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Abstract: Cardiovascular diseases are the most distributed cause of death worldwide. Stenting of 

arteries as a percutaneous transluminal angioplasty procedure became a promising minimally 

invasive therapy based on re-opening narrowed arteries by stent insertion. In order to improve and 

optimize this method, many research groups are focusing on designing new or improving existent 

stents. Since the beginning of the stent development in 1986, starting with bare-metal stents (BMS), 

these devices have been continuously enhanced by applying new materials, developing stent coatings 

based on inorganic and organic compounds including drugs, nanoparticles or biological components 

such as genes and cells, as well as adapting stent designs with different fabrication technologies. Drug 

eluting stents (DES) have been developed to overcome the main shortcomings of BMS or coated stents. 

Coatings are mainly applied to control biocompatibility, degradation rate, protein adsorption, and 

allow adequate endothelialization in order to ensure better clinical outcome of BMS, reducing 

restenosis and thrombosis. As coating materials (i) organic polymers: polyurethanes, poly(ε-

caprolactone), styrene-b-isobutylene-b-styrene, polyhydroxybutyrates, poly(lactide-co-glycolide), 

and phosphoryl choline; (ii) biological components: vascular endothelial growth factor (VEGF) and 

anti-CD34 antibody and (iii) inorganic coatings: noble metals, wide class of oxides, nitrides, silicide 

and carbide, hydroxyapatite, diamond-like carbon, and others are used. DES were developed to 

reduce the tissue hyperplasia and in-stent restenosis utilizing antiproliferative substances like 

paclitaxel, limus (siro-, zotaro-, evero-, bio-, amphi-, tacro-limus), ABT-578, tyrphostin AGL-2043, 

genes, etc. The innovative solutions aim at overcoming the main limitations of the stent technology, 

such as in-stent restenosis and stent thrombosis, while maintaining the prime requirements on 

biocompatibility, biodegradability, and mechanical behavior. This paper provides an overview of the 

existing stent types, their functionality, materials, and manufacturing conditions demonstrating the 

still huge potential for the development of promising stent solutions. 
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1. Introduction 

Stenting of arteries became a common treatment of cardiovascular medicine, enabling the re-

opening of the narrowed vessels and restoring the normal blood flow. Current technologies, especially 

very promising and rapid development of drug eluting stents (DES), demonstrate good efficacy with a 

low rate of treatment failure, making it possible to also expand the stent application to patients with 

complicated diseases [1]. However, complications, such as in-stent restenosis, late thrombosis, local 

chronic inflammation, and re-occlusion rates, are still results of stent implantations [2], so that further 

development of stent devices and deep analysis of their long-term stability and failure mechanisms is 

necessary. The restenosis rate of high-risk patients having small vessels, diabetes and long diffusion 

diseased arteries still remains unacceptably high ((30–60%) in bare-metal stents (BMS) and (6–18%) in 

DES) [1], demonstrating the challenge of stent technology and the need for new, more safe solutions for 

all patient categories. 

The first generation of stents, BMS, usually fabricated from stainless steel (316L), cobalt–chromium 

(Co–Cr) and platinum–iridium (Pt–Ir) alloys, tantalum (Ta), or nitinol (Ni–Ti) have shown numerous 

problems leading to tissue hyperplasia, in-stent restenosis and the necessity to explant them or to keep 

them as a foreign body during the whole life. These considerations pushed the development of coated 

stents, DES, and biodegradable stents (BDS) [3]. Providing an overview of the stent technology in the 

treatment of ischemic stroke, describing the commonly used stents, and defining the development 

trends in their fabrication technologies, Yoon et al. [4] have shown the potential of coated stents, DES 

[5,6], and BDS for future applications. These kinds of stents will be considered in-depth in this review 

article. An ideal stent should possess properties as formulated by Mani et al. [7]: (1) ability to be crimped 

on the balloon catheter; (2) good expandability ratio; (3) sufficient radial hoop strength and negligible 

recoil; (4) sufficient flexibility; (5) adequate radiopacity/magnetic resonance imaging (MRI) 

compatibility; (6) high thromboresistivity; (7) absence of restenosis after implantation; (8) non-toxicity; 

and (9) drug delivery capacity. The optimization of mechanical, physical–chemical, and biological stent 

properties is challenging and should lead to the achievement of the above-mentioned characteristics. 

Especially critical are the biological aspects related to the adhesion of salts, proteins, cells, and 

microorganisms on the stent surface causing undesired effects like encrustation, biofilm formation, 

inflammation, and stent failure. In the forthcoming sections, the authors discuss the correlation of such 

events with the stent surface properties, highlighting the benefits of using different kinds of stents. 

2. Coated Stents 

2.1. Coating Types and Materials 

Several classes of materials have been tested as potential coatings for stent manufacturing (Figure 

1). The stent surface can be modified by using oxides and nitrides of metals, whereby metals and 

polymers are deposited using different physical–chemical methods, such as magnetron sputtering, 

pulsed laser deposition, matrix-assisted pulsed laser evaporation, etc. Chemical surface modification 

can also be assured by molecular layer deposition, for instance, promising silanization technology 

utilizing commercially available silanes (ethyltrietoxysilane, octyltriethoxysilane, 

vinyltrimethoxysilane, n-octadecyltriethoxysilane, phenyltriethoxysilane, (3-aminopropyl) 

triethoxysilane, (3-mercaptopropyl)triethoxysilane, etc.), rich on diverse functional groups helping to 

achieve the desired stent properties. Considering the advances in the field of drug delivery, coatings 

can modulate the delivery rate of the biological active agents loaded into/onto them [8,9]. For example, 

in the patent US9101689B2 [10], a stent with created reservoir regions containing an active ingredient, 

e.g., actinomycin D or taxol, demonstrates the possibility to release the active ingredients in different 
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rates. The tissue- and blood-biomaterial interfaces are particularly important for optimizing any 

cardiovascular stent. The inner stent surface interacts with flowing blood while the outer surface makes 

contact with vessel tissue. Stent materials should be biocompatible and stable to allow the adherence of 

monolayer of specific cells while preventing the adhesion of minerals, proteins, and multi-layered cells 

at the same time. The surface can be modified in order to avoid or to reduce undesired corrosion able 

to disturb a stent integrity and its function [7] as well as to cause ion release, which leads to significant 

impact on the surrounding vascular cells. 

 

Figure 1. Stents surface modification techniques. 

In [11], an innovative approach of electrical surface functionalization based on engineering the 

electrical charge on the stent surface has been reported. The influence of electrostatic factor on the cell 

attachment is demonstrated as important tool for manipulation of cell response directly associated with 

restenosis and thrombosis. The electrical functionalization of stent material surfaces can be achieved by 

ionizing (high and low energy electrons, gamma), and nonionizing (ultraviolet) radiation, and 

estimated using pre-threshold photoelectron spectroscopy (contactless technique) and Kelvin probe 

atomic force spectroscopy (weakly contacting technique). Obtaining the optimal electrical properties of 

the stent surface can help to control their ability to attach cells and biomolecules and achieve a 

significant improvement of biological stent properties. 

In order to achieve better properties of titanium stent surface, Nanci et al. [12] modified it by 

chemical etching with sulfuric acid and hydrogen peroxide, followed by silanization and, finally, 

protein adsorption and linking via glutaraldehyde. Hiob et al. [13], starting from the premises that all 

current metallic vascular prostheses highlight suboptimal biocompatibility, proposed to improve the 

re-endothelialization process by covalent attachment of the tropoelastin onto the plasma-activated 

surfaces of metallic stents. Based on the achieved results, the N-terminal tropoelastin led to the 

improvement of the cell attachment and proliferation while the C-terminal tropoelastin-based 

constructs resulted in the diminishing of their activity. The goal of the study realized by Ravenscroft-

Chang et al. [14] was to investigate the morphological and physiological effects of surfaces modified by 

self-assembled monolayers of fluorinated (hydrophobic) and amine-containing (hydrophilic) silanes as 

models for implant coatings. The authors focused on behavior of intracellular Ca2+ ions in relation to 

their important role in regulating heart cell function. 

When discussing metals, the controlled surface oxidation is important because the intermediary 

oxide/hydroxide layer allows a better, more durable deposition layer onto these surfaces. Some of the 

most used activation procedures involved chemical surface modifications, which can even be induced 

by physical treatments, such as plasma treatment [15–17]. Coated stents have been developed to 
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improve the properties of BMS providing better biocompatibility, non-toxicity, suitable surface 

roughness, and surface free energy, regulating the ability of a stent surface to adsorb biological 

molecules and cells, ensuring chemical stability by regulating the corrosion rate [4] or providing 

desirable biodegradable properties and serving as platforms for drug delivery. Various materials have 

been evaluated for applications as stent coatings, as discussed in several publications [4,17]. For the 

enhancement of biocompatibility, coating materials of better compatibility as compared to the material 

of stent struts have been used. For example, inorganic coating materials, such as titanium nitride, 

titanium oxide, or titanium oxynitride have been applied for stainless steel stents. A large variety of 

functional coatings for drug delivery based on biodegradable polymers, micro- and nanostructured 

metal, and ceramic layers have been developed. These modifications can significantly increase the 

success of stenting. There are three types of materials for coating fabrication: inorganic compounds, 

polymers, and endothelial cells. Inorganic materials and polymers can be used for creation of porous 

coatings. 

