MIs. A file structure
is also associated with each MI type.

Basic managed items

The most basic MI types are
• the load module (LM);
• the internal delivery package (IDP);
• the object unit (OU);
• the source code component (SCC); and
• the software interface (SWI).

Process data

memory

Kernel data

memory

Instruction

memory

Figure 8
Although each process instance has its
own memory space, all process instances
share the instruction memory and the ker-
nel data memory. Kernel data can only be
written through OS calls.

...

new foo;

...

...

class foo;

...

LM1

LM2

LPC

Figure 9
By means of the linked procedure call
(LPC) mechanism, a process that exe-
cutes code in one load module (LM) can
create and use objects defined in another
LM. If the new LM is updated, the new
version will be used without having to re-
link (offline) the code that uses it.

The load module contains the object code
file to be loaded onto a processor, where it
is relocated and executed. It has relation-
ships to several object units whose object
code is to be included in the load module.

The internal delivery package collects sev-
eral related load modules which must be
used together in the target system but which
might be loaded on different processors. It
also contains information on the distribu-
tion pools to be used when the distribution
of the DUs it contains is specified.

An object unit contains source code that
is to be included in only one load module.
By contrast, a source code component con-
tains library source code whose object code
is to be linked to any number of load mod-
ules. Object units and source code compo-
nents provide and use software interfaces.

A software interface contains interface
specifications (Delos and IDL specifications
and C/C++ header files) that are shared by
several managed items. When provided by
an object unit, a software interface can be
used by any number of object units, source
code components, or other software inter-
faces (Figure 10).

Build support

When the source code is structured accord-
ing to the model of managed items, it can

automatically be built by the build support
that ships with TelORB. In particular, the
build support
• generates C++ and Java code from Delos

and CORBA IDL specifications and files
it into the appropriate directories;

• compiles generated code and application
source code;

• assembles the load modules (for instance,
it determines which LMs of an SCC are to
be included); and

• gathers information needed by the plant-
configuration tool to assign load modules
to the processors.

Languages and compilers
C/C++
Programs in a TelORB system are mostly
written in standard C or C++. The current
compiler implementation does not support
C++ exceptions. The use of templates is dis-
couraged until an acceptable way is found
for dealing with them in the build support.
C and C++ code is compiled with the GNU
C compiler, version 2.7.

Java

TelORB provides a run-time environment
for Java programs. TelORB supports a sub-
set of Java with APIs added to enable Java
programs to make use of the TelORB ser-

166 Ericsson Review No. 3, 1999

Provides

Uses

Indudes

SWI

OU

OU

SCC

LM

LM

SWI

SWI

Figure 10
Relationships between the most common
types of managed items.

Ericsson Review No. 3, 1999 167

vices. In essence, the subset is the equiva-
lent of standard Java 2 with graphical sup-
port removed.

CORBA IDL

The CORBA IDL can be used to specify in-
terfaces within the TelORB system and be-
tween TelORB and other systems.

Delos

Delos is a proprietary specification language
used for specifying processes and database
objects for which C++ has no constructs.
Delos was originally a language family used
to express interfaces, behavior (coding lan-
guage), software structure, and distribution.
Thus, TelORB is able to express interfaces
and distribution. With Delos, developers
can express data types, different categories
of object types, dialogs, notifications,
process types, and distribution unit types.

Delos specifications are compiled with the
Delos compiler, delux. The compiler is di-
vided into a front end, which parses the spec-
ifications and produces an intermediary for-
mat, and a back end, which takes the inter-
mediary format and generates C++ and Java
code plus some other information required
by the target system.

Programming libraries
To simplify application development,
TelORB includes the following program-
ming libraries:
• a standard C library (minus a few func-

tions that did not fit into the TelORB en-
vironment);

• a C++ class library, which provides lists,
queues, collections, and random numbers;

• library classes that contain implementa-
tions of Delos data types, such as the string
and octet string types and other support for
code generated from Delos specifications.

Plant configuration
Engineers configure the plant by running a
program called epct, which takes an input
file that describes the configuration and out-
puts a file structure that can be transferred
to the TelORB file system. The input file
• lists the internal delivery packages with

software to be run in the system;
• defines the distribution pools;
• allocates distribution unit types to the

distribution pools;
• creates representations of the processors in

the system; and
• allocates the processors to distribution

pools.

The output file structure contains the LMs
to be loaded, a boot-load table for the first
processor to be loaded, and files that speci-
fy which managed object operations are
needed to take the system into operation.

Debugging
Vega—a simulated processor environ-
ment—is the main tool for starting appli-
cations. It is a UNIX process with a “hard-
ware” adaptation layer that makes it behave
like an ordinary processor. Multiple Vega
processes can be interconnected to verify dis-
tribution aspects.

Several tools are used for debugging, in-
cluding the following:
• gdb. The GNU debugger for high-level

debugging of C or C++ code. The tool can
be extended with graphics wrappers, such
as xemacs. At present, a distributed,
multithreaded, high-level debugger that
supports C++ and Java is being developed
for TelORB.

• sysview. Another graphics application
with which processes can be examined as
they run, and from which traces can be
initiated and displayed.

• a Telnet-based inspection tool. This tool
enables developers to examine the con-
tents of the database from a remote loca-
tion.

Conclusion
The market for intelligent network solu-
tions is growing rapidly, which means that
there will be an increased need for zero-
downtime platforms that support a massive
amount of transaction-oriented processing.
Nodes in intelligent networks often need
ultra-fast databases to handle requests from
a large number of users. The TelORB plat-
form is well-suited to meet these require-
ments. Furthermore, its exceptional scala-
bility permits operators to gradually expand
their systems as the need arises.

Because the system uses commercially
available, “off-the-shelf” processor boards,
operators can always take advantage of the
latest achievements in hardware design.

Applications are built using well-known
languages, such as C++ and Java, and
interoperability is provided through the
built-in object request broker.

TelORB is a truly open platform whose
characteristics, in terms of robustness and
flexible configurations, are unparalleled. It
is currently deployed as the base for the Jam-
bala platform.