2.1.1. Organic Coatings 

Polymer materials are used as stent coatings both with and without drug elution, with different 

success [18–21]. The main problem of biodegradable and non-biodegradable polymer layers lies in their 

degradation products, arising as result of contact with biological fluids and ability to trigger 

inflammation followed by thrombosis formation. Susceptibility of polymers to fractures can lead to the 

release of materials fragments into the blood flow, provoking a danger to close some narrowed arears 

of the damaged vessels. 

Poly(ethylene) (PE), polyurethanes (PUR), poly(glycolide) (PGA) and polylactides (PLA) have 

been evaluated as stent coating materials [22], being already used for implants or other medical devices 

[23–34]. While polyurethanes are well established as scaffold materials for vascular grafts due to their 

excellent hemocompatibility [23–26], PGA is commonly used as suture material for different surgical 

applications [27]. Furthermore, PGA-containing scaffolds blended with poly(-caprolactone) (PCL) [28] 

are used for PGA-based drug delivery systems [29–31]. PLA has been intensely tested as temporary 

stent material in cardiology due to its long track records of in vivo biocompatibility [32–34]. Bognar et 

al. [19] evaluated three types of polyurethanes (carbothane, tecothane, and chronoflex) deposited on 

stainless steel stent surfaces (L316) by dipping into a solution. The performed experiments have shown 

a suitable adherence of PUR coating to the stent surface, as well as improved biocompatibility and long-

term stability comparing to the non-coated stents [18,35–38]. Since the beginning of using polyurethane 

as a stent coating material (early 1990s), such stents were applied in coronary artery perforation [37], 

for treatment of esophagorespiratory fistulas [38,39], recurrent benign urethral stricture [40], malignant 

biliary [41,42], esophageal [43,44] or gastroduodenal obstruction [45], and irresectable esophageal 

carcinoma [46]. 

Further examples of polymer applications as stent coatings (such as non-biodegradable: 

poly(methacryloyl phosphorylcholine-co-laurylmethacrylate), poly(n-butyl methacrylate), poly(ε-

caprolactone), poly(ethylene terephthalate) and silicone, and biodegradable: poly(lactic acid)-PLA, 

poly(glycolic acid)-PGA and their co-polymer-PLGA)) can be found in [20,21,47–49]. 

A method for preparing a nitric oxide-generating adherent coating, comprising of polyphenol 

compounds, organic selenium or sulfur compounds and soluble copper salts is disclosed in the 

invention US2017246353 [50]. The nitric oxide-generating material prepared by the method possesses 

the capability of scavenging free radicals and catalyzing S-nitrosothiols to produce nitrogen monoxide, 

which is known to reduce the risks of thrombosis, inflammation, and restenosis related to the stent 

applications. 

2.1.2. Bio-Based Coatings 

Special stent coatings based on biological materials may be very attractive. Primarily, these are 

endothelial cells placed on the stent surface before its implantation with the aim to proliferate, 
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differentiate, release growth, and, finally, inhibit thrombosis and neointimal hyperplasia. Several 

attempts to seed endothelial cells on medical grafts have been made, but all of them were unsuccessful 

so far [7,51,52]. The effect of stents coated with antibodies to endoglin (ENDs) on coronary neointima 

formation is the aim of the study [53]. The results demonstrated that endoglin antibody-coated stents 

reduce restenosis in the porcine model and may be considered as a new approach to prevent restenosis. 

Garg and Serruys [54] are reporting about the application of CD34+ antibodies as bio-coating on 

stainless steel BMS (OrbusNeich, Fort Lauderdale, FL, USA). Unfortunately, this study did not 

demonstrate any significant success because of non-specific phenotype endothelial progenitor cells 

(EPCs) of CD34+ markers. Further development of novel coatings on stainless steel stents consisting of 

vascular endothelial growth factor (VEGF) and anti-CD34 antibody are presented in [55]. 

The invention CN109663151 [56] relates to a preparation method and application of an amino-rich 

stent material modified by copper 4-carboxyphenyl porphyrin. This technology belongs to the 

biological surface modification and contributes to the improvement of biocompatibility, repair of 

endothelial cells and inhibition of excessive proliferation of smooth muscle cells on the stent surfaces. 

The invention WO2014049604 [57] provides a stent containing biofilms or a suspension of 

microorganisms selected from different kinds of bacteria (for example pseudomonas aeruginosa, 

streptococcus, staphylococcus, salmonella, clostridia, mycobacterium bovis, Bacille Calmette Guerin - BCG) 

useful in cancer therapy. The microorganisms may be attenuated in their virulence factors and with 

cloned genes encoding specific proteins with anticancer activity. 

2.1.3. Inorganic Coatings 

There are a lot of inorganic materials potentially capable of improving the properties of the implant 

surface. Prospective inorganic materials for manufacturing of stent coatings are oxides, nitrides, silicide 

and carbide, noble metals, hydroxyapatite-based materials, diamond, and diamond-like carbon [58–66]. 

Titanium Oxide and Titanium Oxynitride Coatings 

Titanium oxide-based layers are the most promising coatings for cardiovascular stent applications 

among all inorganic materials. The conception of drug and polymer free bioactive stent (BAS) that 

interferes with the healing process is related to nitrogen-doped titanium oxide (TiOxNy) coatings. The 

idea was firstly developed by Hexacath (Paris, France) and generalized in [67], where the results of 

comparative tests of BAS to paclitaxel-eluting stents (PES) in 425 patients with acute myocardial 

infarction were presented. The stainless steel bioactive stent Titan2 (Hexacath, Paris, France) coated by 

plasma enhanced vapor deposition of titanium in a mixed nitrogen-oxygen atmosphere is able to inhibit 

platelet aggregation, minimize fibrin deposition, reduce inflammation, and promote healing. A new 

generation of titanium oxynitride-coated stents TiOxNy and TITAX-AMI have been proven to be safe 

and successful in reducing in-stent restenosis (ISR) in recent clinical trials [68–71] and are available at 

the market. The clinical outcomes of these stents were comparable to those of DES (TAXUS-Liberte 

Stent). 

The physical-chemical and biological properties of TiOxNy films depend on the deposition 

technique, the concentration of N/O [60] and on dopants incorporated into the coating [61]. For example, 

the implantation of phosphorus into titanium oxide film has been shown to improve the 

thromboresistivity of stents [61]. The data presented in [72] demonstrate that titanium oxide films 

doped with tantalum and formed by the plasma immersion ion implantation and deposition (PIIID) 

technique possess significantly better hemocompatibility comparing to undoped coatings. The TiOxNy-

surfaces fabricated by a microwave-assisted process show a higher photocatalytic activity of nitrogen-

containing films providing better suitability for medical applications [73]. The investigative results of 

titanium-oxynitride (TiOxNy) coatings deposited on L316 stainless steel by reactive magnetron 

sputtering are presented in [74]. The described coatings are highly biocompatible, possess a negatively 

charged surface and negative zeta potential, prevents in vitro adhesion of salts on the surface, and alters 

the surface wettability. The morphological and biological properties of the coatings can be varied by 
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controlling the oxygen to nitrogen ratio depending on the desired surface performance. The obtained 

results show that plasma technologies allow for manufacturing coatings with unique structures and 

properties, making it possible to modify the stent surface with regard to the patient’s needs 

(individualized medicine). 

Nitric oxide (NO) is one of the most important molecules in biological systems and plays a critical 

role in pathophysiology and disease. This resulted in the development of new therapeutic strategies 

and novel donors of nitric oxide [75–77]. The titanium oxynitride films, formed using a high-tech 

process, combines the benefits of two components: titanium oxide and nitric oxide (NO) in its atomic 

form. Structural features of nitrogen-containing films of titanium dioxide were studied in [78]. The 

results show that the films consist of anatase and rutile mixture with nanostructure (mean crystallite 

size from 10 to 20 nm) and nitrogen as nitric oxide (NO) located at intergranular positions in the form 

of an NO two-dimensional layer located at the TiO2 grains boundary. This suggests that TiOxNy films 

can serve as the depot of nitrogen oxides directly in the field of pathology if they serve as stent coatings. 

In this case, it is possible to predict the following mechanism of interaction of the TiOxNy coating with 

a biological system: (i) titanium and its oxides increase the corrosion resistance of implants and reduce 

the risk of inflammation. (ii) Titanium oxide inhibits the electron transfer from fibrinogen to the surface, 

reducing platelet aggregation and fibrinogen coagulation; and (iii) nitric oxide (NO) released from the 

coating performs the necessary biological functions, promotes endothelialization, activating the growth 

of endothelial cells. It is important to study the structural features and properties of nitrogen-containing 

films of titanium dioxide formed by ion-plasma methods and to establish the relationship between the 

features of the microstructure of the films and the conditions of their deposition [74–78]. The problem 

of applying a uniform, stable coating that retains high physicochemical and adhesive properties after 

opening the stent remains open [60]. The studies [78,79] provide an impact of nitrogen content in the 

reactive magnetron plasma discharge on the structure and properties of deposited TiOxNy films. The 

increase of nitrogen content up to 3N2/O2 mass flow ratio leads to predominant formation of rutile phase 

in deposited films. The presence of nitrogen in plasma inhibits the growth of TiO2 anatase phase and 

leads to reduction of film’s grain sizes up to four times. In addition, the N2/O2 ratio influences 

significantly the further physical-chemical properties of TiOxNy coated stent surface, for example their 

electric potential, roughness wettability, and surface energy. 

Diamond-Like Carbon (DLC) Coatings 

The properties of diamond-like carbon (DLC) surfaces and their suitability for medical applications 

are presented in review [80]. This material has been reported to possess the required mechanical and 

surface characteristics, and good biocompatibility [62,63] being successfully used as coating material 

for medical grafts [68]. In vitro results demonstrate that DLC and doped DLC films can prevent 

thrombus formation in vascular applications and show good bio- and hemocompatibility [81,82]. 

Characterization of cobalt-chromium stents covered by a nanostructured and homogeneous DLC film 

deposited by PVD inhibit fibrin deposition and platelet activation [62]. This lead to more complete and 

homogeneous endothelialization without triggering thrombotic clots. Antibacterial effects of DLC and 

doped DLC have been documented in [83]. Several reviews analyze DLC coatings and coating 

strategies. 

In [84], calcium- and phosphorus-doped DLC films were fabricated by plasma immersion ion 

implantation and deposition. Doping DLC with calcium or phosphorus enhances the surface blood 

compatibility. Silicon (Si) as dopant in the DLC film reduces inflammatory activity as compared to the 

uncoated materials [85]. The increased thromboresistivity of DLC films deposited by the radio 

frequency plasma enhanced CVD method and treated with plasma of oxygen gas has been discussed 

in [86]. The experiments show the strong dependency of DLC properties on the deposition conditions 

and doping effects [80,87–89]. The results concerning in vivo testing and medical studies of DLC coated 

stents can be found in several papers [80,90–92]. 

Based on the reviewed literature, application of the diamond-like carbon coatings on stents have 

been claimed to have a positive outcome on their hemocompatibility and antithrombogenicity. In order 
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to confirm these data, more comparative studies have to be performed. The long-term performance of 

carbon-based materials regarding the degradation behavior in vivo has to be studied. 

Other Inorganic Coatings 

Gold is known to be corrosion-resistant and well tolerated by the organism [93]. It was applied as 

a stent coating, however, the clinical outcome of the gold-coated stainless steel stents was not 

satisfactory [7]. As a biocompatible inert ceramic coating material for stents, iridium oxide has been 

studied [7,21]. Unfortunately, hydrogen peroxide produced during its corrosion was found to be 

harmful for the artery and caused inflammatory reactions [94,95]. Due to its anti-thrombogenic 

properties, amorphous silicon carbide (SiC) was applied as a stent coating [7,96] being able to reduce 

deposition of platelets, leukocytes, and monocytes over a stent [64–66]. However, the luck of 

experimental and especially clinical data related to this material makes further research of its properties 

necessary for future applications. In [97], the results of the first-in-man trial of SiO2-coated BMS (Axetis, 

Zug, Switzerland) showed insufficient suppression of neointimal hyperplasia. 

Hydroxyapatite (HAp) as a stent coating material deposited by sol-gel (SG) technique was 

analyzed in [98]. The nanoporous designed HAp film with a thickness of 0.1–1.0 m was used for drug 

encapsulation. The samples showed very good biocompatibility but no significant improvement in the 

histological characterization. The polymer-free deposited sirolimus layer on the top of the 

hydroxyapatite film as a stent coating resulted in less local toxicity and faster healing response 

comparing to the uncoated stainless steel stent (VESTAsyn, MIV Therapeutics, Atlanta, GA, USA). The 

invention CN109432493 [99] relates to a nano-hydroxyapatite-coated porous stent, a preparation 

method and its application. The stent includes a three-dimensional (3D)-printed porous titanium matrix 

covered with nano-hydroxyapatite coating and microporous network TiO2 layer. 

3. Bioresorbable Stents 

Bioresorbable or biodegradable stents are manufactured from a material that may be dissolved or 

absorbed in the body. The idea of stent bioresorbability is perceived as revolutionary (stents of third 

generation) according to Erne et al. [100] and attracted a strong interest of both engineers and clinicians. 

Multiple published reviews focus on clinical, material, and technological aspects of bioresorbable stents 

[5,54,101–104]. 

Figure 2a schematically presents the behavior of non-resorbable and resorbable stent after 

implantation. Ideally, the non-resorbable stent should remain unchanged, no resorption or deposition 

should appear in time while, the resorbable stents degrade fully with a proper rate. It is important to 

mention, that there are classic resorbable stents (the stent is homogeneous) and coated stents with only 

resorbable coating. When the coating is loaded with a biologically active agent, it is released during 

degradation. Depending on the coating material, the release of drug can have non-bioerodible or 

bioerodible character according to the Figure 2b. In case of non-bioerodible mechanism, the drug release 

occurs due to diffusion processes otherwise it correlates with the degradation of the stent coating. 

The manufacturing of these implants is based on the application of biocompatible biodegradable 

metals and alloys (Fe, Mg, Zn) and polymers (poly-L-lactic acid, poly-L-glycolic acid, polyorthoester, 

polycaprolactone, fibrin, hyaluronic acid, phosphorylcholine, or polyethylene oxide/polybutylene 

terephthalate (PEO/PBTP) [7,23,54]) able to be resorbed in the human body after several months of 

implantation. This implant property provides the greatest advantage of biodegradable stents as it 

allows for avoiding the permanent stay of the foreign material inside the human body helping to 

overcome the foreign body reactions, avoid complications and save expenses related to the re- or 

explantation of stents. Particularly important groups of patients benefitting from the new technology 

are old people, children, or diabetics having the most serious problems due to the repeated surgeries. 

In an ideal case, bioresorbable stents implanted into the human vessel undertake the lacking mechanical 

support for the healing period of time and degrade completely during 12 to 24 months. The properties 

and the degradation behavior of bioresorbable stents have to be predictable within a defined time 
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interval. A stent material itself and its degradation products must be biocompatible and non-toxic 

ensuring the highest safety level for patients. 

 

 

Figure 2. Schematic behavior of bioresorbable and non-bioresorbable stent after implantation (a) and 

mechanisms of drug elution (b). 

Patent US9878073 [105] demonstrates an example of such bioresorbable stents eluting nitric oxide 

(NO). The stent is comprised of three main key design elements: a bioresorbable scaffold, a 

bioresorbable polymeric coating layer(s), and NO-releasing nanoparticles incorporated in the 

bioresorbable polymeric coating layer and optionally also in the scaffold. The NO-releasing 

nanoparticles are made of non-toxic biocompatible and biodegradable materials. For example, a 

chitosan polymer and optionally a sugar [106,107]. 
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3.1. Metallic Bioresorbable Stents 

Magnesium (Mg), iron (Fe), and zinc (Zn) containing alloys were the first metals used for 

fabrication of biodegradable stents having sufficient mechanical characteristics and appropriate 

biocompatibility [27,28]. 

3.1.1. Mg Stents 

Despite multiple advantages of Mg as bioresorbable stent material (excellent biocompatibility and 

bioresorbability in the human body), the major hurdle disturbing its application consists in too fast and 

inhomogeneous degradation in the physiological milieu. Mg alloys have low corrosion resistance in 

aqueous environments containing halide ions. Mg implants in such medium undergo failure because 

of excessive hydrogen production, which forms gas patchy cavities and pH increase in neighborhood 

of the implant. The corrosion tendency of the Mg-containing alloys is correlated with its phase 

composition. In the solution containing Cl-, the attack of large numbers of active anion ions interacting 

with the implant surface leads to the pitting corrosion [108,109]. 

The actual research is focusing on the creation of a controlled degradation profile of Mg stents 

using different alloying elements, development of surface coatings or surface treatments, and 

adjustment of the stent geometry. Several patents (US 2017/0157300 A1 [110], US8915953B2 [111], 

WO2013024125A1 [112]) related to the first two methods could be found. However, the proposed 

inventions did still not lead to the commercialization of new Mg stents. Several works (US 2006/0271168 

[113], 2009-0240323 A1 [114], US 2010-0076544 A1 [115], and US 2011/0076319 [116]) propose the concept 

of special coatings inhibiting the degradation rate of Mg alloys as a basic stent material. As 

biodegradable polymer coatings poly(lactide), polyhydroxyalcanoate (especially 

polyhydroxyvalerate), polycaprolactone, aliphatic polyester, aromatic copolyester, and polyesteramide 

can be used. In EP 2415489 B1 [117], a stent coating containing vaccination crystals and lipophilic 

substances as additives is presented. The proposed measures should reduce the coating permeability 

for corrosive medium. The functional principle of this technology is still not validated and no products 

utilizing its application are known. 

Another problem of Mg application in stent manufacturing is related to the release of hydrogen as 

result of the degradation process leading to inflammation and systemic toxicity [118]. Ma et al. [119] 

studied magnesium-based alloys as potential, biodegradable cardiovascular stents and highlighted that 

magnesium release had a significant impact on vascular smooth muscle cells (SMCs). Based on their 

work, low concentrations of Mg2+ (<10 mM) increase the cell viability, proliferation rate, cell adhesion, 

cell spreading, cell migration rate, and actin expression, but at high concentration (40–60 mM) adverse 

effects can be observed (coagulation and inflammation but also SMC proliferation is inhibited). 

Kirkland et al. [120] investigated the degradation behavior of about 30 different Mg alloys in contact 

with simulated body fluids. This study has shown that the alloying of Mg with Zn, Ca, and rare earth 

elements like cerium (Ce), lanthanum (La), or neodymium (Ne) significantly influence the degradation 

rate and behavior of Mg. The alloying elements Zn, zirconium (Zr) and rare earth elements can lead to 

the improvement of strength and forming behavior as well as inhibit the degradation of Mg in 

simulated body fluid - SBF [28,121,122]. By such a way, it is possible to adjust the required properties 

of Mg depending on application and to find a compromise between the necessary mechanical 

properties, degradation rate, and biocompatibility. Another promising way for controlling the 

degradation rate of Mg stents are coatings. Despite of the rapid development of stent technologies, no 

optimal solution for the adjustment of Mg degradation exists. The results of different studies related to 

the properties of Mg stents are summarized in the Table 1. 
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Table 1. Mg alloys used for stent manufacturing. 

Mg–Alloy Key Features Ref. 

Mg–Zn 

(up to 3% Zn) 

Higher affinity of adsorption to the surface of Mg–Zn alloy with the 

increase of Zn concentration (up to 3%). 
[123] 

Mg–Y (1% Y) Adsorption of peptides is slightly weakened compared to that on the 

clean Mg (0001) surfaces. Mg–Nd (1% Nd) 

Mg (3.5 or 6.5%)-Li 

(0.5, 2 or 4%)-Zn 

Good mechanical properties, degradation behavior, 

cytocompatibility, and hemocompatibility. Enhanced mechanical 

properties—yield strength, ultimate strength and elongation (twice as 

compared to pure Zn) and corrosion resistance without losing the 

viability of the Human Umbilical Vein Endothelial Cells (HUVECS) 

and Human Aorta Vascular Smooth Muscle Cells (VSMCS). 

[124] 

Mg–Al alloy AZ61 
Highly susceptible to stress corrosion cracking (SCC) as compared to 

Zn, which is highly ductile with limited susceptibility to SCC. 
[125] 

MgZnYNd (coated 

with arginine (Arg)-

based poly (ester 

urea urethane) 

(Arg–PEUU)) 

Super corrosion retardation, high hemocompatibility, high 

cytocompatibility. 
[126] 

Mg stent (coated 

with phytic acid 

(PA)); 

heparin loaded PA 

and bivalirudin 

loaded PA 

Effective control on corrosion rate, biofunctional effect, good 

hemocompatibility, inhibits platelets adhesion, promotes endothelial 

cells growth superior stents compared with the bare Mg stents, 

super-hydrophilic surface (the contact angle being very close to zero). 

Hydrogen evolution vs. immersion time exhibit a slightly linear 

release between 5 and 10 days as compared to uncoated samples 

where an exponential hydrogen release was noticed within this 

interval. 

[124] 

The first Mg stent available on the market is balloon-expandable AMS-1 BDS (AMS-1, Biotronik 

AG, Bülach, Switzerland) composed from Mg (up to 93%) and rare earth metals (up to 7%) [127]. The 

stent has a strength-to-weight ratio comparable with that of stainless steel L316 and strong aluminum 

alloys. Pre-clinical assessment indicates the rapid endothelialization of AMS-1 and too high a rate of 

degradation (about 60 days) into inorganic salt. The AMS-2 stent uses a different magnesium alloy, 

resulting in the stent having a higher collapse pressure as well as a slower degradation time. The AMS-

3 stent (DREAMS–Drug Eluting AMS) is a modification of the AMS-2 stent and is designed with the 

aim of reducing neointimal hyperplasia by incorporating a bioresorbable coating based on poly-L-lactic 

acid (PLLA) for controlled release of an anti-proliferative drug, and diminishes the rate of body-stent 

degradation at the initial stage. The first-in-man BIOSOLVE-I trial assessed the safety and 

performance of this first-generation drug-eluting magnesium-based BRS in 46 patients with 47 

lesions at five European centers [127]. 

Corrosion properties of matrix composed from Mg and ZnO powder by a spark plasma sintering 

technics were investigated by Cao et al. [128]. The results indicate that Mg-10 wt% ZnO composite 

exhibits a lower corrosion rate compared to pure Mg and is promising as temporary implant. Lewis 

[129] presents a critical review of the methods to reduce the bio-corrosion rate of Mg and Mg-based 

alloys, and to define the way of decreasing the in vivo resorption time, i.e., improving the clinical efficacy 

of Mg-based grafts. The resorbability of magnesium alloys can also be reduced by salinization. Patil et al. 

[130] showed the ability of alkylsilane self-assembled multilayer coatings to reduce several fold the rate of Mg 

corrosion, demonstrating their good cytocompatibility and great potential of these coatings on developing 

bioresorbable Mg devices, including stents. In the invention WO2019043394, a bioresorbable metal alloy 

particularly suitable for the formation of bioresorbable medical devices, for example stents, is described. 
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The metal alloy essentially comprises 3.2% to 4.8% by weight lithium, 0.5% to 2.0% by weight yttrium; 

and the balance being magnesium, in addition to any trace elements. The metal alloy can be drawn into 

a wire, which can be shaped into a stent scaffold. The stent can be produced using one or more stent 

scaffolds together with one or more bioresorbable polymer connectors, for example formed from 

poly(lactide-co-glycolide) (PLGA) [131]. There are several reviews on biodegradable metal stents 

[54,132] in which the main data concerning their properties are collected. 

3.1.2. Zn Stents 

Zinc is proposed as an exciting new biomaterial for use in bioresorbable cardiovascular stents. It 

shows sufficient mechanical and biological characteristics required for optimal stent performance. Zinc 

and its alloys show the appropriate rate of degradation for stent application (0.02 mm/year [132,133]). 

The review [132] compares bioresorbable materials and summarizes progress towards bioresorbable 

stents. It emphasizes the current understanding of physiological and biological benefits of zinc and its 

biocompatibility. Finally, the review provides an outlook on challenges in designing Zn-based stents of 

optimal mechanical properties and biodegradation rate. Very prospective results were presented by 

Bowen et al. [133]. They confirmed the suitability of zinc and its alloys to be used as bioresorbable stent 

material having a good biocompatibility and mechanical characteristics while degrading slowly at an 

ideal rate of tens of micrometers per year. In principle, Zn and its alloys can help to avoid many 

problems associated with Mg and Fe because pure Mg has a corrosion rate 10 times faster than Zn ((300–

600) µm per year [134]) while the corrosion of iron leads to non-bioresorbable iron oxides. 

In human physiology, zinc is a crucial oligoelement playing important catalytic, structural, and 

regulatory roles within the cells [135]. Zn has a good tolerance to most of the tissues but relatively little 

is still known about its corrosion, toxicity, and biocompatibility in connection with its application as a 

stent material. Nowadays, these issues are under consideration [132]. The role of the main product of 

zinc biodegradation (Zn2+) in numerous fundamental cellular processes is considered in [136]. The 

formation of ZnO is beneficial because it induces a slightly antimicrobial activity, which can avoid 

biofilm formation [59,137–140]. 

The data of comparative testing the inflammatory reaction on pure Zn and different Zn-Al alloys 

demonstrated that viability of cells at the interface decreases from high-grade Zn (~99.7%) to Zn-Al 

alloys with the increase of aluminum concentration [141]. Clinically relevant long-term in vivo studies 

with the aim of characterizing late stage zinc implant bio-corrosion behavior were conducted by Drelich 

et al. [142]. Zinc oxide, zinc carbonate, and zinc phosphate are the main components of corrosion 

products surrounding the Zn implant. The obtained results support the predictions that zinc could be 

a suitable material for manufacturing biodegradable stents. The degradation rate of stents is strongly 

dependent on the surface structure, properties, and the presence of defects (bio-corrosion rate increases 

with the increase of their density). The degradation of Zn depends on the quality and stability of the 

oxide film formed on the stent surface [143]. 

Analysis of mechanical properties of Zn and Zn-based alloys regarding the general requirements 

for stent application [132,144] shows that when using conventional alloy families and processing 

methods, it is possible to produce a Zn-based material. This includes Zn-Mg, Zn-Ca, Zn-Sr, Zn-Al-Cu 

alloys and pure Zn with appropriate mechanical characteristics, in particular, ultimate tensile strength 

(UTS) in the range of 20–440 MPa, and elongation to failure 10–65% for stent application. The influence 

of severe plastic deformation on the structure and mechanical characteristics of the zinc alloy with 1 

wt% of Mg is presented by Jarzebska et al. [145]. These results indicate that the plastic deformation 

leads to the grain refinement, and mechanical properties satisfy the requirements for bioresorbable stent 

applications. High Zn compatibility to magnetic resonance imaging is an additional advantage of this 

promising candidate for biodegradable stents as compared to iron- and magnesium-based stent 

materials. The efforts in the development of new Zn-based stent materials are only at the beginning and 

an increasing number of scientific groups is working on this topic [133,142,145–151]. The results of the 

different studies related to the properties of Zn stents are summarized in Table 2. 
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Table 2. Zn alloys used for stent manufacturing. 

Zn-Alloy Key Features Ref. 

Pure Zn 

Stents maintained mechanical integrity while no severe inflammation, 

platelet aggregation, thrombosis formation, or intimal hyperplasia were 

observed in abdominal aorta of rabbits. Good mechanical integrity for 6 

months. After 12 months of implantation, the degraded volume of the 

stents was 41.75 ± 29.72%. 

[150] 

Zinc wires 

coated with 

PLLA/MPS 

Corrodes at half the rate of uncoated Zn. Reduction of the 

biocompatibility and increasing cell toxicity and neointimal hyperplasia 

takes place. 

[151] 

Zn-1% Mg and 

Zn-1% Mg-0.5% 

Ca 

These zinc alloys can be considered as good candidates for 

biodegradable implants. 
[152] 

Zn-Li alloy 

Increase of ultimate tensile strength from <120 MPa (pure Zn) to >560 

MPa. In vitro corrosion was evaluated by immersion tests in simulated 

body fluid and reveal higher resistance to corrosion compared to pure 

Zn. Samples containing 

4% Li have shown the best results. 

[149] 

Zn-3Cu-xFe (x = 

0, 0.5 and 1 wt 

%) alloys 

The mechanical characteristics and in vitro behavior of Zn-3Cu-xFe 

alloys are more suitable than that of Zn-3Cu alloys as candidates for 

biodegradable materials. 

[153] 

Zn–Al alloys 

(containing up 

to 5.5 wt% Al) 

Important mechanical characteristics: Yield strength 190–240 MPa; 

ultimate tensile strength 220–300 MPa, elongation 15–30%, elastic ranges 

0.19–0.27%. Intergranular corrosion of Zn–Al alloys and cracking related 

with corrosion are observed. Absences of necrosis traces, though chronic 

and acute inflammatory indications were present. 

[147] 

3.1.3. Fe Stents 

Pure iron and iron-based alloys play a special role in the research on bioresorbable stent technology 

[30,31]. Iron stents possess superior radial strength (due to its higher elastic modulus) [7], satisfactory 

mechanical characteristics [7], are non-toxic and may inhibit neointimal hyperplasia [27]. The main 

problems related to the application of iron as a stent material consists in the slow degradation kinetics 

(0.1–0.2 mm y−1) and its oxides as corrosion products, which are not metabolized at an appreciable rate, 

therefore, reducing the cross section of lumen and altering the integrity of the arterial wall [30]. 

The invention US2016263287 discloses an absorbable iron-based alloy stent covered by 

biodegradable polyester (average molecular weight of between 20,000 and 1,000,000 and a 

polydispersity index of between 1.2 and 30). The proposed combination of materials ensures a 

controllable degradation rate within a predetermined period of time. Following implantation into the 

human body, the degradable stent serves as a mechanical support at an early stage. It then gradually 

degrades, being metabolized and absorbed. During the process of degradation, minimal or no solid 

product is produced. Ultimately, the configuration of the lumen with an implanted stent as well as the 

systolic and diastolic functions thereof returns to their natural states. 

3.2. Polymeric Bioresorbable Stents 

Biodegradable polymeric materials show great promise in different medical applications allowing 

local delivery of biologically active agents and drugs. Shukla et al. [154] emphasizes the state-of-the-art 

of biodegradable polymers and polymeric nanostructures, and discuss their future perspectives. Poly-

L-lactic acid (PLLA) is the best-known biodegradable polymer, often used in manufacturing 

biodegradable stents (BDS). PLLA proved to be highly biocompatible [155]. PLLA is metabolized via 

the Krebs cycle over a period of approximately 12 to 18 months into carbon dioxide and water without 
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toxic degradation products. PLLA-based biodegradable coronary stents have initially been reported by 

Igaki-Tamai et al. [26] as the first fully degradable stent in the world (Kyoto Medical Planning, Kyoto, 

Japan). This event was followed by further development of bioresorbable polymeric stents with regard 

to their design and drug delivery function. Intensive research on the improvement of functional 

characteristics and biocompatibility of PLLA as well as poly(lactide-co-glycolide) (PLGA) has been 

conducted over the last years. Other PLLA-based stents, for example Elixir (Sunnyvale, CA, USA), 

ARTDIVA from Arterial Remodeling Technologies (Noisy le Roi, France), Tissue Gen (Dallas, TX, USA), 

and others [23,154], are also under investigation. The extensive discussion of the related results can be 

found in several reviews [21,22]. Despite the multiple advantages, polymeric biodegradable stents still 

demonstrate pure mechanical properties disturbing their application in patients. The clinical studies of 

everolimus eluting PLLA stent Absorb-BVS-System (Bioresorbable vascular scaffold; Chicago, IL, USA) 

have shown its safety with a good mechanical support during the first 3 months of implantation. After 

this time, mechanical strength diminished rapidly. Pharmacological properties and resorption 

dynamics of the stent were studied by Shukla et al. [154], who also highlighted the opportunities and 

challenges in the field. 

Except for PLLA and PLGA polyhydroxycarboxylic acids, poly(3-hydroxybutyrate) [156] and 

poly(ε-caprolactone) have been used as well-known biodegradable polymeric materials for 

manufacturing stents in the research. Phosphoryl choline (PC) and poly(vinylidene fluoride)-

hexafluoropropylene (PVDF-HFP) belong to the class of biomimetic polymers and are further 

applicants for DES of second- or third-generation [157]. The REVA stent (REVA Medical, San Diego, 

CA, USA) is a poly (iodinated desaminotyrosyl-tyrosine ethyl ester) carbonate stent with sirolimus and 

a slower drug release pattern [23]. BDS (Bioabsorbable Therapeutics Inc., Menlo Park, CA, USA) 

presented a biodegradable stent out of poly-anhydride ester combined with salicylic acid and sirolimus. 

This combination provides both anti-proliferative and anti-inflammatory properties [23]. 

Several types of bioresorbable stents coated with durable polymers (Taxus Liberté coated by 

styrene-b-isobutylene-b-styrene, Endeavor Resolute with Biolinx polymer coating and Xience V stent 

covered by fluoropolymer) were tested. The results of comparison for safety and efficacy of stents with 

biodegradable versus durable polymer coatings are presented by Lam et al. [158]. 

The invention WO2019043384 [159] provides bioresorbable polymeric stents made from polymer 

blends containing polyhydroxyalkanoates (PHAs). The patent proposes two material compositions for 

stent manufacturing: a) 40 wt% PHA copolymer comprising two or more different medium chain length 

hydroxyalkanoate monomer units and b) 60–95% PHA homopolymer containing a short chain length 

hydroxyalkanoate monomer unit or a polylactide (PLA). 

Various polymers with different properties and special resorption rates are available for medical 

purposes, many of them being suitable for stent manufacturing. The most important problems, such as 

poor mechanical support, inadequate degradation rate, as well as generation of harmful fragments 

[160], have to be overcome in order to enable successful clinical use and commercialization. 

3.3. Comparison of Bioresorbable Metal and Polymer Stents 

In spite of challenges faced when choosing stent materials, it seems that metals have several 

important advantages over polymers: polymers exhibit lower Young`s modulus (0.2–7.0 GPa) than 

metals (54–200 GPa), and metal stents are considered to be better than polymer grafts in terms of 

mechanical performance [132] with comparable other characteristics. Polymers were compared with 

Fe- and Mg-based metal grafts in review [132]: (i) exhibit radial force similar to those of stainless steel 

[161] and cobalt chromium stents [162]; (ii) demonstrate the profile required for successful deliverability 

of scaffold [7]; and (iii) demonstrate required rate of degradation [127]. However, low ultimate tensile 

strength by polymers requires greater struts thickness than those of metals. This led to the inability of 

complete expansion with balloon dilatation. Considering that restenosis rates in polymer stents are 

similar to that of BMS, the latter has the advantage. Ho et al. [102] provides contemporary data on the 

evolution of coronary artery stents from BMS through drug-eluting stents to bioresorbable stents. Their 

manuscript highlights that BMS are suitable for the cardiovascular application and are strongly 
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dependent on the structure platform, size, length, and strut thickness. The development of newer stents, 

with thinner struts and covered with bioresorbable polymers can present an important improvement, 

especially because of the reduction of the restenosis rate. From an evolutionary point of view, the first 

reduction of the restenosis rate was achieved by using thinner struts and new metal compounds, later 

by using drug-eluting stents and polymer coated stents [32–34,102]. 

4. Drug, Nanoparticle, and Gene-Eluting Stents 

4.1. General Aspects 

Drug-eluting stents are stents with drug-eluting functions, being realized by means of an anti-

inflammatory/antithrombotic drug-containing polymer coating or direct immobilization of drugs on 

the stent surface. Since the first approved DES, CYPHERTM in 2003, different stents have been developed 

to ensure quick endothelialization, low proliferation of Smooth Muscle Cells (SCMs) and to avoid late 

in-stent restenosis. Although, the first generation of DES loaded with sirolimus and paclitaxel have 

shown reduced in-stent restenosis rates, these stents are still associated with a risk of late stent 

thrombosis due to the hypersensitivity [163]. Biodegradable polymer coating is designed in order to 

avoid inflammation and delayed vascular healing as compared to the use of durable polymers. 

In the second generation, the development of zotarolimus- and everolimus-eluting stents have 

further reduced that risk exhibiting lower hypersensitivity, high flexibility, acceptable recoil and better 

compliance [163]. 

The third generation of DES belongs to the bioresorbable drug-eluting vascular scaffolds (BVS), 

which disappear or degrade completely after a certain time in the vessel [164–168]. Just as metal DES, 

BVS have the advantage of no long-term limitations of permanent vessel caging and possible 

malapposition (incomplete stent apposition), significantly reducing risks of late restenosis, 

neoatherosclerosis, thrombosis, and local inflammation [169–175]. The whole polymer stent may be 

used as drug reservoir [21] and exhibits difficulties with implantation in accurate position within 

vessels [21,176]. The resorbable metal stent (Biotronik, Berlin, Germany), which is composed of 

magnesium and some other rare metals, is the first bioresorbable metal stent implanted in humans. The 

device showed high mechanical strength and properties similar to other metal stents. The stent 

resorption is completed within four months without causing any significant inflammatory response 

[171,175,177–180]. A PowerStent® Absorb prototype (blended ACP with high molecular weight PLLA 

to address two major challenges in BDES development: inferior radial strength and biocompatibility) 

was manufactured and tested in vivo in the coronary artery of a porcine model, which reduced stenosis, 

recoiling and inflammation [181]. 

Furthermore, stents can be improved by using DNA, siRNA, and miRNA [182–191] as well as 

nanoparticles [164,192,193] instead of drugs. For example, Zhao et al. [164] developed a novel coating 

method using sirolimus-loaded PDLLA (Poly DL Lactide) nanoparticles applied on a 3D-printed PLLA 

biodegradable stent with the result of a better inhibition effect on smooth muscle cell proliferation than 

on endothelial cell proliferation. 

Currently, there is a tendency to fabricate polymer-free drug-coated stents (PF-DES). Examples for 

this are the stainless steel sirolimus-containing stent VESTAsyn (MIV Therapeutics, Atlanta, GA, USA), 

the stainless steel BioFreedom stent (Biosensors) coated with Biolimus A9, and the polymer-free cobalt 

chromium Amazonia Pax stent (Minvasys, Genevilliers, France) with paclitaxel [102]. The first step is 

the modification of the stent surface aiming at creating the sites of drug localization, and then drug 

deposition. The sites of drug localization may be a drug reservoir—a system of nano-, micropores, 

nanoparticles in a matrix compound on a stent surface. Several stents are described: (i) Yukon SS stent 

(Translumina, Hechingen, Germany) with microporous surface coated with sirolimus; (ii) cobalt-

chrome stent Cre8 (CID Vascular, Saluggia, Italy) with nanoparticles contain ultra-thin passive carbon 

coating; (iii) OPTIMA (CID, Saluggia, Italy) tacrolimus-coated stainless steel stent with the grooves on 

the abluminal surface as a drug reservoir; (iv) Amazonia Pax (Minvasys, Gennevillieres, France) cobalt-

chromium stent with paclitaxel applied as microdrops on the abluminal surface. Due to the absence of 
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polymer remnants released by the degradation process, polymer-free stents may be beneficial in 

decreasing the rate of stent thrombosis and inflammation reactions. Table 3 provides an overview of 

three generations of stents with common features. There are four materials used in BVS including PLLA, 

magnesium, polyanhydrides (salicylic acid and adipic acid), and polycarbonates (amino acids, e.g. 

tyrosine) where PLLA is the most investigated one [175,194]. In general, commonly used DES can be 

divided into (a) polymer-coated; (b) polymer-free; (c) gene-eluting [182–190]; (d) nanoparticle-eluting; 

and (e) bioresorbable.
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Table 3. Overview of drug-eluting stents. 

Stent 

(Manufacturer) 
Type/Generation Drug Material (Bulk/Polymer) FDA Trials 

Drug-

Eluting 

Time 

Ref. 

CYPHERTM 

(Cordis) 
SES/First Sirolimus Stainless steel/Parylene C 2003 

FIM (First-In Man), 

RAVEL, SIRIUS, 

E-SIRIUS, C-SIRIUS 

80% of 

sirolimus 

elutes over 

~30 days; 

remainder 

released by 

end of 90 

days 

[163,169,195] 

Taxus® (Boston 

Scientific) 
PES/First Paclitaxel 

Stainless steel or platinum-

chromium/TransluteTM 

polymer 

2004 

TAXUS I-VI, 

TAXUS ATLAS, 

PERSEUS 

elutes over 

~90 days 
[163,169,195,196] 

Endeavor® 

(Medtronic Inc., 

Minneapolis, 

MN) 

ZES/Second Zotarolimus 
cobalt-

chromium/phosphorylcholine 
2008 ENDEAVOR I–IV 

80% during 

first 10 days 
[195,197] 

XienceTM V 

(Abbott 

Laboratories) 

EES/Second Everolimus 

L-605 Co-Cr/Poly 

(vinylidenefluoride-co-

hexafluoropropylene) 

(PVDF-HFP) 

2008 

SPIRIT I-IV (Standard 

Protocol Items: 

Recommendations for 

Interventional Trials I-

IV) 

80% during 

first 30 days 
[195,197] 

Axxion 

(Biosensors 

International) 

PF-DES Paclitaxel 316L SS - - 

40–50% in 

the first 

week 

100% after 4 

weeks 

[198] 

Achieve (Cook 

Inc.) 
PF-DES Paclitaxel 316L SS - 

8 months DELIVER 

(DELiverability of the 

Resolute Integrity 

28% within 

4 days 
[198,199] 
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Stent in All-Comer 

Vessels and Cross-

OvER Stenting) 

Clinical Trial 

69% within 

2 weeks 

Amazonia PAX 

(MINVASYS) 
PF-DES Paclitaxel L605 Co-Cr - 

Pax A and Pax B 

Clinical Study Design 

60% within 

48 h, 

100% within 

7 weeks 

[198,199] 

Biofreedom 

(Biosensors 

International) 

PF-DES Biolimus A9 316L SS - BioFreedom FIM 

98% of drug 

within 4 

weeks 

[195,198] 

Polymer-free 

DFS (Medtronic) 
PF-DES Sirolimus Co-Cr, Tantalum - 

Medtronic RevElution 

Trial 
N/A [8,198] 

Cre8 

(Alvimedica) 
PF-DES Amphilimus L605 Co-Cr - 

Clinical performance 

of CRE8 drug-eluting 

stent in all comer 

population 

(PARTICIPATE) 

(phase 4) 

50% of drug 

on 1st day 

100% within 

3 weeks 

[8,198] 

JANUS (Sorin 

Biomedica) 
PF-DES Tacrolimus 316L SS - JUPITER I, JUPITER II 

50% over 4 

weeks 
[195,198] 

NANO + (LEPU 

Medical) 
PF-DES Sirolimus 316L SS - 

Clinical performance 

of nano plus 

sirolimus-eluting 

stents in patients with 

coronary artery 

disease 

85% in 4 

weeks 
[8,198,199] 

Supra-G 

(Cook Inc.) 
PF-DES Paclitaxel 316L SS  

6 months ASPECT 

(Asian Paclitaxel-

Eluting Stent Clinical 

Trial) 

N/A [198,199] 
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VEST Async 

(MIV 

Therapeutics) 

PF-DES Sirolimus 316L SS - 
9 months Vest Saync 

II Clinical Trial 

100% in 3–4 

weeks 
[198,199] 

V-Flex Plus 

(Cook Inc) 
PF-DES Paclitaxel 316L SS - 

6 months Clinical 

Trial 

28% within 

4 days 

69% within 

2 weeks 

[198,199] 

YUKON 

(Translumina 

GmbH) 

PF-DES 
Sirolimus, 

Probucol 
316L SS  

ISAR-TEST, ISAR-

TEST 3, ISAR-TEST 4, 

ISAR-PEACE 

(Posthumous 

Evaluation of 

Advanced Cancer 

Environment 

66% in 2 

weeks 

100% over 3 

weeks 

[195,198] 

YINYI (Liaoning 

Biomedical 

Materials) 

PF-DES Paclitaxel 316L SS  

Safety and Efficacy 

Registry of Yinyi Stent 

(SERY-II) (SERY-II) 

42% in 24 h 

100% in 9 

weeks 

[8,198] 

SES - Sirolimus eluting stent, PES - Paclitaxel eluting stent, ZES - Zotarolimus eluting stent, EES – Everolimus eluting stent, 316L SS – 316L Stainless steel, 

L605 Co-Cr – L605 Cobalt-chromium, PF – Polymer free 
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4.2. Drug-Related Surface Modification 

The achievement of optimal drug release kinetics and drug loading capacity are the most 

important challenges for DES. Burst drug release (elution of 90% of the drug amount within two 

days) in various PF-DES have been reported repeatedly. As a result, the desirable inhibition of 

neointima proliferation cannot be reached [198,200,201]. 

In order to overcome this barrier and obtain a sustained drug release kinetics profile of the DES 

platforms (elution of 60–70% of the drug amount within the first week and the remaining drug within 

4–6 weeks), different physical and chemical methods of stent surface modification have been used 

(see Table 4). The coating techniques used for surface modification of stents include direct coating, 

crystalline coating, nanoporous or microporous surface coating, inorganic porous coating, reservoir-

based coating, coating containing nanoparticles, and a coating of self-assembled monolayers. Direct 

coating is the technique to coat the drug onto the surface of the stent by immersing the stent into a 

drug solution followed by evaporation [202]. In crystalline coating, direct crystallization of the drug 

from a solvent on the stent surface leads to a partially crystalline or an amorphous drug-coated stent 

[203]. Nanoporous or microporous surface coating uses a sand blasting technique and mechanical 

modification [204]. Inorganic porous coating includes the coating of micro- or nanoporous 

biocompatible thin inorganic material on stent deposited by anodization technique [205]. Reservoir-

based coating uses macropores (grooves, channels or holes) created by mechanical treatment on 

stents, which act as reservoir-based systems for drugs [206]. Nanoparticle containing coating on stent 

is a recent approach used for NPDES by coating nanoparticulate-based chemotherapeutics onto the 

stent platform [207,208]. Silica-based magnetic nanoparticles and carbon nanotubes are used as 

nanoparticulate systems [209]. Coating of self-assembled monolayers on stent surfaces are applied 

by a two-step deposition method: (a) immersion into solution and (b) dip evaporation [210]. The most 

frequently used method is surface modification through a creation of micropores by sandblasting or 

mechanical modification. The first microporous surface PF-DES platform used in clinical studies was 

the Yukon DES stent [200]. One example of a micro-patterned drug delivery stent is presented in the 

patent US8915957B2 [211]. It contains special arrays of micro- and nanostructures covering the stent 

surface in selected regions and providing dynamically controllable hydrophobicity for the whole 

stent. Additionally, some special options, namely a possibility to use a control devise able to vary the 

hydrophobicity of the structured regions, dynamical control of the stent shape in vivo as well as use 

of sensors for monitoring the fluid parameters have been presented in this work. 

Table 4. Comparison of various surface modification techniques used in drug eluting stents (DES). 

Coating Technology Advantages Disadvantages Ref. 

Direct coating 

Stent dipping into 

the drug solution 

followed by solvent 

evaporation 

Ideal for drugs with a 

very low aqueous 

solubility 

Limited loaded 

drug amount; 

burst drug release 

kinetics 

[8,198,199] 

Crystallization 

Direct temperature-

dependent or micro 

drop spray drug 

crystallization on 

the stent surface 

Slower release than 

amorphous drug 

layers due to lower 

dissolution rate 

Limited loaded 

drug amount; 

burst drug release 

kinetics 

[8,198,199] 

Nano-/micro-

porous coating 

Micro/nanopores on 

the stent surface 

produced by 

sandblasting or 

mechanical 

modification 

 

Higher amount of 

drug loading; 

sustained drug release 

due to a longer 

diffusion time; rough 

surface induces early 

endothelialization 

Possible release of 

aluminum oxide 

particles 

[8,198,199] 
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Inorganic 

porous coating 

Pores are localized 

in an inorganic 

coating on the metal 

stent surface 

Reduction of platelet 

activation due to a 

decreased release of 

metal ions 

Release of 

inorganic 

particles after 

implantation pose 

a major challenge 

[8,198,199] 

Macroporous 

drug reservoir 

Drug reservoir in 

form of abluminal 

stent grooves, holes 

or channels 

Single and multidrug 

loading; slower drug 

elution by barriers like 

nanopores 

Release of ions 

may cause local 

irritation 

[8,198,199] 

Nano-particle 

coating 

Surface coating with 

a porous composite 

matrix based 

magnetic silicon and 

carbon 

nanoparticles 

or self-assembled 

monolayers 

High drug adsorption 

and flexibility of the 

nanoparticle coating; 

rapid 

endothelialization 

Nanocarrier 

properties are 

critical since the 

polymer may 

trigger mild 

immune response 

[8,198,199] 

Drug filling/ 

internal 

coating 

A drug coats an 

internal lumen of 

the stent, diffusing 

through abluminal 

microholes directly 

into the 

vessel wall 

Slower drug elution 

by barriers like 

microholes 

N/A [8,198,199] 

Self-assembled 

monolayers 

Deposition of self-

assembled 

hydrocarbon chains 

on a stent surface 

Controlled release and 

rapid 

endothelialization 

Low drug loading [8] 

DES mostly use polymer coatings to incorporate pharmacologic agents. These are (i) non-

biodegradable polymers, such as phosphorylcholine (PC, Endeavor®stent, Medtronic), C10, C19 and 

polyvinyl pyrrolidone (PVP, BioLinx polymer system), parylene C, polyethylene-co-vinyl acetate 

(PEVA), poly-n-butyl-methacrylate (PBMA) (CYPHERTM stent, Cordis), poly(styrene-b-isobutylene-

b-styrene) (TAXUS® stent, Boston Scientific), PBMA and polyvinylidene fluoride 

hexafluoropropylene (PVDF-HFP) (Xience V® stent, Abbott Vascular; PROMUSTM ElementTM, 

Boston Scientific). (ii) Biodegradable polymers, such as poly-lactide-co-caprolactone (PLC), and poly-

lactide-co-glycolide (PLGA) (Supralimus 181and Infinnium 181 stent, Sahajanand Medical 

Technologies), poly-L-lactic acid (PLLA) (Excel stent, JW Medical System) [190]. Some polymer 

coatings, which are recently being used, are summarized in Table 5. 

Table 5. Common polymers used in DES. 

Polymer DES 

Coating 
Features Ref. 

Polylactic acid Effective in short and mid-term follow-ups 
[190,212–

214] 

Poly-l-lactic acid 

(PLLA) 
Feasible, safe, and effective implantation [190] 

Poly (lactic-co-

glycolic acid) 
Slow releasing capability for hydrophobic drugs [190] 

Hyaluronic acid 
Good degradation efficiency, enhances the proliferation 

and migration of endothelial cells 

[190,215–

217] 
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Polyzene-F 
Highly biocompatible, anti-inflammatory, bacteria-resistant 

and pro-healing 
[190] 

4.3. Drugs Used in DES 

DES utilize different drugs with anti-inflammatory, anti-thrombogenic, immuno-suppressive, 

and anti-proliferative effect mechanisms [218]. Thereby, “limus family” drugs are particularly 

evaluated. Table 6 summarizes the commonly used drugs in DES according to their binding target, 

structural formula, and mode of action. 

Table 6. Drugs commonly used in DES. 

Drug 
Binding 

Target 
Structural Formula Mode of Action 

Sirolimus 

FK-506 

Binding 

Protein 12 

 

Anti-proliferative, 

immunosuppressiv

e 

Umirolimus/ 

Biolimus A9/ 

Biolimus/BA9 

FK-506 

Binding 

Protein 12 

 

Immunosuppressiv

e 

Zotarolimus 

FK-506 

Binding 

Protein 12 

 

Anti-proliferative, 

immunosuppressiv

e 

Everolimus 

FK-506 

Binding 

Protein 12 

 

Immunosuppressiv

e 
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Novolimus 

FK-506 

Binding 

Protein 12 

 

Anti-proliferative, 

anti-inflammatory 

Tacrolimus 

FK-506 

Binding 

Protein 12 

 

Anti-proliferative, 

immunosuppressiv

e 

Pimecrolimus 
Macrophilin-

12 

 

Immuno-

modulating agent of 

the calcineurin 

inhibitor  

Paclitaxel 
Microtubule

s 

 

Anti-proliferative 

agent 

Dexamethason

e 

Specific 

steroid-

binding 

protein 

receptor 

 

Anti-inflammatory 

Curcumin 
Microtubule

s 

 
Enol form 

 

N/A 
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Keto form 

Terumo statin -- - Anti-proliferative 

4.4. Drug Delivery Mechanisms 

The controlled drug delivery mechanisms [219–225] can be classified as either physical or 

chemical mechanisms, or their combination. Physical mechanisms include diffusion of drug 

molecules through a polymer layer, dissolution, or degradation of polymer matrix controlling the 

drug release rate, use of osmotic pressure for drug release and use of ion exchange for ionized drugs. 

The chemical mechanisms, however, are based on breaking covalent bonds that connect drug 

molecules to a delivery vehicle, such as polymer chains, by either chemical or enzymatic degradation. 

Physical mechanisms have an advantage over chemical ones as they allow for controlling the drug 

release kinetics by the drug delivery system itself. Furthermore, there is no need to chemically modify 

the drug molecules, such as in chemical mechanisms. 

Diffusion: in the reservoir devices, the drug reservoir is covered with a thin polymer layer, which 

serves as a rate-controlling membrane. In the matrix (or monolithic) devices, a drug is usually 

dispersed inside the polymer matrix. Its release into the environment occurs without any rate-

controlling barrier layer. In CYPHERTM (Cordis) [226] and Taxus® (Boston Scientific) [227] stents 

diffusion-controlled mechanism is used. 

Dissolution or degradation: dissolution-/degradation-controlled drug release is based on 

decomposition of a polymer membrane encapsulating the drug reservoir or a drug-containing 

polymer matrix itself. Examples of stents, in which the dissolution or degradation mechanism is used, 

are Achieve (Cook Inc) [228,229], ACS Multi-LinkTM stent (Guidant Corp.) [230], ConorMedstentTM 

(ConorMedsystems) [231], and Janus CarboStentTM (Sorin Biomedica) [207]. 

Ion exchange can be used very effectively for controlled release of ionized drugs, which bonds 

to the matrix through electrostatic interactions. Ion exchange mechanism is employed in the 

BiodivYsio stent (Biocompatibles International) [232]. 

The osmosis-based controlled release devices consist of an inner core containing drug and 

osmogens, coated with a semipermeable membrane. As the core absorbs water, it expands in volume, 

which pushes the drug solution out through the delivery ports. Osmotic pumps release the drug at a 

rate that is independent of the pH and hydrodynamics of the dissolution medium [219]. 

Prodrug approach is based on chemical (e.g., hydrolysis) or enzymatic degradation in the body. 

The drug release kinetics is likely to be affected by the parameters, such as pH and the enzyme 

concentration, which cannot be controlled by the system itself [219]. 

5. Mechanical Aspects of Stents 

The mechanical characteristics of the material (elastic (Young’s) modulus (YM), yield strength 

(YS), ultimate tensile strength (UTS), and elongation) define the characteristics of the stent (radial 

strength, acute and chronic recoil, axial and radial flexibility, deliverability, profile, and lifetime 

integrity). The requirements to mechanical characteristics of the stent material are rather 

contradictory: a high value of YM is needed to reduce stent recoil; the combination of a high UTS 

(>300 MPa) and low YS (∼200 MPa) value is preferred for the design of stents; high UTS and high YM 

is needed to increase the stent’s radial strength. Low YS is required for ease of crimping the stent onto 

a balloon and then expanding them during deployment. It is obvious that the more these 

characteristics are achieved, the better the stent will be. Various, influential, sometimes conflicting 

factors affect one or more of these characteristics: materials, manufacturing methods, general shape 

of the stent/stent design and size, struts shape, size and number. Materials are responsible for 

corrosion resistance, biocompatibility, radio-opacity and—along with manufacturing methods (laser 

cut, water-jet cutting, photoetching)—the apparition of the artefacts. When materials selection is 

combined with stent design, strut shape, and size, mechanical properties are influenced, such as 

radial strength and recoil. 

Open and closed cell design: general shape of the stent (coil, tubular mesh, slotted tube) and 

bridging between rings (peak-to-peak, peak-to-valley, and mid-strut-to-mid-strut connections) can 
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influence flexibility, radial strength and scaffolding (ability to support tissue; thus, preventing 

prolapse) [233]. Slotted tube stents design can be either open or closed cells. Closed cells are only 

peak-to-peak connected; they provide optimal scaffolding, high radial strength, low plaque prolapse. 

When bending the stent, its surface is more uniform, which leads to a more uniform drug 

concentration. Contrary to closed cells, open cell stents have some or all internal inflection points of 

the structural members not connected by bridging elements. Thus, the unconnected structural 

elements contribute to the longitudinal flexibility. In turn, at bends, gaps are formed on one side, so 

the amount of drug is lowered (low drug delivery capability); on the opposite part, the pinch creates 

a high drug concentration. Hybrid design that includes both closed and open cells in different parts 

of the stent can address some of these issues. In synthesis, the selection of one of the two options 

affect scaffolding, drug delivery capability, conformability, and mechanical properties. Lower size of 

the stent (in length and/or diameter) has been reported to decrease the risk of restenosis. Xu et al. 

[234] studied the effects of vascular dynamic bending (VDB) and vascular pulsation (VP) in 

alternating stress states of an open-cell design (Endeavor™ stent). They found that stent fracture 

occurred more frequently as a result of VDB with the predicted fracture position located in the 

bridging struts of the stent, where the maximal stress of the stent about 590 MPa was recorded. In the 

axial direction, the stress is mainly distributed in the middle loops of the stent, corresponding to the 

maximal bending deformation. 

The stent presented in the patent US6908480B2 [235] has at least two different patterns along its 

longitudinal length, such as a closed cell and an open cell design. The stent is made from 

nickel/titanium, titanium, stainless steel or a noble metal. The different patterns are joined by varying 

articulations including a W-pattern and S-pattern. The stent has at least two coatings over the base 

structure, the coating depth not exceeding ten microns. 

Strut thickness: strut thickness has been decreased over time, as thinner struts have been 

associated with a lower late luminal loss and less neointimal volume obstruction after stenting, 

possibly a result of less stent-induced arterial injury and inflammation [236–238]. Reducing strut 

thickness results in increased conformability and deliverability, but less radio-visibility and affected 

mechanical properties. Materials such as cobalt-chromium alloys can be used to deal with these 

issues. Round cross-section struts are preferred due to their smoothness to square cross-section struts. 

Smaller struts are less prone to fracture than bigger struts. Fewer struts induce a lesser chance of 

restenosis compared to more struts. 

Depot stents design: depot stents design optimization has been performed by Hsiao et al. [239]. 

Unlike drug-eluting stents, the depot stent does not need to be surface-coated. They observed that 

creating reservoirs on the stent struts lowers the mechanical properties. Computational modelling of 

the depot stent using finite element analysis (FEA) leads to the best compromise in order to increase 

the drug capacity without significantly comprising its mechanical integrity. The depot stent was an 

L-605 cobalt–chromium balloon-expandable stent, on whose strut micro-sized drug reservoirs were 

created in order to investigate their effects on the stent mechanical integrity. 

The FEA simulation was then conducted to investigate the effects of the reservoir location on the 

mechanical integrity of the depot stent. Equally spaced cylindrical reservoirs were created on the 

depot stent. The stress analysis identified the most fracture-prone locations of the stent as being the 

strut crown. By simply not performing holes (drug reservoirs) in the crown, the maximum equivalent 

plastic strain was reduced by 9% and the strain distribution was spread out even more uniformly 

than the case. Schiavone et al. [233] compared the mechanical performance of metal (Xience) and 

bioresorbable polymer (Elixir) stents during the process of crimping and deployment. High levels of 

stresses were observed in both stents following their deployment in the artery showing maximum 

von Mises stresses in the U-bend areas with a value of 935 MPa for Xience and 95 MPa for Elixir stent. 

Zhao et al. [240] also obtained a higher concentration of plastic strain on the curved crowns of the 

stent. Plastic strain concentrations occurring at the crown junction of the stent may be the cause of 

the stent fracture. Mehta et al. [241] highlighted that deformation mechanisms of Nitinol are more 

complex than the conventional modes of plastic deformation in traditional alloys. Therefore, future 

development of finite element models must incorporate effects of transformational strain, phase 



Pharmaceutics 2020, 12, 349 25 of 37 

 

redistribution, and plastic strain to provide higher fidelity predictions of Nitinol stent performance 

in vivo. 

The patent US9532888B2 [238] presents the usage of above mentioned depot design for 

incorporation of radiopaque markers into depots available on the stent surface. 

Overlapping stent design: Xu et al. [242] studied the interaction types and location of 

overlapping stents. It was found that all the overlapping contact patterns between struts are edge-to-

edge or edge-to-surface with no surface-to-surface contact pattern. This phenomenon is mainly 

caused by the non-uniform deformation of the stents in the radial direction during the implantation 

and their tubular structure. After expansion of the second stent, the contact pressure is primarily 

concentrated on its edges, so that the failure of an overlapping stent frequently occurs along the 

edges. Mehdizadeh et al. [243] created a nitinol overlapping open ring with asymmetrical, 

intermeshed saw-tooth design—called recoil-resilient ring (RRR)—to be utilized standalone or 

potentially integrated with existing stents for reducing the mechanical failure due to recoil. These 

teeth can slide on top of each other during expansion but interlock afterwards when pressure is 

released. FEA compression tests indicate 13 times less reduction of the cross-sectional area of the RRR 

compared with a typical stainless-steel stent and perfect elastic recovery of the RRR after removal of 

the pressure as compared to the remaining plastic deformations of the stainless-steel stent. 

Strut crown: possible weakness points (that are due to the plastic deformation) may appear in 

the strut crown; these weakness points can promote strut’s fracture (Figure 3). 

 

Figure 3. Thinned area in the strut formed after stent expansion. 

Strut crowns and struts curved areas are indispensable as they allow the stent deformation by 

deployment. The smaller the curvature radius of the crown, the higher the deformation and, 

consequently, the risk of coating flaws formation. In order to minimize the impairment of a coating 

integrity, the following measures can be evaluated using numerical simulation: 

- reducing the number of crowns; 

- curving of the linear parts of the struts with maximally high curvature radiuses permitting 

further stent deformation and deployment; 

- design improvement of the crowns. 

The last effect can be achieved, for example, using larger curvature radiuses (Figure 4a) or by 

introducing a flat area or an area with a higher curvature radius (Figure 4b) in the middle of the 

crown. The assumed reduction of the distributed strain should occur due to the known inverse 

proportional relationship between a strain and curvature radius. 
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Figure 4. Crown design: (a) low and (b) high radius of curvature in the middle area of the crown. 

Coating integrity plays a major role for reliability and safety of the stent device. Effects, such as 

cracking, delamination, and peeling off a stent surface are associated with serious health risks 

explained by a distribution of small coating parts by the blood flow. This problem illuminates a high 

need to tailor a stent design in order to reduce the probability of mechanical damage of the coating 

and the whole stent itself. Due to the high mechanical stresses, it is important to consider the areas of 

the largest plastic deformation, i.e., the strut crowns. Figure 5 depicts the formation of coating flaws 

predominantly in the areas of stent crowns supported by cracks and visible delamination. 

Coated stents were investigated by Shi et al. [244] revealing that the coating retained its original 

integrity after being crimped to ~Φ1.4 mm followed by expansion to ~Φ3.1 mm with no obvious 

delamination or peeling-off detected. However, at the locations of larger plastic deformation—on 

crown junctions—nano- and micro-sized cracks were identified. Such defects on the stent surface can 

lead to localized corrosion, stress corrosion cracking, and stent fracture as a result of high residual 

stress concentration at strongly deformed locations. 

Most stents available on the market have struts oriented along the longitudinal axis. Some of 

them, such as Taxus Liberté, have those oriented at an angle relative to the stent longitudinal axis 

(multi-angled struts) [236]. In future studies, it should be examined if using angled struts and some 

of the above described measures can help to achieve more homogeneous distribution of mechanical 

loadings, resulting in the better reliability of stents as medical devices. 

 

Figure 5. Inflated titanium oxynitride coated stent with coating flaws visible on all crowns (cracks, 

delamination, and possible peeling off in selected areas). 
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6. Conclusions 

Due to a very high mortality rate caused by cardiovascular diseases worldwide, and a promising 

approach of stent technology, researchers and clinicians are paying great attention to develop new 

materials, methods, and solutions in order to improve the clinical outcome of currently existing stent 

types, aiming at more safety for patients, and a higher success rate of cardiovascular treatments. In 

the frame of this review paper, different technologies of stent fabrication, especially related to coated, 

bioresorbable, as well as drug-eluting stents, have been considered. Since the appearance of the first 

stent, newer stent classes have been designed, including covered stents or bioresorbable stents 

demonstrating desired release of biological active agents able to control adhesion, cell differentiation, 

and tissue development, and having suitable physical–chemical properties and degradation rate. 

Despite the huge progress in the stent technology, no ideal stent exists until now. It is expected that 

some of the existing problems will be overcome in the close future, as we can especially remark in 

the numerous patents filled in the last few years. 
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